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Abstract

This paper examines the issues that arise in the control of blackboard systems for applications with large and
complicated search spaces by analyzing the evolution of blackboard control architectures. We feel that the
issues addressed here apply more generally to Al application domains involving complex multi-dimensional
search, in which control knowledge is as important to successful problem solving as domain knowledge.
Evolution is viewed largely from the context of the Hearsay-II (HSII) speech understanding system. The
appeal of the blackboard model is that it provides great flexibility in structuring problem solving. On the
other hand, many of the features that are responsible for this flexibility make effective control difficult because
they complicate the process of estimating the expected value of potential actions. Among the key themes
in the evolution of blackboard control is the development of mechanisms that support more sophisticated
goal-directed reasoning. In the basic control mechanism of HSII, control decisions could consider only the
local and immediate effects of possible actions. Thus, the value of potential actions in meeting the system
goals could be evaluated in only a limited manner. The development of appropriate abstractions of the
intermediate state of problem solving can be used to evaluate the non-local effect of actions relative to the
overall problem-solving goals. In addition, blackboard systems went from the implicit representation of goals
in HSII to explicit representation of the goals that must be satisfied in order to meet the overall goals of the
system. This allowed the implementation of various styles of goal-directed reasoning (e.g, subgoaling and
planning) that were not supported in the basic HSII control mechanism. Other architectural mechanisms
were concerned with efficiency issues. We will examine a number of different blackboard control architectures
that have evolved from the basic model of HSII: HASP,/SIAP’s event-based control, CRYSALIS’ hierarchical
control, the DVMT’s goal-directed architecture, the control blackboard architecture (BB1), model-based
incremental planning for the DVMT, the channelized/parameterized control loop version of the DVMT,
ATOME's hybrid multistage control, CASSANDRA's distributed control, and the RESUN interpretation
framework.

“This is a revised and expanded version of a paper that will appear in Ezpert Systems with Applications, Special
Issue on The Blackboard Paradigm and Its Applications. The major differences between the two versions include:
Section 6.3 was significantly rewritten; Sections 6.6, 6.7, and 6.8 were added; and there are several additional figures
in Section 6.
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1 Introduction

The blackboard model of problem solving arose from the Hearsay speech understanding systems [Erman80,
Lesser75, Lesser77b, Nii86a]. Some of the key ideas of the model were developed in a simple form in Hearsay-I
[Reddy73a, Reddy73b]. These ideas were then extended into what we now think of as the standard black-
board architecture in Hearsay-II (HSII). The blackboard model has proven to be popular for Al problems
and in the years since HSII a variety of blackboard-based systems have been developed. For example,
blackboard architectures have been used for interpretation problems such as speech understanding, signal
understanding and image understanding [Carver91a, Durfee86, Lakin88, Lesser83, Maksym83, Nii78, Nii82,
Srihari87, Williams88]; planning and scheduling [Hayes-Roth79, Pearson88, Smith85); arrangement-assembly
(structure identification) [Hayes-Roth86a, Hayes-Roth86b]; and machine translation [Nirenburg89).

The blackboard architecture was developed to deal with the difficult characteristics of the speech un-
derstanding problem: a very large search space; errorful or incomplete input data; and imprecise and/or
incomplete problem-solving knowledge. These characteristics require a problem-solving model that supports
the incremental development of solutions, can apply diverse types of knowledge, and that can adapt its
strategies to the particular problem situation. The blackboard model has been so popular for complex prob-
lems because it supports incremental problem solving and because it provides a great deal of flexibility in
structuring the problem-solving process. For example, blackboards allow problem solving (search) in which
the system dynamically switches among different levels of abstraction (to work at) and in which multiple
(competing, cooperating, or independent) lines of reasoning are concurrently pursued.

While the blackboard model supports the kind of problem solving that is appropriate for complex prob-
lems, there are still many issues that must be addressed in order to successfully solve such problems. In
particular, effective control is critical in blackboard applications that involve significant uncertainty in the
data and problem-solving knowledge. However, it can be difficult to eﬂ'ec.tively utilize the features of the
model that are the source of its flexibility because they complicate the process of selecting actions with the
maximum expected value. As a result, control was a major issue in the formulation of the HSII architecture
and control continues to be an active area of research in the field of blackboard systems.

In this paper we will examine the evolution of blackboard control since HSII. Viewing blackboard ar-
chitectures from the perspective of HSII is useful because HSII is the best known blackboard system and
its basic mechanisms can serve as a common point of reference for the comparison of other systems. In
addition, while speech understanding was the first problem to use a blackboard system, it is still one of the
more complex problems to be tackled with this framework. As a result, many of the control issues that
were of concern in later blackboard applications were addressed in some way in the HSII implementation.
However, several of the mechanisms used in HSII were ad hoc and failed to fully address the issues. In
analyzing later blackboard systems, we will show how they generalized elements of the HSII implementation
by making particular mechanisms and strategies an explicit and integral part of their control architectures.

We will also show that in other blackboard systems, mechanisms and strategies were eliminated or simplified



when they were not necessary for effective problem solving in an application domain. Typically this involved
trading flexibility for efficiency.

One of the key themes in the evolution of blackboard control is the development of mechanisms that
support more sophisticated goal-directed control strategies. Goal-directed control provides systems with an
understanding of the global and long-term effects of actions as well as the local and immediate effects. HSII
had a limited ability to do goal-directed reasoning through its use of abstract models of the intermediate state
of problem solving to estimate the non-local effects of actions. However, this mechanism was domain-specific
and did not explicitly represent the relationships between potential actions and the problem-solving goals.
Many later blackboard control architectures permit the explicit -representation of detailed goals and their
relationships to the overall system goals. This has allowed them to implement various styles of goal-directed
reasoning (e.g, subgoaling and planning) that were not supported in the basic HSII control mechanism.

We will also see later architectures that address issues that were not of concern in HSII because of its
particular task. For example, HSII dealt with the interpretation of data from a single phrase and had soft
real-time constraints. In other tasks, solutions may involve an indeterminate number of (mainly independent)
components (e.g., vehicles in a vehicle monitoring system); there may be multiple sensors and sensors that
continuously generate large amounts of data; or the system may need to deal with hard real-time deadlines.
These factors complicate the control problem. For example, having multiple solution components complicates
the termination problem (the problem of deciding whether the system has done enough work to find the best
answer); continuous passive sensors necessitate the use of mechanisms for keeping the blackboard and agenda
from being overloaded; and real-time deadlines require predictable control cycles, the ability to estimate the
duration of potential actions, and the capability of dynamically changing the criteria for acceptable solutions.

Section 2 introduces the basic blackboard architecture in terms of the concepts behind the blackboard
model of problem solving and the agenda-based control architecture of HSII. Section 3 examines the general
issues in the control of blackboard systems to show why blackboard control can be difficult. This is followed in
Section 4 with a discussion of what we feel are the major themes in the evolution of blackboard control. These
themes are then examined further by reviewing various specialized control mechanisms that were developed
for HSII (Section 5) and by reviewing a number of major blackboard control architectures (Section 6). The
paper concludes with a section on emerging directions in blackboard research and a summary of the key

issues in blackboard control.

2 The Blackboard Architecture

This section introduces the basic blackboard problem solving architecture as it was developed in Hearsay-II.
Because our principal focus is control, the other components of the blackboard architecture will be discussed
only to the extent necessary to understand control issues. More complete discussions of the blackboard
model can be found in [Carver92a, Engelmore88, Erman80, Nii86a, Nii86b]. The first subsection of this
section introduces the concepts that underlie the blackboard model, while the following subsection examines

the agenda-based control mechanism used in HSII.



2.1 The Blackboard Model of Problem Solving

In the basic model that came out of Hearsay-II, a blackboard system is composed of three main components:
the blackboard, a set of knowledge sources (KSs), and a control mechanism. The blackboard is a global
database (shared by all the KSs) that contains the data and hypotheses (potential partial solutions). The
blackboard is structured as a (loose) hierarchy of levels, particular classes of hypotheses are associated with
each level, and hypotheses are typically linked to hypotheses on other levels.! The levels are themselves
structured in terms of a set of dimensions. This makes it possible to provide efficient associative retrieval
of hypotheses based on the notion of an “area” of the blackboard. The set of knowledge sources embody
the problem-solving knowledge of the system. KSs examine the state of the blackboard and create new
hypotheses or modify existing hypotheses when appropriate. Ideally, KSs should be independent: their
execution should not explicitly depend on the execution of other KSs and any communication of information
between the KSs occurs only via the creation and modification of hypotheses on the blackboard.

Among the key ideas behind the blackboard model are that problem solving should be both incremental
and opportunistic. Incremental problem solving means that complete solutions are constructed piece by piece
and at different levels of abstraction. The standard strategy for blackboard problem solving is often referred
to as incremental hypothesize and test (or evidence aggregation). This involves first hypothesizing a (partial)
solution based on incomplete data and then attempting to verify additional data to confirm that hypothesis.
Incremental hypothesize and test differs from generate and test [Rich91] in that hypotheses need not be
complete solutions. Thus, the test stage can refine a hypothesis as well as resolve uncertainty about the
" hypothesis.

To better understand this process, consider that most blackboard problems can be viewed as constraint
satisfaction problems in which the data constrains the set of acceptable solutions. Blackboard-based prob-
lem solving then involves a search process in which constraints are incrementally identified and solutions
constructed/modified to be consistent with those constraints. Having multiple blackboard levels facilitates
incremental problem solving. Hypotheses at successively higher levels of the blackboard represent the ap-
plication of a more complete set of constraints in terms of both the amount of data and the characteristics
of the data that are necessary for acceptable solutions. For example, in HSII, hypotheses at the word level
represented the application of constraints based on data from a relatively brief portion of the complete ut-
terance using incomplete models of speech (that describe the acceptable appearance of each potential word

at the data level). At the phrase level (a higher level), hypotheses represent the application of constraints

1What we are describing here is the basic blackboardmodel as it was developed in HSII. Considerable variation can be found in
later “blackboard systems” and terminology has not been standardized for many aspects of the blackboard model. For example,
the types of relations between hypotheses on different levels depend on the application. The relations for interpretation problems
{like HSII) are supports/explains and higher-level hypotheses represent more abstract explanations of the data [Carver9la].
The relations for arrangement-assembly problems are typically part-of/includes [Hayes-Roth87). In addition, there may or may
not be explicit relations among hypotheses on the same level, Furthermore, the (overall) blackboard database may itself have a
structure. It may consist of multiple independent blackboards or multiple hierarchically related blackboards (sometimes called
panels) and there may be multiple instances of particular (sub) blackboards. Finally, blackboards and KSs may be used for
more than just domain problem solving. For example, they may be used for control (see Sections 6.3 and 6.4). In these cases,
we must speak more generally of blackboard “objects” rather than hypotheses.



based on data from longer portions of the utterance using additional models of speech (involving knowledge
about grammatically valid sequences of words and co-articulation phenomena).

Opportunistic problem solving means that the system chooses the actions to take next that it determines
will allow it to make the best progress toward meeting its goals given the current situation—i.e., given the
available data and the intermediate state of problem solving (as represented by the current set of competing,
cooperating, and independent hypotheses on the blackboard). By contrast, many Al architectures insist on
the use of strategies for sequencing actions that can depend on the emerging problem-solving situation in
only a very limited way. For example, rule-based systems typically force all reasoning to be either forward
or backward chaining. Blackboard systems are able to select the approach that is most appropriate for the
situation. Likewise, blackboard systems can use an “island driving” strategy in which hypotheses that are
judged to be likely (“islands of certainty™) are used as the basis for developing complete solutions. This allows
the system to work where it can make the best progress instead of being limited to a fixed, predetermined
strategy that may not be best for every problem situation. In speech understanding, for example, well-sensed
words can be used to constrain the search for poorly sensed words. This can be more effective than a fixed
strategy such as interpreting the phrase strictly from beginning to end [Lesser77a).

Opportunistic problem solving is facilitated by another key aspect of the HSII model: the ability to
concurrently pursue multiple lines of reasoning (alternative solution paths). This is possible because HSII
had an integrated representation of hypotheses: the blackboard is the sole, global representation of all the
developing solution hypotheses and there are no structural barriers that separate hypotheses arising from
different lines of reasoning. In addition, the exact relationships among the hypotheses can be determined
because each hypothesis is kept linked to the higher-level and lower-level hypotheses and data that “support”
and “explain” it.? For instance, this hierarchical structure can show when two hypotheses are competing
alternatives and can show exactly why this is so (in terms of shared support).3

An integrated, global database is also appropriate for KSs to be independent because it allows the KSs
to readily recognize when they should be invoked without having to directly call each other. Partitioning
the problem-solving knowledge of the system into a set of independent KSs produces a highly modular
representation of problem-solving knowledge. This modularity facilitates experimentation with alternative
problem-solving methods and strategies—i.e., alternative KSs and alternative control mechanisms or control
knowledge. Such experimentation is often crucial for the successful development of complex knowledge-
based systems. In addition, because KSs communicate only with each other via a predefined and uniform

representation (the hypotheses on the blackboard), they are free to use any type of internal problem solving

2Note that this type of “integrated” approach to representing hypotheses can be contrasted with the “possible worlds”
approaches of Truth Maintenance Systems which make it difficult to understand in detail the relationships between alternative
hypoiheses [Carverg0bj.

