SHARPENING BOUNDS ON THE TIME
BETWEEN EVENTS IN MAXIMALLY
PARALLEL SYSTEMS

George S. Avrunin

CMPSCI Technical Report 92-69
September 1992

Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003

This research was partially supported by Office of Naval Research Grant N00014-89-J-
1064 and National Science Foundation Grant CCR-9106645.



SHARPENING BOUNDS ON THE TIME BETWEEN EVENTS IN
MAXIMALLY PARALLEL SYSTEMS

GEORGE S. AVRUNIN

1. INTRODUCTION

A recent paper [3] describes a method for obtaining bounds on the time that can
elapse between two given events in an execution of a concurrent software system
running on a single processor under arbitrary scheduling. The technique involves
generating linear inequalities expressing conditions that must be satisfied by all
executions of such a system and using integer programming methods to find appro-
priate solutions to the inequalities. Corbett [4, 5] has extended this approach to
obtain upper bounds on the time between events in executions of multi-processor
concurrent systems in which each process proceeds unless forced to wait to commu-
nicate with another, the case of mazimal parallelism, and processes communicate
by synchronous message passing. Corbett’s method does not strictly enforce the
maximal parallelism assumption, however, and may thus give poor (though valid)
bounds in some cases. In this paper, I show how to modify Corbett’s method to
obtain sharper bounds.

2. CORBETT’S METHOD

I will begin by briefly reviewing Corbett’s method, and will assume that the
reader is familiar with the uniprocessor method of [3]. A system of concurrent
processes communicating by synchronous message-passing over named channels is
modeled by a collection of deterministic finite state automata (DFAs), possibly
together with a collection of recursive restriction languages. A string over the union
of the alphabets of the DFAs corresponds to a trace of an execution of the concurrent
system if its projection on the alphabet of each DFA lies in the language accepted by
the automaton, and its projection on the alphabet of each restriction language lies
in that language. (See [1] or [2] for a more complete description of this formalism.)
I will adopt the convention of [3] and assume that each symbol representing a
communication event belongs to the alphabet of exactly two DFAs and that each
symbol representing an internal computation belongs to the alphabet of exactly one
DFA. This can easily be achieved by encoding process and channel names in the
symbols.

This research was partially supported by Office of Naval Research Grant N00014-89-J-
1064 and National Science Foundation Grant CCR-9106645.

1



2 G. S. AVRUNIN

Corbett’s technique can be viewed as an extension of the standard method of
critical path analysis to the case in which the underlying partial order varies, due to
the nondeterminacy of concurrent computation. Essentially, he generates a system
of inequalities representing necessary conditions satisfied by each execution of the
system, a separate system of inequalities finding a critical path, and additional
inequalities constraining the critical path to lie along some execution.

Corbett first generates a set of flow equations from the process DFAs, with im-
plicit flow of 1 into the start state of each DFA and a flow of 1 out of one of the
accepting states of each DFA. Further inequalities are added, as in [1], to express
the fact that the same communication event occurs simultaneously in different pro-
cesses or conditions imposed by the restriction languages. These inequalities, the
execution part of Corbett’s system of inequalities, express necessary conditions for
the existence of a finite trace of the concurrent system.

He then adds arcs connecting states in different DFAs. For each pair of syntac-
tically matching communication events in different DFAs, he adds a pair of cross
arcs connecting the state in one DFA preceding the communication with the state
in the other DFA following it. Introducing new variables at the start and accepting
states of the DFAs, he generates a system of flow equations for this augmented
graph with total flow in of one through the new variables at start states and total
flow out of one through the new variables at accepting states. These inequalities,
the eritical path part of Corbett’s system, find a wait path through the augmented
graph, beginning at the start state of some process DFA and ending at an accepting
state of some, possibly different, process DFA.

