Stability Analysis of Concurrent Systems with an
Indefinite Number of Processes

Mahesh Girkar Robert Moll
Department Of Computer Science
University of Massachussetts
Ambherst MA 01003

COINS Technical Report 92-72
November 13, 1992

Abstract

In a resource-oriented model for concurrent systems ([5, 22]) processes
request resources which are controlled by finite state devices called syn-
chronizers. The edges of a synchronizer S are labeled with symbols from
an alphabet of operations on resources (denoted by }_). When a pro-
cess executes an operation, it causes a state change in S. A program P
for a process specifies the order in which it executes operations. Thus
programs are strings over » . Concurrency among processes is modeled
as an interleaving of their corresponding program strings. We denote by
(P*,S) a concurrent system with k identical processes with program P
and a synchronizer S, and by (P, S) a concurrent system with an indefi-
nite number of identical processes. (P*,S) is weak safe if all interleavings
of requests for resources made by the processes can be satisfied by S; it is
strong safeif for all partial executions of the processes, S can satisfy some
outstanding request for a resource by some process. (P,S) is weak stable
(strong stable) iff there exists N > 0 such that (P*,S) is weak safe (strong
safe) for all k¥ > N. In this report, we formulate questions regarding weak
and strong stability and prove their decidability by showing an effective
procedure to determine if there exists N > 0 such that (P*,S) is weak
safe (strong safe) for all k > N. As a corollary of this result, we prove the
following full weak (strong) safety theorem: It is decidable if (P*,S) is
weak safe (strong safe) for all k > 0. Finally we show that our machinery
is powerful enough to model the standard gas-station customer problem.

1 Introduction

Most formal models for concurrent systems provide a means for describing, and
ultimately, detecting such phenomenon as deadlock, starvation and liveness. In a
resource oriented model, for example, such as that presented in [5, 22], processes
are entities executing operations which request and release resources. These re-
sources are controlled by one or many finite state devices called synchronizers.
In such a model, properties such as deadlock and liveness can be expressed nat-
urally using temporal logic. In general, a proof that establishes that the model
possesses desirable properties depends on the model having a fixed number of
processes. Even when the number of processes increase in a “uniform” way,
the task of proving that the model still possesses desirable properties has to
be performed all over again. In this report, we present a model of concurrency
that will allow us to establish that proofs “scale” upwards. More formally, we
present a simple model of concurrency, and we formulate the concepts of weak
and strong stability for this model. Intuitively, if a model instance exhibits
strong stability, then proofs regarding it are “scalable”. Thus, we show that the
following question is decidable: Does there exist a bound k such that models of
size k or greater never deadlock. If such a k exists, we also show how to obtain
it.

In Section 2, we discuss previous research related to our problem. Sec-
tion 3 describes our notation. In Section 4 we define weak stability and give
an effective way to decide it for concurrent systems, based on bounds on chain
length for sequences of vectors in non-negative lattice points in n-space (see
[7]). Section 5 discusses strong stability. In that section, we formulate for our
model the problem of strong stability, and show its relationship with infinite-
R-reachability of vector classes in a vector addition system with states (VASS).
Section 6 sketches the proof for the decidability of reachability for a VASS (see
Kosaraju [18]). Subsequently, in Section 7, we show how to modify the proof
in [18] to decide infinite-R-reachability for vector classes in a VASS. Using this
modification, in Section 7.2, we give an effective procedure for deciding strong
stability. In Section 8, we show that our machinery is powerful enough to model
one concurrent problem — The Gas-Station Customers Problem. Finally, in
Section 9, we summarize our results.

2 Literature Survey

2.1 Modeling Concurrent Systems

Much research in concurrent systems has focussed on formal specification meth-
ods for analyzing important properties of such systems. In general, a concurrent
system consists of several processes which execute operations. These operations
result in inter-process communication (IPC). Several models for concurrent sys-

tems have been proposed in literature. These models differ from each other with
respect to such basic features as whether IPC is obtained by message passing or
by shared memory, whether resource control is centralized or distributed, and
whether IPC is synchronous or asynchronous. In most models, the notion of
“interleaving” of the operations executed, is used to describe concurrency.

One such model, and an approach for automatic synthesis of IPC code for
the model, is presented by Ramamritham [5].In his model, processes contained
in a concurrent program interact by accessing and modifying the state of shared
resources. Resources are controlled by a finite state device called a synchronizer.
The interleavings that can result when operations are executed by the processes
may lead to such phenomenon as deadlock or failure of liveness for some oper-
ation. A desirable property that needs to be satisfied for the model is specified
by a temporal logic formula. Using the specification of the processes, the syn-
chronizer, and the property that needs to be satisfied, Ramamritham discusses
automatic synthesis of IPC code for the model. Buy [21] and Buy and Moll
[22] extend the above idea to involve multiple synchronizers. Processes can ob-
tain resources from synchronizers or release them. Synchronizers too can cause
invocation of operations in other synchronizers if they need a resource which is
not controlled by them. In the current technical report we formulate stability
questions regarding a subset of this model.

Concurrent systems have also been modeled using Petri Nets. For a general
review of Petri Nets and its applications, see the paper by Tadoa Murata [20)
and the book by Peterson [12].

2.2 Model Checking and Use Of Partial Orders

Analysis of desirable properties of concurrent systems normally consists of the
following steps: Given a formal specification of a concurrent system, a finite
state representation of the specification is constructed. Then, the property to
be analyzed is expressed as a temporal logic formula. Finally, the temporal logic
formula is verified.

Several algorithms have been proposed for checking if a finite-state concur-
rent system possesses a desirable property specified in temporal logic. Clarke,
Emerson, and Sistla [2] devised an algorithm linear in the size of the global
state graph determined by the concurrent system to verify any temporal logic
formula regarding the system. Valmari (1] introduced a method which facil-
itates the generation of reduced state spaces, such that the truth values of a
collection of linear temporal logic formulas are the same in the ordinary and
reduced state spaces.

More recently, in [10], Godefroid shows that most of the state explosion
due to the modeling of concurrency by interleaving can be avoided. The author
builds a state graph where only one (rather than all) interleaving of execution
of concurrent events is represented. In [11], the authors improve on Godefroid’s
algorithm for the problem of deadlock detection. They are able to generate a

global representation of the concurrent program that chooses among indepen-
dent enabled transitions in a completely arbitrary way. This simplification leads
to an algorithm for deadlock detection that is easy to implement and more ef-
ficient than in [10]. They also show how to verify general safety properties
regarding the model.

2.3 Vector Addition System With States

Vector Addition Systems with States (VASS) is a model closely related to Petri
Nets. A VASS is essentially a finite state automaton. Its arcs are labeled
with n-dimensional (n > 1) vectors whose coordinates have integer values. A
configuration of a VASS is a pair (s, v), where s is a state of the VASS and v is
an n-dimensional vector. Starting with an initial configuration (so, vg), where sg
is any state and vg is any initial vector, a path in the VASS induces a sequence
of configurations where the vector in a configuration is obtained by component-
wise vector addition of the vector in the previous configuration and the vector
along the arc traveled. An R-path is a path for which all vectors along the
path (including the initial vector) lie in the positive orthant. The reachability
problem for a VASS is as follows: Given an initial configuration (so,v) and a
final configuration (s;,vy) does there exist an R-path from (so, vo) to (ss,vy).
Kosaraju [18], based on work in Sacerdote and Tenney [19] and Mayr (8],
proves that the reachability problem for a VASS is decidable. Some previous
related results are presented by Ginzburg and Yoeli [4]. In that paper, the
authors prove that reachability is decidable for a VASS-which defines a regular
language. A similar result is proved for Petri Nets by Rudiger Valk and Guy
Vidal-Naquet in [15]. Roshier and Yen [6] show a bound for the problem of de-
termining the size of the reachability set from a certain initial configuration. In
Section 5, we establish our result on strong stability by generalizing Kosaraju’s
result to a VASS reachability problem for certain special classes of vectors.

2.4 Reasoning With Infinitely Many Processes

So far we have discussed research that considers concurrent systems of fixed
size, i.e. systems with fixed number of processes. We now discuss work that
considers concurrent systems of increasing size.

Kurshan [13] shows that regularity of systems with identical processes may
facilitate the construction of a homomorphic reduction in such systems to a
constant size state space analysis which is independent of the number of pro-
cesses. The construction of the above reduction is ad hoc. Clarke, Browne and
Grumberg [3] introduce a method which uses an indexed form of branching
time temporal logic for specifications. In their method, one needs to establish
a bisimulation equivalence betweén global state graphs of systems of different
sizes. This procedure is again ad koc. In [14], Krushan and McMillan use
induction for proving correctness of these systems. The authors construct an

invariant process I from the given user processes. I has the following charac-
teristic: The correctness property holds for I, and it also holds for any user
process composed with I. The authors then conclude that the correctness prop-
erty holds for any number of user processes. Constructing I is again a ad hoc
procedure.