In some applications it is possible to determine when hypotheses are competing alternatives without examining the support-
ing substructure. For example, in the HSII application, there can be only one correct interpretation at every abstraction level
for any given time portion of the utterance. Thus, any two hypotheses at the same level that overlap in the time they cover, are
alternatives. However, recognizing alternatives is not always so simple and it may also be necessary to understand the exact
structural (evidential) relationships among hypotheses to decide how to resolve conflicts. Finally, it is worth noting that HSII's
integrated representation had certain limitations that prevented the supporting substructure from being viewed from alternative
perspectives [Carver80a, Lesser?7b, Nii86b]. This problem was corrected by Hearsay-III's context mechanism [Erman81] and
the RESUN framework’s (Scction 6.9) cxtensions representation.

",



architecture. This means that the blackboard architecture is appropriate for integrating diverse types of
problem-solving knowledge or methods implemented with a diverse set of languages.

Another important aspect of the HSII model that permits KS independence is that KSs are self-activating.
In other words, each KS has a precondition-action format in which the precondition determines when the
action is applicable based only on the current state of the blackboard. This gives blackboard systems like
HSII the strong data-directed* characteristic that is necessary for supporting opportunistic problem solving.
Of course, as we begin to talk about activating KSs, we move into the area of control. In the next subsection,
we will discuss the agenda-based control mechanism of HSII. Section 6 will examine a variety of blackboard
control architectures, including several in which KSs are not self-activating and not totally independent.

Because blackboard systems incrementally develop hypotheses representing alternative partial solutions
and are able to do this concurrently and at different levels of abstraction, it is often important to be able to
Judge the credibility of each hypothesis. As a result, while not strictly a necessary part of the blackboard
model, in most blackboard applications hypotheses are assigned credibility ratings as they are created and
modified.® These ratings are derived from a consideration of how encompassing and how critical the set of
verified constraints are for each hypothesis and how well the hypotheses meet any soft constraints. Credibility
ratings are used in making control decisions and in judging the reliability of the final answer. Hypothesis
rating functions may be embedded in the KSs or they may be general routines that are called by the KSs or
are KSs themselves. Since ratings combine the overall effect of multiple KSs on a hypothesis and since the
effect of changes must be propagated throughout the hypothesis sub/super-structure, it makes more sense
to use rating routines that are not embedded in the KSs. If the rating routines are KSs, the system can
reason about when to re-rate hypotheses so that rating need not be done following every modification (HSII

used a KS, rpol, to rate hypotheses).

2.2 Agenda-Based Control

Because KSs in the HSII blackboard model are both independent and self-activating, in a sense there is
no need for any (additional) control mechanism: when a KS finds that it is applicable it could execute.

Despite the appeal of a model without any control component, this approach has two serious problems.®

4When we use the term data-directed, we mean forward reasoning search (forward chaining) [Rich91] in which the system
searches from the initial state to find a goal state using the set of possible actions it can take to change the problem state. In
goal-directed or backward reasoning search, the system reasons from its goals (using problem reduction) to identify actions that
can satisfy those goals. Most blackboard systems should more properly be referred to as event-directed since the set of actions
they consider are triggered by a set of defined events (see Section 2.2). Whether they are data-directed or goal-directed then
depends on the nature of the events.

SHypothesis rating schemes have usually been ad hoc. A better approach would be to have the ratings correspond to
probabilities (of the hypotheses being a part of the correct solution). This approach is taken in the RESUN framework
(Section 6.9) where the relationships between the hypotheses are treated as evidential.

5When we talk about the problems associated with having “no control” we are assuming that KS preconditions identify all the
situations when the KS is applicable. In other words, we are talking about uncontrolled search. It would, of course, be possible
to encode control knowledge directly into the KS preconditions so that they would identify only those situations in which it
was useful (pleusible) to apply the KS. In fact HSII KSs did some heuristic evaluation—see the discussion of “generator KSs”
in Section 5.4. However, heuristic evaluations were not based on factors like hypothesis credibility ratings since these ratings
might change, but there was no way to then re-trigger the KSs. The chief drawback of encoding control knowledge directly in
the KSs is that it makes the overall system control strategies difficult to understand and modify (this is different from using
explicit control KSs as in BB1). This issue has been much discussed in the context of rule-based systems (precondition-action
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Figure 1: Hearsay-II's agenda-based blackboard control architecture.

Changes made to the blackboard by KSs are described to the blackboard monitor as a set of events (blackboard
event type instances). The blackboard monitor identifies which KSs should be triggered by new events and invokes
the precondition components of the triggered KSs. Successful KS preconditions return stimulus and response frame
" information that the blackboard monitor uses to create KSIs (representing activated KSs) that it places onto the
agenda. The blackboard monitor also updates the focus-of-control database based on the new events. The scheduler

rates the KSIs on the agenda, selects (and removes) the highest rated one, and invokes the appropriate KS action
component.

First, because most computers have had a single processor the execution of KSs must be sequentialized.
This means that KSs cannot really execute as soon as they become applicable. It also means that the
checking of KS preconditions must compete with the execution of KS actions for processor resources. The
second problem with the “no control” approach is that blackboards are typically applied to combinatorially
explosive problems. Such problems become intractable if the system attempts to execute all the KS actions
(that are applicable prior to finding a solution). When “unpromising” actions are executed, they “distract”
the system by triggering further actions that are also not useful and that compete with the useful actions
for the limited computation resources. This can greatly delay the construction of the final solution.

Because of these problems, a blackboard system must typically have some control mechanism—i.e., some
mechanism that applies knowledge to focus the search process. HSIT used an agenda-based control mechanism:
all possible actions are placed onto the agenda and on each cycle the actions are rated and the most highly
rated action is chosen for execution. The major elements of the agenda-based architecture (of Hearsay-II)
are shown in Figure 1, and Figure 2 summarizes the main control loop of such a blackboard system. The
elements of the HSII architecture concerned with control are: the blackboard monitor, the agenda, the
scheduler, and the focus-of-control database.

The first step in agenda-based control is to identify the actions that could be taken by the system.

New actions become possible when changes are made to the blackboard, so KS preconditions must be

KSs are analogous to rules) {Davis80, Rich91). In addition, “compiling” control strategies into the KSs could complicate the
use of “non-local” information to make control decisions (see Section 3).
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Figure 2: The basic control loop for Hearsay-II’s agenda-based control architecture.

checked following the execution of each KS (action). However, since it could get very expensive to check the
preconditions of every KS after each set of blackboard changes, HSII introduced a mechanism for limiting this
checking that has been used in most later agenda-based blackboard systems. All changes to the blackboard
are categorized in terms of a set of blackboard event iypes and each KS provides a list of the blackboard
event types in which it is “interested.” Every time a KS action is executed, the changes to the blackboard
are described in terms of the blackboard event types. These event descriptions are passed to the blackboard
monitor, which identifies the KSs that should be triggered—i.e., those KSs whose preconditions should be
checked given the types of blackboard changes.

The blackboard monitor invokes the precondition component of each triggered KS to see whether the KS
is able to be executed given the current state of the blackboard.” Besides signalling success or failure, the
precondition returns any context information that is necessary to execute the action portion of the KS, such
as hypothesis bindings. HSII preconditions also returned information that was used by the scheduler when
rating the possible action: the stimulus frame and the response frame. The stimulus frame represented the
key hypotheses that satisfied the precondition of the KS—typically those hypotheses that would be used as
input to the action portion of the KS. The response frame was a stylized representation of the approximate
blackboard changes that the KS was likely to produce.®

T While precondition-action KSs are analogous to the rules of a rule-based (production) system, KS preconditions are typically
more complex. In rule-based systems, rule preconditions (LHSs) typically use uniform frameworks that allow the specification
of relatively simple patterns that can be quickly matched against the database. In many blackboard systems, KS preconditions
can be arbitrary pieces of code that search the blackboard and do significant reasoning. For example, blackboard shells like
GBB [Gallagher88] provide blackboard access functions that allow the specification of complex retrieval patterns. Since KSs
are much larger-grained pieces of knowledge than rules, the greater complexity of KS preconditions is appropriate.

8The response frame lists the effects of a KS in terms of the types of changes that may be made to the blackboard and
the area of the blackboard that will be affected. The response frame is an approzimate representation of the actions of the



If a KS precondition is found to be satisfied, the KS is said to be activated. Instead of immediately
executing (the action component) of the activated KS, the blackboard monitor creates a knowledge source
instantiation (KSI)® and places it onto the agenda. The KSI includes all the information needed by the action
component of the KS and any other information for control (e.g., stimulus and response frame information).
Each KSI represents an action that could be taken by the system, and at any given time, the set of KSIs on
the agenda represents all the actions that the system could possibly take next.l”

After the preconditions of all the KSs triggered by a set of blackboard changes are processed and any
activated KSs have had their new KSIs placed on the agenda, the scheduler must choose the KSI (action) to
be executed next. It starts by rating each of the KSIs on the agenda. It then selects the highest rated KSI,
removes it from the agenda, and executes it (i.e., it executes the action part of the associated KS using the
context specified in the KSI). Execution of a KSI may result in the creation or modification of hypotheses
on the blackboard, bringing the system back to the beginning of the control loop. The blackboard control
cycle repeats until acceptable answers have been found or else there are no KSIs on the agenda (the problem
of determining whether acceptable answers have been found is often referred to as the termination problem
and is discussed in Section 3.3).

An agenda-based control architecture as described here is inherently opportunistic because KSs are
activated in a data-directed manner and because all possible actions are considered during each control
cycle. This allows for rapid refocusing (at each control cycle) between different lines of reasoning, different
levels of abstraction, and so on. However, effective blackboard control typically requires the integration of
both data-directed and goal-directed control factors (see Section 3). In the basic agenda-based blackboard
architecture, it is the scheduler’s rating function that embodies the control (strategy) knowledge of the
system. HSII rated KSIs independently, without taking into account the existence of other KSIs on the
agenda. Ratings were computed as a linear function of several (fixed) factors using static weights. The
factors were chosen to provide some goal-directed reasoning capabilities by attempting to “estimate the
usefulness of the action in fulfilling the overall system goal” [Lesser77b]. This was possible because the
scheduling function had available to it the stimulus and response frame for each KSI as well as information
about the overall “state of problem solving” that was contained in the focus-of-control database.

The focus-of-control database identified the best hypotheses in each “area” of the blackboard and how
much time had elapsed since these hypotheses were generated. It was updated by the blackboard handler as
the blackboard was modified. Focus-of-control information was useful in determining whether it was likely
to be worthwhile to work in a particular area or pursue a particular hypothesis further. The stimulus frame
allowed the rating function to consider the “credibility” of the data or hypotheses that triggered the creation

of the KSI—i.e., the data-directed control factors. The response frame and the focus-of-control database

KS because it is impossible, in general, to predict the exact effects of a KS without executing it. In HSII “a non-procedural
abstraction of each KS is used to estimate the RF directly from the SF.” (F. Hayes-Roth77]
®A knowledge source instantiation is also sometimes referred to as a knowledge source activation record
(KSAR) [Hayes-Roth85a] or just a knowledge source activation (KSA) [Gallagherss).
19Note that multiple KSIs based on the same KS—but with different contexts—may be triggered by a given set of events and
may reside on the agenda at any one time.

10



allowed the rating function to consider the “desirability’; of creating the hypotheses which the KSI was
expected to create—i.e., the goal-directed control factors.

In addition to the basic steps in the agenda-based control cycle discussed above, there are two other
issues that merit discussion here. First is the overhead of rating possible actions—in particular, the potential
overhead from continually re-rating the same KSIs. While our basic description of the agenda control loop
implied that all KSIs were rated on each cycle, in fact, most agenda-based blackboard systems employ some
scheme for limiting the amount of re-rating of actions. For example, in HSII, the stimulus frame of each
KSI identified “key hypotheses” such that changes to these hypotheses would require re-rating the KSI (re-
rating was triggered through the tag mechanism mentioned below). Likewise, the response frame was linked
to the focus-of-control database so that changes in areas that might be affected by the KSI would cause
re-rating of the KSI. Otherwise, KSIs were not re-rated. Difficulties can arise, however, because in many
applications it may not be so straightforward to determine when KSIs need to be re-rated. Actions can affect
the usefulness of possible actions that are not even concerned with the same hypotheses (e.g., through goal
relations [Lesser89]). The cost of re-rating KSIs is also an issue in systems like BB1 (Section 6.4) where the
rating functions being used by the scheduler can be dynamically changed.

