EET E

Y &1 & g BT BT

A TRANSFORMATIONAL APPROACH
TO DATABASE SYSTEM IMPLEMENTATION

Leonidas Fegaras
Computer Science Department
University of Massachusetts
Amherst, MA 01003

CMPSCI Technical Report 92-68
September 29, 1992

EC OEC OE OF T BT ET BT

E“!

€ & E

£

£ E

A TRANSFORMATIONAL APPROACH
TO DATABASE SYSTEM IMPLEMENTATION

A Dissertation Presented

by

LEONIDAS FEGARAS

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DoCTOR OF PHILOSOPHY

February 1993

Department of Computer Science

© Copyright by Leonidas Fegaras 1993

All Rights Reserved

e . b__ E__.

1; Ié X ‘g

-

E’*’ﬂ

T

-

T

F FT E ET

A TRANSFORMATIONAL APPROACH
TO DATABASE SYSTEM IMPLEMENTATION

A Dissertation Presented
by

LEONIDAS FEGARAS

Approved as to style and con‘jent by:

@ o b@?q

| W. Stemple, Chalr

(Robert N. Moll, Member

Y S . 3) C.
VGt /3 7/ (& /=~
J .VEliot B. Moss, Member

Arnold L. Rosenberg, Acting Chair
Computer Science Department

ACKNOWLEDGMENTS

I would like to express my gratitude to my advisor, Professor David Stemple, for
the support and the encouragement he gave me. I wish to thank the member of my
committee Professor Eliot Moss for his guidance and his painstaking proof-reading.
I am also grateful to the other members of my committee, Professors Robbie Moll
and Wayne Burleson, for their valuable remarks which helped me to improve the
quality of this work.

Many of the ideas presented in this thesis are influenced by the work of Professor
Tim Sheard. The analysis of the expressiveness of the uniform traversal combinator
algebra is done by Sushant Patnaik. Special thanks to Joydip Kundu and to Bennet
Vance who proof-read parts of this thesis.

I wish to thank Professor Subhasish Mazumdar for his friendship and for the
long and interesting discussions we had on many aspects of computer science.

Finally, I would like to thank my parents, Eleni and Iakovos, my brother, George.
and my friends, Helene Hinis, Marina Stinga, Olga Kikou, Kimie Sekene, Thymios
Delis, and Phoebe Jackson, for giving me the emotional support that I needed during

my long journey that ended in this thesis. Without their love and understanding,

it would not have been possible.

v

£ e L

E__

S T e S U S T

-

E-«—-—.

S I e B e B e B

ABSTRACT

A TRANSFORMATIONAL APPROACH
TO DATABASE SYSTEM IMPLEMENTATION

FEBRUARY 1993
LEONIDAS FEGARAS
B.E.E.,NATIONAL TECHNICAL UNIVERSITY OF ATHENS, GREECE
M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor David W. Stemple
The compilation of data intensive application programs involving persistent data
into efficient implementations needs to consider multiple execution schemes. A clean
separation of an application specification and its implementation can increase the

number of implementation choices for a single specification. While current database

systems offer data independence, their ability to capture complex specifications and

computations is very limited. This affects the application performance as it forces

incompatible specifications to be shaped into forms that can be captured by the few
primitives these languages support. Most programming languages on the other hand
offer satisfactory computational power and a large variety of data objects to choose
from but support limited persistence. Here concrete implementations of abstract
expressions are expanded hierarchically through layers of abstraction rather than
generated from alternatives.

This dissertation bridges these two approaches by giving the database designer
the ability to specify how the abstract objects defined in a program are to be mapped
into the storage structures provided by the database, leaving the translation and
optimization of the abstract operations to the compiler. We have developed a formal

model that describes this process, called the type transformation model, based

-

on Darlington’s work on transformational programming. The type transformation
model provides a method of translating any abstract operation that manipulates ab-
stract objects into an operation that manipulates concrete objects. The translation
is based on the dependencies between the abstract and concrete objects, stated by an
implementation designer. We present a new algebra that facilitates this task, called
the uniform traversal combinator algebra. Database queries on bulk data types,
such as on lists and sets, are captured as well-formed recursive functions, called
traversal combinators, Whose. definition is derived from the inductive properties
of the structure being traversed. One important contribution of. our approach is
the treatment of the class of traversal combinators resulting from restricting their
input functions to be themselves traversal combinators. This introduces a very
disciplined and uniform treatment of programs where any program is a traversal or
some other very simple primitive. This uniformity simplifies the query translation

and optimization process and facilitates the verification of the resulting translation.

vi

L.

r'—--g r-—@

4 T3 73 T3 T3

B

—3 — 3 T3 3

Page

ACKNOWLEDGMENTSottt ittt e et it et e e e e e v

ABSTRACT . .. o v

LIST OF FIGURES e e e X

CHAPTER

1. INTRODUGTION . . . ottt et et e e e e et e e et e e e 1

1.1 Our Methodology 5

1.2 The Technology 8

1.3 Thesis Organization 11

2. RELATED WORKt 12

2.1 Program Transformation Systems 12

2.2 Type Transformation Systems 15

2.3 Reductions and Stereotyped Recursions 16

24 Query Algebras L 19

2.5 Query Optimization 22

2.6 Flexible Database Management Systems and Translators 23

3. THE TYPE TRANSFORMATION MODEL 26

3.1 The ADABTPL Language 26
3.1.1 Function Types 27 .

3.1.2 Structure and Singleton Types 27

3.1.3 Union Types 28

3.1.4 Parameterization 28

315 Recursion, ... 29

3.16 FiniteSets 30

3.1.T Restriction. 30

3.1.8 Bounded Parameterization 32

3.2 Some Generic Manipulators of Structures 33

3.3 Mapping Setsinto Lists 36

3.4 The Formal Framework 38

TABLE OF CONTENTS

vii

3.5 Schema Evolution and Data Restructuring 44
3.6 Implementation of the Set Union 46
3.7 Undecidability of the Translation Problem 50
4. UNIFORM TRAVERSAL COMBINATORSovvuunnnn. .. 52
4.1 Formal Definitions, 55
4.1.1 The List Traversal Combinator 56
4.1.2 The General Form of Traversal Combinators 57
4.1.3 The Integer Traversal Combinator 58
4.1.4 The Boolean Traversal Combinator 59
4.1.5 The Tuple Traversal Combinator 59

4.2 Properties of Traversal Combinators 59
4.3 Structural Equality, 61
4.4 Uniform Traversal Combinators 63
4.5 Composition of Uniform Traversal Combinators 67
4.6 Using the Composition Algorithm for Program Optimization 71
4.7 Unrestricted Uniform Traversal Combinators 73
4.8 Model Extensions 75
4.8.1 Capturing all Recursively Defined Types 76
482 FiniteSets 81
483 Vectorsand Strings 87
4.8.4 Objects with Object Identity 88
4.8.5 Second-order Functions 95

4.9 Use of Uniform Traversal Combinators 96
5. THEOREM PROVING AND PROGRAM SYNTHESIS 98
5.1 Equality of Uniform Traversal Combinators 99
5.2 Theorem Proving, 103
5.3 Proving Set and Vector Theorems 105
5.4 Proving Theorems about Restricted Types 106
5.5 Proving Second-order Theorems and Synthesizing Programs 108
5.6 Proving Meta-theorems 113
5.7 Using the Theorem Prover for Program Translation 115
6. PROGRAM TRANSLATION AND OPTIMIZATION 118
6.1 The Transformation Specification Language 120
6.2 Database Implementation 124
6.3 Cost Model 127
6.4 The Optimization Algorithm, 135
6.5 Translating Encapsulated Functions Incrementally 141
6.6 The Concrete Layer 144
6.7 Conclusion e e e 148

viii

3

T3 T 3

- 7. CONCLUSION .« & e ottt ettt ittt e e e it ee s e 149
k 7.1 SUMIATY .« « o v v e e e e e e e e e 149
7.2 Contributions v v v e e e e e e e e e e e e e e e e 152
f’ 7.3 Future Research v v v o v i e e e e e e e e e e e e e e e 152
| APPENDICES
[.’ A. THE USER-LEVEL LANGUAGE . - + .« t vt ettt i ettt e e et 156
' B. THE TRAVERSAL COMBINATORS IN CATEGORICAL TERMS 165
F BIBLIOGRAPHY & it it e et et et e e e e e 168
@
W
i
X
Wﬁ‘
ix

Figure
1.1
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
5.1
5.2
6.1
6.2
6.3
6.4
6.5
Al
A2
B.1
B.2

LIST OF FIGURES

Page
The translation process 6
Mapping a set(person) into an ordered list 37
Translation of the abstract operation union 38
Mapping an abstract function f into a concrete operation F' L 42
The composition algorithm 68
Composition of set traversals 84
Composition of vector traversals 88
Composition of object traversals 94
Composition of second-order traversals 95
Equality of uniform traversal combinators 100
Solution. of E(Fr(c,r1,...,a)(F)gspB) - - o o o 111
The constructor tree of set(int) 128
The constructor tree of the part-subpart database 130
Definition of the cost function cost = He (¢, b2, P3,Pa) - 132
Optimization of Fr(c,r1,...,m)(f)=g. 138
A best-first search solution of A\;Z{T;} = F(z1,...,za) =9 140
Translation of UTCL expressions 157
Translation of UTCL imperative statements 160
The list traversal combinator h = tclist(fy, f2) 167
The traversal combinator h = Hr(f1,...,fn) . . . - 167

—.3

3

.31 x 3 3 1

_ .3

U

3

3 3 "3 3

—3 38 T3 T3

—~—3 —3

3

3 3 "3

T3

3 3

—3 T3

CHAPTER 1

INTRODUCTION

Current database management systems, such as systems based on the relational
model, lack the expressive power to support complex queries in a high level language
and typically provide limited variety in their data structures. The limitation on the
expressive powér of the high level languages in these systems is commonly circum-
vented by embedding query languages in more expressive conventional programming
languages. The disadvantage of this approach is that it forces the database designer
to express his/her conceptual model in terms of two different semantic models.
Additionally, for programming language objects to become database objects (or
vice versa) they often need to be restructured into the data model of the database
system being used. Such restructuring incurs costs both in conceptual terms for
programmers and in resources used when performed. Examples of this problem
occur in applications such as rule-based systems and computer-aided design. In
these applications complex structures are often used in programming the algorithms
that access rules and designs. These programming language structures need to be
“flattened” in order to be stored in relational structures, for example. The cost
of restructuring can make it difficult to meet the efficiency requirements of these
applications. In addition, whenever hierarchical or graph objects are mapped into
flat structures some semantic information available from the graph specification is
lost. Such information could substantially facilitate the query optimization process
as it specifies explicitly all valid access paths to data, and thus avoids considering

impossible paths.

2

One important advantage of commercial database systems is that they offer
data independence, whereby abstract objects and the operations upon them can
be significantly independent of their implementations. In these systems, database
queries are expressed in an abstract language, usually in a declarative form, that does
not indicate how the query is to be computed but only what properties the answer
should satisfy. This offers many opportunities for optimization and, consequently
more efficient implementations, as there are many programs to choose from that
compute the same query. In addition, the database designer can intervene in the
program translation and optimization process by specifying the storage structures
that implement the abstract objects. In a relational database system, for example,
a database designer may choose the implémenta.tion of a database table from a
number of possible alternatives, such as attaching extra indexes to a table. This
decision does not affect how queries are expressed in the database language but
only how they are compiled and optimized. Data independence facilitates user
productivity as changes to implementations do not require changes to the queries.
Furthermore, some of these systems provide a restructuring mechanism to change
the implementation of parts of the database or to modify the database schema itself
without losing any stored data.

On the other hand, most programming languages offer satisfactory compu-
tational power and a large variety of data objects to choose from but support
limited persistence, usually in the form of files. Some of these languages provide
an abstract data type mechanism to support a layered model of programming,
where abstract objects and the operations upon them are defined in terms of other,
more implementation oriented, operations. This layering provides a type of data
independence because, as in the database systems, it hides the implementation
details from the user of the abstract data type. The difference is that an abstract

data type typically has its operations decomposed into their implementations in a

3

3

|

3 3

3 3

3

3 T3 — 3 3 73

T4

T

3 3

-4

3

predefined, rigid way, while a database system offers a number of alternative methods
of execution. For example, there may be more than one access path to retrieve the
same piece of information from a database, such as accessing an index in a relational
system to retrieve pieces of information from a table or accessing the table itself.
This redundancy of access paths makes it possible for a database system to perform
query optimization, in which concrete implementations of abstract expressions are
generated from alternatives, rather than expanded hierarchically through layers of
abstraction. A rigid refinement style of implementation does not meet the needs
of large data-intensive applications. It does not offer sufficient flexibility to solve
the problems of evolution of such systems and it does not support optimization
techniques exemplified by query optimization in database systems. This rigid re-
finement of implementation introduces another big disadvantage. There are times
when a sequence of function calls does redundant computation in which the same
data is computed twice, once in each function. Relational database systems suffer
from a similar problem that can be solved by materializing intermediate relations
between queries or by performing a kind of global query optimization, where sets of
queries are considered and optimized together. To achieve this type of optimization
in a regular programming language, one needs to unfold the body of each such
function definition, put it in place of the call (as inline functions do), rearrange the
resulting operations, and store some of the intermediate results in order to avoid
the recomputation overhead. This optimization is difficult to perform using current
compiler technology.

There has been some efforts to bridge database management technology with
programming language philosophy to form persistent and database programming
languages [2]. Some of these efforts are based on the object-oriented model [12, 1, 3].
Objects defined in such languages can have sophisticated structures, like those found

in modern programming languages, and can be persistent across a wide variety

4

of types. Persistent and non-persistent objects are treated more uniformly than
in ordinary languages, hiding the difference in persistence from the programmer
of the operations that work on these objects. Most of these systems suffer from
the same problem that non-persistent programming languages have: all abstract
objects and operations are implemented via rigid translations. For data intensive
applications, where most of the data need to be persistent, this problem becomes
more important because the database accesses are relatively slower than the primary
memory accesses. This may result in a system that is unnecessarily slow, because
the programmer does not have enough flexibility in choosing how abstract objects
are stored and the translator does not examine alternative ways to perform the
queries using different access paths and algorithms.

In summary, we are concerned with data intensive application programs that
involve persistent data. The compilation of these programs into efficient imple-
mentations needs to consider multiple execution schemes. For example, considering
different paths for accessing the same piece of data increases the opportunities for
optimization. A clean separation of an application specification and its implemen-
tation can increase the number of implementation choices for a single specification.
While current database systems offer data independence, their ability to capture
complex specifications and computations is very limited. This affects the application
performance as it forces incompatible specifications to be shaped into forms that can
be captured by the few primitives these languages support. This problem can be
solved by extending the expressiveness of these database languages to capture more
complex data structures and computations. There are already many efforts in that
direction. People involved in such efforts tend to believe that the more you extend
the expressiveness of a language the more difficult the program optimization task
becomes. This thesis will demonstrate that this is not necessarily true by presenting

a language that is expressive enough to capture most polynomial time functions but

3 i 3 73

3

3 T3

a3

4

3

5

still facilitates optimization. We believe that the undecidability of optimization is
not managed by reducing the expressiveness of the language but by reducing the
number of possible program schemes that compute a function. The search for an
optimal solution is more efficient if there is a smaller number of program schemes
to consider. A provision must be taken, though, that the oﬁtimal solution is within
this search space. This restriction of the number of program schemes is achieved by
requiring that all structure traversals be expressed in terms of a very small number
of stereotyped generic recursions.

This thesis presents a framework for translating abstract database specifications
into concrete implementations in a way that supports data independence. Both the
specification and implementation are expressed in a language rich enough to capture
very complex data structures and computations but restricted enough to facilitate

program translation and optimization.

1.1 Our Methodology

This thesis explores the possibility of achieving a level of data independence
similar to that found in database systems but in the context of a high-level database
programming language, such as ADABTPL [26]. We believe that the best approach
to this problem is to give the database designer the ability to specify how the abstract
objects defined in a program are to be mapped into the storage structures provided
by the database, as well as to specify the implementation of some of the abstract
operations, but to leave the compiler to translate and optimize the rest. A database
storage structure in this approach is not just an abstract data type that implements
an abstract object. Here the designer must give explicitly the dependency between
the abstract and the storage objects. A well-suited means of expressing this depen-
dency is the use of a representation function to map the concrete object into the

abstract object. The compiler will use these dependencies to translate the operations

6
intezxnal
schema writer
? A T Y)
validation | - oot ;
- s ool
- | P . i B
e I -7 < oy { !

P i R rreve
semantic ' i senantic ./ transformation™, P implementor
:dﬂ \. Specification , | specification & S

"'gn.: ‘W/ \'_,_,/ ‘ : f l
N 7 P S
N e -) ‘ —— h R
.";%/ - R
| translator = : ,transformation
| | ’ ‘ library
| 1 . specificatien
i p——— .
;’_ ’ . ' concrete »
g ’ ~ layer
i L 1 code
, ‘/conpilnd:Q .
code P
T~ conarete
| . layer
: implementor
|
| execution |

Figure 1.1 The translation process

and to assure the correctness of the translation. We have developed a formal model
that describes this process, called the type transformation model (28], based on
Darlington’s work on transformational programming [23, 16, 46]. The dependencies
between abstract objects, which can be expressed as integrity constraints, as well as
the dependencies between the storage objects suggest that there may be more than
one access path to retrieve the same data, since there is redundant information. The
query translation process is a search over these alternatives guided by cost functions.

The necessary separation of specification from implementation requires that the
translation be done in stages by people with different expertise. Figure 1.1 shows
the necessary stages for compiling an abstract program. The ovals represent forms of

specifications from abstract to concrete, the rectangles processors, and the unboxed

T3

"3 3§ ~—4a 3 T3 "3

—3a 3 T3

a3

- Y |

poe

3

7

text describes people in various modes. The semantic model designer is the
person who writes the abstract application program (the semantic specification)
using our abstract specification language. This person should not be concerned with
assigning storage structures to the abstract objects to achieve efficient execution.
The main concern here is to write a functionally correct specification satisfying all
the design requirements. The translator type-checks the specification and uses a
theorem prover to find inconsistencies in the specification and to suggest corrections
to overcome them. The semantic model designer can compile the specification into
a non-persistent prototype using a simple translation, not shown in the figure, in
order to check the behavior of the specified system. The whole design process can
be repeated until the specification is consistent and the specified system behaves as
intended.

After the program is proved to be syntactically and semantically correct, a
second stage is initiated by the internal schema writer who assigns storage struc-
tures to all the abstract objects by defining explicitly the type transformations that
will achieve the object translations. All these type transformations will constitute
the transformation specification of the abstract program. To make this task easier,
a rich library of type transformations, called the transformation library, will be
provided. This library contains the transformations that are commonly used, such
as the mappings of abstract sets into Bttrees, attaching indexes to a set, etc. The
task of writing this library is assigned to the library implementor. The internal
schema writer is left with the task of selecting mappings from the library that suit
this specific application, and defining new mappings when none of the mappings
in the library are satisfactory. The code that manipulates the database storage
structures constitutes the concrete layer and it is written by the concrete layer
implementor. The internal schema writer as well as the library implementor need

to know about this layer in order to write valid mappings. If the concrete layer is

8

changed, usually by the introduction of new storage structures, this will affect both
the transformation library and the transformation specification.

The task of the compiler is to accept the semantic specification along with
the transformation specification and produce the interface to the concrete layer.
The theorem prover is used again to verifjf the correctness of the translation by
proving whether the translation of each abstract operation manipulates the storage
structures according to the defined object mappings. After this, the produced object
code must be linked with the concrete layer library to yield executable modules. The
internal schema writer will evaluate the performance of some of the functions and
of the whole system to decide if there is an alternative way of implementing some
of the abstract objects to improve the system performance. The process of the
transformation specification is repeated until the system performance is acceptable.

"It is very common for either the system specification or implementation to
change, because the needs of most applications evolve through time. Decisions
about schema evolution are made by the semantic model designer, while the internal
schema writer is responsible for the changes in the implementation. It is desirable
to restructure the database efficiently to reflect these changes, instead of destroying
and recreating it from scratch. This task is performed by the internal schema writer
who writes the required mappings to transform the old abstract objects to the new
abstract objects. These mappings are similar to the mappings from abstract objects
to concrete. The compiler uses this information to generate and optimize a program

that restructures the database.

1.2 The Technology

The type transformation model provides a method of translating any abstract
operation that manipulates abstract objects into an operation that manipulates

concrete objects, according to the dependencies between the abstract and concrete

~—3 —3 T3 —3 T3 —1

4 T3 T3 T3 T3 T3 1

TE

4

3

9

objects. This concrete program is equivalent to a program that translates the
input concrete objects, performs the abstract operation, and then translates the
resulting abstract object into a concrete object. The program optimizer needs to
transform this program in such a way that it does not perform any unnecessary
object translation and, more importantly, it is more efficient than other equivalent
programs that compute the same function. Avoiding the object translation overhead
is very important because we want our implementations to be expressed in terms of
concrete primitives only, not in terms of mixed abstract and concrete computations.
Therefore a necessary criterion for a successful application of the type transformation
model is to specify a language that guarantees, and facilitates in a systematic way,
that this default translation can always be transformed into a program consisting
of concrete primifives only.

This thesis introduces a new algebra, called the uniform traversal combi-
nator algebra (27|, that fulfills the requirement of the previous paragraph. Fur-
thermore, it facilitates program optimization and validation. Bulk data structures
are defined inductively by a small number of type constructors. There is only one
primitive in this algebra for traversing structures: the traversal combinator, which
is defined inductively according to the recursive type definition of the structure
being traversed. No explicit recursion is permitted here as it is hidden in these
primitives. Each input function of a traversal combinator is associated with an
object constructor of the type being traversed and it is restricted to be an op-
eration in our algebra as well, such as another traversal. This introduces a very
disciplined form of programs where everything is a traversal or some other very
simple primitive. Programs are restricted to include traversals that traverse variables
only, not the results of other computations such as other traversals. Consequently,
having the default translation (derived from the type transformation model) in such

form means that this program is expressed in terms of concrete primitives only, as

10

no nested traversals are permitted. Despite this limitation, our algebra is closed
under composition. This basically means that traversals over traversals can be
reduced to traversals over variables. Traversals over traversals appear very often,
especially when we compose two functions that traverse their inputs. We have
developed the composition algorithm that performs this reduction. This reduction
algorithm can be used to transform the default translation into a program with
no object translation overhead expressed in concrete primitives only. Furthermore,
this algorithm is the basis of a theorem prover that can prove or disprove any
first-order theorem expressed in our algebra in a very systematic and efficient way.
The restriction that only variables that are not results of other traversals are allowed
to be traversed offers very few ways of expressing functions as programs in our
algebra. This substantially limits the search space of the optimization, making
the program translation and optimization process very effective and efficient, even
though some alternative program schemes may not be considered.

Our uniform traversal combinator algebra and the composition algorithm can
be used in many domains other than database system implementation and theorem
proving. The second-order equality algorithm, which is a part of the theorem
prover and the program optimizer, can be used by itself as a second-order uni-
fication algorithm and also in program synthesis. In addition, the composition
algorithm is a very powerful reduction algorithm that can be used for optimizing
functional programs. More specifically, this algorithm completely automates the
unfold-simplify-fold method {16}, which is used for deriving optimal expressions
from composite terms. It also completely automates deforestation (80], because
the programs derived by this algorithm produce fewer intermediate results than the

composite initial programs.

1

_3

3

4 ~— 3 3 13

3

T3 T3 "3 T4

~73 '3 T3 "4 —3ad T3

T3 T3

11

1.3 Thesis Organization

This thesis is organized into seven chapters and two appendices:
e Chapter 2 presents the related work that influenced our approach.

o Chapter 3 describes some of the features of the ADABTPL specification lan-

guage and presents the type transformation model.

o Chapter 4 presents the uniform traversal combinator algebra and its extension

to capture other complex structures such as sets and vectors.

e Chapter 5 describes a method of using the uniform traversal combinator algebra

to prove theorems and to synthesize programs.

e Chapter 6 describes a method of using the type transformation model and
the uniform traversal combinator algebra to translate and optimize database

programs.

o Chapter 7 summarizes the thesis and presents its contribution and our future

research plans.

e Appendix A presents a query language based on the uniform traversal combi-

nator algebra, but more user-friendly.

o Finally, Appendix B explains the definition and some of the theorems on

traversal combinators using basic category theory.

CHAPTER 2

RELATED WORK

The related work falls into these categories: Section 2.1 presents the work
on program transformation and on program development by stepwise refinement.
Section 2.2 presents the related work on type transformation. Section 2.3 presents
the work on reductions and other stereotyped recursions similar to our traversal
combinators. Section 2.4 presents some of the query algebras that use primitive
operations over their bulk structures that are similar to our traversal combinators.
Section 2.5 reviews some of the query translation and optimization systems that
influenced our approach. Finally, Section 2.6 presents some systems that have the

same motivation with our approach in achieving flexibility and adaptability.

2.1 Program Transformation Systems

Most semantic query optimization systems use program transformation methods
to refine and simplify queries. There is a lot of work on transformational program-
ming and program synthesis [65, 61]. The first such work was by Burstall and
Darlington [16, 21, 20, 22, 23]. The basis of a transformation system is a set of
correctness-preserving transformation rules that map a program scheme to another
preserving the intended meaning of the original program. A transformation system
does program construction by successively applying these transformation rules. If
the rules preserve correctness, then this system guarantees that the final version of

the program will still satisfy the initial specification. Most transformation systems

—3 T3

B B

T4

3

~3

—3 7 3

13

use three forms of transformation rules: unfold is the replacement of a call by its
body with appropriate substitutions; rewrite is the application of a rewrite rule to a
program scheme that matches the pattern of the rule head returning the rule body
with the rule variables properly instantiated; fold is the replacement of some piece
of code by an equivalent function call. Fold is the reverse operation of unfold.
Both fold and unfold can be seen as special types of rewrite rules. Typically
program transformation systems are semi-automatic programs that require user
intervention whenever decisions need to be made, by selecting which rule to apply
next. Most of the early work on transformational programming was on recursive
programs [10, 25, 49], especially on replacing simple forms of recursion by iteration.

The Boyer-Moore theorem prover [14] is a transformation system that proves
theorems by transforming them to the ‘true’ expreséion. It uses lemmas and meta-
lemmas as rewrite rules, along with some very powerful heuristics such as a general
form of structural induction, to reduce a theorem into a simpler one. Another
application of transformational programming is program synthesis. The goal of
program synthesis is to use the formal description of a program, usually in a form of
pre- and post-conditions that this program satisfies, to generate code that computes
this program. One of the first works in this area was by Manna and Waldinger for
the DEDALUS system [52, 53, 54]. Program synthesis is related to second-order uni-
fication [41]. This is the unification between second-order terms, that is, terms that
contain variables that are bound to functions (second-order variables). For example,
the second-order pattern f(A(g(B)),C), where A, B and C are constants and f and
g are second-order variables, matches the program scheme ‘while C do 4(B)’, by
using the second-order substitution list & = {f «— AuAv.while v do u,g «— lw.w}.
One matching algorithm for second-order terms is described in [41] and it is used for
formalizing a general program transformation technique that includes recursion re-

moval. Second-order and higher-order unification are undecidable in general. In (73]

14

higher-order unification consists of four transformation rules: term decomposition
where two calls to the same function are unifiable if their associated arguments are
unifiable; removal of trivial pairs such as equal terms; variable elimination when
we have solved the system for some variable; and the imitation rule that applies
whenever a variable v is unifiable to a function call a(@): if v is a first-order
variable then it generates the binding v « a(J), where each y; is an unknown
first-order variable, otherwise it generates the projection v « AZ.z; or the binding
v + AZ.a(Y1(Z),...,Ya(T)), where each ¥; is an unknown higher-order variable. In
the latter case the other terms are simplified by the new bindings using 3-reductions.

Systems for developing programs by stepwise refinement [65, 57, 82] have the
same motivation as the program transformation systems, but they are domain
specific. Program refinement is the pro<.:ess of refining an abstract specification,
which is not necessarily executable, to a concrete program, and proving the validity
of each refinement step. In each refinement step a small choice is made about
the form of a program that need to be added to satisfy the specifications. That
way the undecidability of the program synthesis problem is managed by splitting
the problem into simple subtasks. If a decision turns out to be invalid then it is
withdrawn and the process is backtracked to a point where it can be resumed again.
The abstract specification is usually represented as a pair of assertions, where the
first, the input assertion, defines the set of admissible input states, while the second,
the output assertion, defines the set of correct output states for each input state.
The refinement steps are supplied by the user and they usually need to be proved
correct before they are inserted, so that they do not need to be validated when they
are instantiated and applied as refinement steps. One such method of validating
rules before they are used is by proving that they satisfy the Church-Rosser and
the termination properties. This guarantees that the rewrite system is a l;eduction

system that always yields the same solution regardless of the order in which the

_ 13

T3 73

T3 T3 —ma ~—3 3

T3 T3 T3 738 T3

—3

3 T3

3

|

15

steps are applied. Two such systems are OBJ2 [34] and the Vienna Development
Method (44, 11]

2.2 Type Transformation Systems

Out type transformation model is based on Darlington’s work (23, 16]. He
proposes a method for ‘flattening’ programs, that is, generating programs from
abstract functions in terms of the lowest level language primitives. The user needs
to specify the representation function that maps each lower data type into a higher
one. This function, which is in general many-to-one, is used, along with some
manual program transformation methods, to compile an abstract operation. His
model is very close to the model described in Chapter 3. A similar approach was
adopted by Kapur and Srivas [46], based on the theory of term rewriting systems.
It uses the Knuth-Bendix completion procedure to test whether the insertion of a
rule introduces inconsistencies (contradictions) to the rule database.

The Polya project [39, 38|, undertaken by David Gries and other researchers at
Cornell University, introduces a new programming language construct, called the
transform, for expressing coordinate transformations. A coordinate transformation
is very similar to a data type transformation. Each transform describes one coordi-
nate transformation from a set of abstract variables to a set of concrete variables.
It also includes explicit transformation rules to map each individual expression or
statement that works on abstract variables into the corresponding one that works on
concrete variables. Each part of an abstract program must match exactly with one of
these patterns in order to be compiled. Furthermore, Polya uses coupling invariants
as constraints between abstract and concrete variables to be used for proving‘ the
soundness of the transformation process. The Polya type transformation model
is more general than ours, because it supports partial implementation of types,

where only some of the operations upon a type are implemented leaving the rest

16

unspecified. In [39] they claimed that the approach of using a representation function
fro;n a concrete domain to an abstract domain is too restricted and unsuitable,
because this function in some cases need not exist, in that several abstract values
are represented by a single concrete one. This is not true for ADABTPL where
dependencies between parts of an abstract object must be expressed as integrity
constraints. Therefore, if two different abstract objects that are instances of the
same type have the same implementation, there is a hidden dependency in this type
that should be expressed as a constraint. In addition, we believe that even though
there are cases where we need partial implementation of an abstract type, where only
a subset of operations is supported, these cases are not too ma-ny to justify adopting
such a general programming paradigm. Since it may be not obvious to a user whether
a given operation matches any of these patterns, such a type transformer lacks
the ability to define a priori the limits of its applicability to operations. Another
difficulty coming from this approach is that operation translation is rigid, insensitive

to cost, and does not depend on context. This could make optimization of operations

with redundant computation very difficult.

2.3 Reductions and Stereotyped Recursions

Our algebra is motivated by the intention of capturing a large family of type-safe
stereotyped recursions with well-understood properties that facilitate theorem prov-
ing, program synthesis, and program translation and optimization. There is some
research lately on analyzing the properties of some highly stereotyped recursions
similar to our uniform traversal combinators, but there is no work reported on
defining a systematic and completely mechanized method for applying these prop-
erties to theorem proving and program optimization. This section reviews these

related approaches.

~3

~a —3 —3 1 —31 3

3% 3 T3 —T13 T8

T3

1

3 T3

—3

17

Our work is highly influenced by Sheard’s work on reductions (70, 69]. Reduc-
tions are convenient abstractions for expressing manipulations of bulk data types
represented by recursive structures. They accumulate results as they traverse a
structure and can be used for more computations than are expressible using a map-
ping traversal. Reductions over lists and finite sets are expressive enough to directly
simulate all primitive recursive functions [42]. Reductions tailored to particular
recursive types can be generated automatically by a compiler by examining the
type details. The most notable contribution of Sheard’s work was using compile-time
linguistic reflection [72| to generate user-defined stereotyped recursions for any type
by expressing the program generators in a strongly-typed meta-language which is the
same as the language it represents. Our program generators that compute uniform
traversal combinators are expressed in this language.

The most influential work on realizing the importance of capturing recursions
into a few powerful patterns was by Richard Bird [10]. Even though his work was
focused on specific types, such as lists, it suggested ways of extending these methods
to other types. He used the idea of promotion for solving various transformation
problems, such as deriving an efficient solution for the problem of detecting cycles
in a graph. The basic idea of promotion is very simple: suppose that H(nil) is some
constant and H(cons(a,x))=h(a,H(x)). We want to put g(x)=f(H(x)) into an inductive
form similar to that of H. A sufficient condition for this is when there exists some
function h' such that f(h(a,y))=h’'(a,f(y)) (also called continuity condition). This is
called promotion, as it pushes f to the right of the expression g in order to take advan-
tage of the recursive properties of H. If f does not satisfy the above condition then we
can introduce a generalization f' of function f that has one extra parameter. That is,
f'(c.x)=f(x) for some constant c. Then the generalization g’ of g (where g'(c,x)=g(x))
is g'(s.x)=f'(s,H(x)) and the condition becomes f'(s,h(a,y))=h"(a.f'(u(a.s).y)), for
some g' and u. In that case g'(s,cons(a,x))=h"(a,g'(u(a,s),x)), that is, g’ is defined

18

inductively. This method of generalization is called parameter accumulation and
is used as an optimization technique for making promotion effective. Note that g
does not have its first parameter smaller at each recursive step any more, a property
required in our approach.

Mike Spivey adopted a categorical approach for expressing list recursions and
their properties [74]. He defined list operations in terms of six primitives: list map;
the flatten function, which concatenates the members of a list of lists; singleton,
which takes a value and creates a singleton list; list concatenation; the empty list;
and list reduction, where the accumulator is an associative operation. This type of
reduction, where the accumulator is associative, forms a monoid in category theory.
We will encounter very often this kind of restriction in various object algebras as it
satisfies some nice properties.