German and Sistla ([16, 17]) consider a model which consists of a con-
trol process and several identical user processes. The processes communicate
through synchronous actions in the style of Milner’s Calculus of Communicating
Systems [9). Using the machinery introduced by Milner [9], the authors de-
scribe two kinds of operations: those which cause inter-process communication
and those which cause internal transitions within a user process and which can
be executed independently of other user processes. The authors use linear time
temporal logic for specifying desirable properties of the concurrent system. The
execution of the user processes and the control processes is simulated by con-
structing a VASS. The following basic question is answered: Does there exist an
n, such that for a system (C, U™) (C denotes the control process and U™ denotes
n user processes), there exists an infinite fair execution of the processes for which
the temporal specification is not satisfied. Deadlock being a global property of
the processes cannot be expressed in linear-time temporal logic. The authors
address the question of detecting a potential deadlock in the system and show
that the following question is decidable: Does there exist an n such’ that the
system (C,U™) deadlocks. However, they do not address the case of detecting
whether there are infinitely many instances of deadlock.

"Strong stability is a property which essentially deals with the problem of
detecting infinite instances of deadlock — a completely different problem from
detecting a single instance of deadlock. In general, if a model is strong stable,
then it has only finitely many deadlock situations. Of course, the concept of
strong stability need not be associated with deadlock. It can be associated
with any global property of the concurrency model. In this report, we concern
ourselves with answering the following question for a model similar to the model
presented in {5, 21, 22]: Do there exists infinitely many instances of n such that
for all these instances, deadlock occurs in the synchronizer process. We show
the decidability of this question directly by showing the decidability of infinite-
R-reachability of vector classes in a VASS (see Section 5). The proof is based
on an extension of the proof presented in [18].

3 Preliminary Definition and Results

We rely on traditional regular language notation. For a string w over an alphabet
3, |w| denotes its length and prefiz(w) denotes its set of prefixes. If w is a

non-empty string, its ith symbol (1 € i < |w|) is denoted by w[i] and its
ith prefix (denoted by w') is the prefix string w{lJw(2]...w[i]. String w; is a
“substring” of wy iff |wy| < |we| and there exists positive integers p; < pa <

-+« < Plw,| such that wy = ws[p]ws[p2] ... wa[pjw,)]. Let S = {p1,p2,...,p:} be
a subset of {1,2,...,|w|} with p; < p2 < ... < p;. We write w[S] for the string
w(p1Jwlpy] . .. w[p;]. (Note: If S is empty, then w(S] is the empty string.) Let
wy, Wy, ..., wr be k strings. The string w is an “interleaving” of these k strings

iff
1. |w| = |ws| + |we| + |ws| + ...+ |wi]; and

2. $1,852,...,5k partition {1,2,...,|w|}, such that w; = w[S;], 1 < i < k.
We allow a partition to be empty.

We now describe our initial model for concurrency: Alphabet Y specifies the
operations that can be performed on resources in the system. A Synchronizer
S is an FSA G = (V, E). It has a designated start state go, a labeling function
T which assigns to each edge in S a symbol from), and a transition function
6§ (V,X7) — V. All explicit states of S are accepting states. L(S) represents
the language accepted by S. In general, however, “dead” states are present
implicitly. For example, when we discuss weak stability (see Section 4), any
string over) which represents an interleaving of operations and for which
there does not exist a path inside S (or in other words, the string does not
belong to L(S)) would lead to the dead state. (Note: The term “path” used
above represents any sequence of states starting with go and derived using 6.)

A “process” is an entity which executes operations. These operations request
and release resources controlled by the synchronizer.” The order in which a
process executes its operations is specified by its “program”, which is a string
over y . We initially restrict all processes to have the same program. Let P be
a program with string a8z ...a1, a; € Y, (I is the length of the program for P).
We also assume that the a;’s are distinct. (Thus [< |].)

Definition 1 Let I be the set of interleavings of k processes, each of whose
program is P. Thus, w € I; if and only if w is an interleaving formed from
k strings each of which is ayay...a;. Let I = i, Li. We refer to I as the
“Interleaving Language” for P.

Below we define a many-to-one mapping from a string in prefix([) to a vector
in { = 1 dimensions. Then, we define a one-to-one mapping from a string in
prefix(I) to a sequence of vectors. Definition 2 is fundamental because it shows
how to represent prefixes of interleavings as tuples in non-negative n-space. In
Section 4, these vector sequences are analyzed in order to decide weak stability.

Definition 2 Let program P = a1a;...a1. For any string w € prefiz(I), let
vec(w) = (ng,,Nay,s- -, Bar,) Tepresent the vector in | — 1 dimensions where
ng, is the number of occurrences of a; minus the number of occurrences of a;4)
in w. Let vec_seq(w) be the sequence of (I — 1)-dimensional vectors

0, vec(w?), vec(w?), vec(w!®!(= w))

where 0 is the vector with all coordinates zero.

Since each symbol in program P = a;a3...aq; is distinct, and, since for any
string w € prefix(I), the number of occurrences of a;+) are not more than the
number of occurrences of a; (1 < i <! — 1), vec(w) has non-negative integer
coordinates. Further, since w/, the jth prefix of w, also belongs to prefix(I),
every vector in vec_seq(w) has non-negative integer coordinates.

As an example, if 3~ = {(,)}, and the program P for each process is (),
then I} = {()}, Iz = {()(), (())}, etc. In this case, I is the language of matched
parentheses. If ° = {a,b,c}, the program P for all the processes is abc, and
w = aabeb (w € prefix(I)), then w? (the second prefix of w) is aa, w* = aabe (the
fourth prefix of), vec.seq() = (0, 0)(1, 0)(2,0)(1, 1)(1, 0) and vec(w) = (1,0).
In this example, the poset is two-dimensional because P has three symbols.

With |P| =1, I is regular. If |P| = 2, I becomes context-free. For |P|> 2,
I is non-context-free.

4 Weak Stability

We begin with a few definitions.

Definition 3 We denote by (P*,S) a finite concurrent system with synchr'o-
nizer S and k identical processes each of whose program is P = a a5. . We
denote by (P,S) a concurrent system wtth an indefinite number of processes,
eack with program P,

Definition 4 (P*,S) is weak safe iff I C L(S).

Definition 5 (P, S) is weak stable iff 3k > 0, such that Vi > k, (P?,S) is weak
safe.

Definition 6 (P,S) is full weak safe iff Yj > 0, (P7,S) is weak safe.
Proposition 1 (P, S) is weak stable iff I C L(S).

Proof: If I C L(S), then obviously (P,S) is weak stable. To prove the
result in the other direction, we proceed by contradiction. Assume (P, S) weak
stable but I € L(S). Then there exists k > 0 such that for all j > k, I; C L(S).
Also, there exists w € I such that w ¢ L(S). Let w be an interleaving formed
from m instances of program P. Consider the following set of interleavings:
{wP,wPP,wPPP,..}. Each of these belongs to I but does not belong to
L(S). Since they are formed fromm+1,m+2,...,m+i{,m+i+1,... (i > 0)
processes respectively, this contradicts weak stability. O.

Several examples are presented in Figure 1. The process with program string
“12” is weak stable with respect to the synchronizer shown in Figure 1(i) but
it is not weak stable with respect to the synchronizers shown in Figures 1(ii),
1(iii) and 1(iv).

Proccss 1
Proccss 2
Proccss 3

-
~

P
~

12 Weak Stablo
12 Stroag Stable
12

[)

°

™

°

°

°

°

°

°

°

° Not Weak Stable
Y Strong Suble

.

°

e

°

[)

[J

°

°

°

®

® Not Weak Stabk
PS Nat Stroog Stable
°

.

®

Y (iti)

°

°

°

OO0 mmm
Not Stromg Stable
(iv)

Figure 1: Weak and Strong Stability Examples

We augment the synchronizer S by adding a new “dead” state D. For each
existing state s of S, we add an arc with label ¢ € Y from s to D if and only if
there does not exist an arc with label ¢ out of state s. We also add arcs for every
possible symbol in the alphabet from D back to D. Following the arguments
presented in the proof for Proposition 1, we have

Corollary 1 (P,S) is not weak stable if and only if there ezists w € prefiz(I)
such that 8(qo, w) = D. '

Theorem 1 Weak stability is decidable.

We give an effective procedure which takes as input an arbitrary concurrent
system (P, S) and determines a bound k such that if (P?, S) is weak safe for all
j < k, then (P,S) is weak stable. (Note: For a fixed j, checking if (P/,S) is
weak safe is clearly algorithmic. One possible brute force method would be to
check if any interleaving of j processes leads to the dead state D).

Before presenting our procedure, we recast our language theory formulation
of concurrency as a combinatorial problem on the poset of non-negative lattice
points in Euclidean n-space. We order two lattice points as follows:

a=(a1,a2,...,an) Sb:(bl,bz,...,bn)

iff Vi,a; < b;. An N —chain is a set of N points which are pairwise comparable.
A point belongs to the kth plane if the sum of its coordinates equals k. Now
consider selecting points from successive planes, beginning with the kth plane.
Given N > 0, Girkar and Moll [7] give an effective upper bound on the number
of points that must be selected in order to guarantee the existence of an N-chain
among the selected points. This bound is denoted by L(n, N, k), where n stands
for the dimension, NV stands for the chain length one seeks, and k stands for the
first plane from which a point is chosen.