Corbett then introduces inequalities for each arc in the process DFAs and for each
cross arc in the augmented graph. For each arc in the process DFAs, he requires
that the value of the variable associated with that arc in the critical path part be no
greater than the value of the variable associated with that arc in the execution part.
For each cross arc, he generates a pair of inequalities requiring that the value of
the variable associated with that arc be no greater than the values of the variables
associated with the corresponding communication events in the process DFAs in
the first system of inequalities. Finally, he adds inequalities bounding the sum of
the variables associated with communication or cross arcs in the augmented graph
that represent a single communication by variables corresponding to the associated
communication in the first set of inequalities. Corbett calls these inequalities the
bounding part of the system of inequalities.

This technique is illustrated with the simple system shown in Figure 1. In this
example, two customer processes, Process 1 and Process 3, each may use a resource
represented by Process 2. The events ¢ and d are internal to the second customer
process, while events a and b represent use of the resource by the first and second
customers, respectively. The cross arcs introduced by Corbett’s method are shown
with dotted lines. States and arcs are numbered for reference.

The system of inequalities generated for this example is shown in Figure 2. The
variable z; is associated with arc ¢ in the execution part, while y; corresponds to
arc 7 in the critical path part. The variables b;, b3, and bg are the new variables



SHARPENING BOUNDS 3

Process 1 Process 2 Process 3

Ficure 1. Simple resource contention example

introduced at the start states of the process DFAs, and e,, e5, and eg are the
variables introduced at the accepting states.

Suppose we are given the duration of each possible event in the system. If we set
d; to be the duration of the event labeling arc ¢ in the wait graph (cross arcs are
labeled with the corresponding communication event), the maximum value of the
function Y, d;y; over solutions to the full system of inequalities is an upper bound
on the duration of an execution of the system. As described in [5], this technique
can easily be extended to find an upper bound on the time between two specific
events by generating an inequality system whose execution part finds segments of an
execution beginning and ending with the given events, as in [3]. Additional b; and
e; variables would allow the path found by the critical path portion of the inequality
system to begin in any state in which a process could be after the first given event
and end in any state in which a process could be after the second given event.

The bound obtained in this way may not be sharp. The inequalities represent
necessary conditions that must be satisfied by any execution but, in general, there
will be solutions that do not correspond to executions. For instance, cycles in the
wait graph arising from cycles in the process DFAs or repeated communications
may lead to cyclic flows in the solution that are not part of an actual critical
path. Furthermore, the inequalities do not strictly enforce the maximal parallelism
assumption and allow solutions corresponding to executions in which processes that
could proceed do not.

This failure to enforce the maximal parallelism assumption can be seen in the
example of Figures 1 and 2. Suppose that each event in the system has duration
1. The upper bound on the duration of an execution obtained from the system of



4 G. S. AVRUNIN

Execution part: Critical path part:
z =1 bi—y1— Yo —y10=0
T2tz =1 Y1+ Y11+ y12—ea =0
Ty +r3—x4—25 =0 bs—y2—ys —y11 —y13 =10
ratas=1 Yot yst+yot+tyis —ya—ys —y12—y1a =0
rg =1 Ya+ys + Y10+ yis —e5 =0
xg —x7 —xg =0 be —ys = 0
rr+rg =1 Y6 — Y7 — Ys — Y15 — Y16 = 0

Ty — 2y —x4 =0 yr+ys+yiz+yra—e78 =0
r7—x3—x5 =0 by +b3+bs=1

Bounding part:

vy <z yr < z7 y11 <z Y14 < x5
y2 < @y ys < g y11 < @ Y14 < 27
ys < z3 Yo < 21 Y12 < 2y Y15 < x3
Ys < Ty Yo < 2 Y12 < Ty Y15 < z7
ys < x5 Y10 < 21 Y3 < x3 Y16 < x5
Yo < g Y10 < Ty 13 < z7 Y16 < 27

Y1+ y2 +Ya+ Yo+ Yo +y11 Y12 < 2y
ys +ys +y7r +yis + y1a + yis + yie < 7

Ficure 2. Corbett’s inequalities for system in Figure 1



SHARPENING BOUNDS 5

inequalities is 3 and it occurs with the solution in which s, y15, and y4 are 1 and the
other y; are 0. This corresponds to an execution in which Process 3 performs the
internal computation represented by ¢, then uses the resource (as represented by the
communication event b, and finally Process 1 uses the resource (as represented by
the communication event a). In this execution, the process representing the resource
waits to communicate with Process 3 first, even though it could communicate with
Process 1 immediately. This violates the assumption that processes proceed with
their computations unless blocked.