The work of Grant Malcolm on homomorphisms [51] generalized these methods
for all types. His paper introduced a generic form of homomorphisms, very similar
to our traversal combinators, stated the promotion theorem for any homomorphism,
and used it for proving some general properties of recursive types. Other works with
similar definitions of recursive patterns, called iterative functions, were by Bohm and
Berarducci [13] and by Pfenning and Paulin-Mohring {62], based on the second order
lambda calculus. The categorical programming language Charity [18] introduces the
fold operator, which is very similar to our traversal combinator but more generalized
to capture lambda currying explicitly and uniformly. This language can also be used
for computations in categories other than the category of types (which is what a
programming language normally does), such as expressing derivations in the proof
theory.

The most complete work on analyzing the properties of stereotyped recursions
was by Meijer, Fokkinga, and Paterson [56]. They presented four classes of generic

functions: catamorphisms similar to Malcolm’s homomorphisms; anamorphisms

3

3

3

_ 3

3

—3 3 —3 3 "3

3 "3 ~— 3 =~ 3

T3 T a T3

—3 3 T3 3 T3 3

-3

19

that can be seen as the inverses of catamorphisms; hylomorphisms a more general
form of anamorphisms; and paramorphisms similar to our traversal combinators.
They proved a large number of generic theorems for each class, such as the fusion
law (similar to our promotion theorem) and the uniqueness property (for proving
equalities of two functions).

Another approach on stereotyped recursions is using monads and monad com-
prehensions [81]. A monad in category theory is a triple (map, unit, join) that
satisfies some properties, such as map(g o f)=map(g)omap(f). For example, for
lists, unit could be like Spivey’s singleton, map like list map, and join like flatten.
By specifying this triple for a specific type we can define a monad comprehension
as [t|q], where t is a term and q is a qualifier. [t|q] is defined by the following
rules: [t|]=unit(t); [t|x—u]=map(Ax.t,u); and [t|(p:q)]=join([[t|q]lp]). For example,
[(x,y)Ix—[1,2];y«<[3.4]] is equivalent to [(1,3).(1,4),(2,3),(2.4)]. The query algebra

described in [76] is based on comprehensions over bulk data structures.

2.4 Query Algebras

Our uniform traversal combinator algebra is influenced by the set-reduce algebra
(SRL) [71]. The most important operation in this algebra is the set reduction
set-reduce(s,app,acc,base,extra) that applies function app to every element of the set
s and accumulates the results using the binary accumulator acc starting with base.
Parameter extra contains all extra parameters needed by the app function, normally
done implicitly using currying in other algebras. That is, if s={al,...,an}, then the
previous reduction is acc(appl(al,extra),acc(appl(a2,extra),...,acc(appl(an,extra),base))).

For example, the set intersection of r and s is computed by:

set-reduce(r, [x,y] —if member(x,y) then insert(x,emptyset) else emptyset,

union,emptyset,s)

20

Here the application function appl has an extra parameter y bound to extra, which
here is s. Therefore, for each element x in the set r we return {x} if x€s or the
empty set otherwise. These results are unioned together using the accumulator union
starting with the empty set. In the SRL algebra all parameters to set-reduce are
SRL expressions, which can be set-reduce calls, set constructions (that is, emptyset or
insert), tuple constructions, tuple selections, equalities, or operations over primitive
types, such as booleans and integers. This algebra captures all polynomial time
functions [42].

Another approach is exemplified by the polymorphic functional programming
language Machiavelli [59, 15|, enhanced with a set data type and database opera-
tions, such as join and projection. A set type {r} in Machiavelli can be defined
for any type T that supports equality, such as 7 being another set type. There
are four set primitives defined: the empty set {}, the singleton constructor {z},
set union, and the hom operator similar to set-reduce: hom(f,op,z,{}) = = and
hom(f, 0p, z, {21, ..., 2zn}) = op(f(21),--.,0p(f(2x), 2)). A hom operation is proper
when op is associative and commutative. In [15] a new algebra was presented
based on two equivalent programming constructs for doing structural recursion over
sets: 1) b = ®(e, f,u) that satisfies h(0) = e, h({z}) = f(z), and k(51 N S2) =
w(h(S1), h(S2)), and 2) g = ¥(e,i), a restricted version of hom, that satisfies
g(0) = e and g(Insert(z,S)) = i(z,g(S)) where i is a commutative-idempotent
monoid, that is, it satisfies i(z,i(y,S)) = i(y,i(=, S)) and i(z,i(z,S)) = i(=z,).
A certain sublanguage of this language can simulate all operators from relational
algebra and it can even capture transitive closure. '

The set-o.riented language FAD developed at MCC [77, 78] supports nested sets.
It is based on the filter expression filter(f, s, ..., sn) that returns a set composed
by the results of applying the n-ary filter function f to each element of the cartesian

product of the sets s;. The optimization process performs algebraic transformations

.3 13

.3

3

1

3

3

—3 73 71

—3 ~ 3 —3 —T3 —3 —3 ~3a 78 —3a —3 T3 13

—3 3

a3 T3

21

to the filter calls and assigns annotations to them, indicating how the filter is actually
implemented.

The object-oriented data model and language described in [8] use the reduction
operation pump, which is similar to Spivey’s reduce operator as it requires an
associative and commutative accumulator. In addition, this algebra supports the
apply-to-all operator, similar to map, and the cartesian product operator. Expres-
sions in this algebra can be optimized using some powerful generic rules, some of
which reflect familiar heuristics for relational query optimization. One is vertical
loop fusion that combines two loops by creating a single loop whose body is the
composition of the bodies.of the two original loops. Another is horizontal loop
fusion that combines two independent loops over the same value into a single one
that executes both the bodies of the loops.

Bennet Vance uses only one bulk primitive in his algebra: the fold operator [79].
which is similar to Spivey’s reduction operator, that is, the accumulator is required

to be associative:

(1, T2, ..., z,) fold(u, f,®) = f(z1)® f(z2)® - & f(zn)
[} fold(u, f,®) = u

Like Spivey’s language, each type here is defined by three primitives: empty, sin-
gleton, and concatenation, an associative operation. For example, concatenation
for lists is append, for multisets union, and for arrays array concatenation. By
expressing all bulk operations as folds and by using some very powerful generic
laws about fold expressions one can achieve very effective semantic query optimiza-
tion. However, the requirement that the accumulator be associative restricts the

expressiveness of the language.

2.5 Query Optimization

Much work has been done on query optimization for commercial database man-
agement systems [43]. Most of these projects address the problem of selecting the
best evaluation strategy (a query evaluation plan) for a complex query, expressed as a
join in a relational database system. The most influential work in this area was done
for System R [67]. They introduced a selectivity factor for the restriction predicate of
a join to be an estimate of the number of tuples that satisfy this predicate. The query
optimizer needs to retrieve statistics from the database, such as index cardinalities,
to compute these factors. For an n-join query the optimizer uses heuristics to reduce
the join order pérmutations to be considered. For each such permutation, and for
each join access method, it generates a candidate access plan. The cost of each
such plan is predicted by using the selectivity factors to estimate the size of the
intermediate composite relations. The optimizer selects the candidate access path
with the minimum total cost.

The optimization process is very complex and often evolves through time, as new
implementations for the database objects are introduced. Rule-based optimizers
offer enough flexibility to solve these problems. For these systems the optimization
problem is reduced to a search over all transformation rules applied to a specific
query with the ultimate goal of minimizing the execution cost of the query. The
rule-based systems are very suitable for semantic query optimization, such as the
simplification of the boolean expression that forms the selection predicate of a
relational query. Freytag’s work on ruled-based optimization (32, 33, 31, 30, 29
is an example of such approach, but it does not use cost functions to guide the
search. The best work on flexible rule-based optimizers is the EXODUS optimizer
generator [35, 37, 36]. The input to the optimizer generator is a model description
file, where the database implementor lists the set of operators of the data model,

the set of methods to be considered when building and comparing access plans, the

23

transformation rules that define legal transformations on the query trees, and the
implementation rules that associate methods with operators. Each transformation
rule is associated with an expected cost factor, which is derived automatically by
the optimizer, by learning from its past experience. The optimizing process is a hill
climbing method guided by these cost factors. We believe that assigning cost values
to rules instead of cost functions that depend on the data, is too restricted, since
it does not let a rule be applied in many different situations. More recently Graefe
introduced dynamic query evaluation plans [37] to solve this problem. Here most
of the optimization task is done at compile time, and a guard is generated for each
access plan that retrieves statistics from the database. If a guard of an access plan
evaluates to true then the plan is executed, otherwise the optimizer is called again
to redo optimization.

Global query optimization methods [47, 68], where a set of queries are considered
together for optimization, also seem very promising. Here a set of queries that use
the same relations is analyzed to detect possible redundant computations, such
as sorting a relation before a merge join operation, by materializing intermediate

relations in a way that can be used by more than one query.

2.6 Flexible Database Management Systems and Translators

Our work is motivated and influenced by the Genesis extensible database man-
agement system developed at the University of Texas at Austin [4, 7, 5, 6]. Genesis
introduced a technology which enables customized database management systems
to be developed rapidly, using user-defined modules as building blocks. The Gen-
esis concrete layer, which forms the physical database, is a collection of internal
files and links, a generalization of the network semantic model. A transformation
model is used to map abstract models to concrete implementations. This is done

with possibly more than one level of conceptual to internal mappings, transferring

24

abstract models to more implementation-oriented ones, until a primitive layer is
reached. These mappings are a sequence of database definitions that are progres-
sively more implementation-oriented. The programs that translate abstract schemas
into concrete schemas, called type transformers, are written by the Genesis database
implementor, whose role is similar to the role of an internal schema writer, using a
language that has some carefully selected compile-time reflective capabilities. The
database implementor is also responsible for writing the program transformers for
each type transformer, called the operation expanders, that translate every operation
on an abstract type to a sequence of operations on the concrete type. The Genesis
system supports reflective operations to make the operation expanders able to decide
how to translate the operations according to the structure of the abstract schema.
This provides compile-time query processing and optimization even though it does
not depend on the distribution of the data in the database. This model cannot
handle the problem of redundant computations between queries, since optimization
decisions need to be made over a set of queries instead of just one, property beyond
the capabilities of the Genesis system. Genesis can support most current database
management systems (or similar systems), but the Genesis researchers claim that
this system can support a database system of any complexity. We agree that the
Genesis framework is sufficient general to support this position, but we think that
the only way to achieve this is by extending the reflective capabilities of the language
to capture more complex type transformers.

The SETL project, at New York University [24, 66], has more ambitious goals
than ours. There algorithms are coded without specifying any nonabstract data
structures at all. New program objects are introduced, called bases, which are
used as universal sets of program values. Programs are written using only this set
theoretic algebra. All the objects appearing in a program are dynamically assigned

appropriate abstract data types from among the basic data types supported by

— 3 3 3 E |

T3

|

3

a3

R I

—~3 3

r— “"g

25

the language. The SETL translator uses an automatic data structure selection
algorithm to perform a global analysis of the way program objects are used and
related to each other to select among alternative data structures. Relations and
advanced index mechanisms are provided to implement sets efficiently. The SAIL
system, developed by James Low [50], is influenced by the SETL project. Here
a rich library of implementations is provided to implement the various abstract
types and the primitive operations. The SAIL compiler uses static flow analysis
to help the implementation selection algorithm minimize the cost. Two other
approaches are similar to the SETL system: PARTS by Robert Paige [60] and
LIBRA by Elaine Kant [45]. All these systems have the drawback that they need a
sophisticated selection algorithm to select implementations for the abstract objects.
These selections depend on the type of que;ries performed on these objects but ignore
their frequencies. None of these systems give the user the ability to change or extend
the implementation library or to change the actual selection algorithm, since they

do not support reflection.

CHAPTER 3

THE TYPE TRANSFORMATION MODEL

This chapter presents the type transformation model which is an extension of
the work done by Darlington and others [23, 16, 46]. Their model is enhanced to
include parametric types and second-order polymorphic functions, and its definition
of coding functions is expanded to cover a wider class of mappings. This model is
used for transforming abstract operations into expressions containing only concrete
operations, in conformance with the storage structures assigned to the abstract
objects manipulated by the abstract operations.

The chapter is organized as follows. Sections 3.1 and 3.2 give a brief description
of the ADABTPL type system along with some generic functions for manipulating
structures. Then Section 3.3 introduces the type transformation model by giving
an example of implementing sets as lists. Section 3.4 presents a formal framework
for the translation process. Section 3.5 uses the type transformation model for
restructuring databases in accordance with schema or implementation changes.
Section 3.6 uses the type transformation framework to translate the set union
function. Finally, Section 3.7 explains the need for a new algebra for expressing

our computations and transformations.

3.1 The ADABTPL Language

The language used in this and subsequent sections is ADABTPL [26], which
is a strongly-typed functional programming language [40]. Primitive types in AD-

ABTPL include int, boolean, and string. They support the usual built-in operations.

3

.3 .3 31 13

3

.4

-3

o3

27
In addition to these types, ADABTPL supports type definitions, where symbols

are defined to represent type expressions and type constructors for building com-

plex type expressions. The following summarizes some of the type constructors in

ADABTPL.

3.1.1 Function Types

Functions are first-class objects. They can be passed as parameters to other
functions or stored as data like any other value. A function type is constructed
using a pair of brackets and a right arrow. For example, [int,int] —int is a function
type whose instances are functions that take two integers as input and return an

integer as output. One instance of such a type is the integer plus function.

3.1.2 Structure and Singleton Types

A structure (or tuple) type is the cartesian product of its constituent types. One

example of a tuple type definition is:
person = struct make_person (name: string, ssn: int, address: string):

The tuple value constructor here is make_person of type [string,int,string] —person,
which takes a string, an integer, and a string as input and returns a new instance
of type person as output. The names name, ssn, and address, called selectors, are
used to select a component of a structure of type person. For example, if x is an
instance of type person then x.name or name(x) returns the name of x. Tuples with

no components are defined by the singleton type constructor. For example:

nothing = singleton none;

has only one instance: the constant none (a nullary constructor function).

_ 28
3.1.8 Union Types

A union type is defined as a set of alternatives. Every instance of a union type

has the properties of only one of these alternatives. For example:

point = union
(cartesian: struct make_cartesian (x: int, y: int);

polar: struct make_polar (radius: int, angle: int));

says that a point is defined either by its cartesian coordinates x and y or by its polar
coordinates radius and angle. Every point is constructed either by the constructor
make_cartesian of type [int,int]—point or by the constructor make_polar of type
[int,int] —point. Instances of union types are manipulated mainly by pattern-based
case statements. For example, the following returns the distance of a point x from

its origin:

case X
{ make_cartesian(m,n) — m*m-+nxn;

make_polar(r,a) — r}

This expression pattern-matches the value of x with the patterns make_cartesian(m,n)
and make_polar(r,a). If x is a cartesian point then x matches the first choice and
variables m and n are bound to the x and y components of x. Otherwise, variables

r and a are bound to radius and angle.

J.1.4 Parameterization

A parametric type definition introduces a new name for a set of types. It can be

instantiated to a type whenever its parameters (the type variables) are instantiated

to types. For example:

pair(alpha,beta) = struct pairup (first: alpha, second: beta);

—3 T3

T3 T3

3 T3

a T T “a

3

a3

T3

29

Here pair is defined as a parametric type whose free type variables are alpha and beta.
It defines a tuple with constructor pairup of type [alpha,betal ‘—vpair(alpha,beta). For

example, one valid instantiation of pair is the type pair(int,person).

3.1.5 Recursion

Bulk types, such as lists and trees, are defined as parametric recursive types.

For example, the list type is specified as:

list(alpha) = union
(null: singleton nil,

consp: struct cons (head: alpha,

tail: list(alpha))):

This recursive definition says that a list is either a nil object or a tuple that has two
components: a component head that holds a value of type alpha, and a component
tail that holds the rest of the list. It defines two list constructor functions, the nullary
constructor nil and the constructor cons of type [alpha,list(alpha)]l —list(alpha). It

also defines two selector functions, head and tail.

Other examples of recursive types are binary trees and parts. Each composite

part consists of a list of subparts:

tree(alpha) = union
(emptytree: singleton empty,
“fulltree: struct node (info: alpha,
left: tree(alpha),
right: tree(alpha)));
part = union
(basep: struct base (name: string, cost: int),
compositep: struct composite (name: string, cost: int,

subparts: list(part)));

30
3.1.6 Finite Sets

.

Finite sets cannot be captured as regular recursive types because they must
satisfy some special properties, such as, being independent of the order in which
elements are inserted. All the type constructors described so far form a free algebra,
in which there is a unique way of constfucting an instance of a type. Finite sets
are one exception to this rule. In Sections 4.8.3 and 4.8.4 we will encounter two
more exceptions: fixed-size vectors and mutable objects. In languages that describe
order-sorted algebras [19], such as OBJ2 [34], types are defined explicitly by a set of
axioms, making the definition of sets and vectors possible. We will not adopt such
a general approach as it will increase the complexity of our method of translating
and optimizing programs.

Finite sets are expressed as instances of a special built-in type set(alpha). The
set type has two constructors: emptyset that returns an empty set and insert(e,s)
that constructs a new set by inserting the element e into the set s (the type of insert is
Lalpha,set(alpha)] —set(alpha)). Note that insert(a,insert(b,s))=insert(b,insert(a,s))
and that if e is already in s then insert(e,s)=s. The selector function choose(s) returns
an arbitrary element of its input set s, while the selector function rest(s) returns a

set equal to s with the chosen element removed.

3.1.7 Restriction

Each type is associated with a set of values, the instances of the type, that share
common properties, such as common operations. In ADABTPL we can restrict the

set of instances of a type T further by using the where type constructor:
T' = T where(x) p(x);
This defines a new type T’ whose instances are all the instances x of type T that

satisfy the predicate p(x), where p is an ADABTPL expression of type [T]—boolean.

Type T' is a subtype of type T, that is, the set of instances of type T' is a subset

4

3 3 T3

T3 3 T3 773

T3 T3

T3

-3

-

S I

~3

31

of that of T. Any function that operates on T values can also operate on T’ values,
but the reverse is not always true: the T values passed to an T' operation must
be tested at compile or run time to insure that they satisfy the predicate p. The

where clause is called a restriction in ADABTPL. The following are examples of

restrictions:

rangel = int where(x) x>10 and x<20;
nset(alpha) = set(alpha) where(x) x7#emptyset;
slist(alpha) = struct msl (info: list(alpha), size: int)

where(x) x.size=length(x.info);

The first type definition defines rangel to be integer in the range between 10 and 20;
the second one defines nset to be an non-empty set; while the last keeps the length of
a list as redundant information attached to the list. Redundant information is very
important to optimization as it offers alternative methods of execution to choose
from that may have different costs. For example, it is cheaper to access x.size from
the slist x to derive the length of x than it is to compute length(x.info).

In addition to type parameters, type definitions can be parameterized by values
that are used in the where clauses of these type definitions. This is called a

parameterized restriction:
T'[21:t1,...,%n: ta] = T where(z) p(z,21,...,2a);

This defines a new type T’ whose instances are all instances x of the type T that
satisfy the predicate p(z, 1, ..., z,). That is, this restriction is parameterized and it
is instantiated whenever the parameters z; are instantiated to values during compile

time. For example:

bounded(alpha)[low: alpha,high: alpha,less: Lalpha, alpha] —boolean] =
alpha where(x) less(low,x) and less(x,high);

32

If bounded(t)[l,h,p] is an instantiation of this type, where t is any type, | and h are
constant expressions of type t, and p is a function of type [t,t] —boolean, then this

is equivalent to the type expression:
t where(x) p(l,x) and p(x,h)
The following are some valid type definitions that refer to the type bounded:

range[low:int,high:int] = bounded(int)[low,high,<];

rangel = range[10,20];
Another example, that we will encounter often in this thesis is ordered lists:

ordered_list(alpha)[before: [alpha,alpha]l —boolean] =
list(alpha) where(x) ordered(x,before);

where ordered(x,before) guarantees that list x is sorted by the function before.

3.1.8 Bounded Parameterization

So far we have introduced various type constructors for building complex types
from simple ones. In this section we describe a language primitive for decomposing
a type into its components in a way that they can be used for building other types.
This is a limited form of compile-time reflection {72} and it is related to bounded
universal quantification [17].

Type definitions have the following form:
name(ay,...,a.)[@1 : t1,...,Zn : tx] = T(ay,...,qa,);

where each a; is a name of a type parameter and each z; : ¢; is a value declaration to
be used for parameterizing restrictions. Both the list of type parameters and value
declarations are optional. Here we extend type parameterization to contain both

type parameter names and type definitions. If a; is a type parameter then it can be

—3 T3 79

3

-3 3

e T Tlas MG Ml

.

-

|

33

instantiated to any type; if it is a type definition it can only be instantiated to a type
expression that matches the right side of the definition. Type parameters and value
declarations in this type definition play the role of variables that are instantiated to
type expressions and values after the matching.

For example, in the following type definition
tt(m(alpha,beta)=pair(alpha,beta)) = pair(list(alpha), beta);

m(alpha,beta)=pair(alpha,beta) is a bounded type parameter with name m. For
example, tt(pair(int,int)) is equivalent to pair(list(int),int) (because m(alpha,beta) is
bound to pair(int,int) and both alpha and beta are bound toint). Any type expression
that does not match this type definition, such as tt(int), will cause a compile-time
error.

Bounded parameterization is very useful when it is combined with parameterized

restrictions. For example,

tr(m(alpha)|f: [alpha] —boolean]=alpha where(x) f(x))[g: [boolean] —boolean|=
alpha where(x) g(f(x));

For example, tr(int where(x) x<10)[[x] —not(x)] is equivalent to the type expres-

sion int where(x) not(x<10).

3.2 Some Generic Manipulators of Structures

In the remainder of this chapter we will use reduction functions [70] over lists
and sets to express operations and transformations. This does not unduly limit
expressiveness, since all primitive recursive functions over lists and sets can be coded
using reduction functions [42]. In Chapter 4 we will introduce a more restricted,

well-behaved, class of reductions that facilitate the transformation process.

34
Function list_reduce is a reduction over lists:

function(alpha, beta)

list_reduce (x: list(alpha), acc: [alpha,beta] —beta, base: beta) : beta;
case X
{ nil — base;

cons(a,r) — acc(a,list_reduce(r,acc,base)) };

This defines the polymorphic function list_reduce that has two type parameters:
alpha and beta. It has three input parameters: x of type list(alpha), acc of type
Lalpha,beta] —beta, and base of type beta. The output type of this function is beta.
That is, the type of list_reduce is [list(alpha), [alpha,beta] —beta,beta] —beta. If the
value of x is cons(x1,cons(x2,...,cons(xn,nil))) then list_reduce(x,acc,base) computes
acc(xl,acc(x2,. ..,ace(xn,base))). An example use of list_reduce is given by the length
function computed by list_reduce(x,[?,r]—r+1,0), where [zi,...,z,]— exp is a
lambda abstraction (anonymous function) with variables z;,...,z, and body exp
(expressed as Az, ...Az,.exp in lambda calculus) and ? is a don’t-care parameter
(an unnamed variable). Here the base is 0 of type int and therefore type beta is
instantiated to int. The type of [?,r] —r+1 is [alpha,int] —int, an instantiation of

type Lalpha,beta] —beta.

The set reduction function is set_reduce, very similar to list_reduce?:

function(alpha,beta)
set_reduce (s: set(alpha), acc: [alpha,betal —beta, base: beta) : beta;
if s=emptyset }
then base

else acc(choose(s),set_reduce(rest(s),acc,base));

!We use if-then-else statements instead of case statements to manipulate set objects because
there is no unique way of matching the value of a non-empty set with the pattern insert(a,r). We
could let ‘a’ be the choose element of the set and ‘r’ the rest of the set but this could possibly cause
some confusion.

3

.

3

=

3 7§ 73 T3 T3 T3 TE

35

For example, the set union of two sets sl and s2 is union(sl,s2), computed by
set_reduce(sl, [a,r] —insert(a,r),s2). That is, we insert every element of sl into s2.
Set equality of two sets x and y is computed by the following:
set_reduce(x,
[ex,r] —member(ex,y) and r,
set_reduce(y,
[ey,s] —member(ey,x) and s,

true))

where member(e,s) is computed by set_reduce(s, [a,r] —(a=e) or r false).
Another example, which is a second-order function, is the generic join func-
tion (it is generic enough to have selection and projection embedded in its input

functions):

function(alpha,beta,gamma)
join (x: set(alpha), y: set(beta),
match: [alpha,beta] —boolean,
concat: [alpha,beta]l —»gamma) : set(gamma);
set_reduce(x,
[ex,r] —set_reduce(y,
[ey,s] —if match(ex,ey)
then insert(concat(ex,ey),s)
else s,
r),

emptyset);

join(x,y,match,concat) takes every combination of elements from the sets x and vy,
checks whether these elements satisfy the match predicate, and if so it returns a new
element by applying the concat function to form a new element of the result set. An

example call to this join retrieves all employees working in the CS department:

36

join(employees,departments,
[emp,dept] —(emp.dno=dept.dno and dept.name="CS"),

[emp,dept] —emp)

3.3 Mapping Sets into Lists

In this section we present an example of implementing set objects. Suppose
that we have an instance of the type set(person) and we want to implement it as an
ordered list (a list with no duplicate elements, sorted by some total order). That is,
we want to translate our abstract programs that manipulate these sets, such as the
union of two sets of persons, into programs that manipulate ordered lists. Ordered
lists are convenient implementations of sets because there is an isomorphism between
set objects and ordered lists objects. This mapping preserves all the properties of
sets, such as insert(a,insert(b,s))=insert(b,insert(a,s)), because there is a unique way
of mapping instances of such sets into ordered lists, independently of the way they
were constructed. Ordered lists are not the only valid implementations of sets. Any
mapping that preserves the set properties is valid. Isomorphisms always preserve
these properties but this is not a necessary condition.

Let x be a set of persons. Before mapping x into an ordered list we need to specify
the ordering. Suppose that the ssn and the name of a person are unique. Then two
possible orderings are the functions [x,y] —x.ssn<y.ssn and [x,y] —x.name<y.name
(see Figure 3.1a). In both cases the inverse mapping for implementing sets as ordered

lists is rep:
x = rep(y) = list_reduce(y, [a,r] —insert(a,r),emptyset)

We call function rep the representation function that interprets ordered lists as

sets. The mapping from set(person) to a list ordered by ssn is Cssn:

y = Cssn(x) = set_reduce(x, [a,r] —ordered_cons(a,r, [x,y] —x.ssn<y.ssn),nil)

3

3

-3

)

~—3 —3 3 3

3

3 7 3

3

r‘-'*—g r——-g

a4 3 T3 T3

73

—3 "3

37

set(person) set(pe?rson)

abstract /,‘j)\ L
AN

) N rep: cod
7 . “« . X
{"/ // C ssn Cmn;\\
i ’ N 7
A ~T :
concrete) Y y
list(person) list(person list(person)
ordered by ord(zred by) ordgred by
person.ssn person.name ‘before’
a) b)

Figure 3.1 Mapping a set(person) into an ordered list
where ordered_cons(e,x,before) inserts e into the ordered list x:

function(alpha) ordered_cons
(e: alpha, x: list(alpha), before: [alpha,alphal —boolean) : list(alpha);
case x
{ nil — cons(e,nil);
cons(a,r) — if before(e,a)
then if before(a,e) then x else cons(e,x)

else cons(a,ordered_cons(e,r,before)) }
while the mapping to a list ordered by name is Cname:
y = Cname(x) = set.reduce(x, [a,r] —sordered_cons(a,r, [x,y] —x.name<y.name),nil)

We can capture both these isomorphisms, as well as any other similar isomorphism

from set(person) to an ordered list, as (see Figure 3.1b):
y = cod(x,before) = set_reduce(x, [a,r] —ordered_cons(a,r,before),nil)

We call function cod the coding function of this mapping. Function before is an

extra parameter to the coding function that determines how the resulting sequence

38
union
X) ~-(Z)
T [T
y
rep rep
rep i
N -7
L7 UNION <
@\

Figure 3.2 Translation of the abstract operation union

is ordered. Therefore, to map sets into ordered lists one must choose an ordering
function before that will determine the implementation of a set. That way the
mapping becomes isomorphic. Note that for any total ordering before we have

rep(cod(x,before)) = x.

We now examine how these mappings can help us translate set operations.
Consider for example the union of sets defined as set_reduce(x, [a,r] —insert(a,r).y).
Then UNION, some concrete implementation of union, must satisfy the following
condition for all X and Y (from Figure 3.2):
rep(UNION(X,Y)) = union(rep(X),rep(Y))

One possible solution for UNION is:

UNION(X,Y) = cod(union(rep(X),rep(Y)),before)

as can be easily proved if we substitute this expression to the previous condition
and use the equation rep(cod(x,before))=x. The following section specifies this

translation process formally.

3.4 The Formal Framework

In the type transformation framework we transform abstract operations into

expressions consisting only of concrete operations, in conformance with the storage

2

3

-3

.

.

1 3

3

—3 —3 —3 3

3

3

3

3

T3

3

3

3

39

structures assigned to the abstract objects manipulated by these abstract operations.
This relationship between abstract objects and storage structures can be expressed

as mapping dependencies:

Definition 3.1: (Mapping Dependency) A mapping dependency m between

two types ¢ and ¢’ is a predicate of type [t,t] — boolean.

In the context of this mapping, ¢ is referred to as the abstract type and ¢ as the

concrete type.

Definition 3.2: (Implementation) A function F : [t},...,t}] — t; is an
implementation of a function f: [ty,...,¢,] = to via the mapping dependencies

m; : [t;, t;] — boolean if the following equation is true for all z; and y;:

ml(ml)yl)/\"'/\mn(mn)yn) = mO(f(wlx-")zﬂ)’F(yla"':yﬂ)) (31)

In the context of this mapping, function f is referred to as the abstract operation
while F' as the concrete operation.

Equation 3.1 is a second-order theorem in which function F is unknown. Proving
second-order theorems and constructing programs from proofs is a very difficult
problem in general. In Section 5.5 we will present a complete algorithm for proving
such theorems for a restricted class of functions. Ifin addition we are concerned with
deriving not just any implementation F of f but only the optimal one (according to
some cost criteria), then we may need to generate all possible programs F' and choose
the one with the minimal cost. The number of alternative functions F' that satisfy
Equation 3.1 can be substantially diminished if we restrict all mapping dependencies

to be of the form:
m(z,y) = (y = r(z)) A (z = c(y))
that is, m is expressed in terms of a representation function r and a coding function

c. Even though we would prefer to consider as many alternatives as possible for

40

constructing good implementations we will adopt this restriction in order to avoid
the undecidability of the general translation problem.

For purposes that will be apparent in the next chapter we will define both
representation and coding functions as combinators. A combinator is a function
that accepts functions as input and return a new function as output. If 9(fiy-- s fn)
is such a combinator then applying the resulting function to some values z,, ...,z
is expressed as g(f1,..., fa)(Z1,.-.,Zm).

In our formal notation we use lower case letters for type expressions and upper
case letters for type names. Names starting with the letters o or B denote type pa-

rameters. We denote sequences of zero or more type parameters, such as ay, .. ., a,,

a.s&orﬁ.

Definition 3.3: (Representation Function) Let ¢,(&) and ¢,(8) be two para-
metric types. A representation function R, that returns a mapping of the
type t2(fB) into the type ¢,(c@) is a combinator of type ((B1 — 1) X -+ X (Bn —
an)) = (t2(B) — ta(@))-

In the context of this mapping, ¢, is referred to as the abstract type and ¢, as the
concrete type. If y is an instance of the concrete type ¢, then there is an instance
of the abstract type t; such that z = Ry, ,,(71,...,7:)(y). Each r; is a representation
function for mapping §; into a;.

For example, the representation function that interprets lists as sets is:

function(alpha,beta) rep (rl: [alphal —beta) : [list(beta)] —set(alpha);

[yl —list_reduce(y, [a,r] —insert(rl(a),r),emptyset);

that is, it returns a function that maps an instance y of type list(beta) into an
instance of type set(alpha). The reason why we do not map list(beta) into set(beta)
(and in general ¢;(B) into t,(B)) is flexibility: we capture more mappings by mapping

both constructors and parameters.

3

r 3

41

Isomorphic mappings are of special interest. In isomorphisms there is a one-
to-one correspondence between the objects of the abstract and concrete types. In
this case, there is an inverse function of the representation function, called the
coding function. More specifically, for the mapping with representation function
Ry, ¢ (71,...,7m) the coding function is its inverse C, t,(c1, . - -, cn), where each ¢; is
the inverse of r;.

We can generalize this definition of coding function to include non-isomorphic

mappings by adding extra parameters e, ..., €em to Cy, . More specifically:
Definition 3.4: (General Coding Function) Ci, ¢, (c1,...,¢cn,€1,...,8m) is 2
coding function associated with the representation function Ry, (r1,...,7a), if

each ¢; is a coding function associated with the representation function r; and for
all ey, ..., e, the composition of Cy, t,(c1,..,Cn, €1, .., €m) With R ¢, (m1,...,70)

is the identity function:

Vey .. Vem Vs Bew i« ®a G 06050 ¢ 580815 = nlm)(B)) = & (3:2)

For example, the coding function for mapping sets into lists is:

function(alpha,beta) cod
(cl: [alphal —beta, before: [beta,beta]l —boolean) : [set(alpha)]l —list(beta);

[x] —set_reduce(x, [a,r] —ordered_cons(cl(a),r,before),nil);

where cl is the coding function from alpha to beta and function before is the extra
parameter e; of Cy, .

Each homomorphic mapping defined by a representation function and a cod-
ing function with some extra parameters can be considered as a parameterized
isomorphism, that is, it becomes an isomorphism whenever these parameters are
instantiated. This is very convenient, as it captures many possible implementations

of an abstract type and uses a theory similar to that of isomorphisms, making the

analysis easier.

42

A -
1 | T™n To
g
1 B > ¢}

Figure 3.3 Mapping an abstract function f into a concrete operation F

We consider now the case of mapping functions into functions (Figure 3.3).
Let ti(a1...an,@) = a; X +++ X ay = a and £3(B1...Bn,B) = By x -~ x B, = B.
That is, function F' of type B; x -+ x B, — [is mapped into a function f of type
ap X +++ X an — @, using the representation functions r; : §;— a; and ro : B — . If
in addition we require that all mappings are homomorphic then the above diagram

commutes. That is, for all z;,...,z, we have

ral (@i ma)l = (A s) vra ey (3.3)

If ¢o 1s a coding function for the mapping of a into 3, then one solution for F is:

Fl@agees y86), = to(Biges o 8 LI 0lB1), - « a0))) (3.4)

where ej,...,en afe extra parameters that need to be provided to the coding
function ¢o. There are no extra parameters for isomorphic mappings.