Now consider a slightly different problem. Starting with some kth plane,
select any first point. The second point can be selected from the kth, (k + 1)st,
or (k — 1)st plane. In general, if the ith selected point is chosen from the
mth plane, then one can choose the (i + 1)th point from the mth, (m + 1)th,
or (m — 1)th plane. (We may choose points that have been selected before).
Also, suppose that the last point selected is such that all its coordinates are
less than some positive integer B (Note: Intermediate selected points need not
obey this constraint). For such a sequence of selections, we derive an upper
bound R(n, N, B, k) on the number of selection steps required to guarantee the
existence of a non-increasing chain of N points from among the selected points.

Proposition 2 R(n, N, B,k) < N(nB + L(n,N,nB))"

Proof: Let us denote the last point by 4. The proof is by a case analysis:
Case I: Suppose there is a point a in this sequence such that one of its
coordinates exceeds L(n, N,nB) + nB — 1. Since b has all its coordinates less

than B, and because of the nature of the selection process, these exists a re-
verse subsequence chB,CnB+1,.-:)CnB+2;:---1Cn B+L(n,N,;nB)-1 in between b and
a where cnp4i,0 < i < (L(n,N,nB) — 1) is a point in the (i + nB)th plane.
The length of this subsequence is L(n, N,nB). Using the result by Girkar and
Moll [7], we conclude that there exists a strict increasing N chain in the reverse
subsequence which implies a strict decreasing N chain in the original sequence.

Case 2: Suppose all the intermediate points are such that no coordinate
exceeds L(n, N,nB)+nB-1. There are only (nB+ L(n, N,nB))" such distinct
points. Therefore, there exists a point which is repeated at least N times in the
sequence of R(n, N, B, k) points. This completes the proof. O.

Note that the above bound is independent of the plane from which the first
point is selected. Hence, we write R(n, N, B, k) as R(n, N, B). '

Note: For a string w € prefix(]), the vectors in the sequence
vec_seq(w), is one possible sequence of selecting vectors as discussed
in Proposition 2. The only difference is that the coordinates of the
end vector vec(w) are not constrained.

Before presenting our procedure to decide weak stability (proof for Theo-
rem 4), we make an important observation. As stated in Corollary 1, (P,S) is
not weak stable if and only if there exists a w € prefix(I) which leads to state D.
If D is “reachable” via a string w € prefix(J), then there must exist a shortest
such string. Let S have N states including the dead state D. Suppose there
exists a string w € prefix(I), such that 6(go, w) = D. Further, suppose there
exists a length N + 1 non-increasing chain in the sequence vec_seq(w). (Let us
denote such a property of of vec_seq(w) as property X.) Then, by the pigeon
hole property, some state of S must appear twice among these N + 1 points.
Let us denote the first and second position where some state repeats by p; and
p2. Obviously, vec(w?!) > vec(wP?). Let z be the string obtained from w by
deleting the substring between positions p, and p; (i.e. symbols from position
p1 + 1 up to and including symbol at position p;). Consider the sequence of
points vec_seq(z). All points up to position p; in the sequence have non-negative
coordinates. Further vec(z?!) = vec(w”'). Since vec(wP') > vec(wP?), points
beyond p; in the sequence vec_seq(z) also have non-negative coordinates. Thus
z € prefix(I). Also 6(qq,z) = D since the same state appeared at end of p; and
P2 in w. :

Now suppose vec_seq(w) is such that there exists a length N + 1 non-
increasing chain only in a subset of coordinates. Suppose the first point on this
chain occurs at position i in w. Suppose vec(w) (the final point in the sequence
vec_seq(w)) is such that all the coordinates which do not participate in the chain
are > 2(|w| — i + 1). (Let us denote such a property of vec_seq(w) by property
Y.) It is easy to see that once again, we can delete the substring between two
positions p; and pz (i.e. symbols from position p; + 1 up to and including the
symbol at position p;) in the non-increasing chain at which a state repeats to
obtain a shorter string z such that 6(go, z) = D and z € prefix(I). (Essentially,
the coordinates which do not participate are greater than the length of the the

string from position p, to the end of w. Hence, pasting the string from position
p2 + 1 onwards after position p; leaves all these coordinates positive.) ’

We now present our procedure for proving the main result of this section,
Theorem 1. Our procedure will obtain a bound k, such that, any string w €
prefix(I) of length greater than k, and for which §(go, w) = D, can be shortened
to obtain another string w’ € prefix(I), such that, 6(go,w’) = D. Thus, if D is
reachable via a string in prefix(I), then, it is reachable via a string in prefix(I)
of length less than k. The bound k will be obtained using the bound R(n, N, B)
discussed in Proposition 2.

Define U(0) = R(0, N+1,0) = (N+1). (Note: The above definition assumes
dummy values for the B part of the definition for R(n, N, B) since we are in a
0-dimensional poset).

Let

U(l) = R(1,N+1,20(0)),
iy = RN

Theorem 1 follows directly from the following proposition.

Proposition 3 A pr&gram of length | is weak stable if and only if state D is
not reachable via any interleaving of length U(l — 1) or less.

Proof: We use induction to prove the above proposition. Consider the base
case when P contains one symbol ag (|P| = 1). For this case, I = prefix(I) = ag.
It is easy to see that if we consider all strings in prefix(I) of length U(0) = N+1,
then D is not “reachable” for any of these interleavings if and only if S is weak
stable. (Note that for programs of length one, the poset has zero dimensions).

To prove the induction step, assume by contradiction that for a program P
of length [, the shortest string w € prefix(I) such that 6(go, w) = D is of length
greater than U(! — 1). If the end point b = vec(w) of w is such that all its
coordinates are less than 2U(l — 2), then by Proposition 2, we conclude that
there exists a sequence of N + 1 non-increasing vectors in vec_seq(w) (property
&), which implies that we can obtain a shorter string in prefix(I) which reaches
D. This contradicts the fact that w is the shortest string such that w € prefix(I)
and 6(go, w) = D. Hence suppose that at least one of the coordinates of b is
greater than 2U(1—2). Without loss of generality, assume that the coordinates of
every vector in vec_seq(w) are rearranged according to the non-decreasing order
of the components of b. Thus, b;-; > 2U({—2). Consider by. If b > 2(N +1) =
2R(0, N + 1,0), then all the coordinates are > 2(N + 1), which implies that
N + 1 symbols back from b, all the coordinates are positive for all the points.
Also, some state s in S will repeat for these penultimate N + 1 selections. Let us
denote the two positions where s repeats for these penultimate N + 1 selections
by p1 and p;. Then deleting the string between these two positions (symbols

10

from position p; + 1 up to and including symbol at position ps) will produce a
shorter string in prefix(J) which reaches D. So suppose b, < 2(N + 1) = 2U(0).
It follows that there exists an §,1 < i < (I — 1) such that b > 2U(i — 1) and
b; < 2U(i-2),1 £ j < (i—1) (property V). If we now look at the penultimate
U(i — 1) steps in the processing of w, then there exists a non-increasing chain
of N +1 vectors among coordinates 1 thru (i — 1). .Further, all of the remaining
higher coordinates from position i onwards remain positive for the penultimate
U(i — 1) steps, since they were > 2U(i — 1) at the end. Once again, from the
arguments presented following Corollary 1, we can obtain a shorter string in
prefix(I) which reaches D. O

Thus, one needs to check if U(l — 1) processes are weak safe with respect to
the given synchronizer in order to decide weak stability. This proves Theorem 1.

We now prove the decidability of full weak safety of a concurrent system
using Proposition 3.

Corollary 2 Full weak safety is decidable.

Proof: We present a procedure to decide full weak safety of any concurrent
system (P, S). Given such a system, (P is a program of length [.), we systemat-
ically test if (P7, S) is weak safe for all j from 1 through U(I—1). (For a fixed j,
one brute force method to decide if (P7, S) is weak safe would be to check if all
possible interleavings generated by j copies of program P are in L(S).) Using
Proposition 3, and, from the the definition of weak stability (see Definition 5),
it follows that (P, S) is full weak safe if and only if (P?,S) is weak safe for all
j from 1 through U(I -1). Q.

In the proof of Proposition 3, we restricted each symbol in the program P to
be distinct. The corollary below shows that both weak stability and full weak
safety are decidable in the case of repeated symbols.

Corollary 3 For a program P = aia;...a; where the a;’s are not necessarily
distinct, and a given synchronizer S, weak stability (full weak safety) is decid-
able.

Proof: We present the proof only for deciding weak stability. The proof for
deciding full weak safety is similar.

We transform P and S into a another program P’ and synchronizer $’ with
transition function &’ over a new alphabet Z' such that each symbol in P’ is
distinct and (P, S) is weak stable if and only if (P’, S’) is weak stable.

Y’ has ! symbols denoted by{by,bz,...,b:} and P’ is the string b1bz...b:.
Let I' be the Interleaving Language for program P’. Define function ¢ from
Y. = T such that t(b;) = a;. For each a;, t~!(a;) is the collection of elements
of ' that are mapped to a; by t. S’ has the same states as S. However, each
arc in S with label a; is replaced with [t=1(a;)| arcs. Each of these |t~!(a;)| arcs
is labeled with a corresponding symbol from t=!(a;).