3. SHARPENING THE BOUNDS

In this section I describe a method that sharpens the bound obtained by Corbett’s
method in cases like the example described in the previous section by excluding
solutions to the inequalities that correspond to executions in which processes wait
unnecessarily. The method is limited to systems in which the process DFAs contain
no cycles. I first describe the basic ideas, and then give the details.

3.1. Basic ideas. The upper bound found by Corbett’s method for the system of
Figure 1 corresponds to an execution in which Process 2 waits in state 3 to commu-
nicate with Process 3, although it could communicate with Process 1 immediately.
In order to exclude solutions to the system of inequalities corresponding to such
executions, I need to be able to determine when a process is waiting for a commu-
nication in a particular state and then add additional inequalities that prevent such
waiting when the process can proceed.

Suppose that Process 2 enters state 3 at time s3 and leaves it at time ¢3. Then
it is waiting in state 3 during the interval from s3 to t3. Let s; and ¢; be the
corresponding times for state 1. To ensure that Process 2 does not wait in state 3
when it could communicate with Process 1, I need to ensure that either Process 2
enters state 3 after Process 1 leaves state 1 or Process 1 enters state 1 after Process
2 leaves state 3. Equivalently, I want to avoid cases in which the open intervals
(s1,t1) and (ss,%3) overlap. (I allow the cases in which one process’s arrival in a
state occurs at the same instant as the other’s departure from the corresponding
state. Thus, for example, Process 1 could enter state 1 at the same time as Process
2 leaves state 3.)

This can be achieved with the quadratic inequality

(1) (51 - t3)(53 - t1) <0

In general, however, integer programming with nonlinear constraints is much more
difficult than when all constraints are linear. If I impose an upper bound B on the
times at which the processes could enter or leave the states, I can achieve the same
results using linear inequalities and additional variables, as described below. A safe
upper bound can be calculated easily for acyclic DFAs, for instance, by summing
the durations of all possible events.

Note that it is impossible for both factors of the left side of (1) to be positive. If
s1 — t3 is positive, Process 1 entered state 1 after Process 2 left state 3. It follows



6 G. S. AVRUNIN

that Process 2 entered state 3 before Process 1 left state 1, so that s3—1; is negative.
The case I need to exclude is the one in which both factors are negative. 1 therefore
introduce new variables that indicate when each of the factors is negative, and use
these variables to enforce (1). Let wy 3 and w3, be 0-1 variables. The inequalities

(2) t3 — 51 S Bw173 81 — t3 < (B + 1)(1 — wlyg)
(3) tl — 83 S BwS,l 83 — tl < (B + 1)(1 — wgyl)

force w; ; to be 1 exactly when s; —¢; is negative. The linear inequality

(4) wy s+ wsg <1

then has the same effect as the quadratic inequality (1).

Of course, I have to make sure that the times at which states are entered and
exited are consistent, given the durations of events and the synchronous nature
of communication. The first set of consistency requirements simply requires that,
if a process changes from state 7 to state j along an arc labeled by an event «
with duration d,, it enter state j d, units of time after it leaves state 7. The
consistency requirements reflecting the synchronization between processes due to
communication are somewhat more complicated.

Again consider the system of Figure 1, and suppose that Process 1 communicates
with Process 2 during an execution. Then the variable z; in the execution part of
the system of inequalities of Figure 2 must take the value 1 in the corresponding
solution to those inequalities, and exactly one of x5 and x, must also be 1. If 2, is 1,
the communication with Process 2 occurred when that process was in state 3, and it
must be the case that Process 1 left state 1 at the same time as Process 2 left state
3 and that Process 1 entered state 2 at the same time as Process 2 entered state 4.
If 2, is 1, the communication occurred when Process 2 was in state 4. Then Process
1 must have left state 1 at the same time as Process 2 left state 4 and Process 1
must have entered state 2 at the same time as Process 2 entered state 5.