Equation 3.4 can be used to compute F' by translating the input concrete
objects into abstract objects, performing the abstract operation f upon them, and
translating back the resulting abstract object into a concrete one. The objective of
the translation is to express the concrete implementation in terms of the lower-level
primitives exclusively, avoiding the object translation overhead.

1t is obvious from Equation 3.4 that isomorphic mappings produce only one

function F' that implements f, even though there are different programs, some more

3 3 3 T3

3

3

3 3 3

T3 T3 T3

4

3

N

3

|

—3 T3

43

costly than others, that are equivalent to F'. In contrast, non-isomorphic mappings
express function F in terms of some extra arguments to be provided before the
translation, as stated in Equation 3.4. When these arguments are provided, they
pin down the implementation of f. These extra parameters must not be seen as a
problem but as a source of alternative methods of implementing f and, therefore,
as increasing opportunities for optimization. Choosing the right values for the extra
parameters can significantly improve the performance of the implementation.

Homomorphisms with no coding function are difficult to work with. Function F
cannot be deduced directly from Equation 3.3, as rg is not a one-to-one function. For
that reason, we require that all mappings be defined in terms of both a representation
and a coding function (in its general form with extra parameters). A theorem prover
can be used to prove whether this pair of functions satisfy Equation 3.2.

The translation process of an abstract program starts by assigning concrete
types to all abstract types. This is done by specifying both the representation
and the coding function for each mapping. Typically, the extra parameters of the
coding function are also specified, especially when we map persistent objects, but
occasionally we may leave some of these parameters unspecified, such as in the
case of temporary variables where we do not want to specify a detailed mapping.
The compiler delays a commitment to a decision for these extra values as long as
possible, to reduce the possibility of backtracking. We may have more than one
concrete type assigned to the same abstract type. This is permitted because when
we are programming using a high-level language we sometimes work on the same
type abstractions even when we intend to use them in different contexts. Most
mappings are parametric and, therefore, can be packed into reusable modules. The
compiler uses all these mappings to express the implementation F' of an abstract

operation f by using Equation 3.4.

44
3.5 Schema Evolution and Data Restructuring
Most database application programs evolve during their lifetime to catch up

with the users’ needs and with current trends of technology. In our model these

changes can be divided into two categories:

¢ Implementation evolution: changes to the implementation of the abstract model.

e Schema evolution: changes to the abstract model, including the abstract types

and operations.

In either case, the actual data stored in the database must be modified to reflect
the new schema. Our transformation framework can be directly applied to this
situation, as it is an adequate model for mapping types to types.

When we change the implementation of the database, it will be very convenient
to have a program that gets the old concrete database as input and generates the
new database of the new implementation. That way the new database does not
have to be rebuilt from scratch. This is the problem of data restructuring in a
database environmen.t. The compiler can synthesize such a program using the type
transformation model. The benefit of this is that these programs can be translated
and optimized like any other operation.

Suppose that the abstract database object d of type ¢4 is assigned a concrete
implementation D of type Ty via the representation function Ry. If we change the
implementation of the database, we need to specify a new representation function
R, that maps the database into its new implementation. We can specify R) in terms
of Ry4 by changing the representation function of a few abstract objects that are part
of the database, keeping the rest the same. That way R/, will be the same as Ry,

except for these modified parts.

=

3

3

~3 3

3

3 T3

T8 T3 T4

—3 T3

3

3

45

Function F' is the function that rebuilds the database:
Ry(F(D)) = Ra(D) = F(D)= CyR4(D),...)

where C; is a coding function associated with R}, possibly needing some extra
parameters.

If we change the database abstract schema ¢4 to t} via the representation function
R, then the new abstract database object d' : t) will have a different concrete
implementation D’ : T, via the new representation function Rj. Modifying the
abstract database schema t4 into a new schema ¢t is not an abstract to concrete
mapping but it can be made to fit in the same framework. This mapping is usually
expressed using the coding function C instead of the representation function R.
Note also that mapping an abstract database schema usually means making a small
change to one of the types that constitute the database schema, such as adding a
new component to a tuple. In that case, we need to define the mapping for this type

only, leaving the rest as identity mappings.

46

Function F', the function that rebuilds the database, satisfies:
R(Ry(F(D))) = Ra(D) = F(D) = Cy(C(Ry(D),...),...)

where Cj and C are coding functions associated with R and R.

3.6 Implementation of the Set Union

In this section we present an example of using the type transformation model for
translating an abstract operation and of using an ad-hoc method for transforming
the resulting translation into a program expressed in concrete primitives only.

Set union can be computed by the following program:

function(alpha) union (x: set(alpha), y: set(alpha)) : set(alpha);

set_reduce(x, [a,r] —insert(a,r),y);

Suppose that we implement set(alpha) as coded_set(beta) using a coding function
associated with the representation function r. Then UNION, some concrete imple-

mentation of union, has the type signature:

function(beta) UNION (X: coded_set(beta), Y: coded_set(beta)) : coded_set(beta);
and satisfies the following instantiation of Equation 3.3:

r(ra)(UNION(X,Y)) = union(r(ra)(X),r(ra)(Y))

where r has been substituted for 7o, 7; and 7, since they are all the same and ra is the
representation function for mapping beta into alpha. For example, if we implement
set(alpha) as an ordered list, then ra is [z] —z since beta is equal to alpha. In this
case UNION can be derived from Equation 3.4 after replacing ¢p with cod and r
and r, with rep, where cod and rep were introduced in Sections 3.3 and 3.4 as the

coding and representation functions for implementing sets as ordered lists:

UNION(X,Y) = cod([z] —z,before)(union(rep([z] —z)(X),rep([z] —z)(Y)))

47

Even though this solution has the correct functionality it does not fulfill our objective
of translating union into expressions of concrete primitives only. In addition, we
would like to avoid the object translation overhead of mapping the input and output
of union before and after the execution of the function. One way to do this is to use
standard program transformation techniques to simplify the above solution. One
such technique is the unfold-simplify-fold method [16]. In Chapter 4 we will present
a complete method of solving this problem.

Let us first compose F1(X,Y) = union(rep([2] —z)(X),rep([z]1 —2z)(Y)). We un-

fold the definitions of union and rep:

F1(X,Y) = set_reduce(list_reduce(X, [a,r] —insert(a,r),emptyset),
[a,r] —insert(a,r),

list_reduce(Y, [a,r] —insert(a,r),emptyset))
unfold the first list_reduce once:

set_reduce(case X
{ nil — emptyset;
cons(a,r) — insert(a,list_reduce(r, [a,r] —insert(a,r),emptyset)) },
[a,r] —insert(a,r),

list_reduce(Y, [a,r] —insert(a,r),emptyset))
pull the case out of set_reduce:

case X
{ nil — set_reduce(emptyset,
[a,r] —insert(a,r),
list_reduce(Y, [a,r] —insert(a,r),emptyset));
cons(a,r) — set_reduce(insert(a,list_reduce(r, [a,r] —insert(a,r),emptyset)),
[a,r] —insert(a,r),

list_reduce(Y, [a,r] —insert(a,r),emptyset)) }

48

but the nil case can be simplified into list_reduce(Y, [a,r] —insert(a,r),em ptyset). Also
set_reduce(insert(a,S), [a,r] —insert(a,r),B)=insert(a,set_reduce(S, [a,r] —sinsert(a,r),B)).
This statement is not obvious. It can be proved by induction. In Section 4.8.2 we
will see that a sufficient condition for set_reduce(insert(a,5),acc,B) to be equal to
acc(a,set_reduce(S,acc,B)) is acc being a commutative-idempotent monoid, that is,

acc behaving like insert. The previous expression now becomes:

case X
{ nil — list_reduce(Y, [a,r] —insert(a,r),emptyset);
cons(a,r) — insert(a,set_reduce(list_reduce(r, [a,r] —insert(a,r),emptyset),
[a,r] —insert(a,r),

list_reduce(Y, [a,r] —insert(a,r),emptyset))) }
But the set_reduce call can be folded into F1(r,Y):

case X
{ nil — list_reduce(Y, [a,r] —insert(a,r),emptyset);

cons(a,r) — insert(a,F1(r,Y)) }
or equivalently:

F1(X,Y) =

list_reduce(X, [a,r] —insert(a,r),list_reduce(Y, [a,r] —insert(a,r),em ptyset))
We now compose UNION(X,Y) = cod([z] —>z,before)(F1(X.,Y)):

set_reduce(list_reduce(X, [a,r] —insert(a,r),
list_reduce(Y, [a,r] —insert(a,r),emptyset)),

(a,r] —ordered_cons(a,r,before), nil)

we unfold list_reduce once:

set_reduce(case X
{ nil — list_reduce(Y, [a,r] —insert(a,r),emptyset);
cons(a,r) — insert(a,F1(r,Y)) },

[a,r] —ordered_cons(a,r,before), nil)
and pull the case statement out:

case X
{ nil — set_reduce(list_reduce(Y, [a,r] —insert(a,r),emptyset),
[a,r] —ordered_cons(a,r,before), nil);
cons(a,r) — set_reduce(insert(a,F1(r,Y)),

[a,r] —ordered_cons(a,r,before), nil) }

The nil case can be simplified using the unfold-simplify-fold method into:

list_reduce(Y, [a,r] —ordered_cons(a,r,before),nil)
and the set_reduce(insert... pulls out the ordered_cons:

case X

{ nil — list_reduce(Y,[a,r] —ordered_cons(a,r,before),nil),

cons(a,r) — ordered_cons(a,set_reduce(F1(r,Y),

[a,r] —ordered_cons(a,r,before),

nil),before) }
The inner set_reduce is equal to UNION(r,Y):

case X

{ nil — list_reduce(Y, [a,r] —ordered_cons(a,r,before),nil),

cons(a,r) — ordered_cons(a,UNION(r,Y),before) }

This can be folded into a list_reduce:

49

50
UNION(X,Y) =
list_reduce(X, [a,r] —ordered_cons(a,r,before),

list_reduce(Y, [a,r] —ordered_cons(a,r,before), nil))

We can see that the last solution of UNION is expressed in terms of concrete

primitives only (list_reduce and ordered_cons). Note also that if we had the restriction

that the ordered list Y is ordered by the same function before, that is, if:
Y = list_reduce(Y, [a,r] —ordered_cons(a,r,before), nil)

then the previous solution can be simplified further into:

UNION(X,Y) = list_reduce(X, [a,r] —ordered_cons(a,r,before),Y)

In Chapter 6 we will present a formal framework of using restrictions (‘where’

clauses) attached to types to optimize expressions.

3.7 Undecidability of the Translation Problem

For any function f in the abstract domain there is always a function F in
the concrete domain that satisfies Equation 3.3. This is true because there is a
one-to-one mapping between the objects in the abstract and concrete domain. But
not all functions are expressible as programs in a language. There is no guarantee
that for any program in the abstract domain there is a concrete program (expressed
in terms of concrete primitives only) that satisfies this equation. But even if such a
program always exists, there is no complete method known of synthesizing it.

In the previous example of translating the union function we succeeded by
applying the unfold-simplify-fold method to achieve our goal. If programs were
expressed in imperative style or data types were pointer-based, this task could
be more difficult. If we take a closer look to the previous example we can see

a pattern for translating expressions involving reductions only: whenever we have

51

nested reductions we unfold the inner reduction, pull the case out, simplify each case
using the same method, and then fold back to a new reduction. Fhis suggests that
an algebra consisting of reductions exclusively could make the translation problem
tractable and the whole process mechanized. This algebra is the topic of the next

chapter.

C'HAP'TER %4

UNIFORM TRAVERSAL COMBINATORS

In Section 3.1 we saw how recursive structures, such as lists and trees, can be
defined inductively in ADABTPL and how they can be manipulated by recursive
programs. Transforming such programs and proving theorems about them can be
made easier by requiring that functions be expressed in stereotyped ways. One kind
of stereotyping is the systematic use of higher order functions that carry out all
the traversal of recursive structures. Such traversal functions can capture common
patterns of recursion that occur often during programming and, therefore, minimize
the explicit use of recursion, which now becomes encapsulated by these functions.
The well-known map function that applies a function to each element of a list is
an example of a higher order function that encapsulates a traversal. By proving
theorems about such traversal functions, some properties of functions using them
can be proven by shallower reasoning than would be required if the traversals were
not “pre-analyzed” in isolation. In particular, the use of induction proofs can be
substantially diminished.

In Section 3.2 we introduced some generic manipulations of recursive structures,
called reductions. They accumulate results as they traverse a structure and can
be used for more computations than are expressible using a mapping traversal.
Reductions tailored to particular recursive types can be generated automatically by
a compiler by examining the type details [70, 69]. Reductions over lists and finite
sets are expressive enough to directly simulate all primitive recursive functions (42].

The work reported in this chapter extends these reductions to cover a larger set of

3

53

recursion patterns and is motivated by the desire to use them as an aid in program
transformation, theorem proving, and program synthesis.

In this chapter we explore a broad class of traversal functions and prove their
fundamental properties. We introduce a family of generic programs, called traversal
combipators [27], that capture a large family of type-safe primitive recursive
functions!. Most functions expressed as recursive programs where only one pa-
rameter becomes smaller at each recursive call are members of this family. This
restriction excludes the computation of some valid functions, such as structural
equalities and ordering, because they require that their two input structures be
traversed simultaneously.

Our generic programs are combinators as each takes functions as inputs and
returns a new function as output (the one that performs the actual reduction). One
very important contribution of our approach is the treatment of the class of traversal
combinators resulting from restricting their input functions to be themselves traver-
sal combinators. We call these functions uniform traversal combinators. This
offers a disciplined and uniform treatment of functions. This uniformity introduces
some nice properties, such as these combinators being closed under composition,
that aid in type transformation and theorem proving. In order to prove equality
theorems it was necessary to extend our language to include structural equality as
a special primitive. Programs expressed in this q.lgebra can be tested for functional
equivalence in a systematic and complete way, based on the fact that there is a

unique way of expressing a function as a traversal combinator.

INote that we use the term function in two different cases: to refer to a mapping from a set of
values to a set of values and to refer to an ADABTPL function. When we refer to computation
classes, such as primitive recursive functions or polynomial time functions, then we obviously mean
the first choice. Otherwise, to avoid confusion we use the first meaning only when we say that
a program computes or captures a certain function or that a function is expressed as a certain
program.

54

There are two ways of extending our algebra. One way is to relax some of the
restrictions posed to the uniform traversal combinators in order to capture more
computations. One important restriction is the requirement that no result of a
traversal is traversed again. This basically means that the only thing that we are
permitted to do with these results is to pass them as whole values to constructions
or to compare them with other values for equality. Removing such a restriction
has some unwanted drawbacks: the simplification algorithms, such as the one that
composes combinators, are not complete any more. Another way of extending our
algebra is to capture data structures that cannot be defined inductively, such as finite
sets, vectors, and mutable objects with sharing and cycles. It is very undesirable
to have a different algebra for any such structure because we would need different
simplification rules for each case. It is more preferable to define the uniform traversal
combinators for each such extension in such a way that all the theorems proved for
the regular inductive structures hold also in these cases with minor modifications.

The algebra presented in this chapter can capture most polynomial time func-
tions, even though we failed to find programs that compute some interesting func-
tions from this class, such as transitive closure and integer exponentiation. Nev-
ertheless, our system can express complex computations and prove complicated
theorems.

This chapter is organized as follows. Section 4.1 introduces the traversal com-
binators and gives some examples of their use. Section 4.2 presents the promotion
theorem and the uniqueness property that are used throughout this chapter for
proving properties of traversal combinators. Section 4.3 defines the equality com-
binator which cannot be captured as a traversal combinator. Section 4.4 is the
most important section of this chapter. It defines the algebra of uniform traversal
combinators. Section 4.5 proves that uniform traversal combinators are closed under

composition and presents some composition examples. Section 4.6 explains how the

T3 T3 T3

—3 ~—3 — ~—3 3 ~3 T3 T3 —3 —3I —3 T3 T3 T3 3

— 43

55

composition algorithm can be used to optimize programs. This algorithm is a very
important reduction algorithm that captures most database optimization rules, such
as pushing a selection inside a join. We will use it for proving theorems and for
synthesizing and optimizing programs. Section 4.7 explores the restriction posed
on uniform traversal combinators that the result of traversals cannot be traversed
and suggests ways to overcome it. Section 4.8 extends the algebra to cover all
recursively defined types, sets, vectors, objects, and second-order functions. Finally,
Section 4.9 concludes this chapter by presenting how this algebra can help us manage

the intractability of the translation and verification process.

4.1 Formal Definitions

All types described in this chapter are canonical types. The set of canonical
types is a restricted subset of all the types that can be expressed in ADABTPL.
They are constructed exclusively using parameterization, recursion, the singleton
type constructor, the tuple type constructor, and the union type constructor (as
defined in Section 3.1). Canonical types do not include primitive types. They are
defined explicitly using canonical type constructors. For purposes of explanation,
in the definition of a type T we restrict recursion to be a direct reference to type T,
not to any type expression ¢(T') that depends on T'. For example, we do not permit
the definition of the part-subpart tree structure where a subpart consists of a list
of parts (Section 3.1.5). In Section 4.8 we will remove this restriction to allow any
recursively defined type.

In general, any canonical type T has a number of constructors Cyy...,Cn.
More specifically, a tuple type has only one constructor whose input types are not
recursive. Each alternative of a union type has one constructor and therefore this
union type has all these constructors. We assume that any union type has at least

one constructor with no recursive input types. To make our notation simpler, we

56

assume that each constructor C; has the variables of type T' (the recursive references)
separated from the other variables: we write C;(F;, %) to indicate that the variables

T; = zi,...,x} are of any type other than T and the variables 7; = yi,...,y! are

4.1.1 The List Traversal Combinator

Before presenting the formal definition of traversal combinators, we give one
example. In Section 3.2 we defined the list_reduce function. Another generic function
over lists, very similar to list_reduce, is the traversal combinator tc_list:
function(alpha,beta)

te_list (fnil: [J—beta,

feons: [alpha,list(alpha),beta]l —beta): [list(alpha)l —beta;
[x] —case x
{ nil — fnil();

cons(a,r) — fcons(a,r,telist(fnil,feons)(r)) }:
Note that the body of tc_list is a lambda abstraction, that is, this function returns a
closure. In other words, since the inputs are functions this is a combinator. For this
reason, applying tc_list of the functions fl and f2 to a list | is written as tc_list(f1,f2)(1).
Any list_reduce call can be expressed as a tc_list call:
list_reduce(x,acc,base) = tc_list([1 —base, [a,?,s] —acc(a,s))(x)
For example, the list length function is computed by tc_list([1—0,[?,7,i1—i+1). The
list append function append(x,y) is computed by tclist([1—y, [a,?,1] —cons(a,l))(x),
while the list reverse is computed by tc_list([J—nil, [a,?,I]—append(],cons(a,nil))).
The reason for letting fcons access r, the tail of the list x, is that this allows us to
express order. For example, length(r) provides the distance of element a from the

end of the list, information which could not be directly available otherwise?.

?Note that we could access r from the accumulated result: tc_list([1—f1,[a,r,I] —f2(a,r.l))(x)
=tc_list([1 — pairup(nil,f1), [a,?,s] —pairup(cons(a,s.first),f2(a,s.first s.second)))(x).second, that is,

__3

3

.3 _ 3 3 _ 3

3

57

4.1.2 The General Form of Traversal Combinators

Reductions can be generalized to cover all canonical types. We call these
generalized reductions traversal combinators. They are combinators because they
accept functions as inputs, such as fnil and fcons in tc_list, and return a new function
as output. The ‘traversal’ part of the name is justified because the output function

of the combinator traverses the hierarchical structure of its input object.

Definition 4.1: (Traversal combinator) Let T be a canonical type with
constructors C;(%;,7:). A traversal combinator Hr(f1,..., fa) : T —b, where b

is any type, is defined as follows:

[z] - case

{
C,(E,E) - fi(ﬁ)ﬁ)HT(flx . 1fn)(y;), s 1HT(.f1y v 7fﬂ)(y:,.))y

Variables z, in fi(:, %, %), where zi = Hr(fi,..., fa)(¥i), are called accumulative
result variables because they accumulate the results of the recursive calls to
Hr(fi,..., fn), while variables from Z; and ¥; are called non-accumulative result
variables. Note that if C;(Z;, %) has k variables of type other than T (these are the
a:_,:va.riables) and m variables of type T (these are the 3; variables), then f; has k+2m
variables: k 4+ m non-accumulative and m accumulative result variables. For exam-
ple, in the expression tc.list([1—y, [a,r,s] —cons(a,s))(x) variable s is accumulative

while a, r, x, and y are not.

the result is the pair of the rest of the list r and the result of the computation. In Section 4.4 we
will exclude any such use of the accumulative result variables.

58

From Definition 4.1 we can see that if f is the traversal combinator Hlliss 0., 15)
then:
F(Ci(=, %)) = fi(@, %, F(91), - -, F(3))
In addition, if Vi : fi(%:, %, %) = Ci(%5, %) then f = Az.z; that is, f is the identity
function for T.

In ADABTPL, a traversal combinator Hr is written as tc_T. For example, tc_list

is the traversal combinator for the list type.

4.1.8 The Integer Traversal Combinator

The integer type int has two constructors: zero: int and succ: [int] —int. The

traversal combinator over integers is tc_int(fz,fs):

function(beta) tc.int (fz: [1—beta, fs: [int,betal —beta): [int] —beta;
[x] —case x
{ zero — fz();

succ(i) — fs(i,te_int(fz,fs)(i)) };

If type beta is int then this combinator can simulate all primitive recursive functions
for integers [64]. For example, tc_int([1—y, [?,r] —succ(r))(x) computes z + y;
tc_int([1—zero, [7,r] —r+y)(x) computes z * y;

tc_int([1 —succ(zero), [?,r] —xxr)(y) computes zV;

te.int([—succ(zero), [i,r] —succ(i)*r)(x) computes z!;

te.int([—true, [?,r] —(r=false))(x) computes the predicate even(z);

tc_int([]—false, [i,r] —(i=y) or r)(x) computes z > y;

te_int([] —x=zero, [i,r] —>(s.ucc(i)=x) or r)(y) computes z < y;

te_int([1—zero, [i,r] —succ(if (i=y) then zero else r))(x) computes = — y;

and te_int([]—suce, [7,f]1 -t int([1 —f(succ(zero)), [7,i1 —f(i)))(m)(n) computes the
Ackermann function Ack(m,n) [13] (type parameter beta in both tc_int is bound to

lint] —int, yielding high order traversals).

T3 T3 T3 T3 T3 T3

4 73 73 T3 3 —4 T3 13

~—3 3 3

3

3

59

4.1.4 The Boolean Traversal Combinator

The boolean type is just the union of the singletons true and false. The boolean
traversal combinator tc_boolean is the thinly disguised if-then-else function:

function(beta) tc_boolean (ftrue: [J—beta, ffalse: [1—beta) : [boolean] — beta;

[x] —case x { true — ftrue(); false — ffalse() };

For example, x ory = tc_boolean([]—true,[]J—y)(x). Sometimes we will write

if x then f else g as an alternative expression for tc_boolean([]—f,[1—g)(x).

4.1.5 The Tuple Traversal Combinator

For a tuple type definition, such as person, we have:

function(beta) tc_person (f: [string,int,string]l —beta) : [person] —beta;

[x] —case x { make_person(name,ssn,address) — f(name,ssn,address) };

which can also be expressed as [x] —f(x.name,x.ssn,x.address).

For example: x.name = tc_person([n,?,71—n)(x).

4.2 Properties of Traversal Combinators

A theorem very useful for proving properties about traversal combinators is
the promotion theorem [51] (or fusion law [56]). It states a sufficient condition
for the composition of a function with a traversal combinator to be a traversal
combinator. It says that the composition of a function g with a traversal combinator
Hr(f1,- .-, fa) is also a traversal combinator if the composition of g with each f;
promotes the g call only to the accumulative result variables of f;. This theorem is

used in Section 4.4 as a reduction rule for composing traversal combinators.
Theorem 4.1: (Promotion Theorem)
if ViVEYRVE: g(fi(@, % %)) = 6:(Ti, T 9(21), - - -, 9(2],)) then

QOHT(fh'"yfn) =HT(¢17':-7¢71)

60

Proof by structural induction: We will prove that Vz : g(f(z)) = ¢(x), where
f = He(fi,.... fa) and ¢ = He(dy,...,én). If is & construction Ci(%7) (that
is, Ci has no arguments of type T), then g(f(Ci(®))) = g(fi(F)) = &i(=) =
#(Ci(T7)). Let ¢ = Ci(T:,7). We assume the theorem is true for all y : T
that are subtrees of the tree . Then g(f(z)) = 9(fi(Z5, %, f(¥i),---, F(¥!)))
= 6i(Z0, T, 9(£(31)), - -, 9(£(3},))). But each g is a subtree of = and thus g(f(y;)) =
8(vi). Therefore, ¢u(%, %, 9(f(31)); .-, 9(F(41))) = (T T #(ui), -, 6(3i,) =
¢(Ci(i, 7)) = ¢(=).0

For example, the promotion theorem for lists is:

9(A()
VaViVs: g(f:(a,l,s))

#1() et .
$2(a,1, 9()) } = gotelist(fi, f2) = telist(¢r, 2)

The promotion theorem for integers is:

d(E0D) =) T
Vi Vr: g(fz(i,r)) = (s, 9(r)) }=>9 tednt(f1, f2) =t t(d1, @2)

Another way of seeing the promotion theorem is the following. The composition

g o Hz(f1,..., fa) is another traversal combinator Hr(¢1,...,dn), where each ¢;

satisfies the equation:
6i(TL T 9(21), - -, 9(4,)) = 9(fi(T0, T, %)

This equation does not yield a solution for ¢; directly. All the terms g(z;-) in ¢;
must be eliminated, that is, if we generalize g(z;'-) as w§ in both sides of equation,
where wj- is a new variable name, then the right side will not contain any reference
to the variable z; Note that.if f; is another traversal combinator then we can apply
the promotion theorem again. In Section 4.4 we will restrict every f; in a traversal
combinator Hr (¢, ...,¢n) to be another traversal combinator or some other very
simple primitive. In that case we apply the promotion theorem repeatedly until we

reach a simple primitive. Then eliminating g(z;) from both sides of the equation is

~3

3 T3

3

3

3

61

simplier. That way we get a complete algorithm for composing any function with a
traversal combinator.

The following corollary says that there is a unique way of expressing a function

as a traversal combinator [56]. It is used in Section 5.1 for testing the functional

equality of two traversal combinators:

Corollary 4.1: (Uniqueness Property)
VivE Ve 9(CuTh T)) = 6:(F T g(w1), - 9(%:,)) & g="Hr(dr, ..., 6n)

Proof: =: From the promotion theorem with f;(%:, %, %) = Ci(T, %) = fi(z5, %, 7).
&: From Definition 4.1. O
Appendix B explains the definition of traversal combinators and proves the

promotion theorem using basic category theory.

4.3 Structural Equality

Structural equalities for all but the trivial canonical types cannot be captured
as traversal combinators. We need to define a special. combinator instead. In the
following definition of structural equality we do not separate the arguments of C; of

type T from the others in order to make the notation more readable:

Definition 4.2: (Structural Equality) Let T'(@) be a canonical type, where
@ is a sequence of type parameters ay,...,a,, > 0. A structural equality
&EQr(ey,...,€) : T(@) x T(a@)—boolean, where ¢; : a; x a; —boolean, over the

canonical type T'(@) is defined as:

[z,y] = casez, y

{

Ci(mla R mki)’ Ci(yla v)yki) - A?;l Ri,j(mjyyj);

62
other — false
} .
where each z; and y; are of type T} ;(@) and

Res = 5.8 if T;;(a)= a, for some s
77 &Qri (e, ... ,6-) otherwise

In ADABTPL, a structural equality £Qr is written as equal_T. For example, the list

equality has only one parameter ea that corresponds to the type parameter alpha:

function(alpha) equal_list
(ea: [alpha,alphal —boolean) : [list(alpha) list(alpha)] —boolean;
[x,y] —case x, y
{ nil, nil — true;
cons(a,l), cons(b,r) — ea(a,b) and equal_list(ea)(},r);

other — false };

We will now enhance the definition of structural equality £Qr in such a way
that the composition algorithm in the next section is sound. This is done by taking
the two inputs of type T of the output function of £Qr, such as the two lists of
equal_list, as nullary functions and by adding a continuation that maps the result
of the equality to a type @ (typically this continuation is expressed as a tc_boolean
combinator, that is, as an if-then-else). The reason behind this enhancement is that
when we compose a traversal combinator with an equality combinator we want to
yield another equality combiﬁator so that our language is closed under composition.

This is achieved by the extra continuation ¢.

Definition 4.3: (Equality Combinator) Let T be a canonical type with
structural equality £Qr, f and h functions of type () —» T, and ¢ a function
of type boolean — 3. The equality combinator for T is &7 : () — G, defined as:

Er(f,h, 0)() = #(EQr (e, . .., &)(f(), R()))

A

=

ﬁu'-j

1

3

T3

3 a 3 E| i 3 T3 E | 3 3 3

—3 "3 3

63

Parameters € are instantiated to equalities whenever the type parameters of T are
instantiated to types. From now on we will ignore them because they do not affect
our analysis and will denote EQr(ey,...,€.)(f, k) as f() == k(). Typically, ¢ is
tc_boolean(¢y, ¢2). In that case: Er(f, h,d) = (if f()==h() then ¢,() else ¢,()).

The promotion theorem for equality combinators is simply:

Vg: go&r(f,h,¢)=Er(f,h,g0¢)
In ADABTPL, an equality combinator &r is written as eq_T. For example:

function(beta) eq_list
(f: [1-list(int), h: [1—list(int), c: [boolean] —beta) : [1—beta;
[] —c(equal_list(equal_int)(().h())):

4.4 Uniform Traversal Combinators

A very interesting class of traversal combinators results from restricting all func-
tions f; in Hr(f1,..., fa) to be traversal combinators themselves. This restriction
is very important because any theorem or algorithm that refers to such combinators
can also work on each f; recursively. This strict discipline of the function form offers
us a more uniform treatment of functions. Functions expressed strictly as traversal
combinators have a tree-like form, where each traversal combinator Hr(fy,..., f,)
is a node and each f; is a child. This structured view of functions is aimed at simpli-

fying type transformation and theorem proving and facilitating program synthesis.

Definition 4.4: (Uniform Traversal combinator) A uniform traversal com-
binator from T to b, where T and b are canonical types and all variables z and

Z are bound variables, is one of the following:
eprojection: a lambda abstraction AZ. z, where z is a variable of type b;

econstruction: an expression A\Z. C(hy(Z), ..., h,(Z)) where C is a construc-

tor of b and each A; is a uniform traversal combinator;

64

etraversal: a traversal combinator AZ. Hr(fi,..., fa)(z) from T to b where
each f; is a uniform traversal combinator and variable z is a non-accumulative

result variable;

eequality: an equality combinator AZ. Er(f, k, ¢)(), where f, h, and ¢ are

uniform traversal combinators®.

For example, multiplication is computed by the uniform traversal combinator:
[x,y] —te.int([—zero, [7,i] —te.int([1—-i, [7,j1 —succ(j))(y))(x)
The function reverse(x) computed by:

[x] —tc_list([1 —nil, [a,?,1] —tc_list([—cons(a,nil),

[c,?.s]1—cons(c,s))(1))(x)

is not a uniform traversal combinator, because the inner tc_list is on | which is an
accumulative result variable. The following is a uniform traversal combinator that

returns a list of the lengths of the lists contained in x, a list of lists:

[x] —tc_list([1 —nil, [a,?,r] —cons(tc_list([1 —zero,

[7,2,i1 —succ(i))(a).r))(x)

Here the inner te_list is over a, which is not an accumulative result variable. Integer

subtraction x-y can be computed by the following uniform traversal combinator:

[x,y] —tc_int([] —zero,
[i,r] —succ(eq.int([1—i, [1 -y,
[z] —tc_boolean([1 —zero, [1—r)(2))))(x)

ITypically E7(f, h, ¢) is equal to Er(f, h, tc_boolean(4,, #2)) which can be expressed as if f (==
k() then ¢, else ¢,.

3

13

3

—

E|

—3

65

Note that there is no explicit use of selector functions, such as the integer
predecessor and the list head and tail, as are found in other languages, such as
in [9]. The reason for this is found in the use of patterns in the case construct
which effectively embeds the selector functions in the traversals as discussed above.
For example, the tail of a list x is equivalent to the following traversal expression in

our algebra:
te_list([1—nil, [7,r,7] —r)(x)

Two points need to be clear in the definition of uniform traversal combinators.
First, traversals are defined to be over variables (that is, o-ver projections), not
over any other form of uniform traversal combinators. In addition, this definition
does not state that the composition of two traversals is defined .to be a uniform
traversal combinator. But we will prove next that this is true for any such compo-
sition. That way a traversal over another traversal is reduced to a traversal over a
variable. Second, the variable z of a traversal must not be an accumulative result
variable. This is a necessary condition for having these combinators closed under

composition. The intuition behind this is that we cannot traverse the values that

“are accumulated during the traversal of a structure (but we can pass them as whole

values to constructions or to equalities). This restriction is very important because
it substantially limits the expressiveness of our algebra (it makes our language at
most polynomial time [9]). In Section 4.7 we will explore more the consequences of
this restriction and ways of removing it.

Even though the previous program that computes the reverse function is not in

our language, there is an alternative program that has the same functionality and

it is in the language:

te_list([J —nil,

[?,1,r] —cons(nth(x,length(1)),r))(x)

66

where nth(x,n) is computed by:

.

te_list([1—7,
[a,s,u] — if succ(length(s))+n=length(x)
then a

else u)(x)

nth(x,n) returns the nth element of the list x. Here n is length(l), the length of the tail
of the list during the outer traversal of x. The composition succ(length(s))+length(l)
can be expressed as a uniform traversal combinator (as we will see in the next section)
and, therefore, this computation of reverse is also a uniform traversal combinator.