11

Suppose there exists a string w € prefix(I) such that §(go,w) = D (i.e. w
leads to the dead state in S). Consider the string w’ € prefix(I’) obtained from
w by replacing every symbol a in w by any symbol from ¢~1(a). It is easy to
see that §'(go, w') = D for &'. Similarly, if there exists a string v’ € prefix(I’)
such that §’(go, w') = D, then the string w obtained from w’ by replacing every
symbol b in w’ by ¢(b) is such that 8(qo, w) = D. This completes the proof. O

It should be clear from the proof of Proposition 1 that if (P4, S) is not weak
safe for some j > 1, then for all £ > j (P*,S) is also not weak safe. Thus, if
weak stability fails, the set of positive integers j such that (P7,S) is not weak
safe is always infinite. Essentially, we cannot have a bounded number of failures.
This is not the case for strong stability, which we turn to next.

5 Strong Stability

For weak stability, we dealt with a synchronizer that did not do any “look-
ahead”. That is, if presented with an interleaving representing a sequence of
operations, it tried to execute these operations on behalf of the processes in the
same order. We now consider a slightly more powerful synchronizer which at
every state chooses to service any process whose next operation it can execute.
If there is more than one process whose operation can be executed, it arbitrarily
chooses one among them. For such a model, deadlock occurs when the synchro-
nizer reaches a state where it cannot execute any outstanding operation for any
of the processes. Such a model is strong stable if there exists a bound k&, such
that k or more processes never deadlock for the synchronizer.)

As an example, process “12” is strong stable for the synchronizers shown in
Figures 1(i) and 1(ii), but it is not strong stable for the synchronizers shown
in Figures 1(iii) and 1(iv). In Figure 1(i), the synchronizer accepts all strings,
hence process “12” is strong stable for it. The synchronizer in Figure 1(ii)
will deadlock if there is only one instance of process “12”. However, for more
than one instance, it will never deadlock. The synchronizer in Figure 1(iii) will
deadlock at state b for odd number of processes, but will not deadlock for an
even number of processes. The synchronizer in Figure 1(iv) deadlocks once it
finishes requests for one instance of process “12”, and then remains deadlocked
in state c.

The examples in Figures 1 distinguish our work from the research presented
in [16] and [17). In Figure 1(ii), a potential deadlock exists with one process,
however the model is strong stable since two or more processes are always strong
safe. For Figure 1(iii), deadlock situation exists with odd number of processes,
hence it is not strong stable. Thus, for both examples deadlock exists (and the
procedure outlined in [16] will detect that); however, the first example is strong
stable where as the second one is not.

We now formalize the above ideas. Let SLA(v) represent the set of symbols
on edges directed out of a node v € V. (SLA can be thought of as “synchronizer

12

look ahead”.) For all strings 01,02 € 3, let

LA ={ a€) ifor=o0iaz,z€Y°
o 0 otherwise

Thus, LA is either the singleton set containing the “look ahead symbol” in
o3 provided oy is a proper prefix of o3, or else it is empty.

A Partial Ezecution of a process is any prefix (possibly empty) of its pro-
gram string. Let py,pa, ..., pr represent partial executions of k identical pro-
cesses, each with program P = ajaz...a;. A partial execution of k identi-
cal processes with individual partial executions p;,ps,...,pr is any interleav-
ing of p1,p2,...,px. Let PE(py,p2,...,pr) denote the set of all partial exe-
cutions of k processes with individual partial executions py, ps, ..., pr respec-
tively. Since we are interested in the case when p; # P for some i, we define
PE(py,p2,...,px) =0if Vi,p; = P.

Definition 7 A concurrent system (P*,S) is strong safe iff for all partial eze-
cutions py,pa, ..., Pk (i 18 a partial ezecution of process i) and

Vo € (L(S)nPE(Pth.- . -:Pk)):
i=k

(U LA;)ﬂSLA('s(!Io,a)) £0

i=1

~ Intuitively, if a concurrent system (P*,S) is strong safe, then, for all possible
partial executions, the synchronizer and the k processes never deadlock.

Definition 8 (P,S) is strong stable iff 3m > 0 such that Vk > m, (P%,S) is
strong safe.

Definition 9 (P,S) is full strong safe iff Vk > 0, (P*,S) is strong safe.
Theorem 2 Strong stability is decidable.

The proof of strong stability is based on the proof of the decidability of
reachability for vector addition systems with states (VASS) (see Kosaraju [18]).
Whenever possible, we have adopted Kosaraju’s notation. A VASS is a finite
state automaton in which the label on each arc is an n-tuple of integers. A
configuration of the VASS is an ordered pair (g, v) where ¢ in a state and v is a
point in Z". For v € Z", let IIj(v) be the jth coordinate of v. Starting with an
initial configuration (g, z), a path from ¢ in the automaton induces a sequence
of configurations. A new vector is obtained from the previous configuration by a
component-wise vector addition of the label on the arc “traveled” and the vector
in the previous configuration. A configuration (¢’,y) is r-reachable from (g, z)
iff there is a path from the initial configuration (g, z) to (¢’,y) (denoted by

13

(¢',y) € r(g,z)). Such a path is an r-path from (g, z) to (¢’, y). A configuration
(¢',y) is R-reachable from (g, z), iff there is a path from (g, z) to (¢’,y) such
that all vectors along the path (including z and y) belong to the positive orthant
in n-space (denote by (¢’,y) € R(q,z)). Such a path is an R-path from (g, z)
to (¢',y). The reachability problem for vector addition systems is the problem
of deciding, for an arbitrary ¢,¢’,z and y, if (¢, y) € R(q,).

Let A C {1,2,...,n}. A configuration (¢’,y) is semi-R-reachable (or SR-
reachable) with respect to A from (g, z) iff there is a path from (g, z) to (¢', v)
such that all vectors v along the path (including z and y) are positive in the
coordinates specified by A; (i.e. for all j € A, II;(v) > 0). Such a path is an
SR-path from (g, z) to (¢, y).

5.1 Mapping Between Strong Stability and VASS

Consider k processes, each with program P = a, .. .a;, where all a;’s are distinct.
We describe below a transformation of the synchronizer S into a VASS. The
configurations of the VASS, which are non-negative integer tuples in n-space,
will track partial executions of the processes.

The states and arcs of the VASS that captures S are identical to those in S.
We label the arcs of this VASS as follows: For each symbol in P, we associate
a unique I-tuple of integers. For @;,2 < i < (I = 1), the tuple is such that its
(i — 1)th coordinate is -1, ith coordinate is 1, and, all of its other coordinates
are zero. The tuple for @, is such that its first and last coordinates are both
1, and, all of its other coordinates are zero. The tuple of a; has a -1 in the
(I - 1)th coordinate, and it is zero in all its other coordinates. Every arc of the
VASS is annotated with the [-tuple of integers associated with the symbol on
the corresponding arc in S. The initial configuration for the VASS is (go,0),
where ¢ is the initial state of S and 0 is the [-dimensional zero vector.

As an example, consider Figure 2 in which }_ = {a,b,¢}, P = abc, and w =
aabcab is one possible partial execution of processes 1, 2, and 3, with individual
partial executions abc, ab, and a respectively (as shown by the staircase in the
figure). To transform the synchronizer into a VASS, we associate a tuple as
described above for each symbol in). The initial state of the synchronizer is
z. The sequence of configurations produced in the VASS after processing each
symbol in w is as follows:

(.’L‘, (01 0) 0))a (ys (11 01 1))) (U, (2, 0’ 2))) (u! (l) 1) 2))v
(2,(1,0,2)),(#.(2,0,3)),(2,(1,1,3))

Thus, after processing a symbol in w, the VASS changes its state and reaches
a new vector. After processing the ith symbol in w (i.e., after processing w*,
the ith prefix w'), the vector reached is such that its first (second) coordinate
equals the difference between the number of occurrences of a’s and b’s (b’s and
c’s) in w', and, the third coordinate equals the number of occurrences of a’s in

w'.

In general, the sequence of configurations induced by the processing of a

14

Process 1 abLJ

Process 2 a bjec
Process 3 a|b ¢
L o
L L
o [
w =aabcab is one partial execution \LJ/

of the three processes

(L, 01)

W m

(‘l' lo 0)

(o0 -1, 0)

[¢]
]}

VASS

" Figure 2: Synchronizer and its VASS

15

partial execution o (and, which also belongs to L(S)) by the VASS describes an
R-path. Suppose the (m+1)th configuration along this R-path is (s, v). Then, s
is the state reached in S after processing the first m symbols of & (equivalently,
after processing the mth prefix of o, namely 6™) and v is the vector whose first
1 — 1 coordinates count the differences between the number of occurrences of
a;—; and g;, (2 < i <) in 0™, and, its Ith coordinate counts the number of
occurrences of a; in o™,
Vector v has the following important properties:

1. Since each symbol of P is distinct, the last coordinate of v equals the
number of processes involved in the partial execution ™. (Note: This
coordinate will be used in determining the strong stability constant, pro-
vided the model is strong stable.)

2. The last coordinate of v is at least as large as its other coordinates.

3. The first | — 1 coordinates of v are precisely the coordinates of vector
vec(oc™) (see Definition 2).

4. If the ith (1 < i <! —1) coordinate of v is greater than zero, then, there
exists a process whose next operation to be executed is a;41.

5. Since any partial execution of processes has the property that the differ-
ence between the number of occurrences of a;_;’s and a;’s (2 < i <) is
non-negative, and, since the last coordinate of v cannot be negative, v has
only non-negative coordinates.