Another issue arises because there can be a delay between when a KS's precondition is checked and when
the resulting KSI is executed. As a result, the situation on the blackboard may have changed and the system
must verify that the KSI is still applicable before it can be executed. Blackboard systems have handled
this problem in several ways from simply re-evaluating the precondition component of the KS (actually
a modified version of the precondition procedure) after a KSI is scheduled for execution to methods that
allow the system to recognize when KSIs are no longer applicable so that they can be removed from the
agenda as soon as possible. HSII used tags [Lesser75] to recognize when KSIs should be removed from the
agenda. Blackboard data structures in the stimulus frame of a KSI were tagged and the KSI was “informed”
if any changes were made to this data. The precondition was then re-evaluated in light of the changes
to see whether the KSI was still applicable and whether changes had to be made in it to account for the
new context. Another technique for recognizing when KSIs should be removed from the agenda is to use
obviation conditions [Hayes-Roth85a] defined with each KS. The obviation condition of a KS specifies the
conditions under which KSIs (based on the KS) are no longer applicable. While checking the conditions
can involve significant computational cost, this may be more than offset by removing KSIs if the rating
process is expensive or if KSIs are repeatedly re-rated. Also, obviation conditions can be simpler than KS

preconditions because only some of the objects in the stimulus frame may be able to change.

3 Control in Blackboard Systems

This section discusses some general issues in blackboard control, including the reasons why blackboard

control can be difficult, goal-directed control, the termination problem, and basic problem-solving strategies

used in blackboard systems.
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3.1 The Control Problem

In an Al system, the control problem is the problem of selecting the “best” action to execute next. The
value of an action is ultimately determined by how much it contributes toward progress in problem solving
relative to the computational costs of the action—where progress is judged by how much the action reduces
the remaining amount of computational effort required to meet the system goals (and terminate problem
solving) [Whitehair92]. This definition is very general because it not only admits actions that generate (some
part of) the correct solution, but also actions that make progress by producing information that provides
a better understanding of what actions to take—e.g., actions that discount potential solutions and thereby
eliminate incorrect solution paths (prune the search space).

Given this definition of the control problem, the task of the control component in a blackboard system
is to determine which of the KSIs currently on the agenda has the maximum expected value. What makes
blackboard control difficult is that can be highly problematic to determine the expected value of KSIs because
there may be complex interrelationships among the KSIs. These relationships arise from many of the features
that give the blackboard model its power: opportunistic incremental construction of solutions at different
levels of abstraction, the ability to concurrently pursue multiple lines of reasoning, the possibility of multiple
derivation paths for solutions, and the existence of multiple methods for accomplishing goals.

Because possible actions are often not independent, the control component in a blackboard system must
not only consider the local and immediate effects of each KSI, but must also consider its global and long-term
effects. However, the relationships among possible actions are not readily observable in a blackboard system.
For instance, the control component would have to recognize the existence of multiple lines of reasoning by
analyzing the structural relations that determine the competing and cooperating relations among hypotheses
with which the actions are associated [Lesser89]. Furthermore, the ultimate value of an action can depend
on when it is executed and on the actions that follow it. As a result, the effectiveness of applying costly
procedures to estimate value is limited since the value of a possible action can change following the execution
of any other action.

These issues can be illustrated by the example in Figure 3. Actions that are (directly) associated with
hypothesis H; interact with actions associated with hypotheses H,, H3, Hy, or Hs here since changes in
the credibility of H; may affect the credibility of all these other hypotheses (via the evidential relations
among the hypotheses). Thus, while KSI; and K SI; might have similarly significant (local) impacts on the
credibility of Hy and H3, respectively, one or the other could have greater (global) value depending on its
overall effect on the credibility of Hy, H,, H3, Hy, and Hs. However, it can be quite difficult to make such
a determination; for instance, since Hs has not yet been created. In addition, the value of an action must
be considered relative to the system goals and the eventual need to execute alternative actions. While K SI;
might have a greater immediate effect on the affected hypotheses than K SI;, its ultimate value may not be
greater if K'SI; must still be executed because H; is not sufficiently proved/disproved by executing K SI;.

Another way of talking about these blackboard control issues is to distinguish between solution uncer-

tainty and conirol uncertainty [Lesser91a]. Solution uncertainty means uncertainty whether a hypothesis
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Figure 3: An example showing the possibility of interrelationships among possible actions.

Here, some of the hypotheses on two of the intermediate abstraction levels of the blackboard are visible. The situation
is as follows: hypotheses H; and H> are on the lower of the two intermediate levels and are currently known to be
competing alternatives. Hypotheses Hi, Hy, and Hs are on the upper level. Hy and H¢ currently exist, while Hs has
not yet been created. Hj, Hy, and Hs are competing, alternative “explanations” for H;. However, this relationship
is not currently . known because links have not been established between H, and Hy, and because H; has not yet
been created. In addition, Hs, Hy, and Hs are also competing alternatives to H; because they use H> as support
and because H> and H; are competing alternatives. Among the possible actions on the agenda are KSIs that are
associated with these hypotheses—e.g., they produce additional support for an existing hypothesis or create a new
hypothesis, etc. For example, K SI; is associated with H; since it produces additional support for H, from lower
level hypotheses.

is (part of) the correct solution. Hypothesis credibility ratings (and the reliability of these ratings) are
concerned with solution uncertainty. Control uncertainty means uncertainty about the expected value of
possible actions. Control uncertainty involves solution uncertainty (whether the‘ hypotheses associated with
any possible action will be part of the final solution), but it also involves uncertainty about the exact results
that will be produced by possible actions and how these results will affect the effort required to meét the
system goals (by changing the search space).

3.2 Goal-Directed Control

Every system has some overall goals that it is trying to satisfy. When we speak in general terms about goal-
directed control, we mean control that considers the role and the ultimate value of actions in satisfying these
system goals. Effective control typically requires the integration of both goal-directed and data-directed

control factors. Goal-directed factors tell a system what it would most like to do in order to solve the
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problem. Data-directed factors tell a system what it is best able to do given the available data. Without
goal-directed control, effort may be wasted working on data and hypotheses that are not important for
meeting system goals. Without data-directed control, effort may be wasted pursuing goals that cannot be
easily satisfied or pursuing ineffective methods for satisfying goals.

Goal-directed control also refers to specific styles of control reasoning that involve problem reduc-
tion [Rich91]—e.g., subgoaling, precondition-action backchaining, and planning. Subgoaling involves the
-reduction of abstract, high-level goals into detailed, low-level goals that can be directly solved. Subgoaling
can be used to focus low-level processing so that hypotheses will be created that can extend existing high-
level hypotheses. Precondition-action backchaining illxvolves identifying actions that can enable other actions
that are necessary to satisfy a goal. Precondition-action backchaining is useful when a certain action (KS) is
necessary to meet a goal, but the action is not yet executable because its precondition is not (fully) satisfied.
The key notion behind planning is the identification of an entire sequence of actions needed to satisfy some
goal (though planning techniques often involve subgoaling and precondition-action backchaining). Planning
keeps a system focused on long-term goals, allows sets of actions to be scheduled or eliminated as appropriate,
and may be necessary when there are destructive interactions among possible actions.

While HSII’s scheduler rating function gave it some goal-directed reasoning capabilities, they were limited
because HSII did not have an explicit representation of its goals, did not understand in detail the relationships
between possible actions and goals, and could not do many types of goal-directed reasoning. For example,
coordinating sequences of actions to accomplish goals can be hard to do with a conventional agenda-based
approach like HSII because the eventual importance of intermediate results (and the actions that will create
them) may not be able to be correctly judged without a more detailed understanding of system goals.
Furthermore, there is a limit to the sophistication of the control strategies that can be encoded using the
HSII approach since the rating function used a static set of weights and was a linear function of a small
number of fixed factors. In Section 5 we will discuss several additional mechanisms that extended the goal-
directed reasoning abilities of the HSII implementation, and we will later consider other approaches that

address the limitations of this basic architecture.

3.3 The Termination Problem

In blackboard problem solving, the overall system goals are often referred to as the termination criteria (the
criteria that must be met for problem solving to terminate) and determining whether they have been met is
referred to as the termination problem.!! Termination is an issue in many blackboard applications because,
when viewed as constraint satisfaction problems, the applications are underconsirained—i.e., there can be
multiple potential solutions that are consistent with the constraints. Often this is a result of uncertainty
in the data and/or the problem-solving knowledge for these applications. Consider, for example, a sensor
interpretation task as part of an aircraft monitoring application. While each aircraft type might have an ideal

spectral signature, a range of spectral data would have to be considered as consistent with an aircraft type

11 Obviously, applications like continuous sensor interpretation involve a different notion of termination. In such problems,
the termination problem may involve determining when to quit working on interpreting the data from particular periods of
time or when to quit trying to resolve uncertainty in potential interpretations that are no longer of interest.
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to account for propagation distortions, sensor limitations, and so on. Furthermore, sensor interpretation is
based on abductive inference and so retains the inherent uncertainty of abduction {Carver90a). Blackboard
problems can also be underconstrained because the size of the problems prevents systems from considering
every constraint—e.g., examining all the available data.

When blackboard applications are underconstrained, blackboard problem solving must consider “how
well” hypotheses meet the current set of constraints and how reliable (discriminatory) those constraints
are. Finding a solution that meets the current constraints does not necessarily constitute solution of the
overall problem since most heuristic search strategies are not guaranteed to find the best answer first.}2 In
other words, the construction of an acceptable solution hypothesis (e.g., an answer-level hypothesis that is
“sufficiently complete” and has a “reasonably high” credibility rating) does not exclude the possibility that
a better alternative has simply not yet been produced. For applications where “the best” solution must be
found, the termination criteria may require systems to pursue alternative solution paths simply to gather
evidence that a potential solution is the best. Thus, when termination is a key issue, a system needs to be
able to determine whether it would be worthwhile to continue to look for alternative solutions. This requires
a more global view of the state of problem solving than is afforded by individual actions and was (part of)
the reason for HSII's focus-of-control database.

There are blackboard applications in which termination is not a significant issue because it is relatively
easy to determine whether the problem-solving goals have been met. For example, in some arrangement-
assembly problems the goal of the system is to construct a (partial) solution that embodies the constraints
represented by the data. These systems typically are able to represent and accept a significant amount
of uncertainty—e.g., they can represent sets of solutions that meet the constraints. In such problems, the
system simply runs until there are no more constraints that can be applied. Of course, complex problem-
solving activity may still be required since the order in which constraints are examined can be critical to

making the construction of a consistent solution (set) computationally tractable.

3.4 Blackboard Problem-Solving Strategies

If blackboard problem solving is considered as a constraint satisfaction process, then one way of viewing the
opportunistic problem-solving strategies used in blackboard systems is that they are chiefly concerned with
how to best accumulate the constraints necessary for meeting the termination criteria. Asa result, blackboard
control is often more concerned with whether hypotheses (and thus KSIs) are competing, cooperating, or
independent than whether problem solving should be data or model-driven. There are four main high-level

problem-solving strategies that are used in the blackboard model of problem solving:

1. Search depth-first (be directed in pursuing a particular solution path) where there are statistically
significant reasons for preferring one solution path. Typically this means when there is a partial
solution with high credibility (“island driving”) or where there are not competing alternatives with

similar ratings. The advantage of directed search is that the creation of higher-level plausible solutions,

12 Heuristic search strategics that are able to guarantee that the best answer is produced first are termed admissible—see, for
example, [Woods77).



representing more encompassing constraints, can be used to prune the search space by limiting the set
of hypotheses that must be considered to develop a complete solution (through what is effectively a
form of constraint propagation). The danger of this approach is that if it is applied too soon, using
hypotheses or data whose ratings are unreliable, it can take a long time to recognize that an incorrect
solution path is being pursued and much effort may be wasted. In addition, the ultimate value of a
directed search depends on the termination criteria. While a directed search can reduce the cost of
completing a particular solution, it may not eliminate the need to consider alternative solution paths in
order to satisfy the system goals (Section 3.3). However, the creation of potential high-level solutions
with more reliable credibility ratings may still reduce the computational effort necessary to pursue the
alternatives.

. Search breadth-first (be exhaustive in pursuing potential solution paths) when there are not statisti-
cally significant reasons for preferring any particular solution path. Typically this means when partial
solutions have low credibility (or the credibility ratings are unreliable) or when there are many com-
peting alternatives with similar ratings. The advantage of this approach is that it allows the system to
build up a set of constraints that can be used to more reliably direct the construction of higher-level
hypotheses so that further search can be directed. This approach is often necessary at lower levels
because credibility ratings of lower-level hypotheses may be unreliable (since they represent very weak
constraints). Another reason for working breadth-first is that the termination criteria majr require that
most of this work be done anyway. This means that the ultimate value of doing directed search based
on weaker constraints is low, so it is better to gather more complete constraints before doing directed
search.

. Expand the search space incrementally, only as necessary. In many applications, there is a priori knowl-
edge about the likelihood of solutions having particular characteristics. From a constraint perspective,
this knowledge can be used to order a set of constraints from tighter to looser based on the likelihood
that a final solution will meet the constraints. The system should apply the tightest constraints (ex-
amine the a priori most likely possibilities) first to limit size of the search space and should open up
the search space (using looser constraints) only as needed—based on the state of problem solving. In
other words, if the system is able to meet the termination criteria applying the tighter constraints, it is
unlikely that better solutions can be obtained by opening up the search space (considering a priori less
likely alternatives). This strategy was used in HSII via thresholds on generator KSs (see Section 5.4)
and in the RESUN system through the posting of inference failure assumptions (see Section 6.9).