Even though reverse can be captured in our algebra, we have yet to find a way
to express some interesting functions, such as the transitive closure and the integer
exponentiation?. For example, suppose that a graph is represented by a list of pairs,
where each pair pairup(from,to) indicates that there is a graph edge rfrom node from
to node to. The transitive closure of this graph is the set of all pairs pairup(a,b) such
that there is a path in the graph from node a to node b. The following algorithm
" that computes the transitive closure of the graph x works as follows: for each graph
edge pairup(al,a2) and for each path pairup(bl,b2) that we have already found using
this algorithm we check if a2=b1. If this is true we insert the path pairup(al,b2).
Then we check if b2=al. If this is true we insert the path pairup(bl,a2):

[x] —tc_list([] —»emptyset,
[a,?,r] —tclist([1 —insert(a,emptyset),
[b,?,s]1 —tcext(a,b,s))(r))(x)

where tcext(a,b,s) is:

1This does not necessarily mean that such programs do not exist.

3 13

3

3

31 3

1

1 13

f‘—? '_?

~3 —3 —3 3

67

tc_pair([al,a2] —tc_pair([b1,b2] —
insert(b,if a2=bl
then if b2=al then insert(pairup(bl,a2).insert(pairup(al,b2),s))
else insert(pairup(al,b2),s)
else if b2=al then insert(pairup(bl,a2),s) else s))
(b))(a)
We can see that this program is not a uniform traversal combinator because the

inner tc_list traverses r, an accumulative result variable.

4.5 Composition of Uniform Traversal Combinators

Suppose that we have the composition g(h(Z)), where g and h are uniform
traversal combinators. We can synthesize the traversal ¢ equal to go h by applying
the promotion theorem to break go h down into simpler cases. These cases are also
made simpler by applying the promotion theorem again. The following constructive

proof composes any uniform traversal combinators.

Theorem 4.2: (Composition of Uniform Traversal Combinators)
The composition of uniform traversal combinators is also a uniform traversal

combinator.

Constructive proof: First we will present the algorithm for composing combinators
and then we will prove that the algorithm is correct. We use ®(g(hi,..:,hk,),p, o)
to denote the composition of the program g with the programs h, ...hk,, where all
g, h1,...,h, are uniform traversal combinators. Variable p contains bindings from
combinators to variables while o from variables to .combina.tors. To extract this
composition, the g call is promoted inside the expressions h; by applying the pro-
motion theorem. The promotion theorem says that for f = Hr(f1,. .., fa) we have if
9(fi(Z, 7, %)) = ¢i(Ti, T, 9(21), - - -, 9(2;,)) then go f = Hr(és, ..., én). From Def-

inition 4.1 we have zi = f(yi). If wi = g(z) = g(f(yi)) then ¢i(F:, 7, wi,. .., wi)

68

1)

3)
4)
5)

7

®(AZ.2;,p,0) — if o & z;/ f(y:) then AT, f(y;) else AZ.2;

if p F g(2:)/w; then A\z.w;
8(X3.9(x), p, 7) — { else if o 2/ f(3:) then X2.8(g(f (%)), o)

else AZ.g(2;)
$(N2.C(...,e(3),...),p,0) — NBL(..., 8(es, p,0),...)
(Az.Er(f, k, $), p,0) — XT.Ex(B(f,p,), B(h, p,0), &(, p, 7))
&(9(Az.Er(f, b, 8)), p,0) — XT.Er(®(f,p,), B(h, p,), B(g(8), p, 7))

(AT Hr(..., fi,-- .)(C,'(ﬁ, iu‘)), p,0)
— &(fi(a,w,..., (AT Hr (..., fi,.. Y (wk), p,0),...),p,0)

®(g(Az. Hr(.. ., fi, ...)(2)), 0, 0)
NEHa(...., JgNENTAT £, T, B)), s '))(2)
— where p' = ..., g(z;)/w}, . .] ,
and o' =o[...,2,/Hr(..., fi,..)(¥L),. .]

Figure 4.1 The composition algorithm

is the composition g o f;, provided that all references to z} are eliminated (as will

be proved below). For that reason we pass a binding list p to ® that contains the

bindings g(z}) = wj and a binding list & that contains z} = f(yi). The algorithm

is the following:

Algorithm 4.1: (Composition Algorithm) The rules of this algorithrh are

shown in Figure 4.1. Expression p[u/w] extends p with the binding from u to

w, while expression p - u/w returns true if there is a binding in p from u to w.

The last rule comes from the promotion theorem. It renames the variables of f;

from @; to Z; but it binds each w} in W; to g(z}). So if later a call g(2}) is found,

it is replaced by wi. For example, the last rule for te_list is:

Az telist(2(g(f1()), p, o),
®(la,l,71—>g(fo(a,l,s)),

13

1

®(g(AZ tedist(f1, f2)(2)),p,0) — pla(s)/7,

ofs/telist(f1, £2)(1)]))(z)

Note that in the last rule if z is used by any of f; then this z is set to Ci(Z:, %)

™4 "3 "3

4

-

—3 3

T

|

69

We can see that the reduction rules in Figure 4.1 are correct (from the promotion
theorem). Even though the first parameter of becomes smaller in each recursive
call, the algorithm might not terminate because of the second rule: if o F 2;/f(y:)
then we perform the composition ®(g(f(y:)), p, o) which may have been encountered
before, leading to infinite recursion. But we can prove that this is impossible. The
last rule applies whenever g is a traversal. In that case ® is called recursively with g
as the first argument. This is true for the fourth and sixth rule too. This recursion
terminates whenever we find a call ®(g(k), p, o) that does not match these recursive
rules. Thereforg, this call must match the second rule. Then, if z; in AZ.z; is one
of the z} in p then g(z;) is replaced with the variable w}. If 2} does not appear in
a call to g, then z; is replaced with f(yi), where f = Hr(..., fi,...). Therefore,
g(f(y:)) has not been encountered before and, thus, we do not fall into an infinite
loop. The only other place (besides the second rule) that zj could appear is in z
in the last rule. But this is not permitted because in uniform traversal combinators
traversals cannot be performed over accumulative result variables. O

To use the synthesis of combinators in proving theorems, different expressions
are reduced to their traversal form, over the same variable, and checked for iden-
tity. We now use this technique to prove that length(x)+length(y) is equal to
length(append(x,y)). First, we will find a traversal combinator te_list(h1,h2)(x) equiv-

alent to the composition length(append(x,y)), where append and length are:

append(x,y) = tclist([]1—y, [a,?,s] —cons(a,s))(x)

length(x) = tc_list([J—zero,[?,?,i] —suce(i))(x)
We apply the promotion theorem with g =length:

1) h1() = length(y) = tclist([J—zero, [?,7,i] —>suce(i))(y)
2) h2(a,?,length(s)) = length(cons(a,s)) = succ(length(s))

= h2(?,7,u) = suce(u) where u=length(s)

70

Therefore, the composition length(append(x,y)) is:

te_list((] —te_list([1—zero, [7,2,i]1 —succ(i))(y),

[7,7,u] —succ(u))(x)
Let length(x)+length(y) be equal to tc_list(hl,h2)(x), where
x+y = teint([1-y, [7,j1—succ(j))(x)
We apply the promotion theorem for lists with
g(x) = te_int([1 —tc_list([1—zero, [7,7,i1 —suce(i))(y), [7,j1 —suce(j))(x)
to compose g(length(x)) = tc_list(hl.hé)(x):

1) h1() = g(zero) = telist([1—zero, [7,2,i] —succ(i))(y)
2) h2(?,7,g(i)) = g(succ(i)) = suce(g(i))

= h2(?,7,w) = succ(w) where w=g(i)
Therefore, length(x)+length(y) is:

te_list([J —tc_list([J—zero, [?,7,i] —succ(i))(y),

[?,7,w] —succ(w))(x)
From these two examples we can see that

length(append(x,y)) = length(x)+length(y)

This is an example of a theorem proved without using induction explicitly. Here
testing the equality of length(append(x,y)) and length(x)+length(y) was trivial. In
Section 5.1 we will present a complete method for testing functional equalities.
When we compose a function with a nested traversal we need to apply the
promotion theorem multiple times: once for each traversal. The following example is
more complex than the previous example and is presented exclusively for illustrating

such a case. It composes g(f(x)), where:

~A

B

F"‘g r“““g y—-'—g ,—?

—3a T3 T3

3

d

—3 —% T3 3 —3 1

f(x) = tclist([1—nil,
[a,?,r] —cons(tc_list([J —zero,
[7,2, >succ(i))(a).r))(x)
gly) = telist([J—zero,
[b,2,] —ste.int([1—j, [2.K1 —suce(k))(b))(y)

(if x is a list of lists then f(x) returns the list of lengths of x and if y is a list of
integers then g(y) returns the sum of all these integers). The promotion theorem

for g(f(x)) equal to tc.list(f1,f2)(x) gives:

1) f1() = g(nil) = zero
2) 2(a,?,g(r)) = g(cons(te list([1—zero,[?,7,i] —suce(i))(a).r))
= te.int([1—g(r), [7,k] —succ(k))

(telist([J—zero, [7,2,i] —succ(i))(a))

Let h(x) = tc.int([1—u, [?,k] —suce(k))(x), where u=g(r), and
h(tc list([1 —zero, [7,2,i] —succ(i))(a)) = tc.list(hl,h2)(a), then:

1)hl() =u
2) h2(2,2,h(i)) = suecc(h(i)) = h2(?,7.w) = succ(w)

Therefore, g(f(x)) is
te_list([1 —zero,

[a,?,u] —tc.list([1—u, [7,7,w] —succ(w))(a))(x)

4.6 ‘Using the Composition Algorithm for Program Optimization

Algorithm 4.1 that composes two uniform traversal combinators is a very pow-
erful reduction algorithm that optimizes programs. This algorithm basically reduces
traversals over traversals into traversals over single variables. This is done by pushing

the outer traversal of the composition into the components of the inner traversal.

72

This does not imply that a traversal performed after another traversal becomes a
nested traversal, because the outer traversal will be pushed inside the inner traversal
until it is eliminated by the generalizations introduced in Algorithm 4.1. That is,
the result will be a single traversal. For example, let

sum(x) = tc_list([]—0,[a,?,r] —a+r)(x)

upto(n) = tc_int([J—nil, [i,s] —cons(i,s))(n)

that is, sum(x) adds all elements in the list x and upto(n) creates a list with elements
from zero to n-1. The expression sum(upto(n)) is simplified using the composition
algorithm into:

sum(upto(n)) = te_int([1—0, [i,s] —i+s)(n)

The composition algorithm facilitates program optimization in three major ways:

o complete automation of the unfold-simplify-fold method [20]. ‘Eureka’ steps
are not necessary here during folding to a function call as they are hidden in
the generalization part of the composition algorithm (when new variable names

are assigned to the accumulation results).

complete automation of deforestation [80]. Deforestation is the removal of
unnecessary intermediate data structures produced during nested function calls.
For example, upto in sum(upto(n)) creates a new list of numbers which is not re-
ally necessary as we can see from tc_int([1—0, [i,s] —i+s)(n), the simplification

of sum(upto(n)).

complete constant folding. Whenever we have an expression f(C(...)), where
C(...) is a construction, such as applying a traversal over a construction, it is

simplified using the sixth rule of Algorithm 4.1.

In Section 4.8.2, where we define the set traversal combinator, we will see that
most database optimization techniques, such as pushing a selection inside a join,

are captured by the composition algorithm.

3 _ 3

N |

1

-3

1

r‘*"@ j

F“—‘g r———g

—3 ~—3 T3

3 3 3 3

—3 3 T3 T3 T3

3

—3

3

73

4.7 Unrestricted Uniform Traversal Combinators

In the definition of uniform traversal combinators we posed the restriction that
traversals cannot traverse any accumulative result variable. This excludes programs

such as the reverse computed by:
tc_list([1—nil, [a,?,1] >tc_list([1—cons(a,nil), [c,?,s] —cons(c,s))(1))

There are some cases where this restriction excludes many programs, such as,
the traversals over trees with more than one child. For example, the program
tc_tree([1—0,[7,7,7,L,r]—l+r+1) that computes the number of nodes in a binary
tree'(see page 29) is not in our language.

If we allow traversals over accumulative result variables then we call these com-
binators unrestricted uniform traversal combinators. The following corollary

comes from the proof of Theorem 4.2:

Corollary 4.2: The composition of an unrestricted uniform traversal combi-
nator with a uniform traversal combinator is an unrestricted uniform traversal

combinator.

The following analysis partially solves the case where we compose a uniform traversal
combinator with any unrestricted uniform traversal combinator.

Let us see how we can compose length(reverse(x)), where
length = tc_list([J—zero, [?,7,i] —succ(i))
If this is equal to tc_list(f1,f2) then the promotion theorem says:

1) 1() = length(nil) = zero
2) f2(a,l,length(r)) = length(tc_list([] —cons(a,nil), [b,?,s]1 —cons(b,s))(r))

We set the last composition equal to tc_list(h1l,h2)(r) and apply the promotion

theorem again:

74

1) h1() = length(cons(a,nil)) = succ(zero)
2) h2(b,?,length(s)) = length(cons(b,s)) = succ(length(s)) = h2(?,7,j)=succ(j)

The equation f2(a,llength(r))=tc_list([]—succ(zero), [?,?,j]1 —succ(j))(r) cannot be
solved directly to yield a solution for f2. If we substitute r=reverse(l) in the right
side of the equation then Algorithm 4.1 on page 68 will fall into an infinite loop.

Luckily, the right side of the equation can be transformed into:
succ(tclist([1 —zero, [7,7,j1 —succ(j))(1)) = succ(length(l))

and therefore length(reverse(x)) is tc_list([J—zero, [?,7,u] —succ(u))(x).

In general, let z be an accumulative result variable and g(Hr(fi,. .., fa)(z)) the
composition of g with a traversal over z. This is reduced by Algorithm 4.1 to some
Hr(d1,--.,¢n)(2). But we know that p I g(z)/w. Therefore, we need to express
Hr(é1,---,$n)(2) in terms of g(z) only (so that g(z) can be replaced by w). That

is, we need to find a uniform traversal combinator A such that:

hg(2)) = Hr(¢1,. .., $a)(2)

where g and Hr(¢1,..., dn) are known traversals. This is a second-order theorem
in which h is unknown. In Section 5.5 we will present a complete way of solving
such theorems and yielding uniform traversal combinators h from the proof of the
theorem. Note that there may be none, one, more than one, or even an infinite
number of combinators A that satisfy this theorem. Because there may be no solution
for h, unrestricted uniform traversal combinators, where traversals are allowed to

traverse the accumulative result variables, are not closed under composition.

Definition 4.5: (Irreducible Compositions) A form f o g, where f and g
are unrestricted uniform traversal combinators, is irreducible if there is no

unrestricted uniform traversal combinator k, derived by the previous synthesis

algorithm, such as h = f o g.

f‘W!i‘

3

—4d T3 T3 T3 i 3

T3 T3 T3

3

75

Irreducible compositions are left in that form, because there are no other simple ways
of improving them further. Therefore, in that case the definition of unrestricted
uniform traversal combinators should contain another item to cover the case of
irreducible forms. |

For example, suppose that we want to compose append(reverse(x),y). We apply

the promotion theorem for g(reverse(x))=tc list(f1,f2)(x), where

g(x) = append(x,y) = tc_list([1—y,[a,?,r] —cons(a,r))(x)

1) f1() = g(nil) =y
2) f2(a,?.g(r)) = g(tclist([J —cons(a,nil), [c,7.s] —cons(c,s))(r))

The last composition is te_list(h1,h2)(r), derived by:

1) h1() = g(cons(a,nil)) = cons(a,g(nil)) = cons(a,y)

2) h2(c,?,g(s)) = g(cons(c.s)) = cons(c.g(s))

Therefore, f2(a,?,g(r))=tc.list([] —cons(a,y), [c,?,u]l —cons(c,u))(r). We want to find
a uniform traversal combinator A that satisfies:

h(tc_list([1—y, [a,?,r] —cons(a,r))(r)) = tc.list([1—cons(a,y), [c,?,u] —cons(c,u))(r)

that is, h(append(r,y))=append(r,cons(a,y)). This equation cannot be solved for
arbitrary r and y. Therefore, append(reverse(x),y) cannot be expressed as a uniform

traversal combinator using our previous analysis and, thus, it is an irreducible form.

4.8 Model Extensions

In the previous chapters we have defined an algebra that captures most poly-
nomial time fﬁnctidns over any domain of canonical types. There are database
applications though that require more complex types, such as sets and vectors.
This section extends the definition of canonical types to capture more complex
types, their traversal combinators, and enhancements to the composition algorithm

to capture these cases.

76

4.8.1 Capturing all Recursively Defined Types

In the beginning of Section 4.1 we restricted the definition of canonical types by
excluding non-direct recursions. In this section we extend the definition of uniform
traversal combinators to cover all recursively defined types. We will show here that
this extension does not complicate our earlier analysis. After this analysis whenever

we refer to canonical types we will always mean the set of all recursively defined

types.

Before introducing the general form of traversal combinators, we will define the
generic map over any recursively defined type T [70]. This is needed for traversing
a value component of a type T that refers to T' in a complex way, such as a subpart of
a part is a set of parts. If a type T has a constructor C(...,z;,...), where z; is of type

t(T), that is a type expression that refers to T, then instead of calling Hr recursively
in the Definition 4.1 of Hr (on page 57) we call My:(Hr), where T'(a) = t(a), @
is a new type parameter, and My is the generic map over T'. A generic map of a
canonical type T(@) = T(au,...,a.) is the function Mz(my,...,m,) that assigns
a mapping m; to each type parameter o; € @:

Definition 4.6: (Generic map) A generic map Mr(m,,...,m,) : T(a) —

T(B), where m; : a; — 3, over the recursively defined type T'(@) is:

[z] —»case z

{
Ci(z1y---, %) = Ci(Pial(zr), .-, Pips(zr:));

}

where each z; (the jth parameter of C;) is of type T;;(@) = t:;(a, T'(@)) and

m, if T;;(@) = a, for some s
Pij =1 Mz ;(m,...,m;) if T;(@) contains at least one of @

Az.z otherwise

.3

.3

3

3 T3 T3

— 3

—3 3 %

3

77

In ADABTPL, a generic map M7 is written as map_T. For example, the generic
map for lists is:
function(alpha,beta) map_list (f: Lalphal —beta) : [Llist(alpha)] —list(beta);
[x] —case x
{ nil — nil;
cons(a,r) — cons(f(a),map_list(f)(r)) };
The generic map for the type term(alpha), defined as:
term(alpha) = union
(variable: struct var (name: string),
base_element: struct element (value: alpha),
application: struct apply (fun: term(alpha),
arguments: list(term(alpha))),
abstraction: struct abstract (variables: list(string),
body: term(alpha)));
is map_term defined as:
function(alpha,beta)
map_term (f: [alphal —beta) : [term(alpha)] —term(beta);
[x] —case x
{ var(v) — var(v);
element(v) — element(f(v));
apply(fun,args) — apply(map_term(f)(fun),
map_list(map_term(f))(args));
abstract(vars,body) — abstract(vars,map_term(f)(body)) }
Note that the call map_list(map_term(f)) is an instantiation of the middle case of
P;; in the Definition 4.6. Here T;; is equal to the type of argument, which is
list(term(alpha)). Therefore, Mr,; is map_list. The call map_list(map_term(f))(args)

maps function f to all the terms in the list args.

78

Theorem 4.3: (Composition of Generic Maps) Generic maps are closed

under composition:
Mr(my,...,m.)o Mp(mq,...,m,) = Mp(mjomy,...,m.om,)

Proof: By structural induction. O

The following definition of general traversal combinators extends Definition 4.1
on page 57. Again we assume that each constructor C(T:,¥:) of the recursively
defined type T(@) separates the recursive variables y; € T (of type t;;(a, T(a))

that contain references to T'(@)) from the non-recursive variables in Z;.

Definition 4.7: (General Traversal combinator) Let T(@) be a recur-

sively defined type with constructors C;(%;,%;). A general traversal combinator

Hr(fiy.-., fa): T(@) — bis defined as follows:

[z] —case z

{
C;(fi, E) - fi(z—i’ ?—i; ’Pi,l(yi.)) e 7’Pi,i,(y§,.));

where
{ HT(.fl; <o ;fn) . if ti.j(ar T(b?)) = T(Ti)
Pij =1 Mz, (Hr(fr,..., fa), Az.2) if T(@)is part of ¢; ;(a, T'(@))
where T;;(8,a) = t;;(a,8)

where Az.z are identity mappings assigned to the type parameters @.
For example, the general traversal combinator for the type term is:

function(alpha,beta)
tc_term (fvar: [string] —beta, fel: [alpha] —beta,

fappl: [term(alpha),list(term(alpha)),beta,list(beta)] —beta,

3

3 T3 73 —3 —7T3 3 4 "3 "3 | E

T3 T3

~—3 —3 —3 3 3

T3

79

fabs: [list(string),term(alpha),betal —beta) : [term(alpha)]l —beta;
[x] —case x
{ var(v) — fvar(v);
element(v) — fel(v);
apply(fun,args) — fappl(fun,args,tc_term(fvar,fel fappl,fabs)(fun),
map_list(tc_term(fvar,fel,fappl,fabs))(args)):
abstract(vars,body) — fabs(vars,body,tc_term(fvar,fel,fappl,fabs)(body)) }:

For example, the following call returns a function that checks whether a term refers

to a variable var:

tc_term([v] —(v=var), [7] —false,
(7,7, fun,args] —(fun or tc_list([] —false, [a,?,r]1—a or r)(args)).

[vars,?,body] —(body or tc_list([1—false, [v,7,s] —(v=var) or s)(vars)))

Theorem 4.4: (General Promotion Theorem)
If ViVe:; Vy; V2 0 g(fi(Z5,%, %)) = 6i(F5, %, Ria(21), - - -, Rii.(2,)), where each
z; is of type t; (@, T'(a)) and

g if t:;(a,T(a)) = T(a)
R,"J' = { MT‘-J (g,j\:c_.:n) if T(a) is part of t,;,-(a, T(a))
where T;;(8,a) = t;;(@,8)

then go Hr(f1,..., fa) = Hr(é1,. .., on).

Proof: The proof is similar to that of Theorem 4.1 on page 59 (the promotion
theorem) and it uses Theorem 4.3. O

For example, the general promotion theorem for the type term(alpha) is:

Yov . g(fi(v)) ¢1(v)

Vo 9(£2(0)) #2(0) |
VaVaVrVs: g(fs(mn,a,r,s)) ¢3(n, a, g(r), maplist(g)(s))
YuVbVs : 9(fa(v, b, 8)) da(v,b, g(3))

= VSB : g(tc'term(fh f2, f31 f4)($)) = tc_term(d;l, ¢2y ¢3, ¢4)(2})

80

We can modify Definition 4.4 on page 63 of uniform traversal combinators to
include general traversal combinators as traversals. In that case the variables of
type T; ;(8) returned from the mapping M, ;(Hr(f1, ..., fn), Az.z) in Definition 7
are accumulative result variables but here they can be partially traversed by an-
other traversal. That is, only the 8 components of T;;() are not allowed to be
traversed. Consider for example the query on page 79 that checks whether a term
refers to a variable var. Variable args is an accumulative result variable of type
list(boolean) (that is, B =boolean) but it can be traversed by a tc_list. Both a and r,
though, are not allowed to be traversed. In this example a or r can be expressed as
if a=true then true else r which is a uniform traversal combinator. We will prove
next that under the extension of general traversal combinators the composition

algorithm needs minor modifications to be valid.

Lemma 4.1: Any genericc map Mr(m,,...,m,), where each m; is a uniform

traversal combinator, is also a uniform traversal combinator.

Proof: A generic map Mr(m,,...,m,) is the traversal Hr(fi1,..., fn), where each
fi = AT AFLAE.Ci(Ria(2h), - - -, Rig (2}), %) (the accumulated result variables z

are separated from the others Z; and %;) and

m, if T;;(@) = a, for some s
Rij =4 Mrg;(my,...,m,) if T;;(@) contains at least one of @
Az.z otherwise

where each z, is of type T ;(@) = ¢;,;(@, T(@)). It can be easily proved by induction
that R;; is a uniform traversal combinator. Therefore f; is a construction of
uniform traversal combinators and, thus, Mr(m,,...,m,)is also a uniform traversal
combinator.O

For example, map_list(m) is tc_list([J—nil, [a,?,r] —cons(m(a),r)) and map_term(f) is

tc_term([v] —var(v), [vl —element(f(v)),[?,7,n,a]l —apply(n,a), [v,?,s] —abstract(v,s)).

3 13

3

3 _3

.3

3

43 73 3 —3 T3 T3 T3 —3 —T3 T3 T3 T3

T3 T3 13

T3

y»——% r——g

—3

81

Theorem 4.5: Uniform traversal combinators are closed under composition.

Proof: Algorithm 4.1 on page 68 is modified to capture the new uniform traversal
combinators where traversals are general traversal combinators. The last rule of
the algorithm comes now from the general promotion theorem. Therefore, p will
have bindings from R;.(z}) to wi, where R;; is defined in Theorem 4.4. R:;
1s a uniform traversal combinator because both g and Mt (g, Az.z) are uniform
traversal combinators (from Lemma 4.1). Therefore, the analysis we performed for

the proof of Theorem 4.2 is still valid. O

4.8.2 Finite Sets

Sets are not canonical types (Section 3.1.6) but the set traversal combinator can
be defined in such a way that the theorems in Section 4.2 are still true. tc_set is

similar to set_reduce (introduced in Section 3.2):

function(alpha,beta) tc_set
(fl: [1—beta, f2: [alpha,set(alpha),beta] —beta) : [set(alpha)l —beta;
[x] —if x=emptyset
then f1()
else f2(choose(x),rest(x),tc_set(f1,£2)(rest(x)))

For example, union(x,y) can be expressed as tc_set([]1—y, [a,?,r] —insert(a,r))(x).
For example, the following defines a set type with a primary key f, that is, there

are no elements a and b in the set such that f(a)=f(b):

keyed_set(alpha,beta)[f: [alpha]l —beta] =
set(alpha) where(x) tc_set([J —true,
(a,r,s]— tc_set([]—s, [b,?,u] —if f(a)=f(b)

then false

else u)(r))(x)

82

For example, keyed.set(person,int)[lfx] —x.ssn)] defines a set of persons whose prim.a.ry
key is ssn.

We can see from the definition of tc_set that tc_set(f1,f2)(insert(a,s)) is equal to
f2(choose(insert(a,s)),rest(insert(a,s)),tc_set(f1,f2)(rest(insert(a,s)))) which may not be
equal to f2(a,s,tc_set(f1,f2)(s)). We define a special class of set traversal combinators

in which tc_set(f1,f2)(insert(a,s)) has a simple form:

Definition 4.8: (Order-independent Set Traversal Combinator) An order-
independent set traversal combinator is a set traversal combinator tc_set(f1,2)

that for any a and s satisfies:
tc_set(f1,f2)(insert(a,s)) = if acs then tc_set(f1,f2)(s) else f2(a,s,tc_set(f1,f2)(s))
The previous condition can be expressed in combinator form as:

tc_set(f1,f2)(insert(a,s)) =
tc_set([—f2(a,s, te_set(f1,2)(s)),
[b,?,r] —if a=b then tc_set(f1,f2)(s) else r)(s)

For example, length(insert(a,s)), where length is tc_set([]—zero, [?,7,r] —succ(r)), is
equal to length(s) if a is in s, or to succ(length(s)) otherwise.

The order-independence condition for a€s comes from the definition of tc_set.

Therefore, the following theorem needs to be tested for each set traversal f=tc_set(f1,f2):

ags = f2(a,s,f(s)) = f2(choose(insert(a,s)),rest(insert(a,s)),f(rest(insert(a,s))))

This can be tested by a theorem prover, such as the one described in Chapter 5.
From now on we will require that all traversal combinators be order-independent.
A sufficient condition for the order-independence test to be true is f2(a,s,u)=g(a,u),

where g is a commutative-idempotent monoid [15]:

13

3

83

Definition 4.9: (Commutative-idempotent Monoid) A function f is a

commutative-idempotent monoid if:

VmVnVs: f(m, f(n,s))
VnVs: f(n, f(n,s))

For example, insert and [x,y] —ordered_cons(x,y,before) (defined in Section 3.3) are

f(n, f(m,s)) (commutativity)
f(n,s) (idempotence)

commutative-idempotent monoids, while cons is not.

Theorem 4.6: If a function f2 is a commutative-idempotent monoid then

f(insert(a,s))=f2(a,f(s)), where f=tc_set(f1, [v,?,r] =f2(v,r)).

Proof: According to the definition of tc_set we have that f(insert(a,s)) is equal to
f2(choose(insert(a,s)),f(rest(insert(a,s)))). If s=emptyset then the theorem is true. Ifa
is a member of s then insert(a,s)=s and 2(a,f(s))=f(s) (idempotence property). Oth-
erwise, if insert(a,s) ={bl,...,a,...,bn}, that is, the first chosen element is b1, the last
bn, and a is somewhere between, then f(insert(a,s))=f2(b1,f2(... f2(a,... ,f2(bn,f1()))))
which is equal to f2(a,f2(b1,f2(...,f2(bn,f1())))) (commutativity property), which is
equal to f2(a,f(s)). O

For example, tc_set([]—emptyset,[a,?,r] —insert(a,r))(insert(u,w)) is equal to
insert(u,tc_set([] —emptyset, [a,7,r] —insert(a,r))(w)).

The promotion theorem for sets is:

Theorem 4.7: (Promotion Theorem for Sets)

9(£())
VYaVrVs: g(fa(a,r,s))

#i() . otc = tc_se
#2(a,r, g(s)) } = gotc_set(fi, f2) = tc_set(¢y, @)

and if tc_set(fy, f2) is order-independent then tc_set(¢y, @) is order-independent.

Proof: We will prove that Vz : g(tc_set(fi, f2)(z)) = tc_set(d1, d2)(z) The proof
for £ = emptyset is trivial. If ¢ # emptyset then there are a and s such that a =

choose(z) and s = rest(z). We assume that the theorem is true for s (which is smaller

than z). Then g(tc_set(fi, f2)(2)) = g(f2(a, tcset(f1, f2)(3))) = d2(a, g(tcset(f1, f2)

84

®(tc_set(f1, f2)(emptyset), p, d) — ®(fi(), p, o)
®(tc_set(fi, f2)(insert(a, 3)), p, o)

{ @(fz(a,,s,tc_set(fl,fz)(s)),p, 0') ifa Q s
— ¢ teset([1—-(f2(a, s, teset(f1, f2)(9)),p, 7), otherwise
[b,7,7]1 —if a = b then tc_set(f1, f2)(s) else r)(s)

Figure 4.2 Composition of set traversals

(3))) = ¢a2(a, tcset(¢d1, #2)(s)) = teset(dy, d2)(z). If tc_set(fy, f2) is an order inde-
pendent set traversal combinator and a € = then tc_set(¢y, @2)(insert(a, 7)) is equal to
g(tcset(f1, fo)(insert(a,7))) = g(tcset(fi, f2)(r)) = tcset(é1, ¢2)(r). If a & r then
tc_set(y, gz)(insert(a, 7)) = g(f2(a, r, teset(f1, f2)(r))) = é2(a, 7, g(teset(f1, f2)(r)))
= ¢q(a,r, teset(d1, d2)(r)). Therefore, tc_set(¢y, @2)(r) is order-independent. O

The uniqueness property for sets is the following:

Theorem 4.8: (Uniqueness Property for Sets)

g(emptyset) = ¢1() }
VaVs: g(insert(a,s)) =if a € s then g(s) & g = tcset(, 92)
else ¢(a, s, g(s))

Proof: <«: from Definition 4.8. =: from Theorem 4.7 with f; = emptyset and
f2(a,s) = insert(a,s) (that is, tc_set(fi, f2) is an order-independent combinator):
g = tcset(¢y, [a,r,;s]1—if a € r then s else ¢s(a,r,s)) = tc_set(dy, d;) (because
agr) O

The last rule of Algorithm 4.1 on page 68 can incorporate the case of sets, since
the set promotion theorem does not &ﬁer from the one of canonical types:

AE'tc-set(@(g(fl())x»07 0')7
- &(la,l,r1—g(fx(a,l,5))
B(g(AT.teset(fy, Py T) — P e
(9(AZ.teset(f1, f2)(2)),p,0) plg(s)/7],
ofs/tcset(fy, f2)(1)]))(2)
But Algorithm 4.1 needs to be extended to include the two rules in Figure 4.2. The
second rule says that if we know that a ¢ s is true for all a and s then we do not

have to expand the left form into a tc_set that tests membership. We can prove that

3

o3

3

3 ~31 "3

—3 —3 —3a —3% ~—3 —3 —3a —3 —3 T3 T3 T3

85

if we allow only order-independent set traversal combinators then the composition

algorithm is still true, that is, the composition of any uniform traversal combinator
g with tc_set(fi, fa) is another order-independent set traversal combinator.

For example, we set the composition size(union(x,y)), where

size(.x) = te_set([1—zero, [7,7,i] —succ(i))(x)

union(x,y) = tc_set([1—y,[a,?,s] —insert(a,s))(x)
equal to tc_set(fl,f2)(x) and apply the set promotion theorem:

1) f1() = size(y) = f1() = tc_set([1—zero, [?,2,i] —succ(i))(y)
2) f2(a,l,size(s)) = size(insert(a,s))
= tc_set([] —succ(size(s)), [b,?,r] —if a=b then size(s) else r)(s)

= f2(a,l,u) = tc_set([]1—succ(u),[b,?,r]—if a=b then u else r)(s) = g(s)
But s=union(l,y). Let g(union(l,y))=tc_set(h1,h2)(1). Then:

1) h1() = g(y) = tcset([J—succ(u), [b,?,r] —if a=b then u else r)(y)
2) h2(b,w,g(r)) = g(insert(b,r))
= tc_set([]—if a=b then u else g(r),

[c.?,v]1 —if b=c then g(r) else v)(w)
Therefore, size(union(x,y)) is:

tc_set([] —tc_set([—zero, [7,7,i] —succ(i))(y),
[a,l,u] —tc_set([] >tc_set([]1 —succ(u),[b,?,r]1—if a=b then u else r)(y),
[b,w,q] —tc_set([]—if a=b then u else q,
[c,?,v] —if b=c then q else v)(w))(1))(x)

The composition algorithm, with its extension to include sets, can be used for
simplifying set operations, such as nested selections. For example, suppose that we

have the following relational schema:

86

person = struct make_person (eno: int, dno: int, pname: string);
dept = struct make_dept (dno: int, dname: string);
pd = struct make_pd (eno: int, dno: int, pname: string, dname: string);
persons = set(person);
depts = set(dept);
pds = set(pd);
One example of a natural join between persons and depts is pd_join(persons,depts)
computed by:
te_set('[] —emptyset,
[p.?,r] —tcset([]1—r,
[d,?,s] —if p.dno=d.dno
then insert(make_pd(p.eno,p.dno,p.pname,d.dname),s)
else s)
(depts))

(persons)

One example of a selection over the set pds, which is the result of joining persons
and depts, is dp_filter(pds) computed by:
te_set([] —emptyset,
[a,?,r] —if a.dname="CS" then insert(a,r) else r)(pds)
Then dp_filter(pd_join(persons,depts)) is simplified by the composition algorithm into:
tc_set([J —emptyset,
Cp.?.r]1 >teset([1—r,
[d,?,s] —if p.dno=d.dno
then if d.dname="CS"
then insert(...,s)
else s

else s)(depts))(persons)

1

| E| a3 T3

3

87

That is, the selection is pushed inside the join loop.
4.8.3 Vectors and Strings

Fixed-size vectors, like finite sets, cannot be captured as regular recursive types.
They can be defined by expressing-the properties of vector constructors explicitly.
The actual implementation of vector constructors could be non-functional but it is
ignored as it does not affect their properties. Vectors here are not mutable objects®.