In what follows, we use S interchangeably to denote either the
original synchronizer or the VASS into which it is transformed. The
meaning should be clear from context.

5.2 Vector Classes, Infinite-R-reachability, and Bad States

In order to decide weak stability, we obtained bounds on length of chains of
vectors in the sequence vec_seq(w) for a partial execution w. However, in order
to decide strong stability, we need to consider grouping vectors according to
certain properties satisfied by their coordinates. These properties are aimed at
describing conditions under which a partial execution of processes deadlocks.
Intuitively, a vector class is a set of vectors whose coordinates satisfy these
properties.

For example, in Figure 3, consider the partial executions ab, dabbccab, and
aabbccaabbeccad constructed from one, three, and five processes respectively.
These three partial executions deadlock at state /. The vectors reached at
state U for these partial executions are (0,1,1), (0,1,3), and, (0, 1,5) respec-
tively. (The first (second) coordinate counts the differences between number
of occurrences of symbol a and symbol b (the differences between number of

16

Process 1 abe

b b ﬁmasZ abec

c Process 3 abec
Process 4 abe

o L

[L

o o

Figure 3: Vector Classes

occurrences of symbol b and c), and the third coordinate counts the number
of occurrences of symbol-a.) It is easy to see that any partial execution that
reaches state U/ with an end vector whose first coordinate is zero, and second
coordinate is positive, will deadlock at U. Thus, for the purposes of detecting
deadlock at state U, the vector class would contain vectors with the property
that their first coordinate is zero, and their second coordinate is positive.

We also describe when a pair consisting of a state of the VASS and a vector
class is infinite-R-reachable from an initial configuration. Informally, a pair
consisting of a state and a vector class is infinite-R-reachable from the initial
configuration in a VASS, if and only if there are infinitely many R-paths from
the initial configuration which reach the state with any vector that belongs to
the vector class. These definitions are then used to precisely describe “bad”
states (see Definition 11) of S. Finally, Proposition 4 associates strong stability
with detecting bad states.

Definition 10 Consider vectors in Z®. Let W,W’ be subsets of {1,2,...n}
such that WN\W’' = ¢ and W, W’ are not both empty. A Vector Class for
W, W' (denoted by yw.w')is the set of vectors v in the positive orthant with
the property that l'I.(v) =0ifi € W, and for some j € W', II;(v) > 0. Given
W, W', we say (¢, VW'"') is R-reachable from (q,z) if and only if there ezists
vE VW' such that (¢',v) is R-reachable from (g,z). Let PWW' denote the
set of R-paths from (q,z) to anyv € YWV I | P s mﬁmte, we say that
(¢, V¥%') is infinitely-R-reachable from (q,z). If |P¥:¥’'| is a finite non-zero
value, then we say that (¢, yww) is finitely-R-reachable from (q,z).

17

In order to motivate the definition of bad states, we consider a scenario
in which a partial execution of k processes deadlocks. More precisely, let
P1,P2,--., Pk be partial executions of k processes and suppose there exists a

o such that
o € (L(S)[PE(P1,p2:-- -, 1))
and for which '

i=k
(U LAF)(\SLA(5(g0,0)) = 0
i=l
As noted earlier, the sequence of configurations induced by the processing of &
by S describes an R-path. The final vector in the sequence satisfies the following
two conditions:

(*) For 1 <i< (I-1),if ai+1 € SLA(6(g0,7)), then the ith coordinate of the
final vector equals zero.

(**) If @y € SLA(6(go, 7)), then all the p;’s are non-empty strings. _

Condition (*) holds because if for some i between 1 and (I — 1), aj41 €
SLA(6(q0, 7)), and, if the ith coordinate is greater than 0, then, the difference
between the number of occurrences of a; and a;4; in o is greater than 0. This
implies that there exists j,1 < j < k, such that, p; = aja2...a;. But that
contradicts . .

i=k
(U LA7) () SLA((g0,)) = 0
i=1 .
Similarly, if there exists a partial execution p; that is empty, for that p;,
LA,’,‘:. = {a;}, which again contradicts

i=k

(U £AZ) (" SLA(5(g0,0)) = 0

i=1

Hence, Condition (**) holds.

We now use the definition of vector classes and infinite-R-reachability (Def-
inition 10) to formulate when a state of S is bad. Informally, a state s is bad
when there exist arbitrarily large sets of processes such that a partial execution
of these processes cause a deadlock to occur at s. As should be intuitively clear
from Condition (*) and (**) above, only the first ! — 1 coordinates are crucial
in determining the existence of deadlock. For each state, we first define an “un-
suitable” vector class. Roughly speaking, the unsuitable vector class for a state
contains all vectors representing partial executions, such that none of the pend-
ing operations in the partial executions can be ‘executed by the synchronizer in
that state. Using the definition of the unsuitable vector class for a state, we
describe conditions when a particular state is bad.

18

Definition 11 For a state s, denote by VU'\U" its “unsuitable” vector class
where both U* and U? are subsets of {1,2,...,1-1}, U* = {:—lla. € {SLA(s)-
al}} and, U? is the complement of U* wttlz respect to {1,2,...,1—1}. A state
s is “bad” iff

1. U* c{1,2,...1—-1} and (s,VY"7°) is infinitely-R-reachable from (go,0)
(Condition 31); OR

2.U°={1,2,...1—1} and (s, VU"W) is infinitely- R-reachable from (go,0),
and ay & SLA(s) (Condition B,); OR

3. (s, VU"W) is finitely-R-reachable from (qo,0), and a; & SLA(s) (Condi-
tion B3);

If none of By, By or B3 holds, then s is “good”.

Notice that condition By, and B; are mutually exclusive because, for B2 to
hold, ay & SLA(s), an additional restriction.

We first prove a small fact regarding the cardinality of the set of vectors that
belong to VW' 'U* and which are reached from some initial configuration. This
fact is used in the proof of Proposition 4.

Fact 1 (¢',VY" U') is infinitely-R-reachable (finitely-R-reachable) from (q, z) 1ﬂ'
l{vlv € VU'U° (¢, v) € R(q, z)}| is infinite (finite and non-zero).

Proof: If (¢, VU'I’—') is infinitely-R-reachable from (g,z), then, by Defi-
nition 10, PU"V’ is infinite. Each R-path in fi’ U* corresponds to a partial
execution of some k > 0 processes. Since PU"V" ig infinite, there must be an
infinite subset M of PU"U?, such that the number of processes involved in each
R-path of M are distinct. Also, since the last coordinate of the final vector
along any R-path counts the number of processes involved in the partial exe-
cution corresponding to the R-path, the final vectors for each of the R-paths
in M are distinct. Hence, |[{v|v € VU"T" (¢',v) € R(q,z)}| is infinite. In the
other direction the proof is trivial. Similarly, one can prove that (¢’, VU"F))
is finitely-R-reachable from (q, z) iff |{v|v € VY":U",(¢',v) € R(q,z)}| is some
finite non-zero value. O

The proposition below associates strong stability with good states.

Proposition 4 (P,S) is strong stable if and only if all states of S are good.

Proof: Suppose (P,S) is strong stable. Then there exists an m > 0, such
that Yk > m, k identical processes with program P are strong safe for S.
Assume the contradiction: Suppose there is a state s which is bad. We make a
case analysis.

19

Case 1: If By holds for s, then, since |{vjv € VU"¥*,(s,v) € R(go,0)}| is
infinite (Fact 1), there exists a vector v € VW"'U* such that (s, v) € R(qo,0) and
for some i,1 < i < I, the ith coordinate of v, II;(v), is greater than m. Recall
that the last coordinate of v (II;(v)) keeps track of the number of occurrences
of the first symbol of program P in the partial execution corresponding to
the R-path from (go,0) to (s,v). II;(v) is also the number of processes that
“participate” in forming the R-path, and it is at least as large as any of the
other coordinates. Thus, II;(v) > m. Further, since U? is not empty, there exists
i € U° such that II;(v) > 0. Thus, there exist partial executions py, pa, . .. pm(v)
of II;(v) processes such that

i=Ii(v)

(U LAD)()SLA((g0,0)) =0

i=1

and for some ¢,(1 < i < IIj(v)) pi is not the entire program string P. This
‘contradicts strong stability. _

Case 2: Suppose B; holds for s. Since (s, W'U") is infinitely-R-reachable
from (go, 0) and since U = {1,2,...,{—1} there exists an infinite set of positive
integers j with the property that some interleaving o of j processes each of whose
partial execution is the entire program string P leads to state s from the initial
configuration (go,0). For each such j, consider j + 1 processes with partial
executions

P1,P2y..., P05, W

where all the p;’s are the entire program string P and w is the empty string.
For these j + 1 processes, since w is empty, not all partial executions are P.
Further, state s does not contain arc with label a; to bail out the synchronizer.
Since there are infinitely many j’s, strong stability does not hold.