Let z; 3 and 2 4 be 0-1 variables. The inequalities

(5) Z1,3 <
(6) Z1,3 <
(7) Z1,4 <
(8) Z1,4 < @y

allow z; 5 to be 1 only if the communication between Process 1 and Process 2 occurs
when the processes are in states 1 and 3, respectively, and allow 2 4 to be 1 only if
the communication occurs when the processes are in states 1 and 4. The equation

(9) 213+ 214 = 2

forces one of these two variables to be 1 if the communication occurs at all, so 2 5
is 1 if and only if the communication occurs with Process 1 in state 1 and Process
2 in state 3, while 2 4 is 1 if and only if the communication occurs with Process 1
in state 1 and Process 2 in state 4.



SHARPENING BOUNDS 7

I can now ensure that the processes leave the appropriate states at the same time.
The quadratic inequalities

(10) 2173(151 — tg) =0
(11) 2174(151 - t4) =0
enforce these restrictions, where ¢; and t3 are as before and t, is the time that

Process 2 leaves state 4. Again assuming that the times are bounded above by B,
I can achieve the same result with the linear inequalities

(12) t—t5 < B(1 - 2,5)
(13) ts—t, < B(1— 25)
(14) t—ty < B(1— 2.,)
(15) ti—t < B(1—2.)

Finally, I need to restrict the critical path variables. I want to be sure that one
of the cross arcs corresponding to a communication can be part of the critical path
only when that communication actually occurs in the execution. I can achieve this
using the inequalities

(16) Yo + Y11 < 213
(17) Yo+ Y12 < 214

Inequalities of these types can be used to eliminate solutions corresponding to
executions in which processes wait when they should proceed, although a slightly
more general form is required to ensure that restrictions on waiting are imposed
only for states that are actually reached in a particular execution and to deal with
the fact that a process should not wait in a state in which it can perform an internal
computation. These complications are described in the next subsection.

3.2. The method. Consider a maximally parallel concurrent system modeled by
a collection of DFAs, as described in Section 1, and assume that there are no
cycles in the DFAs. In this subsection, I describe the generation of a collection of
inequalities that can be used to sharpen Corbett’s bounds by excluding solutions to
his inequalities that correspond to executions in which processes wait unnecessarily
or to certain cyclic flows in the wait graph.

For each state ¢ in a process DFA, let s; be a variable representing the time at
which the process enters the state and let B be an upper bound on the permitted
values of the s;. For each DFA, generate an equation

(18) 5, =0

setting the entry time of the start state of that DFA to 0.
For each communication event a, let M(a) be the set of unordered pairs {7, ;}
such that
e ¢ and j are states in different processes,
o there is an arc with label @ in the DFA containing ¢ from ¢ to a state ¢/, and



8 G. S. AVRUNIN

FIGURE 3. A pair of states {¢,7} in M(a)

e there is an arc with label @ in the DFA containing j from j to a state j'.

The set M(a) consists of the pairs of states in which processes can be just before
an a communication occurs. The fact that the DFAs are deterministic implies
that, for each {i,7} € M(a), the states i’ and j’ are uniquely determined, and the
cross arcs introduced by Corbett run from 7 to j/ and from j to 7. Let M(a), =
{G1{isj) € M(a)},

For each communication event a and each pair {7,j} € M(a), let 2 ;1. be a
0-1 variable. Let z and 2’ be the transition variables in the execution part of
Corbett’s system of inequalities associated with the arcs ¢-i" and j-j', respectively,
as illustrated in Figure 3. Generate the inequalities

(19) Zijya SO
(20) Z{ij}a <@

For each communication event a and each state « with an outgoing arc labeled a
from 7, generate the equation