Vectors here have two constructors: newvector(l,v) that returns a vector of size |

whose elements are equal to v, and update(i,v,a) that returns a new vector equal to a

but with the ith element set to v (vectors here are zero based). The only selectors for
vectors are: size(a) that returns the size of the vector a and index(i,a) that returns

the ith element of the vector a. Constructor update satisfies:
update(i,v,update(i,w,a)) = update(i,v,a)
The vector traversal combinator is defined as follows:

function(alpha,beta) tc_vector
(fl: [J—beta, f2: [int,alpha,beta]l —beta) : [vector(alpha)] —beta;
[x] —tc.int([1—-f1(), [i,r] —f2(i,index(i,x),r))(size(x));

For example, the sum of all vector elements is tc_vector([1—0, [?,v,s] —s+v), the size
of a vector is tc_vector([]—0,[?,7,s] —s+1), and the identity function for vectors is

[x] —tc_vector([J —newvector(size(x),?), [i,v,s] —update(i,v,s))(x).

Theorem 4.9: (Promotion Theorem for Vectors)

9(f()) é1() } otc_vector(fi, f2) = tc_vector(¢y, ¢
VaVs: g(fa(i,v,8)) = ¢2(i,v,9(s)) = gotc_vector(f1, f2) = tc_vector(¢y, ¢2)

5 A mutable object is an object that when updated is destructively modified, so that all objects
that share this object will share the new modified object instead.

88

®(tc_vector(f1, f2)(newvector(l,v)), p, o)
— ®(teint([1=£1(), [1, s1=f2(3,v, 8))(1), p, o)

®(tc_vector(fi, f2)(update(k, w,a)),p, o)
{ ®(tc_vector([1—f1(), [¢,v,81 = if i = k then fo(k,w, s)
— else fz(i,‘v, 8))((1,),;7,0‘)

Figure 4.3 Composition of vector traversals

Proof: g(tc_vector(f1, f2)(z)) = g(te.int([1—fi(), [, 71— fo(3, index(z,), 7)) (size(z))).
We apply the promotion theorem for integers: ¢;() = g(f1()) and ¢(¢, index(z, z), g(7))

= g(f2(%,index(z, z),7)), therefore, g(tc_vector(f1, f2)(z)) is equal tote_int([J—¢;(),
[, 7] —¢a(3,index(z, z), 7))(size(z))) = tc_vector(¢y, d;)(z). O
Algorithm 4.1 on page 68 is extended to include the two rules in Figure 4.3 (the
.promotion theorem for vectors is incorporated into the last rule of Algorithm 4.1).
The string type can be defined as vector(range[0,255]). For example, the con-

catenation of the strings x and y is computed by:

tc_vector([J —tc_vector([1 —newvector(size(x)+size(y),0),
[i,v.a]l —update(i+size(x),v,a))(y),
(i,v.a]l —update(i,v,a))(x)

4.8.4 Objects with Object Identity

Recursive data types can capture data structures of a tree-like form. There are
applications though that require more complex data structures, including shared
objects and general graphs with cycles or mutable data structures. One such
example is mutable vectors. Mutable vectors though are well behaved because the
only kind of vector mutation is updating a vector element. In general, objects may
have cycles in an unpredictable way that usually is not prespecified in the definition
of an object. In order to capture objects in a functional setting based on our

constructor algebra we need to find a method similar to that for sets and vectors:

—3 3

3 T3 a4 3 E|

™3 T3 T3

89

we provide a fixed number of object constructors and the relations between them
and express this algebra in a functional way as we did for regular recursive types.
Note that the actual implementation of these constructors could be non-functional,
since they support mutability, a property that functional languages usually simulate
in a non-efficient manner.

In order to incorporate the object features in our algebra we ﬁeed to support
objects with object identity [1, 58]. One way to do that is to assign a unique OID
(object identifier) to any object that can be referred to by other objects. In that
case, two objects are identical if they have the same OID. We will use identity
equality as the interpretation of = instead of structural equality. The state of an
object can be retrieved by dereferencing the OID. An object can be destructively
updated by changing parts of the state without affecting the OID. Traversing a data
structure with objects is following the chain of OIDs from object to object. In this
section we will not be concerned with the actual implementation of objects and
OIDs but we will try to give a specification of objects in our constructor algebra
in such a way that the analysis we did for recursive types will apply here too with
minor adjustments.

An object type with state T is defined here using the type constructor object:
T’ = object(T);
For example,

otree(alpha) = object(union
(emptytree: singleton empty,
fulltree: struct node (info: alpha, left: otree(alpha),

right: otree(alpha))))

90

Object types here have four constructors:

e new(v) of type [T]1—T' that creates a new object with state v and with a

unique OID. For example, new(node(v,l,r));

e modify(x,v) of type [T',T]1—>T’ that updates the state of the object x to be v.
This is a destructive operation that modifies the iject state but leaves the
OID unchanged. modify(x,v) returns x. For example, if x has type otree then
modify(x,node(v,l,r)) updates the state of x. The modify constructor satisfies

modify(modify(x,v),w) = modify(x,w);

o define(x,0) of type [string, T'] - T’ defines variable x to be the object o (that is,
the OID of 0). The scope of x is the expression o and all right sibling expressions
of o (in the expression tree that contains o). The name x in define(x,0) must

be unique (no nested scoping is permitted);

o refer(x) of type [string] =T’ is the object o defined by a define(x,0) constructor.
If there is no such definition it raises a compile-time error. For example,
define(“x",new(node(1,refer(“x"),refer(“x")))) creates an otree node whose left
and right parts point to the node itself. Another example is:
new(node(1,define(“x" ,new(node(1,new(empty),new(empty)))).refer(“x")))

that creates a node whose left and right children are the same object.

There is only one selector for objects: deref(x) of type [T'1—T that returns the
state of the object x.

If Hr(f1,...,fa): T — B is a traversal combinator for T', where f; : T;— f,
then the object traversal combinator Hr+(go,91,-.-,9n) : T' — [has component
functions go : T' x B— B and g; : T' x T; — B, where the first value of each g; is
bound to the object itself. Function go is executed whenever we reach an object that

has already been reached before by the same traversal. It has two parameters: the

o3 3]

3

3 3

3

—

3 3]

-3

—3 3

2

~—3 ~3 ~—3 —3 —31 T3

91

first is the object itself and the second is the 8 value computed for this object when
it was traversed for the first time. That way the recursion terminates on shared

objects or on cycles.
For example, the following program will destructively modify the state of all

tree nodes with infq u to have info w:

tc_otree([0,7] —o0, [0] —o,

[o.v,7,2.l,r] —if v=u then o else modify(o,node(w,lI,r)))
The following creates an exact copy of an otree:

tc_otree([7,n] —n, [?] —new(empty),

[?7.v,2,2,l,r] —new(node(v,1,r)))
The following returns the list of nodes reachable from the root:

tc_otree([7,?] —nil, [0] —o,

[0,2.7.7.1,r]1 —cons(o,append(l,r)))

 Another example that defines a double linked list is the following:

double_linked_list(a) =
otree(a) where(x) tc_otree([?,7]1 —true, [?] >true,
[0,7,2,r,5,7]1 —s and o=tc_otree([?,7]—7?,[7] —x,

07,212,271 0)(r))(x);

That is, a double_linked._list is an otree in which the right child of any node has the
node itself as the left child (the right child of the root is empty)®. For example, the

following program inserts the value val at the end of a double_linked_list:

SRemember that the = operation for objects is not structural equality but comparison between
OIDs.

92
tcotree([?,7] -7, [71 —new(node(val,empty,empty)),
[o.v,l,r,s,7] —if I=empty
then modify(o,node(v,new(node(val,empty,0)),r))

else s)
Not all go functions are valid. For example, consider the following:

tcotree([?,n]—n,[?1-0,07,2,2,7,|,r] =i4+r+1)

(define(“x”,new(node(1,refer(“x"),refer(“x")))))

If we assume that we have define and refer for all canonical types then this expression
is equal to define(“n” refer(“n")+refer(“n")+1) which is the solution of n=2xn+1.
Because we do not want to permit cycles and shared objects in our regular construc-
tor algebra we allow the second parameter of go (the accumulated value) to be used
only when 3 is an object type, that is, when the traversal Hz' constructs objects.
Accessing the accumulated value v in go(o,v) that was computed when the
object o was reached the first time is somewhat tricky to implement for objects
with cycles. For each traversal f and for each object z we have a set S|z, f] of
objects. If the object o has been reached before but its accumulated value has not
been computed yet (that is, if we have a cycle) then n in go(o,n) is set equal to
the address of S[o, f] while the address of n is inserted into S[o, f]. When we finish
constructing the accumulated value of the object o we set all values whose addresses
are in S[o, f] to the new result. This will work because the only use we have for
accumulated results is for testing equalities or for passing them to constructions. If
accumulated values were allowed to be traversed then this method could not work.
For example, one possible implementation for tc_otree in pseudo-ADABTPL is
the following (if has been encountered before and its value has been constructed

(such as in shared objects) then VALUE(z, f) returns the already computed f(z)):

.1 3

1

3

3

.3

1 3

.3

3

T3 T4

4

3 3 4 T3 4

4

4 "3 E|

93

function(a,3) tc_otree
(fstop: [otree(a),3]1—0, fempty: [otree(a)] -G,
fnode: [otree(a),a,otree(a),otree(a),3,01 -0): [otree(a)] —4;
[x] —if x has already been traversed by f=tc_otree(fstop,fempty,fnode)
then if x is in a cycle
then { S[x,fl:={x}+S[x,f]; addr(S[x.f]) }
else fstop(x,VALUE(x,f))
else let res:=case x
{ empty — fempty(x);
node(v,l,r) — friode(x,v,l.r,tc_otree(fstop,fempty,fnode)(1),
tc_otree(fstop,fempty,fnode)(r)) } in
{ for all y in S[x,f] do deref(y):=fstop(deref(y),res); res };

This method is inefficient but objects are intended to be used where regular recursive

types fail: for shared objects and for graphs with cycles.

The promotion theorem for objects is:

Theorem 4.10: (Object Promotion Theorem) if Vo Vv : 9(fo(o,v)) =

¢o(0, 9(v)) and VoViVEVRVZ 1 g(fi(o, 7, i, B)) = 6i(0, 7, T, 9(21), .., 9(21))

then g o Hr(fo, f1, ..., fa) = Hr(do, é1, ..., ¢n)
Proof: We will prove that ¥z : g(f(2)) = ¢(z), where f = Hr(fo, fir- .., fu)
and ¢ = Hr(¢o, ¢1,. .., ¢n). If deref(z) = Ci(F7,7;) and = has not been found before
then g(£(2)) = 9(fi(BT, F(¥)r -, F8E))) = 82, BT 0(F)), . 9 £)
= ¢, T3, T, #(31), - - -, #(v},)) (from induction step) = ¢(z). If = has been reached
before then g(f(z)) = g(fo(2,v)) = do(z, g(v)). But vis f(z) because it is the result
returned when = was traversed for the first time. Thus, g(f(z)) = ¢o(z, g(f(z))) =
¢o(z, ¢()) = ¢(z). O

Algorithm 4.1 on page 68 is extended to include the rules in Figure 4.4 (the

promotion theorem for ol;jects is incorporated into the last rule of Algorithm 4.1).

94

®(Hr(fo, fr,- - -, fn)(define(n, z)), p, 0, K)
define(v, ®(Hr(fo, f1,. .-, fa)(®),p,0,K[n =< z,v >])) if B is object
®(Hr(fo, fry-- -, fa)(2),p,0,K[n =< 2,7 >]) otherwise

®(Hr(fo, frs- -, fa)(refer(n)), p, 0, K)
— fo(z, refer(v)) where L Fn =< z,v >

Q(HT’(fm fl; L ;fn)(new(ci(ﬁv -‘lﬁ))),p, U)]C)
—_ @(f;(new(C;('ﬁ,E)),ﬁ,w, ooy Hel(foy fry - o5 fu)(wWk), ..), p, 0, K)

Q('I-tT'(f(h .f11 ey fn)(mOdifY(zr Ci(i7 E)))v pa, K:)
— &(fi(modify(z, Ci(T,)), %, D, . .., Hr(fo, fr, -, fuwk), ..), 0,0, K)

Figure 4.4 Composition of object traversals

Here we extended ® to include an extra parameter K that holds bindings from
variable names deﬁned by the define constructor to pairs of objects and accumulated
results. The first rule says that f(define(n,z)), where f = Hr(fo, f1,---, fa)s
is define(v, f(z)), where v is a new variable name and K is extended to include
n =< x,v >. If later we find f(refer(n)) then this is fo(z, refer(v)). If the type of
accumulation B is not an object type then we are not permitted to insert define and
refer into the resulting construction.

For example, copy(define(“x" ,new(node(1,refer(“x"),refer(“x"))))), where copy is
tc_otree([?,n] —n, [o] —new(empty), [7,v,2,2,l,r] —new(node(v,r,1))), is equal to
define("y" ,new(node(1,refer(“y"),refer(“y")))).

For example, the composition nodnum(reflect(x))=tc_otree(f0,f1,f2)(x), where

nodnum = tc_otree([?,721—0,[?1—0,[7,2,2,2,l,r]1 -l+r+1)

reflect = tc_otree([7,n]—n, [0] —o,[0,v,2,7,l,r] >modify(o,node(v,r,I)))
is derived using the object promotion theorem:

1) f0(o,nodnum(n))=nodnum(n)=0 (note that nodnum(n) could not depend on n)
= f0(?,7)=0
2) fl(o)=nodmim(empty)=0

-3

21

3

3

-3

—a ~—3 —3a ~— 3 —3 T3 T3 T3 T3

3

3

&

-

~3 3

3 3

g’

95

@(.7'-1"(6, STRER ,7‘,,)(/\5.9(5)), P, 0) — Q(C(g(rl) <o 7rn)): P U)

®(g(Fr(c,r1,---,ma)(f))s 0y 0)
o7 L Fr(®(goc,p,0),8(r1,p,0),...,8(rn, p,0))(f)

®(Fr(e,r1,.--,ma)(f) 0, o) — Fr(®(c,p,0),®(r1,0,0),..., ®(rn, p,0))(f)

Figure 4.5 Composition of second-order traversals

3) f2(0,v,?,7,nodnum(l),nodnum(r))=nodnum(modify(o,node(v,r,!)))
= nodnum(r)+nodnum(l)+1 = f2(?,7,7,7,u,w)=w+u+l

Therefore, the composition is tc_otree([7,71—0,[?]1—0,[7,7,7,7,u,w] -w+u+1).

4.8.5 Second-order Functions

We can also extend our model to capture higher order expressions, that is,

expressions where there is at least one variable that is a function:

Definition 4.10: (Second-order Combinator) Let T = Ty x...x T, —» Ty be a
function type. The uniform traversal combinator for T is Fr(c,ry,. .. ,T): T—
B, where c: To—pf and r;: () > T;, and it is defined as Af. c(f(r1(), ..., ra())).

Variable f is not permitted to be an accumulative result variable.

The promotion theorem for T is simply:

goFr(e,r1,...,70) =Fr(goec,r1,...,mn)

The composition algorithm is still correct because if & is a uniform traversal combi-
nator then so is Fr(c,m,...,7,)(k). More specifically, Algorithm 4.1 on page 68 is
extended to include the rules in Figure 4.5.

In ADABTPL, a combinator Fr for any type T = Ty x ... x T, — Tp is written

as fcn. For example, for n = 3 the second-order combinator Fr is fe3:

96
function(alpha,beta,al,a2,af) fc3
(c: [alphal—beta, rl: [1—al, r2: [1—a2 r3: [1—a3) 7
: [[a1,a2,a3] —alpha] —beta;

L] —e((r1(),r2().r3())): ’”}
For example, map_list over any function f is expressed as: '—‘
map_list(f) = tclist([1—nil, [b,?,r] —fcl([z] »cons(z,r), [1—b)(f))

The generic join defined in Section 3.2 is computed by:

function(alpha,beta,gamma) ‘_}
join (x: set(alpha), y: set(beta), -
match: [alpha,beta] —boolean, }
concat: [alpha,beta] —gamma) : set(gamma); ’-1
tc_set([] —emptyset,

[ex,?,r] —tc_set([1—r, ™
Ley,?.s]1 —fc2([0] —tc_boolean([J—fc2([u] —insert(u,s), |
[] —ex, [] —ey) (concat), T
[1-5) (o). -
[1—vex, [1ey) (match))(y))(x) |

4.9 Use of Uniform Traversal Combinators

3

Uniform traversal combinators can be used for solving the problem introduced

in Section 3.7: if all operations are expressed as uniform traversal combinators then

the translation of an operation f is (from Equation 3.4):

F(z1,...,z5) = coler, . . ., em)(f(ri(z1), . .., 7a(zn))).

1

Since this is a composition of uniform traversal combinators, it is also a uniform

traversal combinator. Furthermore, the composition algorithm will ‘flatten out’ the

3

-1

~—3 —3 T3 773

3 —3 9

T3 T3

—®

T3

vﬁ-g r—*’g

3

97

resulting expression into traversals and constructors from the concrete types only.
This can be proved by induction”: if the result of the composition is a projection
the statement is true; if it is a construction C(h1(Z),...,h,(T)) then none of the
parameters of C return an abstract object because C is a constructor of a concrete
type which by definition does not refer to any abstract type; if it is a traversal
Hr(f1,.. ., fa) that returns a concrete type then all f; return concrete types.

In addition, the composition algorithm can be used for proving theorems about
uniform traversal combinators, because it reduces expressions involving traversals
into traversals over single variables. Then testing the functional equality of two
uniform traversal combinators is easier, because there is a unique way of expressing
a function as a traversal over a variable (from the uniqueness property). In the next

chapter we will explore the theorem proving process further.

"We assume that there are no types in common between the abstract and concrete types.

CHAPTER 5

THEOREM PROVING AND PROGRAM
SYNTHESIS

The composition algorithm described in Section 4.5 is a reduction algorithm that
translates any expression involving traversals, equalities, constructions, and vari-
ables into a uniform traversal combinator form. The latter, by including traversals
over single variables only, provides a uniformity that aids theorem proving. Checking
whether two programs have the same functionality is facilitated by expressing the
program as a uniform traversal combinator. More specifically, the uniqueness prop-
erty described in Section 4.2 says that there is only one way of expressing a function
as a traversal over a certain' variable. The equality combinator though, needed
for extending the expressiveness of our algebra, introduces new possible alternative
expressions for a function. Luckily, testing if two such alternatives have the same
functionality is done by using the same algorithm for checking functional equalities
to test if the two parts of the equality are equal. This is a unification process as
it needs to generate bindings from variables to programs to be used in other parts
of a program. For example, testing whether the program (x=y)=>(succ(x)=succ(y))
is always equal to the program true can be achieved only after considering in the
second equality the binding from x to y derived from the first equality.

This chapter considers the problem of theorem proving and program synthesis
using uniform traversal combinators. Section 5.1 presents the algorithm for testing
the equality of two uniform traversal combinators. It is used in Section 5.2 for

proving first-order theorems. Section 5.3 extends the theorem proving process to

3

-3

_ D

-1 3 1 13

.3

"3

3

—3

3 3

3

3

—3

—3

99

cover sets and vectors. Section 5.4 addresses theorems involving variables with
restricted types, that is, types augmented by integrity constraints. Section 5.5
presents an algorithm for proving second-order theorems by exhaustively checking
program patterns. The same algorithm is used for constructing programs from
proofs. This program synthesis will be the core of the query optimization algorithm
presented in Section 6.4. Section 5.6 proposes a method for proving meta-theorems,
that is, theorems that hold for any canonical type or for any program of any type.

Finally, Section 5.7 concludes this chapter.

5.1 Equality of Uniform Traversal Combinators

Proving functional equalities is a necessary process for proving equality theo-
rems. The following algorithm tests whether any two uniform traversal combinators
compute the same function. It is based on the uniqueness property that says that
there is a unique way for expressing a function as a traversal combinator. We will

use this algorithm in Section 5.2 for proving equality theorems.

Theorem 5.1: (Equality Theorem) Let AZ.f(Z) and AZ.g(Z) be two uniform
traversal combinators. Then VZ : f(%) = g(7) iff £(Az.f(Z), \7.¢(%), [, true) #
fail and VZ : f(Z) # ¢(%) if £()z.f(%), AT.9(Z),], false) # fail, where & is
computed by the following algorithm:

Algorithm 5.1: (Equality of Combinators) The algorithm in Figure 5.1 that
tests the functional equality of two uniform traversal combinators is a unification
algorithm. It returns a substitution list that contains bindings from variables
to combinators. More specifically, the substitution list contains bindings of the
form = e or = # e, indicating that variable « is always equal (or not equal)
to the combinator e. Expression £(f,g,p,3) takes two combinators f and g, -

a substitution list p, and a boolean value 8 as input. If f = g (or f #£ ¢

/

100

1)
2)

3)

4)

g(f,g, fail’ﬁ) — fail
E(AZ.z,)T.2,p,8) — if B then p else fail

if pt z = h then &(g, k, p, B)
£(9,XZ.2,p,8) — (else if pF z # h then &(g, h,p,-B)
else if § then p[z = g] else p[z # g]

EORC(...,e(3),...), M B.C(..., hi(Z),...), p,)
B 5(81, hlrg(eh h2)£(' e p?ﬂ)’ﬁ)’ﬂ)

EONE.Ci(...), N5.Cof..), p, B) — fail
&(g,Er(f, k, 8),p,8)

if p’ # fail then p'
else £(g, ®(¢(false), [], []), £(, b, o, false), B)

7) EQAZH(..., fiy.-) ¥), A He(. .., 9,)y), 0, B)
— g(fl7glyg(f27921€(° . Paﬁ):ﬁ);ﬂ)

8) &(AZ.g(z), A . Hr(...,¢i,...)(2),p,8)
{ E(2(g(C1(z1, 7)), [, 1), B(a(Z1, 71, - 9wk), - -), 15 1)),

{ let o' &(g, $((true), [1, [1), £(£, k, p, true), B) in

E(2(9(Ca(z2, 7)), [], 1), 2(8(72, T2, - - -, 9(9i), - -), [1,),
&(...,p,8),8),8)

Figure 5.1 Equality of uniform traversal combinators

when 8 = false) then &(f,g,p,0) returns p extended with the new bindings
found during the unification. Otherwise it returns fail. The right sides of the
fourth and the two last rules have the form &(fi,g1,&(f2,92,€(. .. p,8),8),8).
This tests whether all f; = g; but it also accumulates all the bindings starting
with p. The first rule says that if p is fail (because it was the result of some
other equality that failed) then this equality must fail too. The second rule
says that a projection is equal to itself. The third rule checks the equality
z = g(%) (or z # g(F)): if there is a binding z = h(ZT) in p then g = A (or
g # h) must be true; if there is a binding z # A(Z) in p then g # A (or
g = h) must be true; otherwise p is extended to include the binding z = g(Z)

(or z # g(Z)). The fourth and fifth rules check constructions: two constructions

,..,.»g .--—-§ w—“g h“g

3

—3 —3 3 —31 "B

—3 "3 3

—3 T3 T3

3

101

are equal only if they formed by the same constructor. The sixth rule says that
g = ¢(f = h) if g = $(true) provided that f = h, or g = ¢(false) provided
that f # h. Note that if f = h (or f # h) returns fail then this means that
#(f = g) is always equal to ¢(false) (or to ¢(true)). The seventh rule says that
two traversals over the same variable y are equal if their component functions
are equal. The last rule considers every construction C;(%;,%;) of T to check the
equality g(Ci(T:, %)) = ¢:i(Z:, %, - -, 9(vi),...). Note that if z is used by any of

¢; then z = C;(T7, 7). For example, for tc_list the last rule becomes:

E(XZ.g(z), AT telist(o1, d2)(2), p, B)
—_ { S(Q(g(nll), []r [])7 ¢l():
E(®(g(cons(a, 1)), 11, 11), ®(¢2(a, L, g(1)), 1, 1), £, 8), B)

For the purpose of simplifying the algorithm in Figure 5.1 we ignored variable
renaming and assumed that we have the same variables T in both sides of the
equation £(AZ.f,AZ.g,p,3). In addition, we did not put the reflective image of

some rules, such as a rule for £(A%.z2, g, p, B) because it is similar to the rule for

£(g,)22, 0, B).

Proof: We will prove the last two rules in Figure 5.1. All the other rules are obvious.

From the uniqueness property we have:
ViVE VG 9(Ci(ET) = 4(F T g(ui),- -, 9(4E) © 9= Hr(dn,...,8n)

That is, g is equal to Hz(...,¢,...) if and only if for all 3: 9(Ci(T7, %)) is equal
to ¢i(%i, ¥, 9(v3), ..., 9(yi)) (this is the last rule). The seventh rule serves as the
bottom case for the last rule to avoid falling into an infinite recursion and it is also
derived from the uniqueness property. O

For example, suppose that we want to prove the commutativity law for integer
addition x+y==y+x, where == here is the structural equality equal_int for integers.

This is expressed as:

te_int([1 -y, [2,i] —succ(i))(x) == teint([1—x, [?,j] —succ(j))(y)

102

Let g(y)=tc.int([]1 -y, [?,i1 —succ(i))(x) then we apply the uniqueness property for
the equality g(y)==tc_int([1-x, [?,j]1—succ(j))(y) (last rule in Figure 5.1):

1) y=zero: (g(zero)==x) = (tcint([]—zero,[?,i] —succ(i))(x)==x) = true
2) y=suce(j): (g(suce(j))==succ(g(j))) =
(teint([J—succ(j), [7,i] —suce(i))(x)==succ(g(j)))

Let f(x)=succ(g(j))). We apply the uniqueness property again:

1) x=zero: (f(zero)==succ(j)) = (suce(j)==succ(j)) = true

2) x=succ(i): (f(succ(i))==succ(f(i))) = (sucé(f(i))::succ(f(i))) = true

Another example that demonstrates the use of the binding list is for testing the
equality between (x==y) = (succ(x)==succ(y)) and true. This equality in combi-

nator form is:

eq-int([1—x, [J -y, [z] —>tc_bool([1—eq_int([—succ(x), [J —suce(y), [w] —-w),

[1—true)(z)) = true
From the sixth rule in Figure 5.1 we have two cases:

1) x=y = test eq.int([J—succ(x), [—osucc(y), [w] —-w) = true / [x=y]
test succ(x) = suec(y) / [x=y]
test x =y / [x=y]

2) x#y = test true = true / [x#y]

Both cases do not fail. Therefore, the equality is true. Similarly, the equality
between x==y and true is not true, which is a correct statement because x and y

are universally quantified variables.

1 3

S |

-1 3 3 _ 13

.3

~3 3 "3 3 3

3

™3 T3 T3 T3

4 T3 T3

3

. -~»f§

3

~3 T3 3

103

5.2 Theorem Proving

The algorithms for composing uniform traversal combinators and for testing
their functional equalities can be applied to proving theorems about uniform traver-
sal combinators. Suppose that we want to prove that an expression e(Z) is always
true. First we need to find all uniform traversal combinators associated with each
function call in e. Then we use the composition algorithm to synthesize the uniform
traversal combinator f(Z) equivalent to e(Z). Finally we are left with the simpler
task of proving whether f(Z) is always true (a tautology). The following corollary

comes directly from Theorem 5.1:

Corollary 5.1: (Tautology Checker) Let f(Z) be a uniform traversal combi-

nator of type boolean. Then VZ: f(Z) iff £(f(Z), true, [], true) # fail.

Note that we can also disprove a theorem f(Z) by testing £(f(%), false, [], true) s
fail.
For example, suppose that we want to prove the associativity law for integer

multiplication, that is: (x*y)*z==x*(yxz), where multiplication is computed by:
xxy = te.int([1—zero, [7,i] —steint([]—i, [2,j] —succ(j))(y))(x)

We start by composing (x+y)+z. We apply the promotion theorem with

g(u) = uxz = te.int([1—zero, [,i] —te.int([1—i, [7,]] —succ(j))(z))(v)

Let g(tc.int([J—zero, [?,i] >tc_int([1—i, [7,j] —suce(j))(y))(x))=tc.int(f1,f2)(x).

Then from the promotion theorem we have:

1) f1() = g(zero) = zero
2) £2(7.g(i)) = g(te-int([1—i, (7,1 —suce(j))(y)) = te-int(h1,h2)(y)

Let m=g(i). We apply the promotion theorem again:

104

1) hi() = g(i) = m
2) h2(7.g(j)) = g(succ(i)) = te.int([1—g() [7.K1 —suec(k))(z)
= h2(?,w) = tc_int([1—w, [?,k] —succ(k))(z)

Therefore, (x*y)*z is

te_int([1 —zero,

[7,m] >tc.int([J—m, [7,w] >tcint([1—w, [7,k] —suce(k))(2))(y))(x)
We will compose now x+(y*z):
x(y*z) = te_int([1—>zero, [2,i] —te.int([1—i, [7,j] —succ(j))(y*z))(x)
Let g(u) = u+i = teint([J—i,[?,j1—suce(j))(u). Expression x#(y*z) becomes:

g(yxz) = tcint(f1,12)(y)

= te_int([—zero, [?,ul >tc_int([]—u, [7,w] —succ(w))(z))(y)
and the promotion theorem gives:

1) f1() = g(zero) =i
2) f2(7.g(u)) = g(tc-int([] —u, [?.w] —>suce(w))(z)) = teint(h1,h2)(z)

Let k=g(u). We apply the promotion theorem again:

1) h1() = glu) = k
2) h2(7,g(w)) = g(succ(w)) = succ(g(w)) => h2(?,m) = succ(m)

Therefore, x*(y*z) is

te_int([1 —zero,

[7,i1—tc.int([J—i, [7,k] >te_int([1—k, [7,m] —suec(m))(2))(y))(x)

Finally, we can see that (x+y)z is equal to xx(y*z) (by applying the seventh rule in

Figure 5.1 twice).

3 "3

3

S W Bl Bl

—3

r-m-g r-‘% w

~3 —3 3 3 3 T3 —3 3

105

5.3 Proving Set and Vector Theorems

In Section 4.8.2 we defined the properties of uniform traversal combinator for
sets. We saw that if tc_set(fi, f2) is order-independent then set combinators are
composed much like the combinators for regular recursive types. Unfortunately
testing set equalities is not so easy. The fourth rule in Figure 5.1 is not true any
more because insert(a,r)=insert(b,s) does not necessarily implies that a=b and r=s.
In the following extension of Algorithm 5.1 the last rule says that if f and g are
expressions of type set then f =g = f C gAg C f. It must be used whenever
the other rules are not applicable. The second rule is derived from the uniqueness
property for sets (Theorem 4.8 on page 84). Here we assume that a is the chosen

element of a set and s the rest and therefore a ¢ s:

S(Ai'tc-set(fly fz)(Z), /\':E.tc_set(gl,gz)(z), p)ﬂ) B E(fl)glr g(fZ) 927.07:8)) ﬂ)

g(Q(g(emptyse‘:)a []) [])v ¢1()!
E(AZ.g(2), AT.te_set(dy, ¢2)(2), p,8) — E(®(g(insert(a, s)),(],1]),

@(QSZ(G': 38, g(s)), []J [])1 pwﬁ)aﬁ)

L E@(f g0 true,€(2(g C £, [, (1), true, p, 8),8)
£(f.9,0.8) { (where f and g are of tyge set) ’

where xCy is computed by:
tc_set([]—true, [a,?,s] —»a and tc_set([]—false, [b,?,r] —(a=b) or r)(y))(x)
For example, the following proves that member(a,s) = insert(a,s)=s, where:

member(a,s) = tc_set([]—false, [b,?,r] —if a=b then true else r)(s)

(x = y) = tc_boolean([1—y, [—true)(x)
This theorem is expressed as (after applying the composition algorithm):

tc_set([1—true, [b,7,r] —if a=b then insert(a,s)=s else r)(s)

106

Therefore, we need to test the equality:

tc_set([1 —true, [b,?,r] —if a=b then insert(a,s)=s else r)(s) = true

= g(s)=true
The uniqueness property for s=emptyset and s=insert(b,|) yields:

1) true = true

2) true = if a=b then insert(a,insert(b,l))=insert(b,!) else g(I)

The second equality is true because insert(a,insert(b,l))=insert(b,!) is true (when the
binding [a=b] is used).
Testing equalities of vector combinators is more difficult. Here we extend the

algorithm in Figure 5.1 to include the following rules:

E(AT.tevector(f1, f2)(2), AT .tc_vector(g1, g2)(2), p, B)
R— g(flagl) g(fZ)QZ;P)ﬂ))ﬁ)

E(®(tc.vector([1 —size(f) = size(g),

&(f,g,0,8) — [i,v,7] —r and index(i,g) = v)(£), 1], []), true, p, B)
(where f and g are of type vector)

where index(k,a) is tc_vector([1—7?,[i,v,r]—if i=k then v else r)(a) and size(a) is

te_vector([1—0,[?,7,s]1—s+1)(a).

5.4 Proving Theorems about Restricted Types

A type definition with a where clause restriction has the following form (ex-

plained in Section 3.1.7):
T' = T where(x) f(x);

Whenever we prove theorems about values of type T' we must consider the constraint
f(x) that any value x:T' satisfies. Furthermore, if T is also restricted or has a reference

to a restricted type then all these restrictions must be considered. The following

3

.3

3 1

107

‘and-all’ combinator is used for accumulating (anding together) all these restrictions.
For the purpose of explanation we define this combinator for canonical types with

direct recursions only.