Case 3: If B3 holds for s, consider the interleaving o which leads to a
configuration (s, v), where v € VW' .U’ Suppose, the number of processes needed
to form o is k'. Let the partial executions needed to form & for these k’ processes
be p1,po,...,pr. Consider &’ 4 m processes with partial executions

P1,P2,-. Dk, W1, W2,...,Wm

where w;,1 < ¢ < m is the empty string. Obviously, not all of the ¥’ + m
partial executions are the entire program string P. Also, since a; & SLA(s)
the additional m processes cannot “bail” out S out of state s. Once again, we
contradict strong stability. A

To prove the converse of the theorem, suppose all states of S are “good” and
assume that P is not strong stable for S. Hence there exists infinitely many
m > 0 for which m processes are not strong safe. Let Unsafe denote the set
of positive integers such that if m € Unsafe, then m processes are not strong

safe. Obviously, |Unsafe| is infinite. For each m € Unsafe, let T, denote the

20

set of interleavings formed from partial executions of m processes which lead to

an “unsafe” state. Formally, ¢ € T\, iff ¢ is a partial execution of m processes

and .
1=m

(U LAE) () SLA(5(g0,0)) = 0
i=1
Let
n= U Tm
meéUnsafe
We make a case analysis:
Case 1: |n| is finite. For every o € 7, define

aUnaa]e = {mla € Tm}

Then there exists a ¢’ € 5 such that ¢’”™**/* is infinite, and it follows that for
the state s reached from the initial state go via ¢/, condition B3 holds.

Case 2: |n| is infinite. There are finitely many (s,U*) ordered pairs. For
every such ordered pair, we define the set n(*:U") as follows: & € n*'U") iff & € ,
(g0, o) = s, and the final vector v € VU':U*,

Obviously, there exists one ordered pair (s, U *') such that In("U")| is infi-
nite. If U C {1,2,...,{ -1}, then condition B, holds for state s'.

So suppose U?*' = {1,2,...,1=1}. Any vector v € V¥’ U will have 0 for
coordinates 1,2,...,! — 1. Any interleaving with the property that the final
vector belongs to VU* WW*' therefore has to be formed from strings which are
- individually equal to either the entire program string P or which are empty.
(Note: The restriction that all symbols in P are distinct is necessary to conclude

this fact). Now consider any o € n(* U, Suppose it is formed from k processes
with partial executions p;, pa, ..., pr. We make the following observations:
1. Since o is a partial execution, for some i,1 < i< k,p; # P.

2. Since the final vector for ¢ belongs to U* " and since all symbols in program
P are distinct, either p; = P or p; is the empty string.

3. Since o leads the synchronizer to an unsafe state, we must have

ik

(U LA7) (N SLA((g0,0)) = 0

i=1

From the first and second observation, we conclude that |Ji=r LAF = {a}.
Finally, using the third observation and ‘:f LA}, = {a1} we conclude that

a; & SLA(s). Thus condition B; holds for state s. O

21

Therefore in order to decide if (P, S) is strong stable, it suffices to show that
each state of S is “good”. Equivalently, if any state is “bad”, (P, S) is not strong
stable. A state is bad if one of the conditions By, Bz or B3 (see Definition 11)
holds for it.

In Section 6, we sketch the proof presented by Kosaraju [18] for the decid-
ability of reachability in a VASS. Subsequently, in Section 7, we show how to
modify the proof in [18] to decide infinite-R-reachability for vector classes in a
VASS. Using this modification, in Section 7.2, we show an effective procedure
to decide strong stability. Provided (P,S) is strong stable, the procedure will
also yield a positive integer m > 0, such that for all k£ > m, (P*,S) is strong
safe.

6 Deciding Reachability In a VASS

Following [18], we introduce the notion of a Generalized Vector Addition System
(GVASS). An n-dimensional GVASS is a finite chain Gy, Ga,...G, of VASS’s,
"each of which is n-dimensional. There is one and only one arc from G; to G4
for 1 < i< s—1. Let us denote the head and tail states on the arc that connects
Gi to Gi+1 by ¢’ and gi4+1. An r-path from (q1, z) (q; is a state of G1) to (g,,¥)
(¢, is a state of G,) goes through each of the connecting arcs exactly once. When
the r-path reaches ¢; for the first time, we call the corresponding n-dimensional
arrival vector the input vector of G;. Similarly, when the path reaches ¢;’ for
the last time, we call the corresponding n-dimensional vector the output vector
of G;. For Gi, the input vector is z, and for G, the output vector is y. For
- a given r-path from (q1,z) to (g,,y), we write g¢, g¢ for the input and output
vector for G;. For every G;, we define an Input Constraint V; and an Ouiput
Constraint V;' where V;, Vi’ C ({w} U N)*. An r-path from (g1,z) to (g,,y) is
said to satisfy the input constraints if and only if for every 4,5, 1 < i < s and
1<j<n

L. Oi(gf) =M;(V;) ifI;(V;) €N and
2. Oj(g) 20 ifOi(V;) =w.

We define v; and v;’ to be the vectors obtained from V; and V;' respectively by
replacing every w in V; and V;' by zero.

Similarly, we define an r-path satisfying an output constraint. An r-path
that satisfies both its input and output constraints is a cr-path. Note that when
a cr-path is inside a Gj, the vectors can have negative components. A CR-path
from (q1,z) to (g,,y) is a cr-path from (g1,z) to (g,,y) with the additional
restriction that all points along this path lie in the positive orthant. Thus a
CR-path is an R-path. When a GVASS contains just one VASS, the existence
of a CR-path from (q1,z) to (g,,y) implies the existence of an R-path from
(91,2) to (¢5,9). For Gy, let S; = {j|I;(V;) # w} and S’ = {F|I;(Vi") # w}.

22

We call the coordinates in S; and S;’ as the constrained input and constrained
output coordinates of G;. A subset R; of S; N S;’ is called the set of rigid
coordinates and is defined as follows: For every j € R;, II;(e) = 0 for every arc
label e in G;.

A GVASS G with initial configuration (g1, z) and final configuration (g,, y)
is said to satisfy property 8 iff the following conditions are satisfied:

Property 0:

61: For every m > 1, there exists a cr-path from (g1, z) to (g,,y) such that

01(a): every arc in every G; is used at least m times, and

61(b): for every i and j, if j € S; then H,-(g}’) > m, and if j € S;' then
I;(g?) > m; and

82: For every i, there exist A;, A;' such that for every j € S; — R;, II; (A;) > 1
and for every j € S;' — Ri, II;(Ai') > 1, and

02(a): (gi,vi + &i) € SR(q;, vi) with respect to S; — R; in G, and
02(b): (gi,vi' + A;') € SR(gi', v;") with respect to S;’ — R; in G;.

Informally, condition 6, (b) states that every unconstrained input or output
coordinate of every G; can be made as large as possible. Condition 62(e) states
that for every G, in the subspace of its constrained, but nonrigid, input co-
ordinates, all components of its input constraint vector can be simultaneously
increased by an R-path. Condition ,(b) states a similar condition for con-
strained, but nonrigid, output coordinates for the output constraint vector.

Define the size of a VASS G; by a triple (n;1, ni2, nis) where n;; = the
number of non-rigid coordinates (n — |R;|), ni2 = the number of arcs of G; (say
k;), and n;3 = the number of unconstrained input and output coordinates of G;
(2n = |S;| = |S;]). We order these triples lexicographically. The size of GVASS
G, SS(G), is the multiset of sizes of its Gi’s. We do not impose any order on
this multiset.

Let ¢,p1,p2,..., Pk € Z"™. A Linear Set with constant ¢ and periods py, p2,...,px
(denoted by L(c;pi,p2,-.-,px)) is the set of all vectors v such that v = ¢+
e1p1 + e2p2 + ... + expr for non-negative integers e),ez2,...,ex. A Semilinear
Set is a finite union of linear sets. Let 1 < i) < i3 < ... < & < n and let
S = {i1,i3,...,4}. For any z € 2", z(5) = (I;, (z), Wi, (2), . .., Uiy (z)). For
any L C 2", let L(S) = {z(S)|z € L}. For a VASS G, its reverse, denoted
by Grev, is obtained by reversing the arcs in G and by replacing every label
z by —z. The r, R, and SR reachabilities of G, are denoted by rrey, Rrev,
and SR,.,. We now state without proof several lemmas and theorems from
Kosaraju [18].

Lemma 1 Let L be a semilinear set, and let A be a subset of {1,2,...,n}. If
L does not satisfy the property that for every m > 1 there ezists an z € L such

23

that for every j € A, Ilj(z) > m, then, when L is expressed as a union of linear
sets US_, L;, for every L; there ezists a j € A such that the jth component of
the sum of the periods of L; has zero value.

Lemma 2 For any semilinear set L and any set of coordinates A,
1. L(A) is a semilinear set.
2. If L is a linear set, then L(A) is also a linear set.

3. If L is a linear set with one period, then L(A) can be ezpressed with one
period also. If L is L(c;p), then L(A) is given by L(c(A); p(A)).

Lemma 3 Let L be a semilinear set, and A a subset of its coordinates. If L
has the property that '

1. For every z € L and every j & A, Ij(z) has a fized value; and

2. for every m > 1 there ezists an z € L such that for every j € A, II;(z) >
m,

then L has a linear subset L(c;p) where the jth component of p is nonzero iff
JEA.