. Perform differential diagnosis whenever practical. In other words, when they are available and cost
effective, use methods that can directly differentiate between competing solutions instead of using an
incremental hypothesize and test approach. When a hypothesis is uncertain due to the existence of a
competing, alternative hypothesis, differential diagnosis means that the system should attempt to find
constraints (data) that are consistent with only one of the alternatives. For example, in interpretation
problems, this means that the system should try to discount the potential alternative ezplanations for

a hypothesis’ supporting evidence. Differential diagnosis is a direct method for resolving hypothesis
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uncertainty whereas hypothesize and test is an indirect method [Carver90a]. The advantage of using
direct methods for resolving uncertainty is that they can have a much higher value in terms of meeting
the termination criteria than indirect methods [Carver90b]. The use of a differential diagnosis strategy
is made possible by the blackboard’s integrated representation of alternative hypotheses. However, HSII
did not do explicit differential diagnosis due to certain limitations in its representation of hypothesis

relations (see Section 5.6). It has been used extensively in the RESUN system (Section 6.9).

4 Themes in the Evolution of Blackboard Control .

As we saw in the previous section, effective control in blackboard systems can be difficult. The blackboard
model can lead to complex interrelationships among potential actions, numerous strategies for pursuing each
possible solution path, and even uncertainty whether the system goals have been satisfied. These factors can
severely complicate the blackboard control problem since they make it difficult to reliably select the actions
with the maximum expected value. We have identified four key themes in the evolution of blackboard control
that address these issues. The initial developm_ent of these lines of evolution can, in fact, be seen in several
mechanisms used in the HSII implementation and will be discussed in the next section. The four evolutionary
themes are:

1. Extension and formalization of mechanisms for goal-directed control without loss of opportunistic
control capabilities.

2. Development of abstract models of the search space that can be used to make more accurate estimations
of the long term, global value of potential actions and to evaluate satisfaction of the termination criteria.

3. The development of architectures that support the specification and application of explicit and sophis-
ticated (highly context-specific) control strategies.

4. Concern with the efficiency of blackboard control.!3

In order to make effective control decisions, the expected value of potential actions (toward meeting
the termination criteria) must be judged not only in terms of the local and immediate effects of the ac-
tions, but also in terms of their global and long-term effects. The development of explicit representations
of detailed goals makes it possible for the system to understand how potential actions can contribute to
the overall problem-solving goals and to understand the relationships among the actions. There has been
a significant trend toward making goal-directed control techniques like subgoaling and planning an explicit
part of blackboard control mechanisms. The key issue in using goal-directed reasoning techniques for black-
board systems is how to make control more goal-directed without sacrificing the opportunism of the basic
agenda-based control model. For example, “classical planners” are neither opportunistic nor reactive, which
makes them unsuitable for blackboard tasks that involve uncertainty and/or dynamic situations. Thus, the
planners used for blackboard control are typically incremental planners in which planning and execution are

interleaved [Carver92b).

13uEfficiency” here does not mean cffective search control. Effective scarch is a key issue for problem solving in general.
“Control efficiency” refers to overhead: the time spent making control decisions relative to taking actions. A control mech-
anism could be effective at limiting search and yet be so incfficient at making decisions that overall performance (e.g., CPU
time) is not acceptable. Another issue in the development of blackboard systems has been efficient storage and retrieval of
hypotheses [Corkill86]. Since our focus is control, we will not address this subject.
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Effective blackboard control may also require abstract models of the emerging structure of the search
space. By this we mean that it may be necessary to build appropriate models in order for the system to
understand how alternative actions (taken at various intermediate states of problem solving) can affect the
search process and to allow it to assess whether the termination criteria have been met. Effectively, this
involves being able to more reliably judge the value of potential actions in terms of moving the system closer
to meeting the termination criteria. ‘

In the basic agenda-based blackboard architecture, all the control (strategy) knowledge of the system is
represented in the single scheduler rating function. This makes it difficult to encode and modify complex
control strategies because the knowledge and reasoning are not explicit [Carver92b]. A major area of evolution
has been to make control reasoning more explicit to support the use of sophisticated control strategies—
i.e., control strategies that involve large amounts of highly context-specific search knowledge. This allows
for better estimation of the value of potential actions because criteria that are specific to each particular
problem-solving situation (context) can be used rather than a complex, general mechanism.

The first three evolutionary themes are all concerned with the development of techniques that allow for
more accurate estimations of the Jong-term value of potential actions in meeting system goals. An important
idea that has been used in conjunction with these techniques is that instead of attempting to compute
absolute expected values for all potentia:l actions, control decisions can often be made through comparative
(relative) evaluations of a subset of the potential actions. The advantage of this approach is that comparative
evaluations can be more reliable than global evaluations since a limited set of factors needs to be considered.
For example, in systems with explicit subgoals, if particular subgoal(s) can be identified as having the highest
value to the system, only those actions that are relevant to the subgoal(s) need to be evaluated. In making
the relative evaluations of these actions, only their value in satisfying the particular subgoal(s) needs to be
considered—not the value of the subgoal(s) in meeting the overall goals. This approach does require that a
system have enough information to be statistically effective in identifying the appropriate subset of actions
to evaluate—i.e., that the probability and average cost of being wrong are both sufficiently low that better
relative evaluations lead to more effective control overall.

Effective control not only involves making appropriate control decisions, it also requires that those de-
cisions be made efficiently. Efficient blackboard control involves techniques for preventing the blackboard
and the agenda from becoming overloaded; making the selection (rating) of KSIs efficient; and limiting the
KSIs that are repeatedly re-rated. Allowing a large number of hypotheses onto the blackboard affects the
cost of control because it may make it more costly to check KS preconditions and because it is likely to
lead to more KSIs on the agenda since more KSs will be triggered. Allowing a large number of KSIs onto
the agenda can make control less efficient because it can make the action selection process more costly and
because it requires that ratings be more reliable. HSII had an relatively inexpensive numeric mechanism for
rating KSIs. However, even inexpensive numeric rating schemes can become ineffective when faced with large
numbers of KSIs—especially if the KSIs are re-rated relatively often. In such cases, it would be important
to limit the KSIs that get placed onto the agenda to those that are “likely to be executed” and to limit the
re-rating of KSIs. .
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Efficient blackboard control is critical for applications involving real-time deadlines, but it is important
in other situations as well. For example, it is important when there are large numbers of methods available
for pursuing hypotheses (as in the DVMT using approximate processing KSs [Decker90]) or when there are
numerous direct methods for resolving uncertainty (as in RESUN [Carver90aj). Control efficiency can also
be a major concern with interpretation applications in which sensors continuously produce large amounts
of data. Each piece of sensor data that is inserted onto the blackboard may trigger the creation of one or
more KSIs, but only a fraction of these actions will ever be able to be executed. This can lead to an agenda
whose size increases during problem solving and to a large number of KSIs remaining on the agenda, being

repeatedly re-rated [Carver90b).

5 Additional Control Mechanisms in Hearsay-II

In this section we will examine several control mechanisms that the HSII implementation added to the
basic control model of Section 2.2. These mechanisms represent initial attempts to extend the blackboard
control architecture to allow the use of more sophisticated goal-directed control strategies. Thus, they can
be seen as precursors of the evolutionary lines that were identified in the preceeding section. For example,
the HSII implementation included mechanisms to do some simple subgoaling (the predict and verify KSs)
and to implement special-purpose strategies (via large-grained KSs). We have already seen how HSII used
its focus-of-control database and the stimulus and response frames of the KSIs to attempt to assess the
global and long-term value of possible actions via the scheduler rating function. HSII also used several
special KSs that made global assessments of the work needed for termination: generator and policy KSs,
the word-seq KS and the stop KS. While HSII did not maintain explicit goals identifying the work required
for termination, these KSs developed implicit models of where additional work was likely to be effective for
meeting the termination criteria. Finally, even though HSII did not do explicit differential diagnosis, it was

able to implement a limited form of differential diagnosis through KSI clustering.

5.1 Predict and Verify

The special KSs predict and verify were one way that HSII extended its goal-directed reasoning capabilities.
Eftectively, these KSs allowed HSII to do some implicit subgoaling to focus low-level processing. Predict
made predictions about words that could possibly extend a phrase. Verify then confirmed or discounted
the predictions by directly looking at the acoustic data. Thus, the predictions from potential phrase-level
hypotheses are in a sense used to focus low-level (data) processing because they limit the set of interpretations
of the data that will be examined. The limitations of this approach to subgoaling will be discussed in
Section 6.3.

HSII also foresaw the need for scheduling sequences of KSs: the predict and verify KSs were rated based
on the same criteria so that they were always scheduled together. This was done because the output of
predict did not prove to be a good estimator of whether this line of reasoning (i.e., phrase hypothesis) should

be continued—in contrast to some other path. While the number of words predicted from each phrase did
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give an estimate of the amount of work that would be required to pursue that phrase, it was not possible
to reliably balance the cost against the credibility of the phrase hypotheses using HSII's one pass, linear
evaluation function for rating KSs. In other words, this is an example of the problem of computing reliable
absolute measures of the expected value of possible actions. Because it was inappropriate for the output
of predict to stand alone and influence blackboard processing decisions, the decision was effectively delayed
until the result from the verify KS was available. However, the expected cost of verifying predictions was
used in deciding, from a local perspective, which predictions to verify. Predictions could be backward in
time or forward in time. The precondition of verify used cost information to decide whether to instantiate
the verify KS to work in both directions or only one direction (on the predictions from a single phrase). This
was a reasonable strategy since all other scheduling factors were the same here except for cost.

The joint scheduling of the predict and verify KSs also involved the issue of efficiency. Instead of having
predict create (prediction) hypotheses on the blackboard for each of the potential extension words, the list
of potential words was passed to verify by being attached to an attribute of the hypothesis that was the
basis for the prediction (the change in this attribute triggered the verify KS). Verify then checked each
of the words attached to the triggering attribute against lower-level hypotheses to see which were possible
and created hypotheses only for these possible words. Predict would typically create a large number of
words, most of which could be immediately discounted by verify. Placing all the intermediate hypotheses on
the blackboard would have been inefficient because it would have caused overloading and because creating

blackboard hypotheses is typically more costly than creating specialized local representations.

5.2 Large-Grained KSs

While the predict and verify KSs were kept separate for modularity and simply scheduled together, HSII
implemented several specialized strategies through large-grained KSs. For example, later configurations
of HSII had low-level KSs that processed all the input data at once in order to force processing to be
strictly bottom up to the word level. This was done because it was found that credibility ratings were
not reliable enough at the lower levels to support effective opportunistic scheduling. While the solution of
large-grained KSs is not general, experience with HSII demonstrates the need for context-specific specialized
strategies. The use of highly context-specific control strategies or what we have termed sophisticated control
strategies (Carver92b] are addressed by both BB1 and the RESUN framework which permit more explicit

representations of detailed strategies.

5.3 STOP: Termination

HSII dealt with termination through the special stop KS. This KS was triggered by the creation of a highly
rated, complete phrase-level hypothesis. The stop KS then examined the existing alternative hypotheses and
“pruned” those that were unlikely to be able to produce higher-rated answer hypotheses. It did this by looking
at the ratings of word hypothesés not covered by the alternative phrases and determined whether these words
could possibly improve the alternatives so that they would be better than the current phrase [Lesser77b]. This

was a heuristic process, since it was possible that predict and verify, working top-down, could generate new
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words in an area that would be more highly rated. Stop halts processing when all the potential alternatives
have been removed.

Reasoning about termination requires a global view of the state of problem solving. Siop achieved a
global view by using the focus-of-control database and because it could examine the entire blackboard. One
way of viewing the stop KS is that it implements a sophisticated global control strategy that determines
whether particular hypotheses are worth pursuing (it removes those that aren’t). HSII's stop KS can also
be viewed as a type of control KS (see Section 6.4) since it was effectively making control decisions about

whether to proceed with problem solving.

5.4 Generator and Policy KSs

One of the special features of the HSII implementation was its use of generator and policy KSs—e.g., mow
and word-ctl. Generator KSs were large-grained synthesis KSs that were capable of creating all plausible
explanations for hypotheses at some level. However, instead of always creating hypotheses representing all
the explanations, generator KSs could be controlled so that only a portion of these hypotheses would be
created at once. This control was provided by corresponding policy KSs that specified how many hypotheses
a generator KS should create and where in the space. Should processing “stagnate,” policy KSs may be
triggered to change the criteria for generator KSs and retrigger these KSs.

One way to view the generator/policy KS approach is in terms of implementing a strategy of incrementally
opening up the search space. Initially the policy KSs will specify thresholds such that only the (a priori)
most likely hypotheses are created. If problem-solving conditions suggest that the valid solution may have
been excluded by these decisions, the policy KS can lower the threshold or otherwise direct the generator KSs
to post hypotheses that were previously considered too unlikely to pursue. The creation of these additional
hypotheses will trigger additional actions and thus extend or redirect the search process.