—3 T3

—3

3

Definition 5.1: (And-all Combinator) Let T(@) be a canonical type. An
and-all combinator Ar(h,...,h,), where h; : [a;] —boolean, is Hr(f1,..., fa),
where each f; = AZ;.A77.A%i.(A; Rii(=5)) A (A; 25) and

h, if T;;(@) = a, for some s
Rij =1 Ar;(h,...,kh:) if T;;(@) contains at least one of @

Az.true otherwise

where z; is of type T; ;(a) = ¢ (&, T(@)).

For example, [f]—tc_list([1—true,[a,?,r]—>f(a) and r) is the and-all combinator for

lists.

Definition 5.2: (Accumulated Restrictions) Let T’ be a canonical type

enhanced with restrictions. Then the accumulated restriction Z{T"} is defined

* A(T{t},. .., I{t}) i T'=T(ts, .. t.)
I{T'} = { Az.(f(z) and Z{T}(z)) if T'= T where(y) fly)
Az.true otherwise

Theorem 5.2: Let f(Z) be a theorem with universally quantified variables z; : T..

Then f(Z) is true for all z; : T; in 7 iff A, Z{T:} = f(T) is true.

3 3

Proof: Any value z; : T; must satisfy Z{T;}. O

For example, suppose that type tt is defined as:
tt = list(range[0,5]) where(x) length(x)<10;

and we want to prove that for any value x:tt we have tc_list([1—0, [a,?,r] —a+r)(x)<50.

This theorem is expressed as follows:

108
(tclist([1—true,[a,?,r] —>a>0 and a<5 and r)(x)
and tc_list([1—0,[7,7,r] —>r+1)(x)<10)
= tc_list([1—0,[a,?,r] —a+r)(x)<50

Note that restrictions do not necessarily decrease the chances of a theorem to be true.
For example, the theorem succ(x)==succ(y) is false, but if we add the restriction
x==y then the theorem becomes x==y = suce(x)==succ(y) which is true. This is
a very important observation because redundancies of access paths are expressed
that way, causing two different programs to be equivalent if they use either of these

paths. For example:

- slist(alpha). = struct msl (info: list(alpha), size: int)

where(x) x.size=length(x.info);

The theorem length(x.info)+length(y.info)==x.size+y.size, for any x and y of type

slist(alpha), is expressed as:

(x.size=length(x.info) and y.size=length(y.info))

= length(x.info)+length(y.info)==x.size+y.size

which is true.

5.5 Proving Second-order Theorems and Synthesizing Programs

So far we have proved first-order theorems only. In Section 4.8.5 the definition
of uniform traversal combinators was extended to include second-order functions:
Fr(c,m1y-..,ma)(f) = c(f(r1(),...,7a())). But if a theorem contains such an ex-
pression in which variable f appears free then this theorem becomes a second-order
theorem. Unfortunately, there may be more than one uniform traversal combinator
f that satisfies this theorem. Even though it is not difficult to check whether two

programs compute the same function (Algorithm 5.1), it is not easy to generate all

3

3 __ 3

3

3

—3 ~3 3 T3 3 T3 T3 73

f‘"'—-%'

3 3

109

possible programs equivalent to a specific program, or even to test if there is at least
one uniform traversal combinator f that satisfies Fr(c,r1,...,ma)(f) = g, for some
given g,c,7mq,. .. ,r,,: If Algorithm 5.1 is extended to include higher-order equalities
then it becomes a higher-order unification algorithm.

This section presents a method for generating all possible programs f that satisfy
E(Fr(e,r1,...,ma)(f), 9,0, 8) # fail. We want to generate all possible programs,
instead of just one, because this algorithm will be used for program optimization
later, where programs need to be compared to find the cheapest. There may be
none, one, more than one, or infinite number of uniform traversal combinators f
that satisfy the theorem Fr(c,71,...,m)(f) = g. There are two cases with infinite
number of f here: when the theorem is true for all f (that is, when f is universally
quantified) and when it is true for an infinite family of functions, such as f in the
theorem fc0([z] »z>8)(f). In that case f is existentially quantified’. For example,
there are 101 pairs of f1-f2 that satisfy the theorem f1()+f2()=100.

The following extension of Algorithm 5.1 assumes that there are either a finite
number of solutions to the second-order theorem or that this theorem is universally
quantified (it is true for all functions f). The case where there is an infinite family
of functions f will be considered later. First, p is changed to be a set of binding
lists. That way if f is bound in p it is associated with a set of expressions instead
of just one. We denote this as p {f =e,,..., f = ex}. In the following algorithm
we will write p - f = e to indicate that eisoneof e;in p - {f = ey,..., f = er}.

The equality algorithm in Figure 5.1 is extended to include the following:

INote that the theorem 3z : f(z) (i.e. z is an existentially quantified variable) is proved by
setting z = Fr(Az.z)(g). and proving the theorem as a second-order theorem.

110

Algorithm 5.2: (Higher-order Unification)

S(fr(c, LS TR)rn)(.f)7 fT(eysla sy sn)(f);P,ﬁ)
- g(c? 615(7.1131: 8(7'2; 32, S(ce ;P,ﬂ)wﬂ):ﬂ))ﬂ)

E(Fr(e,m1,-.,ma)(f), 9, p,8) — the set of all valid f given in Figure 5.2

The first rule is obvious and serves as a bottom case for the second rule. If it
does not fail then the equality is true for any f. If the second rule does not fail
then it returns a binding that binds f to a set of combinators. In Figure 5.2
we consider all possible solutions for f. The set of valid solutions for f is the
union of the solutions derived from all the rules that do not fail. To make the
algorithm simpler we assume that no free variables can occur in the body of
f. The first rule in Figure 5.2 checks whether f could be a projection: it tries
any projection AZ.z) to see if it fails. The second rule tries every constructor
Ck of To (the output type of f). As we do not know the components e; of
these constructions we set them as free variables f; of function type. The same
algorithm is used recursively to extract a solution for them and, therefore, the
resulting binding will include bindings from f; to a set of valid e;. The third rule
checks whether f is a traversal over one of the non-accumulative result variables
Z. Again the components of the traversal are unknown and therefore they are

set as free variables. The last rule checks whether f is an equality combinator.

We can see that this algorithm tries exhaustively all possible program patterns,
but in practice a lot of impossible programs fail quickly and the tree of possible
solutions is pruned very fast. If we were allowed to have traversals on traversals
in our algebra then this algorithm would be very inefficient as we would have a
very large number of program patterns to test. The restriction of uniform traversal
combinators that traversals are over variables reduces the number of patterns. If

there is an infinite set of solutions that satisfies Fr(c,71,...,7.)(f) = g, such as

3

S)

~ 3

3 T3

3 T3 T3

~3

3 T3 T3

3 T3 73 T3 T3

|

111

Vk € [1,n] all f=2Z.2k: E(B(c(re), [, []), 9,p,8) # fail
VCi all f = AT.Ci(...,e(T),...):
EB(Cul. . Fra2,71r- 7)) s 1o 1o 0s BY - fi =
Vk € [1,n] all f = AZ.Hy,(...,e;,...)(zk) :
E@((Hry .., T Frda, 2, N [1), g BV F fi = e
E(®(c(Er(Fr(Az.z,m1,...,ra)(f1),

all f =&r(e1,ez,€e3): { Fr(Az.z,r,...,m)(f2),
FT’(/\&?.Z!,/\w.w)(fa)))[], [])191 pvﬂ) }_ fi = €

Figure 5.2 Solution of &(Fr(e,r1,...,7)(f),9,0,0)

in the equality fcO([z] »z>8)(f)=true whose set of solutions is f=9,10,11,. .., then

this algorithm will fall into an infinite loop. To avoid this, we could set a depth

. limit to restrict the search in Algorithm 5.2 or we could set a limit to the number of

solutions that this algorithm extracts. A combination of these two methods would
be more preferable: the tree of possible solutions is searched to a certain depth; if the
extracted solutions are at least equal to the prespecified number of solutions then
we stop; otherwise we double the depth limit and repeat the search. In Section 6.4
we will present a method for guiding the search performed by this algorithm using
cost functions. This method eliminates all programs that seem to be very inefficient

from the beginning.

As an example of the first rule of Algorithm 5.2, we prove that the list map

distributes over append:
map.list(f)(append(x,y)) = append(map_list(f)(x),map._list(f)(y))

where map_list(f)=tc_list([1—nil, [b,?,r] —fc1([z] »cons(z,r), [1 —b)(f)) (function fen
for a number n is defined in Section 4.8.5). We apply the promotion theorem for

g(append(x,y))=tc_list(f1,f2)(x), where g=map_list(f):

f1() = g(y) = map-list(f)(y)
f2(b,?.g(r)) = g(cons(b,r)) = fe1([z] —cons(z,g(r)), [1—b)(f)

112
= f2(b,?,u) = fcl([z] —cons(z,u), [1—b)(f)

Therefore, map._list(f)(append(x,y)) is

te list(L] —smap_list(f)(y), [b,7,ul —fcl([z] —cons(z.u), [1 —b)(f))(x)
Similarly, append(map_list(f)(x).map_list(f)(y)) is equal to:

te list([1—map.fist(f)(y), [a,2,s] —cons(a,s))(map.ist(f)(x))

which is the same with map._list(f)(append(x,y)).

The previous algorithm can be used directly for synthesizing programs:

Algorithm 5.3: (Program Synthesis) Let g(fi,...,f.) be a second-order
theorem, where f;,..., fo are free variables of function type. Then the set of

all possible uniform traversal combinators ey, ..., e, that satisfy g(e,,..., en) is

derived by £(g(f1,..., fa),true,[|) F fi = &;.

Note that, if there is no such binding f; = e; in E(g(f1,..., fa), true,[]) then f; is
universally quantified.

For example, suppose that we want to prove the theorem:

length(fc2([z] -z, [1—x,[1-y)(g)) =

te_list([J —tc_list([1 —zero, [7,7,j1 —suce(j))(y), [7.7.i] —suce(i))(x)

where length is tc_list([1—zero,[?,?,i] —succ(i)). That is, we want to find every
combinator g that satisfies the above equation. Let g be tc_list(gl,g2)(x) (this is the

third case in Figure 5.2). From the promotion theorem we have:

1) length(gl) = tclist([J —zero, [7,2,j1 —suce(j))(y)
let gl=tc_list(h1,h2)(y) then
1.1) length(hl) = zero

[] —zero is the only component of length that returns zero = hl = nil

-1

3

T3 T3

—3 73 3% 73 T3 T3 T3 T3

~—3 3

3 T3 '3 T3 T3 T3

3

113

1.2) length(h2(c,s,j)) = succ(length(j))
[7,2,i1 —succ(i) is the only component of length that returns succ.
Let h2(c,s,j) = cons(x1,x2) then length(cons(x1,x2)) = succ(length(j))
= succ(length(x2)) = succ(length(j)) = h2(c,s,j) = cons(x1,j)
2) length(g2(b,r,i)) = succ(length(i)) = g2(b.r.i) = cons(x3,i)

Therefore, g(x,y) is:
te_list([1—te list(nil, [?7,7,j] —cons(x1,j))(y). [?,7.i] —cons(x3,i))(x)

where x1 and x3 are universally quantified variables that yield a class of solutions

for g(x.y).

5.6 Proving Meta-theorems

Uniform traversal combinators are highly stereotyped functions. Therefore, we
can prove general properties about traversals by using the same approach we adopted
for proving properties about specific types: that is, by considering traversals as data
structures and the algorithms and theorems about traversals as traversals over these
structures. That way, we can prove theorems for a whole class of functions, such
as the transitive law of structural equality for any type of structure, or that any
generic map is a uniform traversal combinator, or that any generic map preserves
the shape of a structure, or even the promotion theorem.

One possible type definition for representing uniform traversal combinators is:

utc = union common (lambda_vars: binding(type),
accumulative_vars: list(string))
(projection: struct project (var: string),
construction: struct construct (constructor: string,
arguments: list(utc)),

traversal: struct traverse (var: string,

114

components: list(utc)),
equalp: struct equality (left: utc, right: ute, cont: utc));
binding = list(pair(string,utc));
type = struct make_type (name: string, constructors: list(utc));

The ‘common’ part of the union indicates that all union alternatives include the
components lambda_vars and accumulative_vars as part of their structure. These are
the lambda variables (non-accumulative and accumulative result variables) of the
combinator. The ‘type’ is the type of the type definitions. It has a name and a list
of constructors C4,...,C, put in utc form: that is, as AZ;Ay;.Ci(75, 7).

The traversal combinator tc_utc for »this structure can be derived just as for
any other data structure. Most functions and theorems about uniform traversal
combinators can also be expressed in terms of tc_utc and can be put into a uniform
traversal combinator form. For example, we claim that the following two functions
can be put in combinator form?:
function compose (g: utc, h: list(utc), rho: binding, sigma: binding) : utc;

function eq.utc (g: utc, h: utc, rho: binding, beta: boolean) : binding;

Function compose(g, (hi, .. ., k:), p, o) returns the composition ®&(g(hs, ..., k), p, o),

while function eq_utc(g, k, p, B) returns the binding &(g, &, p, 8).
For example, suppose that we want to prove that Vo : Hr(Cy,...,Ch)(z) = =

for every canonical type T, where C; is the ith constructor of T. This theorem is
expressed as follows (here type tp appears free):
eq_utc(equality(cons(pair(x,tp),nil),nil,
traverse(cons(pair(x,tp),nil),nil,x,tc_type([7,cl] —cl)(tp)).
project(cons(pair(x,tp),nil),nil,x),
project(cons(pair(y,boolean_type),nil),nil,y)),

construct(nil,nil, “true”,nil),nil)

2Further research is needed to justify this claim.

—~3 —3 —3 3

3% T3 —3 —3 T3 T3 T3 T3

13

T4

E

3 T3

3 T3

115

We need to prove that the above expression is a tautology. This can be done by

using the same methodology for proving regular theorems.

5.7 Using the Theorem Prover for Program Translation

We have presented a complete method of proving theorems about uniform
traversal combinators. Our method can prove and disprove theorems that involve
both universally and existentially quantified variables by providing a solution for
the later. This method was extended to include second-order expressions which was
used for program synthesis by deriving programs from proofs.

This theorem prover is used in various stages of the transformation process to
assure that the mapping is correct, that is, that the functionalitj in the abstract layer
is preserved in the concrete layer, especially after the optimization stage which is
usually incomplete. It is also used for testing whether a coding and a representation
function is a valid pair of functions that satisfies Equation 3.2.

Another use of the theorem prover is verifying that transactions preserve the
database integrity constraints [71]. Let db be the current database state and F (7)
a database transaction that upda.te;s the database state. For each such transaction
we can derive a function f(Z,db) that accepts the database db along with the extra
parameters Z and returns a new database state. If we assume that db satisfies the

database integrity constraints then the new database must do that too:
Z{db} = I{f(z,db)}

In case of inconsistency, that is, when the previous theorem fails, we could assume
that there is a precondition p(Z) that variables from % satisfy and prove the high

order theorem:

I{db} A Fr(rz.2,7)(p) = T{f(z, db)}

116

If this theorem does not fail it will generate all possible solutions for p that could
be displayed to the user as suggestions for additional preconditions attached to the

transaction F' for avoiding misusing the database consistency [75, 55].
The program synthesis algorithm can be used to derive all valid solutions of the

high order theorem (Equation 3.3 on page 42):

ro(F(21,...,2a)) = f(ri(21),. .. yPn(Tn))

where F is an existentially quantified variable of type function. Algorithm 5.2 can
synthesize all possible uniform traversal combinators F that satisfy this equation.
This is also true for the general case of implementing f using mapping dependencies

(Equation 3.1 on page 39):

my(21, Y1) A -+ - Amp(@n, yn) = mo(f(21,-- -, 2n), F(y1,...,9n))

If there are constraints (restrictions) attached to the values z; : T; then Equation 3.3

becomes:
/\I{Tt} = rO(F(zla) zn)) = f(7'1(371), cee 7rn(mn))

which, like the previous theorems, can be used for generating all valid solutions for F.
This form is very important because if we have redundant information kept as part of
a value then the synthesis algorithm will generate all alternative ways of accessing
this information. The objective of query optimization is to find the alternative
with the minimal cost. In Section 6.4 we will present an algorithm for guiding the
exhaustive enumeration of solutions in Algorithm 5.2 using a cost function to prune
out solutions that do not look very promising. Another additional way of managing
the intractability of the optimization is to let the implementor define both the coding

and representation functions. Then the second-order theorem becomes:

F(zy,...,2,) = co(eq, ..., em)(f(r1(z1), ..., ma(zn)))

which yields fewer solutions for F', because F' now has a unique functionality, even

though there may be more than one alternative uniform traversal combinators that

.3

3

3

|

3

3

r““% r"-*"g

3

3 T3 T3

—a —3 131 T3

3

117

compute F'. This approach is preferable to the others as it yields solutions for F' that
are expressed in terms of concrete primitives only. The synthesis algorithm can be
used during the design phase to suggest possible coding functions C;, ¢, assigned to a
specific representation function Ry, ., , generated during the proof of the second-order

theorem:

Reye (1, .,) (Fr([2] =z, [1-2)(Cy iy(cry .- ycn))) = 2

The program synthesis algorithm can also be used for translating view updates.
Let dbbe a database and f a database view, that is, f(db) is the database information
accessible from the view. Let also u be a transaction that updates this view. We
want to ﬁnd a transaction U that when applied to the database db it causes the

same effect as u. This is expressed as:

F(U(db)) = u(f(db))

This theorem is very similar to Equation 3.3 on page 42 and can be solved using

the same technique.

CHAPTER 6

PROGRAM TRANSLATION AND
OPTIMIZATION

The optimization problem appears when there are alternative paths to the
same data in a database, because there is redundancy of information, or when
there are alternative methocis of execution, due to equivalences between programs.
~ The redundancy of information is derived by expressiﬁg object dependencies as
integrity constraints attached to the objects’ types during system specification and
implementation. Qur objective is to access data as cheaply as possible. The query
translation process can be seen as a search over alternative paths with the goal of
reducing the total execution cost of a query. Consider for example a table in a
relational system with an index on one of its columns. Suppose that we want to
find a row in this table containing a specific value in its indexed attribute. We can
either access the rows sequentially to locate the tuple or make use of the index.
The first case needs time proportional to the size of the table, while the second
case needs time proportional to the logarithm of its size. For large enough tables
the second alternative is better than the first. We could use the theorem prover
to guide the search for an optimal solution by proving that the cost of an access
path is smaller than the cost of another, whenever the cost parameters, such as
the relation cardinality, becomes I‘arge. For the example above, it is not difficult
to prove that the second alternative is cheaper than the first. But if we have
queries that depend on more than one parameter then a proof is not always possible,

because increasing the value of one parameter and decreasing another may result

13

3

—3 T3 T3

4 ~— 3 T3 T3

4 T3 —3 T3

3

T3 73

3 3 T34 T3

3

119

in a different optimal translation. One such example is the natural join operation
whose optimal translation depends on the data stored in the join tables. This is a
well known fact in database systems: the cost of query processing depends not only
on the database schema itself, but also on the actual data stored in the database.
Therefore, it is not enough to know how the parameter types are mapped to their
concrete implementations but also we need to know some statistics about the actual
data passed as parameters.

In this chapter we examine the problem of translating and optimizing programs
expressed as unary traversal combinators. The type transformation model presented
in Chapter 3 gives a method for translating a query in the abstract domain into a
query in the concrete domain. More specifically, if we provide type mappings for
the input values and the output value of a function then translating a function is
translating the input values, applying the function, and then translating back the
result. This default translation can be optimized by using the program synthesis
algorithm presented in Section 5.5 to generate all possible uniform traversal combi-
nators equivalent to some specific uniform traversal combinator. Deriving the best
among these alternatives is performed by specifying a cost function that evaluates
the quality and efficiency of a uniform traversal combinator.

Section 6.1 presents an extension to the type system for incorporating mapping
specifications. Section 6.2 presents a complete example of mapping a database
type that includes a part-subpart hierarchy. Section 6.3 describes a cost model
well-suited to our algebra, flexible enough to capture many diverse cost models.
Section 6.4 presents the query optimization algorithm and ways of improving its
efficiency. Section 6.5 applies the cost analysis and optimization methods to a
language with program abstractions. Section 6.6 describes a specification language

for describing the concrete layer. Finally, Section 6.7 concludes this chapter.

120

6.1 The Transformation Specification Language

In this section we describe a language for expressing our type transformations.
It is designed in a way that supports flexibility and modularity.

We introduce a new type constructor map with no operations and no instances.

It has the form:

map tl into t2 via r and ¢

It defines a type transformation from type t1 to type t2 with representation function
r and coding function c. A map type has no instances and therefore we cannot
define operations or variables of this type. The only place it is used is for constructing
other more complex mappings.

A simple example of a mapping is the identity mapping id:
id(alpha) = map alpha into alpha via [x] —x and [x]—x;

Type name id is defined to represent the mapping from any type alpha to itself
whose representation and coding functions are the identity functions.
The following type definition defines type boolmap to be the type transformation

from booleans to [0,1]:

boolmap = map boolean into range[0,1]
via tc_int([] —true, [7,7] —false)

and tc_boolean([1—0,[]—1);

Bounded parameterization (defined in Section 3.1.8) can be used for creating
polymorphic type transformation. For example, a polymorphic transformation of

the type pair, defined as:
pair(alpha,beta) = struct pairup (first: alpha, second: beta);

is the following:

13

—3

—3 T3

3

r*—g r—'"‘g r—'g r—h-‘%

3 3 T3 T3

121

pairmap(ml(al,b1)[rl:[61] —al,cl:[al]l —b1] = map a! into b via rl and cl,
m2(a2,b2)[r2:[62] —a2,c2:[a2] »b2] = map a2 into b2 viar2 and 2) =
map pair(al,a2) into pair(b1,52)
via tc_pair([x,y] —pairup(r1(x),r2(y)))
and tc_pair([x,y] —pairup(c1(x),c2(y)));

That is, pairmap has two bounded type parameters: m1 and m2 that are mappings.
For example, pairmap(id(int),id(int)) is a valid instantiation of pairmap that binds
al, b1, a2 and b2to int and rl, cl, r2 and c2 to [x] —x.

Another example is mapping sets into ordered lists (Section 3.3). Here there is

an extra parameter before to be used in the restrictions:

keyed(m(a,b)[rb: [6] —a,ca:[a]l —b] = map a into b via rb and ca)
[before: [b,6] —boolean | =
map set(a)
into list(b) where(x) x=tc_list([1—nil, [a,?,r] —ordered_cons(a,r,before))(x)
via tc_list([] —emptyset, [a,?,r] —insert(rb(a),r))

and tc_set([]—nil, [a,?,r] —ordered_cons(ca(a),r,before));
where ordered_cons is an order independent function defined as:

function(alpha) ordered_cons
(a: alpha, r: list(alpha), before: [alpha,alpha] —boolean) : list(alpha);
tc_list([J —cons(a,nil),
[b.l,s] —if before(a,b)
then if before(b,a) then cons(b,!) else cons(a,cons(b,!))
else cons(b,s))(r);

For example, keyed(id(person))[[x,y] —x.ssn<y.ssn] maps set(person) into list(person)

ordered by the social security numbers.

122

The tc_list in ordered_cons traverses r, an accumulative result variable. Another

version of the coding function of the mapping keyed which is a uniform traversal

combinator is:

[x] —tc_set([1—nil,
[7,1,71 >tc_set([1—7?,[a,7,r] —if te_set([1—zero, [7,2,i] msuce(i))(1) =
tc_set([] —zero,
[b.?,s]1 —if before(ca(a),ca(b))
then succ(s)
else s)(x)
then ca(a)

else r)(x))(x)

The following creates a mapping from a set to a pair of lists sorted by the

functions f1 and f2:

double_keyed(m(a,b)[rb: [] —a,ca:[a] —b] = map a into b via rb and ca)
[f1: [b,6]1 —boolean, f2: [b,b] —boolean | =
apairmap(keyed(m(a,b)[rb,ca])[f1] keyed(m(a,b)[rb,ca})[f2]):

where apairmap is a mapping from any type @ to a pair pair(b1,52):

apairmap(ml(a,b1)[rl:[61] —a,cl:[a] —b1] = map ainto b1 via rl and cl,
m2(a,b2)[r2: [2] —a,c2:[a] »b2] = map a into b2 viar2 and c2) =
map a into pair(b1,62) where(x) tc_pair([x,y] —rl(x)=r2(y))
via te_pair([x,71 —rl(x))

and [x]—pairup(cl(x),c2(x)):

For example, the following creates a mapping from a set of persons to a pair of lists.

The first list is sorted by the person’s name and the second by ssn:

double_keyed(id(person))[[x,y] —x.name<y.name, [x,y] —x.ssn<y.ssn]

3

1

—3 3 —3 4 T3

R

T3 T3 T3 T3

3 T4

3

123

The following transforms a set into a hash table whose entries are sets consisting

of elements with the same hash value:

hashed(m(a,b)(rb:[6] —a,ca:[a] —b] = map a into b via rb and ca)

[size: int, hash: [3] —range[0,size-1] | =
map set(a)
into vector(set(b))

where(x) tc_vector([—true,

[i,v,r] —tc_set([]1 —true,
[a,?,s]1—i=hash(a) and s)(v) and r)(x)

via tc_vector([J—emptyset, [?,v,r] —tc_set([1—r, [a,?,s] —insert(rb(a),s))(v))

and tc_set([] —newvector(size,emptyset), [a,?,r] —vector_insert(ca(a).r,hash))

where vector_insert(a,r,hash) is the order independent function:
tevector([1—r, [i,v,s] —if i=hash(a) then update(i,insert(a,v),s) else s)(r)

Suppose now that we want to map the result of this mapping vector(set(})) into
vector(set_impl(5)), where set_impl is some implementation of sets. The following

type transformation takes a mapping m1 from type ato type vector(c) and a mapping

m2 from c to d and returns a new mapping from a to vector(d):

comp.vec(ml(a,b=vector(c))[rl: [6] —~a,cl:[a] —b] = map a into b via rl and cl,
m2(c,d)[r2:[d] —c,c2:[c] »d] = map c into d via r2 and 2)=
map a into vector(d)
via [x] —rl(tcvector([1—x, [i,v,r] —update(i,r2(v),r))(x))

and [x] —tc_vector([1—x,[i,v,r] —update(i,c2(v),r))(c1(x));

For example, the following is a transformation of a set into a hash table of length

size and hash function hash whose entries are lists ordered by some function before:

124 ™

hash_table(m(a,b)[rb: [5] —a,ca:[a] —=b] = map a into b via rb and ca) |

[size: int, hash: [5] —range[0,size], before: [5,5] —boolean | = (—1
comp_vec(hashed(m(a,b)[rb,ca])[size,hash], keyed(m(a,b)[rb,ca]) [before]);

For example, hash_table(id(person))[100, [x] —x.ssn mod 100, [x,y] —x.name<y.name),

where a mod n = a-(a div n)*n and a div n is: i

tc.int([1—0, [i,r] —if i*n<a then i else r)(a)

o
6.2 Database Implementation -
We assume that there is only one persistent object in a program, namely the |
database, which is of a non-polymorphic canonical type. Typically, the database is j
a big tuple whose components are the values we want to persist. For example, in a -
relational system the database object is a tuple that consists of relations. Database |
queries are functions from the database type to any canonical type. A database o
transaction can be simulated by a function that accepts the current database object
as input, along with some extra parameters, and return a new database object which ™
is different from the original object if the transaction contains destructive updates.
We will explore these language issues in Appendix A. . m:
The database mapping is defined by the special ADABTPL language primitive -
database that has the form: database name : type-expression, where name is the 3
name of the database mapping and type-expression is a type expression that con- ™
structs a mapping. There must be only one database definition in a program. For
example, this type expression can be a map construction: r-‘
database name : map db into DB via r and ; -
where db is the type of the abstract database object and DB the type of the concrete : |
database object. =
Consider, for example, the database type db that includes a part-subpart hier- !
archy and a set of part orders: i

3

™3 3 3

T4 T3 T4

T3

3

r'“~g r““‘g

T B

T3

125

part = union (basep: struct base (name: string,
cost: int),
compositep: struct composite (name: string,
cost: int,
subparts: set(part)));
order = struct make_order (customer: person,
ordered: set(part),
quantity: int);
db = struct make_db (parts: set(part),
customers: set(person),

orders: set(order));

For example, the following is a query in combinator form that computes the number
of all ordered parts (counting all subparts of composite parts):
tc.db([?,7,0s] — tc_set([]1—0, [0,s] —»s+tc_order([?,ps,q] —sparts(ps.q))(o))(os))(db)
where sparts(ps,q) is:
tc_set([]1—0,
[p.u] »u+tc_part([?,7] —q,
[?,7,si] —q+tc_set([1—0,
[i.r] —i+r)
(s)
(P)Xps)
One possible implementation for the recursive type part is alist, a tree whose nodes
have arbitrary number of children:
alist(alpha,beta) =
union (leafp: struct leaf (info: bdeta);
brunchp: struct brunch (info: alpha,
children: list(alist(alpha,beta))));

126

More specifically, type part is mapped into:
ipart = alist(pair(string,int),pair(string,int));
The detailed mapping is the following:

partmap(m(r: [list(ipart)] —set(ipart),c: [set(ipart)] —list(ipart)] =
map set(ipart) into list(ipart) via r and c) =
map part into ipart
via tc_alist([v] —tc_pair([n,i] —base(n,i))(v),
[v,?,s] —tc_pair([n,i] —composite(n,i,r(s)))(v))
and tc_part([n,i] —leaf(pairup(n,i)),
[n.i,?,s]—brunch(pairup(n,i),c(s)));

If we implement the set of parts as a list of parts ordered by name then:

pmap = partmap(keyed(id(ipart))[[x,y] —name(x)<name(y)]);

where name(x) is tc_alist([v] —tc_pair([n,?] —n)(v), [v,?,?] —>tc_pair([n,7]1 —n)(v))(x).

The mapping of order is parameterized using the mapping of set(part):

ordermap(m|r: [a] —set(part),c: [set(part)] —a] =
map set(part) into a viar and ¢) =
map order into pair(pair(person,int),a)
via tc_pair([p,s] —tc_pair([c,q] —make_order(c,r(s),q))(p))
and tc_order([c,s,q] —pairup(pairup(c,q).c(s)));

Similarly, we parameterize the mapping of db using the mappings of set(part),

set(person), and set(order):

dbmap(m1[rl: [a] —set(part),cl: [set(part)] —a] =
map set(part) into a via rl and cl,

m2[r2: [5] —set(person),c2: [set(person)] —b] =

3

3

3 3 3 a 3 3

34 T3 T3 73 T3 73 T3 73

—3 38 "3 3

B

127

map set(person) into b via r2 and c2,
m3(r3: [g] —set(order),c3: [set(order)] —g] =
map set(order) into g via r3 and c3) =
map db into pair(pair(a.b).g)
via tc_pair([v,0] —tc_pair([p,c] —make_db(rl(p),r2(c),r3(o)))(v))
and tc.db([p,c,0] —pairup(pairup(cl(p),c2(c)).c3(0))):

One possible implementation of the database db is the following:

database dbmapping :
dbmap(keyed(pmap)[[x,y] —name(x)<name(y)],
hash_table(id(person))[100, [x] —x.ssn mod 100, [x,y] —x.ssn<y.ssn],
keyed(ordermap(keyed(pmap)[[x,y] —name(x)<name(y)]))

[[x,y] —x.customer.ssn<y.customer.ssn));

6.3 Cost Model

In Section 5.7 we presented a method for translating an abstract operation into
an expression that contains concrete primitives only. In some cases, especially for
data intensive applications, this default translation is not efficient enough. There
may be programs equivalent to this default translation, that is, with the same
functionality, but with lower execution cost. Finding the best of these programs is
the task of a query optimizer. Effective operation optimization requires comparing
alternative methods of execution. We have already seen how redundant information
in the form of integrity constraints attached to types and the extra parameters in
the general coding function offer a number of translations to choose from. We will
present a method for searching this space of alternatives in Section 6.4.

The execution costs of two programs can be compared by using a cost function,

which is a mapping from programs to costs (typically numeric values). Statistics

128

~
~
\ rest

\

- \
»
emptyset Insent

choose

Lo
N
/ \\pred
)
suce

’
Zgro

Figure 6.1 The constructor tree of set(int)

about the persistent data can be derived at compile-time to aid the estimation of
valid costs. Exact costs can only be computed after the actual operation is performed
and all consumed resources that constitute the cost function are measured.

In this section we present a flexible cost model well-suited to programs expressed
as uniform traversal combinators. It is based on a non-standard abstract interpre-
tation of programs, aided by statistical information. The following cost analysis
applies to both the abstract and concrete layers but we intend to use it for the
concrete layer only.

| We use a special tree, called the constructor tree, as a comprehensive image
of the actual data stored in the database. Suppose that the database type db is a set
of integers. The graph in Figure 6.1 captures all possible expressions of type db that
involve constructors only. For example, insert(succ(suce(zero)),insert(zero,emptyset))
is a valid traversal of the graph in Figure 6.1. If we ignore the recursive type
references, that is, if we ignore the rest component of the set and the pred component
of the succ constructor (the dotted lines in Figure 6.1) then the resulting tree is the
constructor tree. That is, db has two constructors emptyset and insert, and the

choose component of the insert has two constructors zero and succ. More formally:

.3

.3

-3 __3

4 ~—3 —3a & ~ 3 1

—a 3

4

3 T3 T3

4

129

Definition 6.1: ' (Constructor Tree) Let T'(a) be a canonical type with n
constructors C; : T; (@) X --- X T; (@), where each C; is associated with the
selectors a;,...,air. The constructor tree CT(T(@)) of a type T(@) is a tree
whose root has children nodes C; and each node C; has children that are all
the trees CT (T; ;(@)) such that T;;(a) # T(@). The tree edges from C; to its

children are labeled by the selector names a; ;.

We call the constructor tree associated with a database type the database con-
structor tree.

For example, the database constructor tree CT(db) in Figure 6.2 represents the
part-subpart database schema (defined in Section 6.2). The outgoing arrows from
each node labeled by a constructor name are labeled by selector names (not shown
in this figure). Dotted lines represent selectors of recursive types and therefore they
are ignored in this figure. Tree nodes associated with the integer and string types are

not shown in this figure (we put boxes for integers and circles for strings instead).

Definition 6.2: (Constructor Path) A constructor path of the constructor
tree CT(T'(@)) is either the empty path [] or one of [C;] or Po(a;;, Ci], where C;
a constructor of T'(a), a;,; a selector of C; of type T; j(&), and P is a constructor

path of CT(T;,;(@)) (operator ‘o’ concatenates constructor paths).
We call a constructor path associated with a database type a database constructor
path. For example, the following is a constructor path in the part-subpart database:

[succ,ssn,make_person,customer,make_order,choose,insert,orders,make_d b]

Note that there are finite number of constructor paths because there are no recursive

references in the constructor tree.