(21) Y Fijpa— =0
jEM(a);

where z is the transition associated with the outgoing a-arc from ¢ in the execution
part. (Note that when M(a); is a singleton, (21) makes an inequality of form (19)
redundant.) These inequalities imply that zy; ;1 . is 1 exactly when an @ communi-
cation occurs between processes in states ¢ and 7, and I should impose the condition
that states 7 and j are exited at the same time, or, equivalently, that states 7 and
7" are entered at the same time. I have

(22) S — 8]'/ S B(l — Z{i,j},a)
(23) 8]'/ — S S B(l — Z{i,j},a)

I must also bound the associated critical path variables. I have
(24) Yo T Y < 2ij)a

where y, ; is the variable associated with the cross arc running from state r to state
s.



SHARPENING BOUNDS 9

FIGURE 4. A pair of states {¢,7} in M(a) with an internal event
enabled in state ¢

Let ¢ be any state with an outgoing arc labeled by an internal event. The maximal
parallelism assumption implies that the process should not wait in state 7. For each
arc incident from 7, generate the pair of inequalities

(25) sp—8 —d < (B—-d)(1-2z)
(26) si+d—sy <(B+d)(1—2)

where the arc is incident to state ¢/, z is the transition variable in the execution
part associated with the arc, and d is the duration of the event labeling the arc.
These inequalities imply that the entry time for any state reached from ¢ in a single
transition is greater than the entry time for ¢ by exactly the duration of the event
labeling the transition.

Now let ¢ be a state such that all outgoing arcs are labeled by communication
events. Let ¢; be a variable representing the time at which state ¢ is left. Generate
the inequality

This inequality says that such a state is entered before it is left. For each arc
incident from ¢, generate the inequalities

(28) sp—t;—d < (B—d)(1-2)
(29) ti+d— sy < (B+d)(1-2)

where the arc is incident to state ¢’, x is the transition variable in the execution
part associated with the arc, and d is the duration of the event labeling the arc.
These inequalities imply that the entry time for any state reached from ¢ in a single
transition is greater than the time at which ¢ is left by exactly the duration of
the event labeling the transition. These inequalities refer to the time at which the
process leaves state 7, unlike (25) and (26), because the process may be forced to
wait in state ¢ until a communication is possible.

Consider a pair of states {i,7} € M(a) such that the process containing state
¢ can execute an internal computation b in state ¢, as illustrated in Figure 4.
Equations (25) and (26) force the process containing state 7 to leave that state



10 G. S. AVRUNIN

immediately after entering. Therefore, if communication between the processes
containing states ¢ and j occurs with the processes in those states, i.e., if the vari-
able zy; ;1 4 is 1, we have s;; = 5, 4-d,, where d, is the duration of the communication
event a. Then equations (22) and (23) force s;, = s;/, so the process containing state
7 leaves that state as soon as the other process enters state 7. In this case, neither
process waits unnecessarily for the other.

To ensure that processes do not wait unnecessarily for communication in states
for which all outgoing arcs are labeled by communication events, we need additional
inequalities. For each unordered pair {7, j} such that {i,j} € M(a), for some a, and
all arcs leaving states ¢+ and j are labeled by communication events, let w; ;, and
w;; be 0-1 variables. Generate the inequalities

30
31
32
33

t]' — 5; S me»
tz’ - S S me»

(
(
(
(

— e’ e’ N

To ensure that neither process waits for communication after the other is ready, we
want to assert that w; ; and w;; are not both 1. We should enforce this restriction,
however, only if states ¢ and j are actually entered during the execution.

We can do this with the inequality

where In(k) is defined to be 1 if k is the start state of a process DFA and the sum
of the transition variables associated with arcs incident to k otherwise. Since w; ;
and w;; are 0-1 variables, this inequality has no effect unless In(i) and In(j) are
both 1, that is, unless the processes enter both states ¢ and 7 during the execution.