Another view of policy KSs is that they provide a mechanism for implementing a more global search than
would be possible with a basic scheduler—i.e., they provide a method for integrating non-local, goal-directed
control factors in order to control the combinatorial explosion of hypotheses that might otherwise be created.
In fact, in later versions of HSII the policy KSs actually mediated/triggered generator KS actions via special
“goal” hypotheses [F. Hayes-Roth77]. Thus, HSII extended the model of KSs so that they are not only
controlled by hypotheses, but also by goals. Because of this we can view HSII “goals” as being a precursor
of the kinds of goal units found in the goal-directed blackboard architecture (see Section 6.3). Goals restrict
the actions and output of KSs—e.g., while a KS could generate a range of outputs in a certain space, goals
limit what output it actually covers and when the KS is triggered.

Yet another way of viewing HSII’s policy KSs is that they were an early precursor of knowledge source-
based control. This is a key feature of the BB1 architecture (see Section 6.4). Policy KSs were triggered not
by blackboard events like standard KSs, but rather by the state of the control process—e.g., there are no
reasonably highly rated KSIs on the agenda. Unlike the control plans of BB1, policy KSs could only provide

a “single shot” at changing control parameters to respond to the situation and were not themselves driven

by explicit goals.
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5.5 WORD-SEQ

Another large-grained KS used in HSII was word-seq (woseg in early HSII papers). HSII recognized that
the selection of blackboard abstraction levels and associated KSs is often driven by control considerations.
Pursuing top-level answers via intermediate-level hypotheses also allows constraints to be incrementally
aggregated. This can result in more efficient problem solving. Applying these partial constraints can be
significantly cheaper than applying the full constraints and may eliminate large numbers of hypotheses from
consideration. In other words, the ability to create intermediate-level hypotheses allows the application of
inexpensive constraint knowledge that can significantly reduce the search space for the higher-level interpre-
tations without incurring the cost of applying the full, top-level constraints.

In HSII this approach was taken with the word-seqg KS. While most of the KSs (and blackboard levels) in
HSII represent the application of different types or classes of knowledge, in part, the word-seq KS really just
represents an approzimate version of the parse KS that creates phrase-level (multi-word sequence) hypotheses
from sequences of word-level hypotheses. This is done because the credibility ratings of individual word-
level hypotheses is not reliable enough to (opportunistically) direct interpretation to the phrase level and the
complete phrase-level knowledge is costly to apply. The word-seq KS is able to efficiently generate multi-word
“islands” whose credibility ratings are reliable to direct further processing. This allows HSII to efficiently
filter the multi-word sequences before the relatively costly knowledge of the parse KS was applied. Word-seq
is more efficient than parse because it only does pairwise checking of word sequences (using bit-tables). While
this can result in ungrammatical phrases, these will be eliminated by the application of the more complete
grammatical knowledge in parse.

Word-seq is not just an approximate KS, it is also a large-grained KS that implements a specialized control
strategy. Word-seq processes the entire set of word-level hypotheses at once (remember, other large-grained
KSs process the complete set of data in a strictly bottom-up manner to the word level). This provides an
overall view of where the most reliable multi-word “islands” are. In order to do this, the word-seq KS must:
decide on the length of the sequences to be produced based on ambiguity considerations (among competing
multi-word extensions) and make comparisons between alternatives to decide whether additional hypotheses
are worth posting. Since word-seq is also a generator KS (with associated policy KS word-seg-ctl), it may be

re-triggered to post “less plausible” islands if processing stagnates.

5.6 KSI Clustering

While explicit differential diagnosis was not used in HSII, the implementation did include a technique for
implicitly doing some limited differential diagnosis through “KSI clustering.” This involved pursuing sets of
similarly rated hypotheses together. Though the similarly rated hypotheses were not necessarily competing
alternative hypotheses, the technique was very useful when they were and caused no harm when they weren’t.
KSI clustering was developed because when similarly rated hypotheses were competing alternatives, HSII’s
“island driving” strategy would cause whichever hypothesis was first extended to then be pursued to the

exclusion of the other alternatives. This is because the system had no way to recognize that one alternative
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had become more highly rated than another simply because more evidence had been gathered for it—not
because there was any evidence against its alternative.

In part, this problem arises because HSII used a very simple representation (single numbers) of the
credibility of hypotheses. However, even if the characteristics of the evidence had been better represented,
this information would have been difficult to exploit. In conventional agenda management, the rating of
each KSI is done independently of rating the other KSIs. This local evaluation procedure limits the ability
of the control system to understand the relationships among possible actions. Where explicit relationships
among KSIs have been exploited [Lesser89], additional stages of processing beyond the local evaluation have

been required (see the discussion of goal relationships in Section 6.3). p

5.7 Triggered versus Executable KSs

HSII used another idea for focusing resource usage. In early versions of Hearsay-II, once a KS was triggered,
the precondition procedure was placed onto the agenda instead of immediately being executed. This made it
possible for the scheduler to control both the execution of actions and the execution of preconditions. Control
over precondition execution gives a system more ability to focus its limited resources—if there is a good way
to identify unpromising KSIs from their triggers. This could be very effective, for instance, if precondition
procedures are relatively costly or if only a small percentage of KSIs are eventually executed. It could also
be effective at keeping the agenda from becoming overloaded with KSIs and making the scheduling process
inefficient. However, in HSII, precondition scheduling was not ultimately pursued because knowledge was
not available to support decisions about the overall value of action versus precondition execution. This is
an instance of the general meta-level control issue of deciding whether to take domain or control actions.
. Here, the issue is whether there is value in taking information gathering actions (that identify new possible
domain actions) or whether the system should just proceed with the current set of actions. Balancing control
versus domain costs has become an important concern as blackboard systems are used for real-time problem

solving (see Section 7).

6 Blackboard Control Architectures

The previous section showed how the HSII implementation included a number of mechanisms to extend the
capabilities of the basic HSII control model. In this section we will examine a number of blackboard control
architectures that have evolved from that basic HSII model: HASP/SIAP’s event-based control, CRYSALIS’
hierarchical control, the goal-directed architecture of the Distributed Vehicle Monitoring Testbed (DVMT),
the control blackboard architecture (BB1), model-based incremental planning for the DVMT, the channel-
ized, parameterized control loop version of the DVMT, ATOME's hybrid multistage control, CASSANDRA's
distributed control, and the RESUN interpretation framework. These particular architectures were chosen
because they depart significantly from the HSII model and/or because they have been widely studied. The
systems will be presented in roughly chronological otder (as listed) because the cross-fertilization of ideas

makes it difficult to distinguish clear evolutionary paths.
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We will analyze each of the architectures in terms of the evolutionary themes presented in Section 4.
The development of more explicit goal-directed control mechanisms has been a major area of concern. The
goal-directed architecture of the DVMT was one of the earliest blackboard systems to use explicit goals.
BB1, the model-based incremental planner for the DVMT, and RESUN all have planning-based control
mechanisms. The use of abstract models of the search space has been a key concern in blackboard systems
for sensor interpretation: the goal-directed blackboard architecture, the model-based incremental planner
for the DVMT, and RESUN. Support for explicit, context-specific control strategies was a major issue in
CRYSALIS, BB1, and RESUN. Efficiency concerns played a role in CRYSALIS, the model-based planner
for the DVMT, RESUN, and in real-time extensions to BB1.

6.1 HASP/SIAP: Event-Based Control

The HASP/SIAP project [Nii82, Nii86b)] for interpreting sonar signals was an early system based on the
blackboard model of HSII.1* However, instead of the agenda-based scheduler mechanism of HSII, HASP
used a control mechanism based on the occurrence of predefined events. In HSII, changes to the blackboard
were described in terms of a set of blackboard event types that then triggered the appropriate KSs (to evaluate
their preconditions). HASP took this event-based approach much further, making events the primary basis
of control. First, instead of reporting all blackboard changes using a set of primitive blackboard event types,
HASP programmers specified the blackboard changes that were of interest to the system by defining their
own set of blackboard event types. Second, HASP programmers specified a sequence of KSs that were to be
executed for each event type. The main control decision in HASP was which event (instance) to select as
the next focus of attention; once an event had been selected as the next focus, the KSs to be executed were
predetermined. In effect, the predefined blackboard event types served as the KS preconditions in HASP
and there was never any uncertainty about how best to respond to each event. The HASP architecture is
shown in Figure 4 and the basic control loop is shown in Figure 5.

Another way in which HASP extended the concept of events, was by supporting three other categories of
events: clock, expectation, and problem.!® These events were posted directly by KSs into the appropriate
event lists. Clock events consisted of a time and a list of KSs to be executed at that time. They were
used to confirm the expected behavior of signal sources (based on the existing interpretation hypotheses).
Ezpeciation events represented blackboard events that were expected at some point in the future—e.g., the
appearance of data from some vehicle that was thought to be in the area. They were used to periodically

trigger the system to check for the expected events.!® Problem events signalled “problems” encountered by

14[Nii82] and [Nii86b] differ somewhat in their descriptions of the HASP/SIAP architecture. Our description of the architecture
follows [Nii86b]. The AGE blackboard shell [Nii79] used a control scheme that was similar to that used in HASP/SIAP.

15The HASP papers are somewhat inconsistent in their terminology. While they label these the four “event categories,” they
also refer to “expectations” and “problems” rather than expectation events and problem events.

16The use of clock and expectation events is a result of differences between the HSII task and the HASP task that dealt with
the continuous interpretation of signals. However, an event-based control architecture like HASP’s is not required to deal with
continuous interpretation. For example, expectations posted to the blackboard could trigger the creation of KSIs, but these
KSIs would not be scheduled for execution until an appropriate time (based on information in the stimulus frame of the KSI).
Alternatively, users could be allowed to define their own event classes—e.g., events based on time. This approach is used in the
GBB blackboard framework [Corkill86, Gallagher8s).
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Figure 4: The HASP/SIAP blackboard architecture.

Knowledge sources are rule sets that modify the blackboard and post events into the appropriate event lists. The
strategy module selects the event category that should be in focus next. Event managers select the particular event
(instance) that should be in focus and identify the appropriate knowledge sources to execute using the event focus.

the KSs such as information that was missing or was desired by a KS—e.g., if a KS was unable to execute
any of its rules. They were used, in effect, to set up “goals” for developing particular hypotheses; an ad hoc
approach to doing some limited goal-directed control reasoning.

In HASP, the event that would become the next focus of attention was selected through a two-level
process. At the top level, the strategy module decided what event category to focus on next. Then, the
appropriate event manager selected the event (instance) that was to become the next focus of attention
(selecting it from the appropriate event category hst) Once the event was chosen, the KS(s) that were to
be executed!” were predeterminen, based on the event type of the chosen event. One way of looking at this
architecture is that it was a precursor of the kind of hierarchical control found in CRYSALIS (Section 6.2).
[Nii86b] states that, “the hierarchical control in HASP was an attempt to separate the domain-specific
knowledge from knowledge about the application of that knowledge.” However, it is not clear that HASP
offered any advantages over HSII, in which the knowledge about the application of the problem-solving
knowledge (the KSs) was held in the scheduler function. Furthermore, HASP’s hierarchical architecture

was very limited since it had two fixed and specific levels: event category selection and event (instance)

17KS actions were implemented as sets of rules in HASP. This same approach was used in CRYSALIS and is discussed further
in Section 6.2.
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selection. The CRYSALIS architecture (in theory) allows any number of levels and these levels can be
related (implicitly) to any system goal (task).

Another problem with the HASP architecture is that it is not clear that its decision hierarchy is appropri-
ate for making opportunistic decisions, in the sense of the selecting the best possible actions in the situation.
(Nii86b] states that in selecting the event to focus on next HASP was implicitly selecting the “solution island”
to focus on. In fact, [Nii86b] says that “the focus-of-atiention problem in HASP was primarily a problem of
determining which island to work on next” and the control modules were “biased toward the selection of a
solution to be pursued that would have the highest payoff in subsequent processing cycles.” However, HASP
first chose the event category and only then chose the event (and implicitly, the solution island) to focus
on. The problem with this approach is that—in general—the choice of best event category can not be made
without knowledge of the (best) instances of each category that are available. In other words, finding the
best focus could require a search through all of the possible events. HASP made the event category decision
using “priorities as encoded in its knowledge base” [Nii86b]—e.g., clock events get priority if it is time for
them to be processed. Clearly, this approach may not yield the best focus—e.g., if all applicable clock events
are associated with lower importance/credibility hypotheses than some other event.

Because of these issues, the HASP control architecture can also be viewed as a specialization of the
HSII architecture that is efficient for the particular application. HASP did not use an agenda-based control
architecture because its focus-of-attention problem was simpler than that of HSII in terms of the level of
detail required for focusing. In contrast to HSII, which had to focus on actions (KSIs), once HASP focused on
a particular event its actions were determined. Of course, another problem with this event-based approach
is that the opportunism of the system may be limited because the designers must have correctly prespecified
all the event types (i.e., situations) of interest. There is no chance for KSs that are triggered by general
events to be activated in unexpected situations. Likewise, the approach is not very modular. When new
event types are defined, existing event types (and their associated KSs and control modules) may have

to be redefined if the new events overlap with the existing events. Since HSII rated KSIs based on the
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characteristics of the stimulus and response frames—not by reference to specific KSs—its control knowledge
was largely independent of the particular KSs.