Definition 6.3: (Schema Cost) The schema cost of a database constructor

tree CT(T(a)) is a mapping ¥(P) from any database constructor path P of
CT(T(a)) to a cost.

130

make db

A

enptyaot inaert emptyset in ort emptyset insort

/\ / L\ T /\‘\

/‘\\ 1 emptyset lnsen

emptyset insert‘
-~
\ .
V. 4 N
base composite \
/ \a /‘i \

\
@ £ = A

> A
\
’ \\ '
emptyset insert

Figure 6.2 The constructor tree of the part-subpart database

A cost can be of any type, provided that there is a total function for comparing
costs. Costs are usually numeric values whose comparison function is <. The best
program among a set of programs is the one with the minimum cost.

As an example of a numerical cost model we could assign average constructor
numbers to any node in the constructor tree labeled by some constructor C;. This
number is equal to one for the root (we have only one database) and for any other
constructor node Cj, a child of some node Cj, it is the average number of .ob jects in
the database constructed by C; that are children of any object constructed by C;.

For example, suppose that the part-subpart database has 100 parts. Each part
tree has an average of 4 base parts and 2 composite parts and each composite part

has an average of 3 subparts. Suppose also that the database has 20 customers and

3

3

— 3

13

—3a T3 T3 — 31 T3

3

"3 E E

131

60 orders. Each order has one customer and an average of 3 ordered parts. Each
such part has the same average numbers with the other parts.

The average constructor numbers assigned to a database scheme can be eas-
ily computed during compile time by executing queries that counts all objects in
the database that belong to a specific type and then normalize these numbers by
taking averages. The programs that compute these measures can be generated
automatically by having the compiler check the database type details. The database
implementor can intervene in this process by providing explicit programs for the

computation of schema costs. More specifically, we introduce a new type constructor

cost:

T(@) cost(T) c(T)

This defines the cost of type T(a) to be ¢(F), where z; is the cost of a;. That is, ¢
is a function from C™ — (T'(@) — C), where n = || and C is the type of the cost.

The generated queries that compute the schema cost can be compiled by the
same compiler that optimizes regular run-time queries. That way if we have a view
of the database that contains these statistics then retrieving these numbers consists
simply of fetching these statistics from the views. Alternatively, these statistics can
be stored in a special database that is updated periodically.

Any non-accumulative result variable that appears in a uniform traversal combi-
nator can be associated with one node in the constructor tree. Accumulative result
variables do not correspond to any part of the database as they are the results of
traversing parts of the database. Luckily the only place that we need to assign
constructor paths for computing valid costs is when traversing variables. But these
variables cannot be accumulative result variables and therefore they can always be
assigned constructor paths. For example, the following query that computes the

sum of all integers in the database set(int):

te_set([1—0, [a,l,s] >tc.int([—s, [i,r] —succ(r))(a))(x)

132 m
1) cost(z,G) = $:1(¥(G(2))) -
2) cost(C(hi(Z),...,h,(T)),G) = ¢s(list(cost(hy(Z),G),... ,cost(hn(Z),G))) f
3) cost(Hr(fi,..., fa)(2),G) =
_ | #a(list(. .., pairup(¥([C] 0 G(2)), cost(fi(=:, T, %), Gi)), - . .)) |
where §; = G[..., 2% —[a;;,Ci] 0 G(2), .. H¥i—G(2),..]

4) cost(ér(f,h,9),G) = da(cost(f,G), cost(h,G), cost(g, G)) m
Figure 6.3 Definition of the cost function cost = Hc¢(¢y, ¢3, ¢3, b4) ‘“l!
has the following mapping from local variables to constructor paths: .
{

x =[], a = [choose,insert], | - [], i — [choose,insert]

Definition 6.4: (Cost of a Uniform Traversal Combinator) The cost of
a uniform traversal combinator h(z) that manipulates the database object z is
cost(h(z),G), where G is a mapping from variable names to constructor paths =

i

and function cost is the traversal combinator cost = He(¢1, @2, b3, d4), defined

in Figure 6.3. ”}
i

C; in Figure 6.3 is the ith constructor of T and a;;,...,a;s are the associated
selectors, Gz — €] extends G with the mapping from variable z to the constructor
path e, and G(z) returns the constructor path associated with variable z. The 7
first rule says that the cost of accessing a variable z associated with a database
constructor path G(z) depends only on the cost ¥(G(z))). The cost of a construction

depends on the list of costs of the constructor components (second rule). The third

13

rule says that the cost of a traversal depends on the list of the costs of the traversal

components f; paired with the costs of the paths [C;] 0 G(z) (because f; corresponds

3

to the constructor C; only). When computing the cost of f; the mapping G is

expanded to include mappings from the local variables of f; to database constructor

R

paths (note that there are no paths assigned to the accumulative result variables z;)

A2

-

—3a T3 12

133

* The last rule computes the cost of an equality combinator. Note that this model

can also compute the cost of constant expressions (that is, constructions that do
not refer to any part of the database).
A cost function is valid if it is monotonic, that is, if the cost of a combinator is

greater than the cost of its component functions.

Definition 6.5: (Monotonic Cost Function)
A cost function cost = Hc (@1, 2, d3, ¢4) is monotonic if:

Yr: @2(r) > max{ci/c; € 7}
Vr: @3(r) > max{c;/pairup(s;,c;) € r}
VeiVeaVes @ @a(cr, €2, c3) > max{c, cs, ca}

If a cost function is monotonic then the composition algorithm (Algorithm 4.1)
is guaranteed to yield better programs (if programs are compared using this cost
function). Furthermore, algorithms for 6ptimizing programs, such as the best-first
search algorithm that will be described in Section 6.4, can quickly prune out un-
fruitful paths without worrying that these may turn out to be optimal later.

For example, one monotonic cost function that returns numeric costs is the

following:

cost = tc_cost([?]—0,[r] >tc list([1—1,[a,?,s]1 >s+a)(r),
[r] >tc list([1—0, [a,?,s] —s+tc_pair([c,q] —cxq)(a))(r).
[f.g.h] —f+g+h)

In that case, Definition 6.4 is equivalent to the following:

cost(z,G) =0
cost(C(hi(T), ..., hs(Z)),G) =1 + TL_, cost(hi(Z),G)

COSt(HT(flr sy fﬂ)(z)) g)
_ § Zia(¥([Ci] 0 G(2)) x cost(fi(=, T, &), Gi))
where Q,- = g[. .,m;—>[ag,_,-, C,] o] g(z), Ces ,y;-—+g(z), o]

cost(Er(f, k. 9),G) = cost(f,G) + cost(h, G) + cost(g, G)

134

Intuitively, this estimates the number of constructed values visited by a program.
For example, for the set of integers database db that has 100 set elements the cost
of the query tc_set([1—nil, [a,s] —cons(a,s))(db) is 1x1+100%1=101.

For the part-subpart database, whose a.Average constructor numbers described on
page 130, the cost of the query that computes all ordered parts is:
1*(1*1+60*(1+1*(1*1+3*(1+4*1+2*(1+3*1)))))=2461.

Let x be a set whose cardinality is greater than the cardinality of set y. Function
call union(x,y) can either be expressed as tc_set([]—y,[a,s] —insert(a,s))(x) or
te_set([]—x, [a,s] —insert(a,s))(y). The cost of the first expression is the cardinality
of x plus one while the cost of the second is the cardinality of y plus one. Therefore,
the second expression is more efficient than the first. Section 6.4 presents a complete
algorithm for generating equivalent expressions and comparing their costs.

The cost model described previously is not very flexible for database applica-
tions. It will be preferable to allow the database implementor to assign individual
cost estimation functions to some carefully selected operations to affect the cost of
other operations that use them. This is very helpful when the database implementor
models the concrete layer using abstractions in our constructor algebra that have
the same functionality as the concrete primitives but their comparable quality and
efficiency, as presented by the cost model described earlier, is not reflected in the

same way in the concrete layer.

For example, suppose that we model a B-tree as an ordered list:

btree(alpha, beta)|f: [alpha, alphal —boolean] = list(pair(alpha, beta))
where(x) x=tc_list([] —nil,
Cp.?.r] —ordered_cons(p,r, [y,z]1 —f(tc_pair([a,71—a)(y),
te.pair([2,7] ~a)(2))))(x)

where alpha is the key type and beta the information. Let find be the operation that

finds an element in a btree. If we model find in terms of the tc_list then its cost is

3

3

3

3 _ 3

.

3

T3 E|

3

r*a "'_g

g:

135

proportional to the size of the btree (using the cost model with average constructor
numbers). This is not valid because for real B-trees the cost is logarithmic. This
could generate translations that are not optimal. We can extend ADABTPL to

include the language primitive cost that declares the cost of a function explicitly:

function(alpha,beta) find (x: btree(alpha,beta), val: alpha, def: beta) : beta;
te_list([]—def, [p,?,r] —tc_pair([a,b] —if a=val then b else r)(p))(x);

cost log2(size(x));

This declares the cost of find to be equal to the logarithm in base two of the size of
the btree x. This cost function is computed once for each btree variable before the

program translation, as is done for the general cost functions.

6.4 The Optimization Algorithm

Section 5.5 presented a method of generating all uniform traversal combinators
equivalent to a specific one by trying various program patterns and using the equality
algorithm to abort the incompatible ones. This section unifies this algorithm with
the cost estimation program presented in Section 6.3 to extract only one from all
these alternative programs: the one with the minimum cost. As in Section 6.1, 1t is
assumed here that all type transformations are defined in terms of both represen-
tation and coding function as this always produces solutions expressed in terms of
concrete primitives only.

Let f be an abstract operation of type Ty x --+ x T, — T where each T: may

13

be a restricted type. Then its implementation F is derived from Equation 3.4 and

Theorem 5.2:

/\I{T',} = F(:Bl, . .,:Bn) = Co(el,. . .,em)(f(rl(zl), N ,Tn(:l?n))) (61)

If f, co and all 7; are uniform traversal combinators then all possible solutions that

satisfy the Equation 6.1 are derived from the following algorithm:

136

Algorithm 6.1: (Optimal Function Implementation) Let f(z1,...,2,) be |

an abstract function, § a mapping from the variables z; to database path
signatures, and F' a concrete implementation of f that satisfies Equation 6.1
and has minimum cost cost(F,G). Then F is called the optimal implementation

of f with respect to G if it is computed by:

F =best({gr,...,0.1,0)
5(@(/\,1{7‘,} = F($1, vee ,:C,,) = Co(€1, ceny em)(f(r1($1), ceey r,,(:nn))),
[]’ []),true,p,ﬂ) + {F =g,--,F =g}

where best({AZ.g:(Z),...,AZ.g.(%)}, G) is some gk, k € [1,7] such that
cost(AZ.gx(Z), G) = min{cost(AZ.g,(Z),G),. .., cost()Z.g.(%), G)}

That is, we synthesize all possible uniform traversal combinators g; that satisfy
Equation 6.1 and then we select the best.
For example, let alist be a list extended with the redundant information of its

length:

alist(alpha) = struct ma (info: list(alpha), len: int)

where(x) tc_alist([i,I] —length(i)=1)(x);
Let also f(x,y) be an operation on x and y of type alist defined as:
f(x,y) = length(x.info)+length(y.info)
Then Algorithm 6.1 gives (here r; and ¢, are identity mappings):

te_alist([i,I] —>Iength(i)=l)(*) and tc_alist([i,]] —length(i)=I)(y)
= f(x,y) = length(tc_alist([i,?] —i)(x))+length(tc_alist([i,?] —i)(y))

which is expressed as:

_ 4

3

13

3

1

o3

3

Ta T3 T3

— —E I ‘—g r——g

137

tc_alist([i,1] —if length(i)=l
then tc_alist([i,I] —if length(i)=I
then fc2([z] —z=length(tc_alist([i,?] —i)(x))
+length(tc_alist([i,7]1 —i)(y)),
[1—x, [1-y)(f)
else true)(y)

else true)(x)

This yields the following solutions for f(x,y):

length(tc_alist([i,7] —i)(x))+length(te_alist([i,?] —i)(y))
tc.alist([7,11 —=1)(x)+length(tc_alist([i,?1 —i)(y))
length(tc_alist([i,7] —i)(x))+tc_alist([?,11 —1)(y)
te.alist([7,11—1)(x)+te_alist([7,11 —I)(y)

The last solution is the cheapest as it does not require traversing the lists x.info and
y.info.

Algorithm 6.1 is inefficient because there may be a large number of possible
solutions that satisfy Equation 6.1. A better method is to incorporate the cost
estimation algorithm in Figure 6.3 with Algorithm 5.2. This is achieved by having
the mapping G from variable names to database constructor paths passed as an

extra parameter to the equality tester £.

Algorithm 6.2: (Optimization Algorithm) The optimal implementation F

of a function f that satisfies Equation 6.1 is:

EBNI{T:} = F(zs,...,2n) = colen, ..., em)(f(ra(1), - - ., 7a(20))),
[]1 [])7truea P:ﬂag) FF=e

where G maps each z; into a database constructor path and the Algorithm 6.1
has been extended to include the rules shown in Figure 6.4. Note that this
algorithm always yields a solution because there is at least one F' that satisfies

Equation 6.1, namely co(ey,. .., em)(f(ri(21),. .., Tn(za))).

138

f = best({AZ.zx/ E(®(c(re), (], []), 9,0, 8) # fail}

U{Xz.Ci(...,ei(Z),...)/ Ck is a constructor of T and
E(Q(C(C’B(.. ,.7'-1‘.-(/\:13..’1:,1‘1, e 7rn)(fi)7 ..))a []’ [])79: P, B, g) b fi= ei}

U{ 2. Hr(...,€;,...)(zx)/ z& : Tk is non-accumulative from 7 and

S(Q(C(HTJ:() ’\z_t}_Tz(Amzv?t)(ft)) .. ')(Tk))g []a [])197[’7 B, g:) + fi = €y,

where G; = G[..., 2} —[a;;,Ci]0 G(2),...,¥:—>G(2),..]}

U{AZ.Er(ey, €2, €3)/
E(®(c(Er(Fr(Az.z,m1,...,ma)(f1),
‘FT(/\:B-:E, L PR 1rﬂ)(f2))

'FT'(’\z'z)’\m'z)(fii)))r []1 [])’g) P:ﬂsg) + fi = ei}) g)

Figure 6.4 Optimization of Fr(c,ry,...,m)(f) =g

The algorithm in Figure 6.4 is a depth-first search that always selects the program

with the minimum cost. Therefore, in this case we do not have to return a list of

bindings because there is always only one solution for f.

Let us further analyze the way Algorithm 6.2 works by concentrating on traver-

sals only. We want to find the best f(Z) equal to a known traversal combinator g.

We assume that f is a traversal of the form Hr,(...

, fis- -)(zk), where z; of type

Ti is one of T. Finding the traversal components f; is proving this equality as a

high order theorem with f; appearing free as a second-order function. Normally,

if we did not prune out the bad solutions (like we did in Algorithm 5.2) then we

could have k; > 0 solutions for each f; and therefore we have []; k; solutions for

f=Hr(.., fi-..)(xk) (or zero if any of the equalities fail). Now that we return

only one solution each time, we have only one solution for each f; and thus we have

only one solution for f = Hr, (..., fi,.-.)(®k). Therefore, the search space, which is

a tree whose nodes are traversals and children are the traversal components, is fully

searched.

3

.3

™8 ~—3 —3 —3 —3a —3 —3 T3 T3 T3 3

|“““‘§ v‘—’%

3

3 — 3 T3 T3

3

139

Here, as in Algorithm 5.2, we may have an infinite set of solutions. In this
case we want to find a solution for F' that has better cost than the default program
co(e1,---,em)(f(r1(21),...,7n(zn))). Therefore, we can stop the depth-first search
algorithm whenever we reach a depth ¢ times proportional to the size of this default
program (for example, ¢ could be 2). This is based on the assumption that the
optimal solution is unlikely to be too much longer than the default program. This
part of the search space is guaranteed to include at least one solution (which may
not be optimal): namely the default solution. There are many ways of improving
Algorithm 6.2. One way is to assign a cost to each uniform traversal combinator
expression so that there is no need of computing the cost of a program multiple
times.

A more efficient algorithm is using a best-first search strategy in which the most

promising node is expanded at each decision point:

Algorithm 6.3: (Best-first Search Optimization Algorithm) The algo-
rithm in Figure 6.5 returns the optimal solution for A, I{Ti} = F(z1,...,z,) =
g using a best-first search method. Here we use the notation <). f(Z) > asa
new type of node in the expression tree of a uniform traversal combinator. This
is a placeholder for a combinator that will be synthesized by this algorithm.
Note that f and all T in < AZ.f(Z) > are variable names. The cost of the
< AZ.f(Z) > node is zero, as there is no information available about f. We
say that a combinator containing < AZ.f(Z) > is ‘expanded’ if the < Az. f(z) >
node is replaced by a combinator AZ.h(Z). Set S holds the partially expanded
combinators that contain at least one node of the form < Az. f(Z) >. We start
the algorithm with S containing the theorem. At each step, the algorithm selects
a partially expanded combinator e(Z) from S with the best cost, expands one of
its nodes < ... > into each of the compatible patterns of programs, and repeats

the same process. If a fully expanded expression is derived, it is compared with

140

S — {NI{Ti} =< Az, .. den.F(zy,...,2,) >}
opt_cost + maximum_cost;
while S # 0 do
{ find e(Z) € S with minimum cost(e(Z), G);
S« 8§ —e(3);
find one node < AZ.f(Z) > in the expression tree e(Z);
S —S+{eaz),...,e(2)}; where e;(Z) is equal to e(Z) but with node
< AZ.f(Z) > replaced by one of:
1) AT.zp
2) AZ.Ck(...,< AT.fi(7) >,...)
3) /\E~HT,,(- < /\Zf.(z_,) >,..)(:Dk)
4) AT.81(< AT f1(T) >, < AZ.fo(F) >, < Ay. fa(y) >)
for all ¢;(Z) with no < ... > nodes do
{8 « S —ef3z);
if £(ei(2),9,p,8,G) # fail and cost(e;(Z),G) < opt_cost
then { opt «— e;(Z); opt_cost — cost(e;(%),G) } }
b |

return opt;

Figure 6.5 A best-first search solution of A;Z{T:} = F(z,...,z,) =g

g (using Algorithm 5.1 only, as it does not contain higher-order variables), and
its cost is compared with the cost of the best solution found so far. If its cost
is better, it becomes the new best solution. Note that if we have an infinite
number of solutions for F' then this algorithm will fall into an infinite loop. To
avoid this, we need an additional condition in the while-loop to stop the search

if the size of S or the number of non-failed e;(Z) becomes too large.

Algorithm 6.3 is more efficient than Algorithm 6.2 in most cases but they both suffer
from the same problem: they are too rigid to incorporate heuristics for improving
the optimization time. For example, there are well-known heuristics in relational
algebra for selecting the best order of joins from a number of permutations (43, 67],
even though not all permutations are examined. An open problem remains: how can

the database implementor insert customized heuristics in the optimization algorithm

_1

}%‘

3 3 T3 T3

—3 /3 3 "~ 13

3 —3 1

3 T3 T3 T3 73

—3 —3 "3

141

to eliminate paths that do not look very promising, according to some criteria that
cannot be incorporated in the cost function? A necessary tool for such a facility is
the use of compile-time linguistic reflection [72] which allows the manipulation and
insertion of new program fragments during compile-time, changing the behavior of

the compiler itself.

6.5 Translating Encapsulated Functions Incrementally

So far we have assumed that a function is translated after it is put into a uniform
traversal combinator form, that is, after all function calls have been expanded and
the composition algorithm has been used to eliminate traversals on traversals. But
this is inefficient as it might perform the same optimization of a function multiple
times. In addition, this destroys encapsulation, where the implementation of a
function is hidden from the user of the function. The translation process can be
considerably improved by having functions encapsulated, because the implementa-

tion of functions can be changed without affecting the other functions.
Definition 4.4 of uniform traversal combinators is extended to include function

calls of the form:

AZ.name(ey(Z),. .., eq(Z))

where name is a previously defined function computed by a uniform traversal combi-
nator and each e; is a uniform traversal combinator. If the expression that computes
function name traverses one of the function parameters then we cannot pass an
expression to this parameter that contains a free accumulative result variable.

The following theorem says that we can always find the implementation of

any uniform traversal combinator (that may have function calls) from Equality 6.1

without opening any function definition:

Theorem 6.1: Let f(Z) be a uniform traversal combinator that contains a

call to a function h(ei(Z),...,em(%)), that is, f(Z) = g(h(ei(T), ..., em(T)), T)

142

for some uniform traversal combinator g. If F is an implementation of f then
there is an implementation H of k such that F(3) = G(H(E\(7),. .., Em(7)),7),
where none of the G and E; depends on & or H.

Proof: Let F(g) = co(f(r1(11),- . .,™n(¥n))), for some coding co and some represen-
tation r;. This is equal to co(g(A(...,ei(r1(¥1),- -, Pa(¥n))s--)y 71(¥1), - - -, 7n(¥n))).
But A(...,ei(r1(%1),. -, 7na(¥n)),...) = A(...,7,(Ei(7)),...) for some implemen-
tation E; of e;, where r,; is a representation function for the output type of e;.
The last expression is equal to ra(H(. .., Ei(¥),...)) for some implementation H of
h, where r;, is a representation function for the output of A. Therefore, F(j) =
colg(ra(H(..., E(T),-), ra(81), -+ 7a(9n))) = GUH(..., Ei(@),-), 7), where G
is an implementation of g. O

A function is called opaque, expressed in ADABTPL as

opaque function name signature;

body;

if the body is not permitted to be seen by the compiler during the translation of
other functions (otherwise it is called transparent).
Algorithm 5.1 (on page 99) that tests the equality of two uniform traversal

combinators is expanded to include the following rules:

E(AZ.name(ey(T), . . ., em(T)), AT.name(hy(Z), . . ., Am(Z)), p, B)
I 8(81, hl)g(e%hz) g(. p:ﬂ))ﬂ):ﬁ)

E(AZ.name(e1(T),...,em(T)), 9,0,8) where name is transparent
— &(AZ.®(expand(name)(es(%), . . ., em(Z)), [], (1), 9, 0, 8)
E(AT.name(ey(Z), ..., em(T)), 9, p, B) — fail where name is opaque

where expand(name) returns the uniform traversal combinator that computes name.

This algorithm indicates that if the function name is opaque then a call to this

~—3 ~—3 ~—3 —3 T3 T3 1

a3

—3 3

3

~3a T3 ~—3 T3 73§ T3

3

143

function can only be equal to a call to the same function. If name is transparent
then its definition is unfolded and passed to the equality tester.
Algorithm 5.2 (on page 110) needs no changes for transparent functions. For

opaque functions though one possible solution for

E(Fr(c,m1,...,ma)(f), AT.name(e1(Z), - . ., em(ZE)), 0, B)

is f = AZ.name(. .., hi(T),...) where:

E(®(c(name(..., Fr,(Az.z,r1,..., 7)(f:),--), [, 1D,
AZ.name(ey(Z),...,em(Z)),p,B)F fi=h;

Similarly, Algorithm 6.2 that optimizes programs can be changed accordingly t§
capture opaque function calls. The cost of an opaque function call, as well as the
optimized implementation of this call, depends on the database path signatures of
the input parameters of this call. Next we will present a method of deriving this
information incrementally from the program that computes the opaque function.
Let name be an abstract opaque function of type [T3,...,T,]—T. For each such

function name we associate a mapping from constructor paths to implementations

of name;

Definition 6.6: (Constructor Path Signature) Let name be an abstract

opaque function of type [T,...,T,]1—>T. Then a constructor path signature
PSname is a tuple [py,...,p,], where each p; is a database constructor path of
type T;.

For example, one constructor path signature in the part-subpart database for the

function part_cost defined as:

function part_cost (p: part) : int;

te_part([?,c] —c, [?,c,ps] —tc_set([1—c, [a,7,r] —r+a)(ps))(p);

144
is [[choose,insert,parts,make_db]]|
Different path signatures of name may produce different optimized programs for

NAME, the implementation of name. All these possible optimized programs need to

be considered when we translate a program that calls name.

Definition 6.7: (Encapsulated Implementation) The encapsulated imple-
mentation of a function f is a mapping from any constructor path signature ¢

of f to the best implementation of f with respect to G.

There is a finite number of constructor path signatures for a function f because there
are a finite number of database constructor paths of type T;. More speciﬁ;:aﬂy, if we
have k; database constructor paths of type T; then we have []; k; path signatures.
Therefore, we need to extract []; k; translations of f. Luckily, this is not 'really
necessary. We could consider only the constructor path signatures that are actually
referred to by the program. We start with transactions or database queries that
work directly on the database object. Their path signatures are fixed (they are
empty). Then, if a function f has a path signature G and there is a function call
g(€) in the body of f then a new path sequence for g is derived by considering
the path sequences of the expressions € by traversing the database constructor tree.
These possible translations of f could be stored in a database so that f could be
used from different programs without the need of deriving the same optimizations.
When a new path signature is encountered then this database is expanded to include
this new implementation. Note that this database needs to be updated periodically

as the statistics about the database become invalid after a period of time.

6.6 The Concrete Layer

The program optimizer described in Section 6.4 forms the basis of a flexible

user-controlled translator. Using this model, all abstract programs can be translated

.

_—

3

3 3 13

3

~3 —3 —3 —3 3

~3 T3 —3 3

3 3

3

"4

3

145

into lower-level primitives. These primitives are part of the concrete layer which can
also be changed and extended as the users needs change and database technology
evolves. The concrete layer implementor is assigned the job of modifying these
primitives. This task, keeping the system in accordance with the users’ needs, is
as important as the programming process itself. A lot of effort has been devoted
recently to special database applications, such as VLSI and CAD design, that need
special storage structures efficient enough to form an interactive system. There is
no indication that the storage structures can be limited to a fixed set that can be
applied to everyone’s needs, and we believe that new requirements will be found
that cannot be handled efficiently by the current methods, as new applications are

steadily discovered for computers.

There are two different tasks that have to be performed by the concrete layer

implementor:

o to define the storage objects and write the code for the primitive operations;

e to describe the underlying theory of this layer.

To achieve the first task, ADABTPL provides a fixed layer, called the lowest
layer, that has the primitives needed to implement the concrete layer. An important
issue in defining a concrete layer is the uniform treatment of all types and operations.
All abstract objects, as well as the operations upon them, must be supported by
at least one type of implementation by this system. This requirement is not trivial
for languages like ADABTPL where functions are first class objects. For these
languages, the meta-data structures (for example, the program schemes and the
type representations) must be able to be mapped in the available storage structures

like any other object. It is also very important to have redundancy in storage

“selection, because our system is not a rigid persistent language translator. Here the

implementor must have the ability to select his/her own choice of implementation

among a reasonably large variety of possibilities.

146

In order to prove that a translation is correct we need to have the theory
specifying the abstract layer, the theory specifying the concrete layer, and the
theory produced by the transformation specification. We have already seen that
the theory that describes a database specification in ADABTPL is derived by the
schema definition and the operation specification. Therefore, the theory of the
concrete layer must be given in the same way: by defining the types of the storage
objects along with the primitive operation definitions. But the storage objects and
the operations upon them may be very complex. Consider for example a B-tree
object and its delete operation. This operation is several hundred lines of code long,
as it needs to include many different cases to reduce the size of a B-tree. But even
if we use these structures to generate the concrete layer theory, this theory must
refer to some other theory, such as the theory about the lowest layer that has more
primitive operations that do explicit system calls for disk I/O. We think that it is
more reasonable to stop refining the theory before the concrete layer and assume
that all primitive operations in the concrete layer are correct. Therefore, we need to
specify a theory for the concrete layer that does not reflect exactly the specification
of thé actual types and operations of this layer but relates the concrete operations
with the concrete types the same way, that is, the two theories are the same. This
can be done by giving explicitly all the lemmas needed to describe it or give a set
of type definitions that has the same theory. We adopted the latter approach, as it
gives a well-formed theory to work with. The consequence of this convention is that
now we have to assume that the concrete layer is correct. By assuming that and
using correctness-preserving transformations we guarantee that the implementation
maintains the validity of the specification. It is very difficult to prove that the
specification of a concrete operation has the same behavior (functionality) as the
actual operation. The concrete layer implementor must be very careful to avoid

inconsistencies, introduced when the concrete layer interface is overspecified.

3 .2

3

r‘-‘—‘% y—g

3 T3 3

3

3

3

~3 3

3

3

147

The specification of a concrete operation is given in the same way as the abstract
operation. But in the concrete case a program that actually computes this operation
during the program execution time also needs to be provided. A cost function
matching the implemented operation must be provided if the default cost function
does not reflect the implementation. We have already seen how the default cost of
a program can be changed using the cost language primitive attached to a function
definition. Here we extend the function definition to include the implementation

primitive:

function function-name function-specification;
body;
implementation implementation:

cost cost-function;

The implementation is an ADABTPL program of the same type and the same
modeled behavior (presumably) as function-name. When the compiler produces code
that contains a call to function-name then the actual call will be to implementation.

For example, the following concrete operation is performed over the type btree

(defined on page 134):

function(alpha,beta) find (x: btree(alpha,beta), val: alpha, def: beta) : beta;
tc_list([J—def, [p,7,r] —tc_pair([a,b] —if a=val then b else r)(p))(x);
implementation Btree_find;

cost log2(size(x));

This declares that function find has the specification presented at the first two lines
above but it is actually implemented as the ADABTPL function Btree_find which
need not be expressed in combinator form and could be very complex. The fourth

line of this declaration says that the cost function is the logarithm of the size of

btree(x).

148

Another example is the canonical type int implemented as the system-defined
ADABTPL type integer that supports the usual integer operations, such as integer
addition:

int = union (zerop: singleton zero;
succp: struct succ (pred: int));
implementation integer;

cost 1;

function plus (x: int, y: int) : int;
te_int([J—y, [7,i] —suce(i))(x);
implementation [x,y] —x+y;

cost 1;

6.7 Conclusion

We have presented a program translator that translates abstract programs into
optimal concrete programs expressed in terms of concrete primitives only. This
optimizer does not destroy modularity and encapsulation as modules can be trans-
lated and optimized separately, without revealing the module implementations to
the user of the module. This requires that modules have more than one optimized
implementation that depend on the database paths assigned to the inputs of the
module. The whole translation system is very flexible with many points where the

database implementor can intervene and customize parts of the process.

3 T3 T3 T3 T3 T3 T3

—3

~—3 ~— 3 T3 T3 3 T3 3 T3 T3 T3

—3

CHAPTER 7

CONCLUSION

7.1 Summary

During the course of this thesis we have seen how the type transformation model
provides a framework for database system implementation with a high degree of
data-independence, allowing significant separation of specification and implementa-
tion without the computational limits of current database languages. The internal
schema writer provides the relationship between specification and implementation,
which is used by the compiler to translate and optimize application programs. This
process is facilitated by having all programs expressed in a special algebra, called the
uniform traversal combinator algebra. The following summarizes the main features

and the uses of the algebra:

® it is rich enough to capture most bulk data types and to express most polyno-

mial time functions over these types;
® programs are expressed in a highly stereotyped recursive form;

¢ the theorem prover is just a reduction algorithm that uses the inductive prop-

erties of programs;

e abstract programs are translated by the type transformation model into con-

crete programs that are expressed in concrete primitives only;

* our algebra facilitates program optimization as there is a tractable number of

equivalent programs to consider;

150

e integrity constraints attached to types offer alternative methods of execution;

¢ the program optimizer is a search over these alternatives guided by cost func-

tions;

e cost functions for uniform traversal combinators are easier to write than for

more general forms.

The goal of this research was to present a framework for effective database

implementation. More specifically, the following presents some of the problems and
goals set at the beginning of this thesis and the solutions given during the course of

the thesis:

e A high degree of data independence by separating the specification from imple-
mentation. This was achieved by the type transformation model: the concrete
layer is completely independent of the abstract layer; it is the responsibility of

the internal schema writer to provide the relationship between these two layers.

Partial control by the system designer over the translation process. Mainly

achieved by the type transformation model and by the flexible cost model.

e The transformation specification is expressed in a modern programming lan-
guage style, supporting features such as orthogonality, uniformity, modularity,
reusability, and flexibility. The map type constructor, which was used for

specifying type transformations, was defined to support these features.

¢ The design of a new algebra that supports complex structures and programs,
but restricted enough to facilitate program translation and optimization. The
uniform traversal combinator algebra proved to be well-suited for this task,
as it captures most data types and most bulk operations required by complex

database applications. Most standard optimization techniques, such as pushing

3

3

3

3

.3

o3

1

3

—48 73 T3 3 T3 T3 73 T3 T3 T3 T3 71

3 — 3 3 T3 T3 T3

3

151

a selection inside a join, are captured by only one reduction method: the

composition algorithm for uniform traversal combinators.

e An optimizer that examines alternative methods of execution to find the cheap-

est:

— Generation of alternative paths of execution for accessing the same piece
of information. This was done by using semantic information in the form
of integrity constraints attached to types, specifying the dependencies

between the instances of these types.

— Generation of alternative equivalent programs that implement the same
function. The search space must be large enough to contain the opti-
mal program but restricted enough to make the search feasible in most
cases. This was done by using the uniform traversal combinator algebra.
Programs in this algebra are expressed in (or reduced to) minimal forms.
Other forms of programs, such as traversals over traversals, are unlikely to
be optimal, so they are reduced by the composition algorithm to minimal
forms in our algebra. The only case that these forms are optimal is when

they are irreducible (described in Section 4.7).

* An algorithm for comparing the execution costs of two programs. Expressing

such algorithms was simplified by the fact that programs in our algebra have

a very uniform structure.

e Validating the translation by using a theorem prover. Even though this was not
a necessary step because all transformations used preserve program correctness,
the theorem prover can be used in various stages for validating the appli-
cation specification, such as proving that transactions preserve the integrity

constraints, and for assuring that a representation-coding function pair is valid.

152

o Support of schema evolution and data restructuring. This was done by using

the type transformation model.

7.2 Contributions

This thesis introduced many innovative ideas. The most important of them are

summarized below:

o The integration of the type transformation model with query optimization

methods for data intensive applications, making this model effective in a database

context.

o The use of semantic information to guide the query optimizer. Even though
there is a lot of work on semantic query optimization there is very little work
on using integrity constraints as the main source of alternatives for query

optimization.

o The development of a new algebra that facilitates program optimization and
theorem proving. The theorem prover is a complete and efficient program,

expressed in a very small number of rules.

o The use of an effective theorem prover to validate parts of the specification and

the translation process.

o The use of the mapping model to perform data restructuring.