Theorem 3 In a VASS G, for every q1,z,q2,y and Az, Ay > 0, if there ezists
AL, D€2™, AC{1,2,...,n} and my, mg > 0 such that

1. for every j € A, the jth component of the label of every arc of G has value
0, and for every j & A,

(a) Oj(Az) =0=;(A,) 2 1, and

(5) 0;(Ay) = 0= I;(Ag) 2 1, and
2. (g2,9) € (a1, 2)
3. (g1, z+m Az+A)) €R(q1,z+my Az), and
4. (g2,y+m1 Ay+ A2) € Reeo(g2,y+m2 Ay), and

5. (q1,y) is r-reachable from (q1, Az) by a path p such that every arc in G
i3 traveled at least once,

then 350Vj > jo((g2,y+ 37 Ay) € R(q1,z2+j A z))

Theorem 4 If a GVASS G satisfies property 8, and, if there ezists a VASS G;
of G whose size is different from (0,0,0), then there erists infinite CR-paths
from (q1,%) to (¢s,¥). If a GVASS G satisfies property 8, and, if all VASS’s of
G have size (0,0,0), then, there ezists a single CR-path from (q1,z) to (q,,).

24

Theorem 5 If a GVASS G does not satisfy property 8, and if SS(G) contains
a triple dlﬂ’erent from (0,0,0), then G can be replaced by a finite number of
GVASS’s G}, G?,...,G*, such that

1. For everyi, SS(G*) can be obtained from SS(G) by replacing a triple by a
finite number of triples, each of which is less than the triple being replaced;
and

2. there erists a CR-path from (ql,z) to (q,,y) iff there ezists a CR-path
from (q1,2) to (¢,,y) for some G".

Essentially, Theorem 5 enables us to partition the C'R-paths in the orig-
inal GVASS G into CR-paths in the new GVASS’s G!,G?,...G'. The two
conditions stated in Theorem 5 are useful in deciding reachablhty in a GVASS
(18]; however, they are inadequate in deciding infinite-R-reachability of a vector
class in a GVASS. In order to decide infinite-R-reachability, when G is reduced
to GVASS’s G, G?,...G", we must ensure that all the C R-paths in the original
GVASS G have equivalent CR-paths in the new GVASS’s. (This is different
from checking the second condition in Theorem 5 above, namely, there exists a
CR-path from (g1, z) to (g,,y) iff there exists a CR-path from (q1,z) to (¢5,y)
in some G'.) If each CR-path in the original GVASS is faithfully replicated in
some new GVASS, then, the infinite-R-reachability property will be preserved
in one of the new GVASS’s. In subsequent sections, we show this replication
using mappings from the states in GVASS G to the states of the new GVASS’s.

Theorem 6 In a GVASS G, if every member of its size set is (0,0,0) and if G
does not satisfy property 8, then there is no C R-path from (q1,z) to (¢5,¥)-

Theorem 7 It is effectively decidable whether a GVASS, G, satisfies property
8.

From Theorems 4, 5, 6, and 7 it follows that the existence of an R-path
in a VASS from an initial configuration to a final configuration is decidable.

(Note: Following [18], we use the subscript notation G; to refer to the ith
component VASS of GVASS G, and the superscript notation G' to refer to the
new ith GVASS obtained.)

7 Modifications To The Proof Of Reachablhty
Of VASS

Given a vector class YW:W' (Recall that W, W’ C {1,2,...,n}, WNW' = ¢, '
and W, W’ are not both empty) consider a new property 6’ that is the same as
8 except for condition 8, which is replaced by

25

0,’: For every m > 1, there exists a y € YW.W’ and a cr-path from (q1,2) to
(¢s, y) such that

91(0)': every arc in every G; is used at least m times, and

0,(b)': for every i and j, if j € S; then I;(g?) > m, and if j ¢ Si’ then
I;(g) 2 m.

Note the difference between condition 6, in property 6 and condition 6’ in
in property #'. Condition 6, is for a fixed output vector y, whereas condition
8’ applies to any output vector y that belongs to the vector class VW: W’ Note
also that the output constraint vector for the final VASS in a GVASS (S,') need
not be related to the the vector class VW'W'. This is discussed in Section 7.1.1.

The following theorem helps us in deciding whether (g,, V¥'W') is infinitely-
R-reachable from some initial configuration (qy, z).

Theorem 8 For a GVASS G, and a vector class VW'W', if G satisfies property
¢, and, if there ezists some VASS Gi of G such that size of G; # (0,0,0), then,
(q,, VWW) is infinitely-R-reachable from some initial configuration (q1,2). If G
3atwﬁes property ', and, if all VASS’s of G have size (0,0,0), then, (g,, V¥'W')
is ﬁmtely-R—reachable from (q1,2).

Proof: The proof is similar to the proof of Theorem 4. Let k; be the number
of arcs in G; and let k = 3;_, k;. Any cr-path from (g1, z) to (¢},y) can be
mapped into a (2sn + k)-tuple

(gfvgg:g;:ygt . --93,92,61, €2,.. 'ek)

where ¢; is the number of times the corresponding arc is traveled in the cr-path
from g% to g} and g2, gP’s are the intermediate input and output vectors. For
a cr-path p, we denote the above tuple by II°(p) and call it the the “extended
folding” of p. Let

L(G) = {°(p)|p is a cr-path from(qy, z) to (g,, V¥'¥')}

L(G) is a semilinear set since it has a Presburger formulation. Since G satisfies
property 6;’, by Lemma 3, L(G) contains a linear subset of the form L(c;p),
denoted by Lg, where p has nonzero components corresponding to every un-
constrained coordinate and every arc, and zero components corresponding to
every constrained coordinate. Project Lg into G;, i.e. consider Lc,-(z) Ev-
ery element of Lg(i) is in N2n+ki and is an extended folding of a subpath of
a cr—pa.th from (g1, 2) to (q,,VWw)- By Lemma 2, Lc,-(:) can be written as
L((z* 'Y, 2'); (AZ', Ay, A2')) where z¥,3', Az' and Ay are n—tuplm and 2}
and Az* are k; -t.uples By Lemma 2, we can infer that for every j,

II,-(A:') >1 ifandonlyif j¢&S;,

26

and)
O0;(Ay') >1 ifandonlyif j¢Si,

and Az > 1. As in proof of Theorem 4, we conclude that conditions 1, 2, 3,
and 4 of Theorem 3 are satisfied with

n=gz=2,@=0¢,y=¢,0z= 07, Ay= Ay, A1 = A, A = A
and A = R;. Thus, we can conclude that there exists J such that
(Vi)(Vi 2))((a', ¥ +i AY') € R(gi, 2* +j A ')

If for some G;, SS(G;) # (0,0, 0), then either S; or S; is non-empty or there
is at least one arc in G;. If either 5; or 5y is non-empty, then we can increase the
coordinates specified by them by choosing j = J,J + 1, ..., obtaining infinitely
many CR-paths from (g1, z) to (g5, V¥'%'). Also, if both 5; and 5; are empty
but the number of arcs of G; is greater than zero, then because of condition
61(8), for j = J,J +1,..., we have CR-path.s from (ql,z) to (¢, VW'W') such
that the number of tlma the arcs in G; are traveled increases. This yields
infinite C R-paths from (g1, z) to (g,, V¥**"). If all G;’s have size (0,0, 0), then,
trivially, there is a single path from (g, z) to (g,, V*%'%"') (in this case, only one
vector in VW'W' is C R-reachable from (91,2)). Hence, in this case, (g, VW W')
is finitely-R-reachable from (g,). O

The theorem below asserts that it is decidable whether a GVASS satisfies
property 6’. The proof is the same as the proof presented for Theorem 7 in [18).

Theorem 9 [t is effectively decidable whether a GVASS, G, satisfies property
¢.

7.1 Reducing The Size Of A GVASS

We now show that if a GVASS G does not satisfy property ¢ and not all
of its triples are (0,0,0), then G can be replaced by finitely many GVASS’s
G,G?,...,Gt. Each G' will be obtained from G by a transformation which
replaces some VASS Gj; in G (whose size is different from (0,0,0)) by finitely
many VASS’s each of size less than G;. The transformation will depend on the
constituent property of # (i.e., one of 01(a) 8,(b)’, 82(a)’, or, 82(b)’) that is not
satisfied by G.

Figure 4 shows the general scenario when GVASS G is transformed into a
new GVASS G'.

Intuitively, a reduction will partition the CR-paths in G into CR-paths in
G*s, 1 < i < t, such that a CR-path in G will be a CR-path in some G* and
CR-paths in all G*’s will also be CR-path’s in G. Of course, since VASS Gj is
being replaced by finitely many VASS’s, each of size less than Gj, there needs
to be a notion of equivalence between CR-paths in G and G*’s.

27

i
Transforming GVASS G ito GVASS G

G G, G, G G GVASS
sl s

OCO—|0—00

/ \
Suyt!nﬂme/ Gj transformed Stay the same
L N

OO—]O-00||—00

GVASS G

Figure 4: Reducing a GVASS

With this in mind, for every transformation, we define a one-to-many map-
ping M;)
M; : St(G) — St(G")

from the states of G onto states of G'. The M;’s will be designed such that

the states of the VASS’s in G which are not changed by the transformation are

mapped by M; to their corresponding states in the transformed GVASS G;

however, the states of the VASS G; (which is replaced by finitely many VASS’s

in G* (refer Figure 4)) will be mapped onto the states of the VASS’s replacing
.