Because HASP involved continuous interpretation of sensor data, it addressed the issue of dealing with
large amounts of data. It did this through the use of top-down (model-driven) KSs that looked for data
to support important features of the high-level interpretation hypotheses. The arrival of new data does
not appear to have been a signalled event (as it would be in an agenda-based system like HSII). Instead,
expectations would be used to drive the system to interpret a limited amount of the data as it comes in.
HASP could also examine the data looking for counterevidence as well as supporting evidence.

HASP did not make use of any models of the state of problem solving in making its decisions. In part
this may be because, unlike HSII, ’HASP did not concurrently pursue multiple solution paths. In fact, HASP
could not represent alternative interpretations (although it could represent potential alternative attribute
bindings for hypotheses—i.e., uncertainty about hypothesis attributes). As a result, it was more difficult
for the system to revise its interpretations: it backtracked by deleting affected hypotheses and restarting its

analysis from the point of change.

8.2 CRYSALIS: Hierarchical Control

The CRYSALIS system for protein crystallography [Engelmore79, Terry85) introduced the idea of hierarchical
control for blackboard systems.!® Instead of the agenda-based scheduler mechanism of HSII, CRYSALIS
used a hierarchy of “control knowledge sources” to select the domain/problem-solving KSs to be executed.
CRYSALIS had two levels of control knowledge: strategy and task. The single strategy knowledge source!?
selected a sequence of task knowledge sources to be executed while task-level knowledge sources selected a
sequence of domain KSs to be executed. The CRYSALIS architecture is shown in Figure 6 and the basic
control loop is shown in Figure 7.

Since KSs were directly selected by higher-level KSs (or by default at the top), CRYSALIS KSs did not
have precondition components as in the HSII model. However, all CRYSALIS KSs were implemented as
rule sets? so selection of a KS to be executed really meant selection of a set of rules to be interpreted. In
the strategy KS, rule LHSs were conditions on the features list (a summary of key features of blackboard
hypotheses) and RHSs identified a sequence of one or more task KSs to be executed. In task KSs, rule LHSs
involved conditions on the events list (blackboard changes were represented as events as in HSII) and RHSs
identified a sequence of domain KSs to be executed. In domain KSs, rule LHSs could examine the entire

blackboard structure while RHSs created and modified blackboard hypotheses.

18 Another early blackboard-based system that used hierarchical control was VISIONS [Williams77a, Williams?77b]. Control
(strategic) knowledge is organized into a hierarchical set of modules based in part on the structure of the domain blackboard.
For example, the H-L-Strategy level is concerned with selecting the model (interpretation) to pursue next and next lower level
clements that select the portion of the model to pursue and the process to be used.

19Strategy and task units are referred to as “KSs” in CRYSALIS and they perform the same function as BB1 “control KSs”
(Section 6.4). However, the CRYSALIS “control KSs" differ significantly from the BB1 model of control KSs and from the
basic HSII model of KSs. In particular, there is a single strategy KS—not multiple KSs—and task KSs neither write onto a
shared database nor are they self-activated (opportunistically invoked). ’

20 Actually, some of CRYSALIS' domain KSs were represented as procedural code for efficiency.
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Figure 6: The CRYSALIS blackboard architecture.

All KSs are rule sets. Changes to the blackboard made by the domam KSs are described as events and the state
of blackboard solutions is summarized as a list of features. The strategy KS selects a blackboard region to focus on
and a sequence of task KSs to execute. The task KSs select events related to the in-focus region to focus on and a
sequence of domain KSs to execute.

CRYSALIS’ features list played a role similar to HSII’s focus-of-control database. It provided an abstract
view of the state of blackboard problem solving for use in making decisions about where to focus problem
solving. The features list identified key patterns in the hypotheses that suggested it would be useful to
pursue particular subgoals (tasks) next. In other words, it was intended to assist in determining where the
system was most likely to make further progress—i.e., subgoals with maximum expected value. Differences
in the type of information contained in the features list as compared with HSII’s focus-of-control database
are at least partly related to differences in the search strategies and the relationship between hypotheses and
solutions between the two applications.

CRYSALIS’ hierarchical control architecture provided more explicit goal-directed control than the
agenda-based scheduler of HSII. The strategy KS determined appropriate tasks (effectively, subgoals) to
be pursued next while the task KSs selected the best methods (sequences of domain KSs) for accomplishing
the task. Another way of looking at the CRYSALIS control mechanism is that the strategy KS provided the
coarse focus of the system and the task KSs provided the fine focus of the system: the strategy KS selected
the goals to pursue next (i.e., what to try to accomplish with particular hypotheses) and the task KSs then
selected actions that best accomplished the goals. HSII focused directly on actions without any representa-
tion of system subgoals. The sort of multi-step focusing that is inherent in hierarchical control architectures

means that control decisions (action selections) are effectively made through comparative evaluations—as
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Figure 7: The basic control loop for CRYSALIS.

opposed to selecting actions by determining their expected value. For example, the strategy KS only con-
sidered (a limited set of) general tasks that might be pursued; it could not determine the expected value of
each task since it did not know how the tasks would be carried out.

Of course, one of the advantages of the agenda-based approach is the high degree of opportunism that
it supports: the system can switch between alternative potential solutions, subgoals, and methods on every
cycle. In providing some simple goal-directed control, the CRYSALIS architecture limited opportunism.
This is not to imply that CRYSALIS was not capable of opportunism: the strategy KS was opportunistic
in selecting the next task/subgoal to be pursued, task KSs responded to the events list to adapt their
methods to the specific situation, and the actions actually taken by the domain KSs depended on the state
of the blackboard (acting through the domain KS rule conditions). In addition, both task and domain KSs
could include rules that explicitly terminate the KS. However, the architecture did not allow for multiple
tasks to be pursued concurrently and, once selected, a task or domain KS was run to completion (or explicit
termination). Thus, there was no way to easily switch to some other focus or perform a search for appropriate
subgoals or methods to be pursued next. We will see goal-directed mechanisms that provide these capabilities
in Sections 6.4 and 6.9.

Part of the reason why the CRYSALIS architecture has less opportunism than HSII is a result of differ-
ences in the termination criteria, the representation of potential solutions, and the basic search strategies
used in the two systems. CRYSALIS pursued a single line of reasoning at a time and backtracked when
necessary. HSII could concurrently pursue multiple lines of reasoning and did not do explicit backtracking
because of its ability to represent alternative interpretations in an integrated fashion on its blackboard. In
addition, the CRYSALIS application did not require real-time or reactive performance that would have made
the ability to rapidly switch focus more critical.

The CRYSALIS control architecture provides the ability to coordinate sequences of actions as in the
planning-based control mechanisms that we will examine in Sections 6.5, 6.4, and 6.9. However, CRYSALIS’
hierarchical control mechanism does not provide all the capabilities of these more general planners. For

example, its ability to do hierarchical refinement of subgoals (problem reduction) is very limited since tasks
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are essentially “flat” plans with a restricted language for sequencing domain KSs (though the sequencing
of actions taken by each KS can be quite complex as a result of the rule set representation). In addition,
CRYSALIS does not create an explicit representation of its goals and subgoals that can be used both in
making and understanding control decisions. While each instance of a task KS corresponds to a subgoal of
the overall problem, these subgoals and their role in the overall problem are not made explicit.

Because all CRYSALIS KSs are implemented as sets of rules, CRYSALIS can be viewed as a hierarchical
production system as well as a blackboard system.?? There is nothing about the concept of a hierarchical
blackboard control architecture that requires KSs to be represented as rules, of course; This representation
has both advantages and disadvantages. It makes the possible behavior of a KS more explicit than if the
action portion was represented as procedural code. However, the exact behavior of a KS may not clear when
a KS involves a number of rules since it may not be obvious which rules are going to be fired. This source
of uncertainty is compounded by the fact that the mode of invocation of the rules (i.e., single hit, multiple
hit, cyclic) can be changed from the KS’s default mode by the invoking KS.

One advantage of this hierarchical approach in which actions are directly identified is that it can be
much more efficient: the reasoning required to evaluate and-select actions is reduced since only a limited
set of actions out of all of the possible actions will be relevant to a particular task. In addition, because
tasks identify sequences of actions, this eliminates the need to repeatedly reason about the most important
(sub)goal and best action as in the standard HSII agenda-based control model. It may also eliminate the cost
of running KS precondition procedures. Tasks specifying sequences of KS invocations effectively represent
compiled knowledge about the actions that are possible and appropriate in a particular situation. On the
other hand, the rules format does make control reasoning more explicit than in systems that use complex

numeric rating functions.

6.3 The Goal-Directed Blackboard Architecture

One response to the problem of integrating goal-directed factors with data-directed, agenda-based control
was the development of the goal-directed blackboard architecture [Corkill82a, Corkill82b, Lesser89]. The
framework was first implemented in the Distributed Vehicle Monitoring Testbed (DVMT) [Lesser83]. The
goal-directed blackboard architecture extends the HSII architecture by adding a goal blackboard and a goal
processor. The goal processor instantiates goals on the goal blackboard, whose structure mirrors that of the
domain blackboard. The goal processor is driven by three mapping functions: a hypothesis-to-goal map, a
goal-to-subgoal map, and a goal-to-KS map. The goal-directed blackboard architecture is shown in Figure 8

and the basic control loop is shown in Figure 9.

31 Another carly hierarchical production system architecture was used in NEOMYCIN [Clancey86ea, Clancey86b). Control
knowledge in NEOMYCIN was defined in terms of tasks that consisted of sequences of (meta-)rules. Meta-rules could invoke
either domain rules or other tasks. Like CRYSALIS, cach of NEOMYCIN's "tasks” included an end condition that could abort
the task (or its subtasks) at any time—e.g., if the goal of the task became satisfied or if some prerequisite for doing the task
became unsatisfied. Thus, the NEOMYCIN architecture was very similar to the CRYSALIS architecture, but was more flexible
as it could have an indeterminate number of control (task) levels. However, NEOMYCIN’s architecture was still incapable of
the kind of control search necessary for complete opportunism in a hierarchical control architecture (see Section 6.9).
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Figure 8: The goal-directed blackboard architecture.

Compared to the agenda-based architecture of HSII (Figure 1), the goal-directed architecture adds the goal blackboard
and the goal processorreplaces the blackboard monitor. The goal processor uses the hypothesis-to-goal, goal-to-subgoal,
and goal-to- KS mappings to post goals/subgoals and trigger KSs.

The goal-directed blackboard architecture integrates data-directed and goal-directed reasoning through
its explicit goals because these goals can be created in two ways. Data-directed goals are created by the
goal processor in response to the creation or modification of hypotheses on the domain blackboard, based
on the hypothesis-to-goal mapping function. Data-directed goals represent the ability to create hypotheses
with particular characteristics. Goal-directed goals are created in response to the creation of other goals
based on the goal-to-subgoal map. This is a form of subgoaling. Goal-directed goals can also be created
when a KS precondition procedure fails. If the failure is due to the lack of some appropriate hypotheses,
the precondition procedure can return information that is used to post goals to direct the creation of these
hypotheses. This is a form of precondition-action backchaining. Goal-directed goals represent the desire to
create hypotheses with particular characteristics in order to satisfy other goals.

When a goal is inserted onto the goal blackboard, it may trigger KSs that can achieve the goal—identified
by the goal-to-KS mapping function—to have their preconditions checked (the conditions under which goals
trigger KSI creation are discussed below). If a KS is determined to be likely to generate hypotheses that
would satisfy the goal, an appropriate KSI is added to the agenda. A KSI rating reflects both data-directed
and goal-directed factors because it is based on the rating of the goal that triggered the creation of the
KSI (goal and data-directed factors) and on the expected credibility of the output hypotheses of the KSI
(data-directed factors). Goal ratings reflect both data-directed and goal-directed factors because a goal is

rated based on the ratings of any hypotheses that stimulated the creation of the goal and/or the rating of its
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Figure 9: The basic control loop for the goal-directed blackboard architecture.

supergoal (data and goal-directed goals can be merged—see below). By adjusting the weighting factors in
the goal and KSI rating functions, the relative role of data and goal-directed control factors can be modified.

As we have said, goal-directed reasoning techniques can be critical for effective control in complex domains
and the ability to understand subgoal/supergoal relationships is a key aspect of goal-directed reasoning.
Subgoaling using explicit goals allows the goal-directed blackboard architecture to understand how actions
are related to high-level goals (and to each other). The addition of goals allows a system to connect the
immediate effects of a KS action with higher-level goals via the subgoal relations. While response frame
information allowed HSII to understand what results could be derived from the data, HSII was unable to
consider in detail how possible actions related to its goals.