3

3

7.3 Future Research

Even though the work described in this thesis is a framework for effective query
translation and optimization, it is far from being a complete program optimization

system. In the future we intend to:

A R

3 3 3 7738

153

¢ Make adjustments to our algebra:

— Extend the definition of traversal combinators to capture all unary traversal
combinators (that is, all traversals expressed in our algebra) as well as
structural equalities of any type. That way there will be no need for
an explicit equality combinator. Furthermore, if there is a reduction law
for these traversals as powerful as the composition algorithm, then every
operation will be conéiderably simplified: the definition of uniform traversal
combinators will have only three items, because equality will be a traversal;
there will be no need for an equality algorithm for testing if two expressions
compute the same function, because this is done by reducing the equality
traversals; theorem proving will consist of testing whether the expression
produced by the reduction algorithm is a tautology, a trivial test. We
have already experimented with n-ary traversal combinators that capture
all the unary ones, all structural equalities, and other forms of recursion.
Even though these traversals satisfy a theorem similar to the promotion
theorem, the composition algorithm based on this theorem is incomplete.
This is a very exciting area that we would like to spend more time in the

future.

— Introduce new types of traversals that can more naturally express functions
already expressible in our algebra, such as reverse, or can capture functions

that may not be expressible in our algebra, such as transitive closure.

o Apply the UTC algebra and simplification algorithms to domains other than
the database implementation, such as for functional programming and category
theory. We believe that the UTC composition algorithm can be easily extended
to simplify categorical terms on categories other than the set category, and,

therefore, to become a universally applied optimization algorithm.

154

¢ Extend the UTC algebra to capture more mutable structures, such as mutable
vectors and objects with sharing and cycles. The database object itself must
be a completely mutable object so that updating the database does not imply
copying the old database to a new database that reflects the updates. Proving
functional equalities between programs that manipulate mutable structures is
very difficult. For example, expression new(state) creates a new object which
may or may not be equal to expression new(state) in another program. One
way to avoid this problem is to make the utc meta-type (that is, the type
that represents all programs in our algebra, described in Section 5.6) an object
type with identity that may include sharing. That way testing whether t.wo
expressions new(state) are the same reduces to testing whether they have the

same identity.

o Include imperative constructs in the concrete layer. Compiling a sequence of
destructive updates to a functional expression that transforms the program
state is usually inefficient. The only way to overcome this problem is to include
imperative primitives in our algebra that express these updates naturally and
efficiently. One example of such construct is the statement sequence, such as

the begin-end statement in Pascal.

o Have the theorem prover/optimizer learn short cuts during the rewrite process,
such as already proved theorems and blocks of rewrite rules that appear often,
in order to avoid redundant computations during optimization and theorem

proving.

o Experiment more with the optimization algorithm and the cost functions. Effi-
cient optimization can be considerably facilitated by using heuristic information

to guide the search through the choices of implementations. An example of

T3 T3

~3 3 T3 T3 T3 T3 3

.

—3 3

~—3 3

B

155

such heuristic information is considering traversals last whenever we generate

program patterns, because they are usually more expensive.

Write a complete implementation library of type mappings intended to be used
for real database applications. This must be rich enough to contain storage
structures and programs usually found in commercial database management
systems, such as B-trees and hash tables. It should also consider the limita-
tions of resources imposed by hardware and operating system, such as limited

memory space for data buffering.

Apply this model to special complex applications, such as rule-based systems

and text-retrieval systems.

Make the translator suggest to the designer a set of storage structures to
choose from, based on compile-time and/or run-time analysis of the way these
structures are manipulated by the program. This is a very difficult task, as
is demonstrated by systems such as SETL, mainly because the number of

structures applicable to a certain program may be very large.

156

APPENDIX A

THE USER-LEVEL LANGUAGE

Our uniform traversal combinator algebra described in Chapter 4 has a very
precise definition but it is far from being an easy to use programming language. In
this appendix we present a language for expressing database queries and updates in
a more user-friendly way. We call this language uniform traversal combinator
language (UTCL). Below we give a brief description of the UTCL primitives whose
notation and translation are presented using denotational semantics [48].

In Figure A.1 we use the notation £(e) to denote the translation of the UTCL
expression e into a uniform traversal combinator form. In this figure names starting
with e are UTCL expressi:)ns while names starting with v or w are variable or
function names. Here the types of values are canonical types, function types, sets,
vectors, or objects with identity. The basic language primitive for traversing a value

in UTCL is scan:

scan eintov { ... Ci(%)—e; ... }

where e can be any UTCL expression. The compiler will use the composition
algorithm for transforming this into a traversal over a single variable. Variable
v stands for the result of the traversal at each scan step so that the accumulated
results can be retrieved by accessing this variable. Each variable from %; is bound

to the associated component of the object being traversed. The result accumulated

by traversing the value of v} of type T is accessed as v : vi, where v is the name

of the scan. This is translated into a new variable name v_v;'- that represents an

3 3]

A

/3 T3 T3

3 3

3 3

157

&(v) — if v is a function name then unfold(v) else v

™

{
(v1 1 vg) — vyvp

E((e)) — (&(e))

(Ciler, ..., em)) — Cil&(er), ..., E(em))
([v1,...,vnl—e) — [v1,...,v,]=E(e)
(
(
{

MM

(
e(eli"' ﬂ)) — (5(8))(5(61), 75(611))
E(let vi:=e1, ..., vai=enine) — ([v1,..., 0.1 =E(e))(Eer), ..., Een))
E(casee{ ... Ci(T7)—e; ... })
— tc-T(. o [5,7, 0,158 (es), ..)(E(e))

E(scan eintov { ... Ci(T)—e; ... })
— {0), el

where w;} is v_v} for some v} of type T

™

E(if e then e, else e;) — if £(e) then E(e;) else £(e,)
E(e1 = e3) — E(er) = E{e,y)

™

£

(
(
(e.v;) — tc.T(L...,v;,...1>v)(E(e)) where v; is the ith selector of T
(e1]e2]) — tevector([1—-7, [i,v,r]1—if i = £(e;) then v else 7)(E(e;))

(

&(all vin e; where e,)
. tc_set([] —emptyset,
[v,?,7]1—if £(e;) then insert(v,r) else r)(E(e;))

E(for all vin e, : ;) — teset([1—true, [v,7,7]1-E(e;) and 7)(E(e;))

E(for some vin e, : e;) — teset([]—false, [v,?,7]1—E(e;) or r)(E(ey))

Figure A.1 Translation of UTCL expressions

158

accumulative result variable. Another way of saying this is at each node C;(%;) we
dov « f(T,v:v},...,v: v}), that is, v depends on the accumulated results from
the nodes v,';j. If there is only one accumulated result when traversing a node, that
is, when there is no ambiguity, then this result can alternatively be accessed as v.
For example, the UTCL expression:

scan x into app

{ cons(a,r) — cons(a,app);

nil—y }

is translated into tc_list([1—vy, [a,r.app_r] —cons(a,app.r))(x). Note that we may use
either cons(a,app) or cons(a,app:r) because app:r is the only accumulative result here.

This is not true for the following program:

scan x into sum
{ empty — 0;

node(i,l,r) — i+sum:l+sum:r }

which is translated into tc_tree([1—0,[il,r,suml,sum_r] —i+sum_l+sum_r)(x). An-
other example is a program that returns the set of names of every subpart of part

x, where type part was defined on page 125:

case x
{ base(?,7) — emptyset;
composite(?,?.sbs) — scan sps into snames
{ emptyset — emptyset;
insert(p,?) — scan p into pnames

{ base(nm,?) — insert(nm,snames);

composite(nm,?,7) — insert(nm,pnames) } } }

Here the case primitive is ikke ADABTPL’s case expression. It can be translated into

a traversal combinator that ignores all accumulative results. This program checks

3

3

-

3 73 T3 —3a —3a —3 31 771

E

3

159

first if x is basic or composite. If it is composite it traverses the set of subparts to
extract all their names (this is the snames scan). For each part p in this set it checks
if it is basic or not. If it is basic then the answer to the query is insert(nm,snames),
that is, the name of this subpart inserted to the accumulated result of the snames
scan, which is the names of the rest of the sps subparts. If p is composite then it
insert the name of p into the value accumulated when scanning the subparts of p,
that is, into pnames.

The first rule in Figure A.1 translates a variable name. If v is the name of a

function defined globally by a function unit of the form:

function v (vy : ty,...,on: 80) 1 &
€;
where e is a UTCL expression, then it returns unfold(v) = [vy,...,v,] —e. This

is typically used in the fifth rule where e = v is the name of a function. The let
statement in the seventh rule evaluates all the bindings at the same time. Nested
let statements can be used for sequential bindings, that is, when there is a binding
whose value depends on the value of another binding. Projection e.v; in the twelfth
rule is a tuple traversal over the type T of e that selects the ith tuple component
of e, where v; is the ith selector of T. The thirteen rule says that e;[e,] is a vector
traversal. Vector and set traversal can also be expressed using the regular traverse
primitive. We introduce for sets three additional operations: all v in e; where e,
that returns all elements v in the set e; that satisfy e,, or for all vin e, : e, and
for some v in e; : e, that return true when all/at-least-one of the elements v in
the set el satisfy e2.

Destructive updates, such as removing one element from a set, can be expressed
more easily and naturally in an imperative language. For example, we could write

s:=remove(s,e) to indicate that the element e is removed from the set s. UTCL

160

T;, Vs) [m]-*tc_a'(['Ul; vnvr] —’C (vl’ () v"))(w)

(
To(vi.er 1= e3) — [2]l—teo([T, v, 7] = Co (T, Tri{e1 1= e2)(v:), T7))(z)
T{{}) — [z]l—>z
To({s1; 82; 5 8n}) — To{{s2;- -+ 8n}) 0 To(s1)
T, (if e then s, else 3;) — [z]—if £,(e)(z) then T, (s;)(z) else T, (s,)(z)
T,(if e then s) — [2]—if £, (e)(z) then T,(s)(z) else =

(

T,(let v; :=€y, ..., vy := e, in s)
(2] —>teo'([W, 7] —C, (D))
— { (To(s)(tc-o((B >Cor (T, £ {e1)(2), - - -, £ {€n)(2)))(2)))

where o' = oo v, i ty,...,v, : t,) and e; is of type ¢;

T, (for each v in e do s)
[z] —tcd'([w, v] -C,(W))
(teset([1—teo((W] —Co (T, ?))(z),
[v, 7, 7] =T, (s)(r))(E (e)(x)))

where ¢/ = oo [v: t] and e is of type set(t)

—_

T, (for v := e, to e; do s)
— [zl —>tcint([1 -z, [7,r] 5T (let v := i + e; in s)(r))(E, (€2 — e;1)(z))

Figure A.2 Translation of UTCL imperative statements

supports two ways of using imperative-style constructs. The first is imperative

function:

imperative function v (v, 1 &y,...,v,: 8,)1 &

S,

where s is an UTCL statement. No side effects are permitted here and no globally
defined values, such as the database state, can be accessed in s other than passing
them as parameters. Parameter values can be modified but these updates do not
persist beyond the scope of this function. The name v also stands for the name of
the result. Therefore, v must be set at least once in the body of s. This definition
is an alternative way of expressing a I;ure functional expression with no side effects.

The other language construct is transaction:

3

.3

3

S

3 a "3 T3

E| 3

4

—3 ~3 "3

161

transaction v (vy :¢y,...,v,: 8,);

S,

This assumes that the database type db is a tuple type consisting of all persistent
components. In that case transaction v is equivalent to a function that accepts
the current database state as input along with the extra values v; and returns a
new database state. This simulates all possible database updates expressible in
our algebra. Note that we are not concerned here with issues such as consistency,
recovery, or concurrency control. Transactions here are simply state transformers.
Figure A.2 shows some possible forms of UTCL statements and their translation
into our algebra. Each statement is translated into a state transformer that accepts
the old state z and returns a new state, possibly different. The initial state of
the transaction defined above consists of all database state components plus all
parameters v;. The output state is projected into the database type because the
new values of v; are not of any interest. The initial state of an imperative function
consists of the function parameters and a placeholder for the result that has the
same name with the function. The output state is projected into the result value.
We use the notation 7,(s) to indicate the state transformer for the state o that
simulates the statement s. Because o is a tuple constructed by C,, the traversal
tc.o([@]—...)(z) decomposes the state z into its components @W. In addition,
before translating an expression e using £(e) we decompose the state to extract its

components; this is & (e):
& (e) = [zl otco([@WI—E(e))(z)

The first two rules in Figure A.2 indicate that if we change the ith state component
v; (or a part of it) then we decompose the state, we leave the other components
intact, and we replace the ith component. The third and fourth rules handle the

case of statement sequences. The state transformer of a statement sequence is the

162

composition of the state transformers of the constituent statements. The seventh
rule extends the state to include local bindings in a form of a let statement. Here the
inner tc_o extends the old state ¢ into a new state ¢’ that includes all e;. Statement
s is translated using this new state and the result is projected into the old state o
(this is the first tc_o’). The eighth rule is for the case of iterations over sets: for
each v in e do s. This says that statement s is to be executed for every element v in
the set e. Like the let statement, it extends the state o to include a placeholder for
v. The inner tc_set creates a new state of type o’ at each step. The first such state
value (when e is empty) is equal to the old state z extended with an unspecified value
? for v. At each step of the iteration the state from the previous step r is used as a
new state for évaluating statement s. That way all updates from the previous steps
are accumulated to the resulting state. We are not concerned about efficiency here
as the produced translation will be optimized by the program optimizer described in
Chapter 6. The for statement in the last rule executes s by iterating v from integer
e; to integer e,.

Note that if we have an imperative primitive scan, similar to the UTCL expres-

sion scan, then the semantics should look like this:

T.(scan eintov { ... Ci(T)—si; ... })
— { te.T(..., [7, W] - [e] - T (si)(wil. . . wa(wi(2)))), - . HE(e))

where w} is v_v} for some v} of type T

that is, the tc_T traversal should return a state transformer (instead of a state) so
that all accumulative results w; are state transformers and the input state to the
state transformer 7,(s;) is the composition of all these state transformers. If w;
were states then we could not accumulate all these side effects into one state. We
have not included traversals that return functions in our algebra because it is very
difficult to optimize these forms. Therefore, we decided not to support scans as an
imperative language primitive. All traversals should be done using the UTCL scan

expression or using the special traversals for sets and integers.

|

3

—3 ~— 3 ~ 3 3 ~—3a ~—3 —3 2@ T3 —&a T3 13

— 3

163

For example, the following program updates the salary of an employee:

for each e in employees do
for each d in departments do
if e.dno=d.dno and e.name="leo” and d.name="CS"

then e.salary:=e.salary+10000;

If the database state db is a tuple of two components es, the set of employees, and

ds, the set of departments, then this update is translated into:

[x] —tc_dbl([es,ds,?] —make_db(es,ds))
(te_set([]—tc_db([es,ds] —»make_dbl(es,ds,?))(x),
[e.?.r] —tc_db2([es,ds,e,7] —make_dbl(es,ds,e))
(tc_set([1—tc_dbl([es,ds,e] —»make_db2(es,ds,e,?))(r).
[d,7,s]—upd(s,e.d))
(te.dbl([?.ds,?]—ds)(r))))
(tc-db([es,?]1 —es)(x)))

where dbl is db extended with e, db2 is dbl extended with d, and upd(s,e.d) is:

if e.dno=d.dno and e.name="leo” and d.name="CS"
then tc_db2([es,ds,e,d] —make_db2(es,ds,
tc_empl([nm,sal] —make_empl(nm,sal+10000))(e).d))(s)

Another example is creating a temporary set using a let statement:

let temp := emptyset in
for each e in employees do

if e.name="lec” then temp:=insert(e,temp);

'This is translated into:

164

[x] —tc_dbl([es,ds,?] —make_db(es,ds))
(let y := tc_db([es,ds] —make_dbl(es,ds,emptyset))(x) in
tc_db2([es,ds,temp,?] —make_dbl(es,ds,temp))
(tcset([]—tc_dbl([es,ds,temp] —make_dbl(es,ds,temp,?))(y),
[e,?,r] —if e.na m’e= “lec” then tc_db2([es,ds,temp,e] —
make_db2(es,ds,insert(e,temp),e))(r))
(tc_dbl([es,?,7]1—es)(y))))

where the let y := ... was used for making this program easier to read.

-3

w3

3

—

3

.

3

3 3 T

1

R

3

165

APPENDIX B

THE TRAVERSAL COMBINATORS IN
CATEGORICAL TERMS

Definition 4.1 of traversal combinators and the promotion theorem can be easily
explained using basic category theory [63]. A category consists of a collection of
objects and a collection of arrows from ob jects (domains) to objects (co-domains).
There is also an associative composition operator o that defines a composite arrow
go f from two arrows f and g and an identity arrow id which when composed with
any arrow f gives f. Here the only category that we use is the Set category that has
sets as objects and total functions as arrows. Properties of categorical constructions
are often stated and proved using diagrams. For example, if f o g = h o k then we

say that the following diagram commutes:

A—“B

|

C'——*D

The upper part of the diagram in Figure B.1 gives the definition of the list
traversal combinator. It says that the type list(a) has two constructors: nil : 1 —
list(a) and cons : a x list(a) —list(a) (where 1 is the terminal object for Set, the
cartesian product of zero sets). The list traversal combinator h = tc list(f;, f2) is
a unique arrow (represented as a dotted arrow) from list(a) to 8. Its component
functions are f; : 1—F and f, : axlist(a) x 8— (. The domain of f, is the result

of applying h to the domain of cons (< f,g >: C— A x B is the product function

166

of f: C—Aand g: C— B such that < f,g > () = pairup(f(z), g(z))). The two

upper diagrams in Figure B.1 commute:

hOIl.i].:fl

h:tC;].lSt(fI,fZ) = { hoconszfzo(idx <1d1h>)

which is equivalent to the definition of the list traversal combinator.
The lower part of the diagram in Figure B.1 gives the promotion theorem. From

the lower two diagrams that commute we have:

gofi=¢

g0h=tc—]~i5t(¢l1¢2) = { gof2 =¢20(id2 Xg)

which is equivalent to the list promotion theorem.
The upper part of the diagram in Figure B.2 gives the definition of the traversal
combinator for any type T'. Here we use the symbol (=) to denote any type other

than T. The upper diagram gives:
h=Hr(fi, ..., fa) = hoCi= fio(id™x <id™, A™ >)

which is equivalent to the definition of the T traversal combinator, and the lower

diagram gives:
go h = HT(¢1, . ~,¢n) = go fi = ¢i 0 (idmi+m X gm)

which is equivalent to the promotion theorem for any type T

The categorical programming language Charity [18] is based on categorical
constructs similar to those described above. Their fold” operator is very similar to
our traversal combinator but more generalized to capture lambda currying explicitly

and uniformly.

"3

~3

—3 3

3 13

.3

1

.2

167
X list(a) cons a x list(a)
i nil : |
i h id x <id, k>
; :
1 fi B fa a x list(a) x 8
. ¢1 g ld.2 xXg
[? ¥ ¢ a x list(a) x v
F Figure B.1 The list traversal combinator h = tc list(fi, f;)
" T G (=)™ x T™
" : N f ,
. L A L™ x < id™, hm >
7 . \4
T 8 fi (_)rn.- x T"f x B
g idmitn Q""
¢i m; g ng
. (=) X T x 4

Figure B.2 The traversal combinator A = Hr(f1,..., fa)

BIBLIOGRAPHY

[1] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik.
The Object-Oriented Database System Manifesto. Technical report, GIP
ALTAIR, Le Chesnay, France, September 1989. TR 30-89.

[2] M. P. Atkinson and O. P. Buneman. Types and Persistence in Database
Programming Languages. ACM Computing Surveys, 19(2):105-190, June 1987.

(3] F. Bancilhon. Object-Oriented Database Systems. In Proceedings of the Sev-
enth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, Austin, Tezas, pages 152-162, September 1988.

(4] D. Batory, J. Barnett, J. Garza, K. Smith, K. Tsukuda, B. Twichell, and
T. Wise. Genesis: An Extensible Database Management System. [EEE
Transactions on Software Engineering, 14(11):1711-1729, November 1988.

[5] D. S. Batory. Modeling the Storage Architectures of Commercial Database
Systems. ACM Transactions on Database Systems, 10(4):463-528, December
1985.

(6] D. S. Batory. Progress Toward Automating the Development of Database
System Software. In W. Kim, D. Reiner, and D. Batory, editors, Query
Processing in Database Systems, pages 261-296. Springer-Verlag, 1985.

[7) D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C.
Twichell, and T. Wise. Genesis: A Reconfigurable Database Management
System. Technical report, Department of Computer Science, University of
Texas at Austin, March 1986. TR-86-07.

(8] C. Beeri and Y. Kornatzky. Algebraic Optimization of Object-Oriented Query
Languages. In International Conference on Database Theory, Paris, France,
pages 72-88. Springer-Verlag, December 1990.

[9] S. Bellantoni and S. Cook. A new Recursion-Theoretic Characterization of
Polynomial Time. In Proceedings of the 24th Annual ACM Symposium on the
Theory of Computing, May 1992.

[10] R. S. Bird. The Promotion and Accumulation Strategies in Transformational

Programming. ACM Transactions on Programming Languages and Systems,
6(4):487-504, October 1984.

[11] D. Bjorner and C. B. Jones. Formal Specification & Software Development.
Prentice-Hall International, 1982.

T3

—a3 ~ 4 ~— 4 —3a 14

169

[12] T. Bloom and S. B. Zdonik. Issues in the Design of Object-Oriented Database
Programming Languages. In Proceedings of the Object-Oriented Programming

Systems, Languages and Applications, Orlando, Florida, pages 441-451, Octo-
ber 1987.

[13] C. Bohm and A. Berarducci. Automatic Synthesis of Typed A-Programs on
Term Algebras. Theoretical Computer Science, 39:135-154, 1985.

[14] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, New
York, 1979.

(15] V. Breazu-Tannen, P. Buneman, and S. Naqvi. Structural Recursion as a Query
Language. In Proceedings of the Third International Workshop on Database
Programming Languages: Bulk Types and Persistent Data, Nafplion, Greece,
pages 9-19. Morgan Kaufmann Publishers, Inc., August 1991.

[16] R. Burstall and J. Darlington. A Transformation System for Developing
Recursive Programs. Journal of the ACM, 24(1):44-67, January 1977.

[17] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. ACM Computing Surveys, 17(4):471-522, December 1985.

(18] R. Cockett and T. Fukushima. About Charity. Unpublished paper, University
of Calgary, Alberta, Canada, May 1992.

[19] S. Danforth and C. Tomlinson. Type Theories and Object-Oriented Program-
ming. ACM Computing Surveys, 20(1):29-72, March 1988.

[20] J. Darlington and R. Burstall A System which Automatically Improves
Programs. Acta Informatica, 6(1):41-60, 1976.

[21] J. Darlington. A Synthesis of Several Sorting Algorithms. dcta Informatica.
11(1):1-30, 1978.

(22] J. Darlington. An Experimental Program Transformation and Synthesis Sys-
tem. Artificial Intelligence, 16(1):1-46, March 1981.

[23] J. Darlington. The Synthesis of Implementations for Abstract Data Types. In
Computer Program Synthesis Methodologies, pages 309-334. D. Reidel Publish-
ing Company, 1983.

[24] R. Dewar, A. Grand, S. Liu, J. Schwartz, and E. Schonberg. Programming by
Refinement, as Exemplified by the SETL Representation Sublanguage. 4CAM
Transactions on Programming Languages and Systems, 1(1):27-49, July 1979.

[25] M. S. Feather. A System for Assisting Program Transformation. 4CM Trans-
actions on Programming Languages and Systems, 4(1):1-20, January 1982.

170

[26] L. Fegaras, T. Sheafd, and D. Stemple. The ADABTPL Type System. In
Proceedings of the Second International Workshop on Database Programming

Languages, Salishan, Oregon, pages 243-254. Morgan Kaufmann Publishers,
Inc., June 1989.

[27) L. Fegaras, T. Sheard, and D. Stemple. Uniform Traversal Combinators:
Definition, Use and Properties. In Proceedings of the I11th International
Conference on Automated Deduction (CADE-11), Saratoga Springs, New York.
Springer-Verlag, June 1992.

[28] L. Fegaras and D. Stemple. Using Type Transformation in Database System Im-
plementation. In Proceedings of the Third International Workshop on Database
Programming Languages: Bulk Types and Persistent Data, Nafplion, Greece,
pages 337-353. Morgan Kaufmann Publishers, Inc., August 1991.

[29] J. C. Freytag and N. Goodman. Translating Aggregate Queries into Iterative
Programs. In Proceedings of the Twelfth International Conference on Very
Large Databases, Kyoto, Japan, pages 138-146, August 1986.

[30] J. C. Freytag and N. Goodman. Translation of Relational Queries into Iterative
Programs. Proceedings of the ACM-SIGMOD International Conference on
Management of Data, Washington, D.C., pages 206-214, May 1986.

[31] J. C. Freytag and N. Goodman. On the Translation of Relational Queries

into Iterative Programs. ACM Transactions on Database Systems, 14(1):1-27,
March 1989. '

(32] J. C. Freytag. Translating Relational Queries into [terative Programs. Springer-
Verlag, 1987. Lecture Notes in Computer Science 261.

(33] J. C. Freytag. A Rule-Based View of Query Optimization. Proceedings of
the ACM-SIGMOD International Conference on Management of Data, San
Francisco, California, pages 173-180, December 1987.

[34] K. Futatsugi, J. A. Coguen, J.-P. Jouannaud, and J. Meseguer. Principles of
OBJ2. Proceedings of the 12th ACM Symposium on Principles of Programming
Languages, New Orleans, Louisiana, pages 52-66, January 1985.

[35] G. Graefe and D. J. DeWitt. The EXODUS Optimizer Generator. In Proceed-
ings of the ACM-SIGMOD International Conference on Management of Data,
San Francisco, California, pages 160-171, December 1987.

[36] G. Graefe and K. Ward. Efficient Evaluation of Right-, Left-, and Multi-Linear
Rules. Proceedings of the ACM-SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, pages 358-366, June 1989.

[37) G. Graefe. The Stability of Query Evaluation Plans and Dynamic Query
Evaluation Plans. Technical report, Department of Computer Science and
Engineering, Oregon Graduate Center, 1988. CS/E 88-003.

-1

1 1

—3 — 3 3 | 3 3 3 "3 3

3

—3 ~—3 3

—3 ~ 3 - 3 "3

171

(38] D. Gries and J. Prins. A New Notion of Encapsulation. 4ACM Symposium on
Language Issues in Programming Environments, pages 131-139, July 1985.

[39] D. Gries and D. Volpano. The Transform—A New Language Construct.
Structured Programmaing, 11:1-10, 1990.

[40] P. Hudak. Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys, 21(3):359-411, September 1989.

[41] G. Huet and B. Lang. Proving and Applying Program Transformations Ex-
pressed with Second-Order Patterns. Acta Informatica, 11(1):31-35, 1978.

[42] N. Immerman, S. Patnaik, and D. Stemple. The Expressiveness of a Family of
Finite Set Languages. Proceedings of the 10th ACM Symposium on Principles
of Database Systems, Denver, Colorado, pages 37-52, May 1991.

[43] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM
Computing Surveys, 16(2):111-152, June 1984. ‘

[44] C. B. Jones. Systematic Program Development. In Software Specification
Techniques, pages 89-109. Addison-Wesley, 1986.

[45] E. Kant. On the Efficient Synthesis of Efficient Programs. Artificial Intelli-
gence, 20(3):253-305, May 1983.

[46] D. Kapur and M. Srivas. A Rewrite Rule Based Approach for Synthesizing
Abstract Data Types. In Mathematical Foundations of Software Development,
pages 188-207. Springer-Verlag, March 1985.

[47] W, Kim. Global Optimization of Relational Queries: A First Step. In W. Kim,
D. Reiner, and D. Batory, editors, Query Processing in Database Systems, pages
206-216. Springer-Verlag, 1985.

(48] A. Lloyd. A Practical Introduction to Denotational Semantics. Cambridge
University Press, 1978.

(49) D. B. Loveman. Program Improvement by Source-to-Source Transformation.
Journal of the ACM, 24(1):121-145, January 1977.

[50] J. R. Low. Automatic Data Structure Selection: An Example and Overview.
Communications of the ACM, 21(5):376-385, May 1978.

[51] G. Malcolm. Homomorphisms and Promotability. In Mathematics of Program
Construction, pages 335-347. Springer-Verlag, June 1989.

[52] Z. Manna and R. Waldinger. Toward Automatic Program Synthesis. Commu-
nications of the ACM, 14(3):151-165, March 1971.

[53] Z. Manna and R. Waldinger. Knowledge and Reasoning in Program Synthesis.
Artificial Intelligence, 6(2):175-208, 1975.

172

[54] Z. Manna and R. Waldinger. A Deductive Approach to Program Synthesis.
ACM Transactions on Programming Languages and Systems, 2(1):90-121, Jan-
uary 1980.

[65] S. Mazumdar. FEnhancing Database Integrity and Security through Feedback
to Designers. PhD thesis, Department of Computer and Information Science,
University of Massachusetts, Amherst, September 1991.

[56] E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with
Bananas, Lenses, Envelopes and Barbed Wire. In Proceedings of the 5th ACM
Conference on Functional Programming Languages and Computer Architecture,
Cambridge, Massachusetts, pages 124-144, August 1991.

[57) A. Mili, J. Desharnais, and J. Gagne. Formal Models of Stepwise Refinement
of Programs. ACM Computing Surveys, 18(3):231-276, September 1987.

[58] A. Ohori. Representing Object Identity in a Pure Functional Language. In

International Conference on Database Theory, Paris, France, pages 41-55.
Springer-Verlag, December 1990.

[59] A. Ohori, P. Buneman, and V. Breazu-Tannen. Database Programming in
Machiavelli - A Polymorphic Language with Static Type Inference. In Proceed-
ings of the ACM-SIGMOD International Conference on Management of Data,
Portland, Oregon, pages 46-57, May 1989.

[60] R. Paige. Transformational Programming—Applications to Algorithms and
Systems. Proceedings of the 10th ACM Symposium on Principles of Program-
ming Languages, Austin, Tezas, pages 73-87, January 1983.

(61] H. Partsch and R. Steinbruggen. Program Transformation Systems. ACAM
Computing Surveys, 15(3):199-236, September 1983.

[62] F. Pfenning and C. Paulin-Mohring. Inductively Defined Types in the Calculus
of Constructions. In Proceedings of the 5th International Conference on Mathe-

matical Foundations of Programming Semantics, New Orleans, Louisiana, pages
209-228, March 1989.

[63] B. Pierce. Basic Category Theory for Computer Scientists. The MIT Press,
1991.

[64] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill Company, 1967.

[65] D. Sannella. A Survey of Formal Software Development Methods. Technical
report, Laboratory for Foundations of Computer Science, Department of Com-
puter Science, University of Edinburgh, 1988. ECS-LFCS-88-56.

3

_.3

B

1

3

—3

43 "3

173

[66] E. Schonberg, J. Schwartz, and M. Sharir. An Automatic Technique for
Selection of Data Representations in SETL Programs. ACM Transactions on
Programming Languages and Systems, 3(2):126-143, April 1981.

[67] G. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access
Path Selection in a Relational Database Management System. Proceedings of
the ACM-SIGMOD International Conference on Management of Data, Boston,
Massachusetts, pages 23-34, May 1979.

[68] T. Sellis. Global Query Optimization. Proceedings of the ACM-SIGMOD
International Conference on Management of Data, Washington, D.C., pages
191-205, May 1986.

[69) T. Sheard. Generalized Recursive Structure Combinators. Technical report,
Department of Computer and Information Science, University of Massachusetts,

1989. TR89-26.

[70] T. Sheard. Automatic Generation and Use of Abstract Structure Operators.
ACM Transactions on Programming Languages and Systems, 19(4):531-557,
October 1991.

[71] T. Sheard and D. Stemple. Automatic Verification of Database Transaction
Safety. ACM Transactions on Database Systems, 12(3):322-368, September
1989.

[72] T. Sheard. A User’s Guide to TRPL: A Compile-time Reflective Programming
Language. Technical report, Department of Computer and Information Science,
University of Massachusetts, 1990. TR90-109.

(73] W. Snyder and J. Gallier. Higher-order Unification Revisited: Complete Sets
of Transformations. Journal of Symbolic Computation, 8(2):101-140, 1989.

(74) M. Spivey. A Categorical Approach to the Theory of Lists. In AMathematics of
Program Construction, pages 399-408. Springer-Verlag, June 1989.

[75] D. Stemple, S. Mazumdar, and T. Sheard. On the Modes and Meaning of
Feedback to Transaction Designers. In Proceedings of the ACM-SIGMOD

International Conference on Management of Data, San Francisco, California,
pages 374-386, May 1987.

[76] P. Trinder. Comprehensions: A Query Notation for DBPLs. In Proceedings of
the Third International Workshop on Database Programming Languages: Bulk

Types and Persistent Data, Nafplion, Greece, pages 55-68. Morgan Kaufmann
Publishers, Inc., August 1991.

[77] P. Valduriez and S. Danforth. Query Optimization for Database Programming
Languages. Unpublished paper.

174

[78] P. Valduriez, S. Danforth, B. Hart, T. Briggs, and M. Cochinwala. Compiling
FAD, A Database Programming Language. In Proceedings of the Second In-
ternational Workshop on Database Programming Languages, Salishan, Oregon,
pages 375-393. Morgan Kaufmann Publishers, Inc., June 1989.

[79] B. Vance. Towards an Object-Oriented Query Algebra. Technical report,
" Department of Computer Science and Engineering, Oregon Graduate Institute,

January 1992. CS/E 91-008.

[80] P. Wadler. Deforestation: Transforming Programs to Eliminate Trees. Proceed-
ings of the 2nd European Symposium on Programming, Nancy, France, March
1988. Lecture Notes in Computer Science 300.

[81] P. Wadler. Comprehending Monads. Proceedings of the ACM Symposium on
Lisp and Functional Programming, Nice, France, pages 61-78, June 1990.

[82] N. Wirth. The Development of Programs by Stepwise Refinement. Communi-
cations of ACM, 14(4):221-227, April 1971.

.3

.3

B

-3 13

-3

3

	TR 1992-068
	UM-CS-1992-068.pdf
	2