Remark. As noted in Section 3.1, the numbers of variables and inequalities can be

reduced by using nonlinear inequalities. The presence of nonlinear constraints, how-

ever, greatly increases the difficulty of solving the resulting optimization problems.
In particular, (25) and (26) can be replaced by the single constraint

(35) (sp—si —d)z =0

Similarly, (28) and (29) can be replaced by

(36) (sp —t;—d)z =0
Furthermore, (30)-(34) can be replaced by the single inequality
(37) (s = u;)(s; — ui)In(i)In(j) <0

where uy, is replaced by ), or s; as before, and the w; ; eliminated.



SHARPENING BOUNDS 11

As with Corbett’s original technique, this approach can be extended to find an
upper bound on the time between two specific events. It is, however, necessary to
set the times at the start of the interval to some appropriate single value 5. This
can be achieved with inequalities of the form

(38) s =S < B(1-1b;)
(39) S — s < B(1-b)

at each state in which a process could be at the start of the timed interval.

4. APPLYING THE METHOD TO THE EXAMPLE

Applying the this method to the example of Figure 1 results in 58 additional
linear inequalities involving the 30 variables introduced by Corbett’s method and
19 additional variables. The additional inequalities are listed in Appendix A. The
full system of inequalities, combining Corbett’s inequalities and those added by the
new method, thus has 102 inequalities in 49 variables.

With B set to 100 and the duration of each event set to 1, the IMINOS integer
programming package [2] requires .6 seconds to solve this system (.5 seconds user
time and .1 seconds system time) on a DECstation 5000/125, and reports an upper
bound of 2 for the execution time, with the critical path variables 3¢ and y,5 equal
to 1 and the remaining critical path variables equal to 0. In this solution, states
2, 4, and 7 are entered at time 1, and states 5 and 8 are entered at time 2. The
variables z1, z,, and 2y 53, are 1, indicating that the ¢ communication occurred
when Processes 1 and 2 were in states 1 and 3, respectively. The variables z5, z,
and zg4 7y, are 1, indicating that the b communication occurred when Processes 2
and 3 were in states 4 and 7, respectively. Thus, in the first unit of time, Processes 1
and 2 communicated on the a channel, while Process 3 executed the internal event c.
During the second unit of time, Processes 2 and 3 communicated on the b channel.
This solution does satisfy the hypothesis of maximal parallelism.

5. CONCLUSION

I have described a method for generating additional inequalities in order to
sharpen the upper bounds obtained by Corbett on the time between events in
maximally parallel systems with synchronous communication, and illustrated the
method with a small example. For this example, the system of inequalities gener-
ated by the method involves roughly 130% more inequalities and about 63% more
variables than Corbett’s original method. The cost of applying the new method,
in terms of the size of the integer programming problem that must be solved, may
therefore be fairly high.

For this preliminary report, the system of inequalities was generated by hand. It
will, however, be a fairly straightforward task to modify the inequality generator
component of the constrained expression toolset [2, 6] to automate this process.
Once these modifications are complete, it will be possible to carry out experiments



12 G. S. AVRUNIN

with larger and more complex systems. This will permit a much more complete
evaluation of the feasibility and practical utility of the method described here.

ACKNOWLEDGEMENT

I am grateful to Ugo Buy and Laura Dillon for their comments on earlier versions
of this paper.

APPENDIX A. LINEAR INEQUALITIES FOR THE EXAMPLE OF FIGURE 1

Of type (18):

51:0
53:0
56:0

Of types (19) and (20):

Z{13},a < 21
Z{13},a < T2
Z{14},a S T1
Z{1,4},a < T4
Z{37}b < T3
Zi3 736 < L7
Ziamyp < s
Zia7ye < T

Of type (21):

z{1,3},a+ 2{1,4},a — 21 =0
2(13},a— T2 =0
zi373,6 — T3 =10
2(1,4},a— T4 =0
z{a73,6 — 5 =0

2{3,7},b + Z2amyp — X7 = 0



SHARPENING BOUNDS 13

Of types (22) and (23):