Subgoaling can be crucial for focusing processing at the lower levels in the blackboard. To implement
reasoning analogous to subgoaling, HSII used the spetial predict and verify KSs. One of the major advantages
of using explicit goals is that it gives the system the flexibility to asynchronously, incrementally develop
hypotheses because the subgoaling process leaves around a representation of subgoals at the different levels.
By contrast, HSII jumped levels in making its predictions and performed the entire subgoaling and verification
process in (what was effectively) a single step: the predict KS posted predictions at the word level and the
verify KS jumped right to the data level to immediately confirm the predictions. The use of goals also

avoids the issue of treating prediction hypotheses specially (since they do not have supporting data) so
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that they are not used to provide (invalid) support for hypotheses that are alternatives to the original
predicting hypothesis [Corkill82b]. Since the purpose of making predictions is to guide control decisions,
placing the “predictions” on a sebarate goal blackboard makes their role in control clear. One reason that
predict and verify were scheduled as a unit was for efficiency: to avoid placing lots of prediction hypotheses
onto the blackboard. The use of goals may help with efficiency because goals can represent abstractions of
hypotheses—e.g., a goal can represent a set of predicted/desired hypotheses.

While subgoaling is a very powerful technique, it needs to be carefully controlled. The DVMT application
makes it possible to use an efficient goal-fo-subgoal mapping function, however, subgoaling may require
complex and costly computations in other domains (since it involves goal decomposition). Furthermore, the
creation of a large number of (sub)goals may degrade control efficiency since it can trigger the creation of
an excessive number of KSIs. The basic goal-directed blackboard framework uses several methods to control
subgoaling.?? First, subgoaling is done only from particular (typically the higher) abstraction levels and only
when goal ratings are above a specified threshold. Second, when goals are posted, they are analyzed to see
if there is “significant overlap” with other goals. When there is, and when the goals are to be satisfied by
the same KS, the goals and the KSIs are merged into a single KSI with the combined stimuli of the original
KSIs. This improves performance by reducing both scheduling and computation overhead.?* Goal merging
also plays a role in limiting the KSIs that result from subgoaling. Instead of triggering KSs whenever a goal
is created, KSs are only triggered by data-directed goals (including merged goals that include a data-directed
goal). In other words, KSs are triggered only when there is some reason to believe that action may currently
be possible.

The potential of subgoaling to overload the agenda is further limited because the goal-to-KS mappings
are priority ordered (when multiple KSs are applicable to a goal). Instead of evaluating all of the relevant
KSs and possibly instantiating multiple KSIs, the KS preconditions are successively evaluated (by priority)
until one is satisfied. This represents an approximate processing strategy since goal satisfaction is viewed
from a very local perspective. If a KSI “fails,” the goal that it was supposed to satisfy can be re-stimulated
in order to produce alternative KSIs to try. However, there is no way to pursue alternative KSIs if the
initial KSI “succeeds” in satisfying its immediate goal, but the results of the KSI eventually prove poor
in meeting higher-level goals. This is a complex problem since it involves issues of relative satisfaction of
goals, understanding how low-level goals are related to the overall system goals, and credit/blame assignment
throughout a goal/subgoal structure.

The explicit goals of the goal-directed blackboard architecture were the basis for another technique for
improving efficiency: KSs were modified so that their output was constrained by the goals that triggered
them. Each goal explicitly represents the system’s desire to create one or more hypotheses with particular
attributes. KSs used the goals to limit the created hypotheses to those that are desired. This in turn limits

the goals and KSIs being created to those that are relevant to the lines of reasoning being pursued. This

22Because of the importance of controlling subgoaling, work was done to extend this architecture through the addition of
goal and hypothesis filters (see Section 6.6) and through the use of a planning mechanism (see Section 6.5).

23Merging of actions does decrease opportunism. However, in the DVMT, the increase in cfficiency more than offset the slight
decrease in opportunism that resulted.
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extension of the basic HSII model of KSs can be viewed as a generalization of one of the ideas behind the
policy KS and “goal” hypothesis mechanism of HSII. Besides simply re-triggering a KS to post additional
hypotheses through lowered thresholds, goals here can specify more characteristics of hypotheses that should
be produced by the KSs they trigger.

One of the problems that was identified in HSII control was the inability to understand the relationships
among actions when reasoning about control decisions. In later work with the goal-directed blackboard
architecture [Lesser89], the basic architecture was extended to reason about the relationships among goals—
and thus the relationships among actions. For example, experiments were run with the DVMT using two
mechanisms to minimize redundant activity. One of the mechanisms involved recognizing when sufficient
work had been done to verify high-level solution components, and then posting inhibiting (sub)goals (a new
type of goal) that restricted processing resulting from subsumed subgoals.?* This mechanism extended the
goal blackboard and goal processor, and made use of the fact that the output of a KSI was constrained by the
goals that triggered the KS. The other mechanism could recognize when the expected results of one possible
action (KSI) subsumed the expected results of another action and could schedule the more comprehensive
action—even if this action were rated lower due to the “quality” of the associated data. The scheduling
process went from a one pass to a two pass approach: the first stage was the normal rating process, while
in the additional stage, the highest rated KSI from the first stage was compared against all other KSIs to
see if there were more comprehensive KSIs on the agenda. In effect, this two-pass process allowed for some
relative evaluation of the possible actions to deal with the fact that KSI ratings can not perfectly predict
the ultimate value of actions. These two mechanisms were able to improve performance in the DVMT
experiments. However, their successful application depends on the necessary computations being relatively
inexpensive for this application and on the outcome of actions being quite predictable.

Finally, a major limitation of the goal-directed blackboard architecture is that its goals still provide only
a limited understanding of the ultimate consequences of actions. In other words, these goals represent the
desire to carry out relatively simple actions like synthesizing a particular type of hypothesis or extending
an existing hypothesis. The goal-directed blackboard’s goals can not represent complex, long-term goals
like “resolve the uncertainty in a particular hypothesis” or “take actions to differentiate between these
two alternatives.” Furthermore, they can not represent the role of the various (sub)goals in satisfying the
overall system goals. More general goals such as these require sequences of actions to be accomplished. In
Section 6.5, we will examine an extension to the goal-directed blackboard model that addresses this limitation
by providing long-term goals via planning. Both the BB1 and RESUN systems (Sections 6.4 and 6.9) also

address this issue through planning mechanisms.

?*Note that this mechanism is similar to the HSII's stop KS except that it operates via the goal mechanism instead of by
directly analyzing hypotheses (this makes it more general since HSII relied on the fact that there was a single solution in each
blackboard “region” to recognize “subsumed” actions). Thus, the inhibiting goals mechanism deals in part with termination.
However, this mechanism does not address the issue of how to recognize that enough work had been done on a particular
solution component—e.g., through the use of an appropriate model of the state of problem solving. This issue was addressed
in other DVMT research—see Section 6.5.

34



(D) — O

Control Domain Domain
Knowledge |« —— > < ——-> Knowledge
Control Blackboard

Sours:&s Blackboard Sourc.:es

~~— (Hueristics)

| Control,  Domain
Events Events
[ ¥ ¥
! { Agenda I
| Manager )}
[
Ratin %
Fu.nct%ons : iKSIS
|
|

————>0D /
ara \( Scheduler }
3 Control

Figure 10: The BB1 blackboard architecture.

Compared to the agenda-based architecture of HSII (Figure 1), BB1 adds the control blackboardand control knowledge
sources. The agenda manager plays much the same role as the blackboard monitor, since it determines which (control
and/or domain) KSs to trigger following the execution of either a control or domain KS. However, because BB1
maintains its agenda in two parts (triggered KSIs and executable KSIs), the agenda manager is also responsible for
checking the preconditions of triggered KSIs on the agenda to see if they should become executable. In addition,
the agenda manager must check the obviation conditions of the KSIs on the agenda to decide if they should be
removed. The scheduler rates the executable KSIs on the agenda using the heuristics (rating functions) associated
with the currently active focion the control blackboard, selects (and removes) the highest rated one, and invokes the
appropriate (control or domain) KS action.

6.4 BB1l: The Control Blackboard Architecture

Hayes-Roth’s control blackboard architecture [Hayes-Roth85a, Hayes-Roth88]—now usually referred to as
BB1 after the name of a particular implementation—extends the control architecture of HSII through the
addition of a “control planning” mechanism. In BB1, the control problem is treated as a problem-solving task
in itself. Both the domain problem and i‘.he control problem are then solved using a blackboard approach.2’
In order to do this, the BB1 framework adds control knowledge sources and a control blackboard to the domain
KSs and domain blackboard of the HSII model. The BB1 architecture is shown in Figure 10. The basic
control loop of BB1 is similar to that of HSII (Figure 2).

25The concept of treating the blackboard control problem as a task that should be solved using the blackboard model actually
originated with OPM [Hayes-Roth79] and Hearsay-III [Erman81]. OPM was a blackboard-based opportunistic planner. It
included an ezecutive blackboard plane whose information could modified by KSs and which was used in making scheduling
decisions. Hearsay-III was one of the first attempts to generalize and extend the HSII architecture. Scheduling in Hearsay-III
could be based on very complex schemes because the scheduling functions could be changed by scheduling KSs that could
also record control information on a scheduling blackboard. These same ideas form much of the basis of the design of the BB1
architecture. However, BB1 provides more structured methods for influencing control decisions and has been much more widely
used than Hearsay-III.
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Like HSII, BB1 uses an agenda-based approach to control. However, instead of using a single, ﬁxed.
scheduling function for rating actions, BB1 rating functions are selected via the control planning process.
Control KSs incrementally construct and refine conirol plans on the control blackboard. Control plans are
represented at three basic levels of abstraction: strategy, focus, and heuristic. The strategy level represents
long-term plans. Strategies may be broken down into sequences of sub-strategies (which may in turn be
broken down into sequences of sub-sub-strategies, and so on). The lowest-level (sub-)strategies are broken
down into sets of foci, each of which effectively represents a goal that the system wants to achieve. A set
of heuristics is associated with each focus. Heuristics are rating functions that are used to Jjudge a possible
action’s relevance to the focus (goal). The BB1 scheduler uses the set of active heuristics to rate possible
actions.

One of the key advantages of this control mechanism is that the rating functions being used by the
scheduler can be dynamically changed. This eliminates the need to try to come up with a single complex
scheduling function that produces the desired behavior throughout the entire problem-solving process (asin
HSII). Instead, the control planning mechanism allows the user to define strategies that invoke appropriate
rating functions for different stages of processing. As each plan “step” is completed, new rating functions
are activated. In fact, “goals” need not be instantiated through the hierarchical planning mechanism, but
may be directly instantiated by context-specific control KSs. This allows the control decision criteria to be
highly responsive to changing problem-solving circumstances (direct posting of goals is discussed further in
Section 6.9). As noted in Section 5, HSII's policy KSs (which responded to the state of problem solving)
were an early precursor of KS-based control as used in BB1.

Another way of looking at the BB1 approach is as a method for doing comparative evaluations of pos-
sible actions. As we said in Section 6.2, hierarchical control mechanisms inherently select actions through
relative evaluations. In BB1, comparative evaluation manifests itself through the fact that rating functions
(heuristics) judge the value of possible actions relative to their associated focus (goal)—decisions about
what goals should be pursued are made through the hierarchical plan refinement process. An advantage
of this kind of approach is that BB1 rating functions typically have to consider a much smaller number of
factors than HSII-type rating functions (since they are not trying to judge the value of actions relative to
the overall problem-solving goals). Of course, BB1 still maintains an agenda and rates all of the possible
actions. By contrast, the control mechanisms of CRYSALIS and RESUN (Section 6.9) effectively partition
the agenda as decisions are made at each level in the hierarchical refinement process. Thus, BBI may be
at a disadvantage unless it is easy (cheap) to identify possible actions that are not relevant to each active
goal. In its favor, BB1 maintains more complete opportunism than CRYSALIS (once CRYSALIS selects a
task, this task is pursued regardless of how “poor” the associated actions are—unless the task terminates
itself). If there is no one goal that is most important, BB1 can have multiple active foci and then specify
an appropriate combination function to judge the trade-off between the relative importance of the different

goals and the relative quality of the actions (to select the action with the greatest expected value). Still, BB1
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has no straightforward, explicit way to change goals if all (domain) actions are low rated?® This capability
is provided to some extent by extensions of the BB1 control loop [Collinot89] (see below). The RESUN
framework provides the ability to compare actions versus multiple goals and to reconsider goals if all actions
are poor—as part of an explicit control search process.

Control KSs are treated just like other KSs in that their KSIs—which represent possible (control)
~ actions—are placed on the same agenda as the normal domain KSIs and are selected via the same sched-
uler rating functions.?” In other words, there is no special control planning loop in the BB1 model. BBI
maintains the opportunism of the classic blackboard model because the identification of possible actions is
done in a data-directed fashion: all possible actions (KSIs/KSARs) are placed on an agenda as they are
triggered. Since both domain and control actions are treated in this manner, both actions and plans (or
goals) can be opportunistically instantiated. There has also been work to extend the BB1 control loop for
added flexibility. [Collinot89] allows KSs to be triggered not only by the execution of KSIs, but by the
creation of KSIs (activation of KSs) and by the selection of KSIs for execution. Effectively, this allows for
multiple passes through the agenda in making control decisions so that actions that are “preparatory” for
other actions can be identified and executed.