59— 54 < B(1 — 2{1.3}.4)
54— 59 < B(1 — 2{1.3}.4)
59— 55 < B(1 — 2{1,4}.4)
55— 59 < B(1 — 241,43}.0)
54— 58 < B(1 — z13713)
sg — 54 < B(1 — 21371 3)
55— 58 < B(1 — 21471 3)
sg — 55 < B(1 — 21471 3)

Of type (24):

Yo + Y11 < 2{1,3),a
Yo+ Y12 < 2{14)a
Y13 + Y15 < Z{37)1
Y1a + Y16 < Z{a.7)

Of types (25) and (26):

st—s6 —d. < (B —d)(1— z6)
sg+de—s7 < (B+d:)(1— xe)
S8 — §7 — db S (B — db)(l — l‘7)
s7+dy — sg < (B + db)(l — l‘7)
S8 — §7 — dd S (B — dd)(l — l‘g)
st+dg—sg < (B + dd)(l — l‘g)
Of type (27):
51 — tl S 0
53 — t3 S 0

54—t4§0



14

G. S. AVRUNIN

Of types (28) and (29):

sa—11 —dg < (B —dg)(1— 1)
t1— s —dy < (B —dg)(1— )
sS4 —1lz3—dg < (B —dg)(1 — 22)
ts+dy—s4 < (B4dy)(1—z2)
sS4 —tz—dpy < (B —dp)(1 — x3)
ts+dy —sq4 < (B+dp)(1 —x3)
S5 —ta—dg < (B —dg)(1 — 24)
tatdy—s5 < (B4dy)(1— z4)
s5 —ta—dy < (B —dp)(1 — x5)
ta+dy —s5 < (B+dp)(1—s)

Of types (30)-(33):

t3—s1 < Bwis
s1—t3 < (B+1)(1—w3)
t1 — s3 < Bws 1
s3—t1 < (B+1)(1—ws1)
ty —s1 < Bwyg
s1—ta < (B4+1)(1—w4)
t1 — 54 < Bwg
sa—t < (B4+1)(1—war)

Of type (34):

w3 +ws; <1

wy g+ wgr <2— 29— 3

REFERENCES

G. S. Avrunin, U. A. Buy, and J. C. Corbett. Integer programming in the analysis of
concurrent systems. In K. G. Larsen and A. Skou, editors, Computer Aided Verifica-
tion, 3rd International Workshop Proceedings, volume 575 of Lecture Notes in Computer
Science, pages 92-102, Aalborg, Denmark, July 1991. Springer-Verlag.

G. S. Avrunin, U. A. Buy, J. C. Corbett, L. K. Dillon, and J. C. Wileden. Automated
analysis of concurrent systems with the constrained expression toolset. IFEFE Trans.
Softw. Eng., 17(11):1204-1222, Nov. 1991.

G. S. Avrunin, J. C. Corbett, L. K. Dillon, and J. C. Wileden. A method for deriv-
ing bounds on the time between events in concurrent systems. Constrained Expression
Memorandum 91-3, Department of Computer and Information Science, University of
Massachusetts, Amherst, 1991.



SHARPENING BOUNDS 15

4. J. C. Corbett. Constrained expression analysis of multi-processor real-time systems (ex-
tended abstract). Constrained Expression Memorandum 91-2; Department of Computer
and Information Science, University of Massachusetts, Amherst, 1991. Distributed at the
ONR Fourth Annual Review and Workshop on the Foundations of Real-Time Comput-
ing, October 31-November 1, 1991, Washington, D.C.

5. J. C. Corbett. Automated Formal Analysis Methods for Concurrent and Real-Time Soft-
ware. PhD thesis, University of Massachusetts at Amherst, 1992.

6. J. C. Corbett. New and improved inequality generation in the constrained expression
toolset. Constrained Expression Memorandum 92-1, Department of Computer and In-
formation Science, University of Massachusetts, Amherst, 1992.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF MASSACHUSETTS
AT AMHERST, AMHERST, MASSACHUSETTS 01003
E-mail address: avrunin@math.umass.edu