Work on BB1 has emphasized the need for goal-directed control and long-term strategies for meeting
goals—i.e., plans. BB1 strategies represent high-level, long-term goals as opposed to the more immediate
goals of the goal-directed blackboard architecture. BB1 has also emphasized explicit representation of con-
trol strategies via the explicit control plans that it constructs. However, when describing BB1’s planning
capabilities, it is important to understand that the notion of planning in BB1 is somewhat different from
that of a typical Al “planner.” BB1 control plans implement their problem-solving strategies through rating
functions that select KSIs from the agenda, rather than directly identifying actions. In BB1, the lowest level
control “goals” are typically relatively. general goals that will influence the selection of several actions—e.g.,
“work in region z” or “prefer actions of type y.” This approach allows for highly opportunistic goal-directed
control—e.g., when there are multiple, competing system goals and decisions must depend on the specific
data or hypotheses that are available. However, the framework would make it difficult to specify detailed
plans should this be desirable; there would be very substantial overhead in using the agenda and ratings
functions to accomplish detailed planning. Thus, some control reasoning in BB1 is still implicit—especially
since the BB1 model makes it possible to have multiple active strategies and goals. This forces the BB1
scheduler to use implicit reasoning methods (i.e., numeric “combining functions”) to resolve goal and strat-
egy conflicts. Another control framework that stresses the importance of explicit control reasoning and does
detailed planning for control is the RESUN system (see Section 6.9).

Because the BB1 planner does not do the kind of detailed planning of a conventional planner—i.e.,
because it does not do goal decomposition to the level of identifying actions to satisfy its subgoals—it is
unable to implement certain aspects of goal-directed control through its planner. However, BB1 is able to

implement and integrate other types of goal-directed reasoning because it maintains its agenda in two parts:

26 This can be accomplished by ensuring that an appropriate “change focus” control KS has been triggered and that the
herustics rate this KSI at the desired threshold to ensure it is selected over any domain actions.
27Possible actions are referred to as knowledge source activation records or KSARs in BB1 rather than KSIs.
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triggered “KSIs” and executable KSIs/KSARs. This makes it possible to include forms of precondition-
action backchaining and subgoaling [Johnson89]. Note though, that BB1 can not fully implement subgoaling
because it does not leave an explicit record of the relationships between subgoals it needs/desires to pursue
(as in the goal-directed blackboard architecture discussed above). Subgoaling is accomplished through special
processing of goals that attempts to directly identify relevant actions. In this sense, it is somewhat similar
to the way that HSII's predict and verify KSs were able to accomplish some limited subgoaling ability.

BB1 has not focused on issues involved in modeling the state of problem solving in order to try to
understand the relationships among actions and how actions will affect the goal of satisfying the termination
criteria. This was one of the major issues in HSII and in work on the DVMT. The lack of effort on this
issue is probably a result of the types of problems to which BB1 has been applied. For example, many
assembly-arrangement problems do not involve the same kinds of solution uncertainty and termination
concerns as interpretation problems. This is because they can accumulate constraints without the need to
pursue alternative solution paths because of inconsistency of partial solutions. In other words, while there is
control uncertainty because the system may not know what actions would provide the best constraints (i.e.,
best prune the search space), the system does not have to deal with the range of solution uncertainty issues
as part of the process of making control decisions since iaa.rtial solutions are rarely inconsistent (i.e., they
can almost always be combined, producing tighter constraints). In addition, once the system constructs a
solution that meets the constraints, the system can terminate—so termination is not a major issue either.
Of course, this depends on the complexity of the application.?8

Because control actions must compete with normal domain actions for resources, this makes it possible
for the system to decide whether to reason about how to make control decisions (by executing control KSIs)
or whether to just act based on its current strategies. To our knowledge, however, the flexibility that BB1
has to reason about how to balance domain and control actions has not been exploi\‘;ed. Typically, control
KSs are given higher priority than domain actions and are thus scheduled first. In part this is probably
because there is no good theory that would allow BB1 to judge the relative value of domain versus control
actions.?®

BB1’s agenda/scheduler mechanism has two characteristics that have the potential for making BB1 very
inefficient for particular classes of problems. First, the ability to dynamically change ratings functions makes
it more likely that KSIs will have to be repeatedly re-rated as compared with a classic blackboard framework.
Second, both triggered and executable KSIs (KSARs) must have their preconditions and obviation conditions
repeatedly rechecked. This has not been a problem until recently, since BB1 has not been used for applications
in which large amounts of data trigger numerous KSIs that remain on the agenda throughout problem

solving—as in many interpretation problems. Recent work has addressed these efficiency issues as well as

28[Hayes-Roth86a] states the following in the context of the PROTEAN system: “However, when reasoning about all con-
stituent structures in larger proteins with all available constraints, PROTEAN will need a new strategy. It will have to reason
about multiple partial solutions and their relationships to one another. It will have to sequence its constraint-satisfaction op-
crations intelligently to avoid a computationally intractable explosion of hypothesized structures. It will have to reason about
alternative protein conformations corresponding to constraints that are not satisfied simultaneously.”

29This was the same issue that caused the elimination of the early HSII mechanism that scheduled KS preconditions as well
as KS actions (Section 5.7).
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the need for timely/responsive control in real-time applications. In [Collinot90] the standard “best-next”
BB1 control cycle is replaced with a “satisficing” control cycle which can limit the time spent reasoning
about control decisions and respond to real-time deadlines by not considering (rating) all of the possible
actions. In [Hayes-Roth89], not only is this satisficing control cycle used, but intelligent preprocessing of

sensor data [Washington89)] is used to “shield the reasoning system from data overload.”

6.5 Model-Based Incremental Planning

Work by Durfee and Lesser [Durfee86, Durfee87, Durfee88, Durfee91] on an incremental planner for
blackboard-based interpretation systems extends the capabilities of the goal-directed blackboard framework
(Section 6.3). An abstract model of where there are potential solutions in the search space, the relation-
ships among these potential solutions, and the likely difficulty of constructing them is used to drive the
planner. This model allows the system to develop long-term, high-level goals for meeting the termination
criteria. The planner makes it possible to coordinate sequences of actions in order to meet the long-term
goals. The system was implemented in the Distributed Vehicle Monitoring Testbed and is built on top of the
DVMT’s goal-directed blackboard framework. The architecture of this planner-based blackboard system is
similar to-that of the goal-directed blackboard architecture (Figure 8) except for the addition of the planning
mechanism which controls the goal processor.

The planner has two components: a clustering mechanism that creates an abstract model of the solution
space and a planning mechanism that uses this model to develop plans for working toward “long-term goals”
of developing vehicle tracks. The clustering mechanism forms high-level models by examining several types
of relationships among the data: temporal relations, spatial relations, event-class relations, and so on. It
provides the system with an abstract view of the information about the potential solutions (i.e., vehicle
tracks) and identifies those that may be alternatives because they may require the same supporting data.
The modeling process effectively represents a rough pass at solving the problem and can be viewed as a kind
of approzimate processing technique [Decker91b). In this respect, clustering is related to HSII’s use of the
word-seq KS (and associated processing strategy). One key difference is that clustering does not work via
the (domain) blackboard, but by directly providing information to the planner.

The planner makes use of this model to create “long-term goals” for creating the potential solutions
(tracks) and for resolving uncertainty about the potential alternatives. It does this by first identifying
and ordering “intermediate goals.” These goals represent the needs for the system to construct particular
types of hypotheses that will be needed to create and extend solution hypotheses. The intermediate goals
are ordered using domain-independent heuristics. For example, the planner will favor working on those
intermediate goals first that best discriminate between alternative solutions since this may eliminate the
need to work on data representing alternative potential solutions. Thus, the clustering process provides the
system with a view of its search space that the planner exploits to provide an abstract pass at order actions
via the ordering of the intermediate goals.

After the intermediate goals have been ordered, the planner determines how to achieve them by identifying

appropriate sequences of KSIs on the agenda. This detailed level of planning is done incrementally as each
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“intermediate goal” actually has to be achieved. kSIs to achieve the intermediate goals are identified and
ordered based on models of the KSs that provide rough estimates of their costs and the characteristics of
their output. Here the planner controls the subgoaling process in the underlying goal-directed blackboard
system. Only subgoals necessary to carry out the plan will be created.

The planning system developed for the DVMT is not general-purpose. Both the solution space modeling
process and the planning process are highly specialized to vehicle monitoring and vehicle tracking. This can
be seen by the fact that the planner has a very limited notion of goals: goals only refer to creating and
extending the potential tracks identified by the modeling process. A major reason for this lack of generality
may be the simplistic evidence model that was used in the DVMT. The representation of evidence effectively
limited the system to resolving its uncertainty by evidence aggregation—i.e., extending vehicle tracks. In
fact, a key reason for the performance advantages of the planner-based system over the basic DVMT is that
it provides the ability to do some differential diagnosis. This is because the modeling process identifies the
potential alternative tracks and, thus, the potential alternative vehicles. Providing differential diagnosis in
this way has one major drawback: all of the reasoning about alternatives is done by the control component
rather than the evidential reasoning component. In other words, there is no representation within the

hypothesis structures of the evidential relationships between alternatives.

6.6 The Channelized, Parameterized Blackboard Architecture

The channelized, parameterized blackboard architecture [Decker89, Decker91b] is an extension of the goal-
directed blackboard architecture (Section 6.3) in combination with a modified version of the BB1 architecture
(Section 6.4). The impetus for the architecture was research into real-time problem solving in the Distributed
Vehicle Monitoring Testbed. In order to use a blackboard system to solve problems involving real-time dead-
lines, the blackboard execution loop must be efficient (because there is the potential for a large number
of KSIs if approximate processing methods are considered) and predictable (in terms of .the time that will
be spent satisfying goals and making control decisions). In addition, there must be some representation of
both the current and future goals to be pursued (in order to select and schedule actions that are appropri-
ate to satisfy the goals and meet real-time deadlines). There are three main elements of the channelized,
parameterized blackboard architecture: the parameterized conirol loop, a meta-controller, and multiple ez-
ecution channels.3® The overall architecture is shown in Figure 11 and the architecture of the BB1-based
meta-controller is shown in Figure 12.

The parameterized control loop extends the control cycle of the goal-directed blackboard architecture so
that more control can be exercised over what KSIs appear on the agenda. Comparing the basic parameterized

control loop shown in Figure 13 with the goal-directed blackboard control loop (Figure 9), the major additions

30 For real-time problem solving, the system also includes a real-time scheduler that augments the standard blackboard agenda
scheduler. It schedules groups of KSIs that are associated with particular tasks (goals) and monitors their progress to ensure
that all deadlines are met. The ability to reason about the time actions are expected to take is critical for real-time problem
solving since the value of an action is strongly dependent on when its results become available. The channclized, parameterized
architecture version of the DVMT was one of the first blackboard systems to make (and use) explicit predictions about the time
necessary to execute actions and satisfy goals. The real-time scheduler will not be discussed here since we are not discussing
real-time problem solving in any detail in this paper (though real-time problem solving is discussed as an emerging line of
research in Section 7.)
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Figure 11: The channelized, parameterized blackboard architecture.

Compared to the goal-directed blackboard architecture (Figure 8), the goal-directed architecture adds the meta-
controller (see Figure 12) and the channel processors replace the goal processor. The channel processors execute the
parameterized control loop (Figure 13) that is an extension of the control loop used in the goal-directed blackboard
architecture. In addition to the hypothesis-to-goal, goal-to-subgoal, and goal-to-K'S mappings done by the goal proces-
sor, the channel processors do hypothesis filtering, goal filtering, goal merging, and KSI merging. The meta-controller
is responsible for creating channels; setting the filtering, merging, and mapping parameters for the channels; and
determining the rating functions for KSIs associated with each channel.

are the filier and merge steps: filter hypotheses, filter goals, merge goals, and merge KSIs. Filtering is done
before the (hypothesis-to-goal and goal-to-KS) mapping steps to limit the hypotheses and goals/subgoals that
are pursued through each mapping. For example, hypothesis filtering might allow through oniy hypotheses
of certain classes or hypotheses associated with particular blackboard regions. Merging also serves to limit
the KSIs that are created by combining goal and KSI units that lead to duplication of effort.

The filtering, merging, and mapping are parameterized so that the overall behavior of the loop can be
dynamically modified. The parameters are set by the meta-controller, which is based on an extended version
of the BB1 control planning architecture. In BB1, the selection of actions is affected only by the active rating
functions (the heuristics associated with the active control plan foci). The meta-controller control plan foci

not only have associated rating functions, they can also modify the parameters for the parameterized control
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Figure 12: The meta-controller of the channelized, parameterized blackboard architecture.

The meta-controller is based on the BB1 architecture (Figure 10). It extends BB1 by adding a control goal blackboard
that maintains explicit goals which drive the control planning process and by allowing its control plan foci to set
the control loop parameters for the channels as well as select heuristics. Unlike BB1, the control loop for the meta-
controller (which selects control KSs) is completely separate from the (channelized, parameterized) contro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>