Under certain specific transformations (see Section 7.1.4), for the purposes
of establishing path equivalence in G and G*, a state of G' can be lgnored
To identify this state (if it exists), we define an Ignore Set Y;, which is a set
containing either one state of G* or is empty. The new GVASS constructed
under these transformations will be such that any C R-path will have at most
one occurrence of the state in Y; (provided Y; is not empty).

We also define a one-to-one mapping /; from the initial conﬁguratlon (q1,2)
of G to an initial conﬁgura.t.lon of G* and a one-to-one mapping F; from the
final configuration (g,, YWW') to a final configuration of G'.

For any path p in a GVASS, we let S(p) denote the sequence of states along

p. S'(p) denote the ith state in this sequence. For a CR-path p in G', we let
[S\Y.](p) denote the sequence of states which is the same as S(p) but in which
the state in Y; is removed (Note: The number of states in [S\Y;](p) will be less
by one than the number of states in S(p) if and only if Y; is not empty and if the

28

state in Y; appears in S(p)). Let us denote the sequence of vectors in C R-path
p (including the initial vector and the final vector) by V(p). If ; is empty, we
define [V\Y:](p) = V(p); otherwise, [V\Y;](p) is the sequence of vectors after
removing the vector in V(p) preceding the vector along state Y; in p. (Note: We
will design transformations that have the following property: When Y; is not
empty, the state in Y; will appear exactly once on all C R-paths from the initial
configuration of G’ to its final configuration.)

For a given M; and Y;, we say a CR-path p € G corresponds to a CR-path
P € G iff for all j, [.S'\Y]"(p’) € M;(S (p)). (Note:If a path p in G corresponds
to a path p’ in G*, then the number of states in p equals (is less by one than)
the number of states in p’ if and only if Y; is empty (not empty)). Further, we
say a CR-path p € G is equivalent to a CR-path p’ € G* iff p corresponds to p’
and [V\Yi](¢') = V(p).

Intuitively, the M;’s will be designed to preserve path equivalence in G and
G'’s. Since every transformation from G to G' replaces some VASS G; in G,
and does not change any of the other VASS’s in G, the mapping M; (1<i<t)
will map the states of all unchanged VASS’s in G onto their corresponding
states in G*. The states of G; (the VASS of G being replaced), however, will
be mapped by M; onto the states of the newly created VASS’s in G* such that
every CR-path in G will have an equivalent CR-path in some G* and vice-versa.

In subsequent sections, we consider different types of reductions for each
of the cases when the conditions specified in property & fail. For each such
reduction, we will prove the following theorem:

Theorem 10 Let a reduction reduce GVASS G into t GVASS’s G',1 <i<t.
There ezists M;’s, Y;’s, I; ’s and F;’s (1 < i < t) such that the following property
holds:

Property 1 (Mapping Proposition) Let p be any CR-path from (q1,z) to
(g6, V¥W') in G. There ezists a CR-path p’ in some G',1 < i < t, such
that p and p’ are equivalent. Also, for every CR-path p' from (I; (ql,:c)) to
(Fi(gs, V*%")) in some G*,1 < i < t, there ezists a CR-path p € G from
(01,2) to (g5, V¥W') such that p and p’ are equivalent.

7.1.1 Relationship Between W’ and S,"

Before proceeding to show different reductions, we make an important observa-
tion. So far we have made no assumptions regarding the relationship between
VW.¥’ and the output constraint vector for the final VASS in a GVASS G (S,’).
However, it is clear that if W’ is not empty and S,’ is zero for all coordinates
specified by W', then (q,, yw.w’) i8 not R-reachable (and hence not infinite-R-
reachable) from (g1, z), since, a vector in VW: W' cannot satisfy output constraint
vector S,’. (In fact, the set Lg, the set of foldings of cr-paths from (q1, z) to
(229 yww’) is empty).

29

When G is “reduced” to GVASS’s G!,G?,...,G", it is possible that the
output constraint vector of the final VASS in one of the G*’s may be different
from the output constraint vector of the final VASS of G (coordinates which had
an w could be replaced by a fixed non-negative integer). If the output constraint
vector of the final VASS of one of the G*’s becomes zero for all coordinates
specified by W’, then there does not exist a CR-path in that G* from (I;(q1, z))
to (Fi(g,, yww)). However, this does not imply anything regarding existence
of a CR-paths from (g1,z) to (¢,, V¥¥') in G. Only if all G*’s are such that
there does not exist a CR-path in them from (I; q;,z)) to (Fi(gs, V¥W')) will
there be no CR-path in G from (q1,z) to (g5, V .

7.1.2 Reduction When 01(a)’ Fails

We now consider different types of reduction when each of the sub-conditions
specified in ¢’ fails to hold.

Suppose #1(a)’ does not hold for some GVASS G. Let G contain s VASS’s
denoted by G1,Gy,...,G,. Following the arguments in [18], we can write Lg
(the set of foldings of cr-paths from (g1,z) to (q,, VW'W') as

LG=L1UL2U...ULp

where L; = L(c;, pi1, Pi2, - - -, Piv;)- For each i,1 < i < 3, there exists an ig such
" that the ioth component of p;; + pi2 + ...+ piy, = 0, and this ipth component
corresponds to some arc. Let this arc be e = (g,¢’), and let it be in some
VASS Ga of G. Note that II;,(c;) specifies the number of times e in G, gets
used on each cr-path whose extended folding is in L;. Let G4, be the VASS
obtained by removing arc e from G,. Consider the new GVASS G* in which G,
is replaced by II;,(c;) + 1 copies of Go—.. Edge e connects state ¢ in a previous
copy to state ¢’ of the next copy. Let e’ be the connecting arc from state ¢” in
Ga-1 to state ¢’ in G,. There is a connecting arc ¢’ from state ¢” in Go-1
to state ¢" of the first copy of Ga-. in G* (this step can be ignored if G, is
the first VASS in G). If G, is not the final GVASS, then we similarly connect
the arc in G from G4 to Ga41 now from the last copy of Ga—¢ to Gaqy in G*.
The input constraint of the first copy is V,, same as the input constraint of G,
and the output constraint of the last copy is V,', same as the output constraint
of G4. For each of the coplw, the remaining input and output constraints are
identical (say B) and are given below:

if j € Ra
0,(B) = { I;(Va) otherwise
Essentially, VASS’s 1 thru @ — 1 and @ + 1 thru s are not affected. Also G,—.
has the same number of states as Go. If s is a state in G4 let us denote by
s' the corresponding state in the ith copy of Ga—e. Let us denote the above
reduction as R,. Note also that the size each of the G,—. is less than the size

30

of G4 (the second component, the number of arcs in a VASS is one less for each
Ga-. than that of G,.)
We now show that for the following mappings, Theorem 10 holds for R;:

Mi(s) = if s is a state in some VASS G;, i # a
: {s 1 <i< (i) +1} otherwise

Y is empty, ; maps the initial configuration (g1,z) to (Mi(q1),z), and F;
maps the final configuration (g,, V¥'%') to (M;(g,), VW'¥').

Proposition 5 Under Reduction R, and for the mappings defined above, Prop-
erty 1 holds.

Proof: Let p be a CR-path in G from (g1,) to (g;, VW'W'). Let p € L;.
As explained earlier, there exists ig, such that the ioth component of the sum of
periods of L; is 0, and iy corresponds to some arc e. Let e connect states ¢ and
¢’ of G4 in G. In path p, arc e is used exactly I;,(c;) times. Let p be denoted
by the following sequence of states

e e e
$1—=s2—..¢g—=¢..q—q¢d...¢q = ¢...q
1 2 O, (c:)

Consider the following path p’ in G*:

[. e [)
81 — 82 — .. .ql — q'2 .. .q2 —_ q'.3 .. _qﬂ.'o(c;) — q'n'°(ci)+1 .
1 2 Hio(cl')

Clearly, p’ is equivalent to p. The proof in the other direction is trivial. O

- qs

7.1.3 Reduction When 01(b)’ Fails

We now consider the case when 01(b)’ fails (Reduction Rz). Following the
arguments in (18], Lg can be written as

LG=L1UL2U...ULp

where L; = L(c;,pi1,Pi2s---,Piv;). Now, for each i, 1 < i < B, there exists
an ig such that the igth component of p;; + pi2 + ... + piy; = 0, and this igth
component corresponds to some unconstrained input or output coordinate in
some Gq. II;,(c;) specifies the required fixed value of that coordinate which
had previously the value w. Replace w in the corresponding constraint vector
(input or output) by II;,(c;). Let this modified GVASS be G'. The size of G*
is less than the size of G because of the last component of the size vector of G,
in G* is one less than that of G, in G. The state structure of G* is the same
as that of G. Let M; map states of G to corresponding states in G*. Let Y;
be empty, I; map the initial conﬁguratlon (ql,z) to (M;(q1), z) and F; map the
final configuration (g,, V¥*'%') to (Mi(g,), V¥V'%').

31

Proposition 6 Under Reduction R, and for the mappings defined above, Prop-
erty 1 holds.

Proof: The proof follows on the same lines as the proof of the earlier propo-
sition. O.

7.1.4 Reduction When Either §2(a)’ Or 62(b)' Fails

The cases when 62(a)’ or §2(b)’ fails can be handled similarly and we show the
reduction when 62(a)’ fails (Reduction R3). Let #2(a)’ fail for some G,. Recall
that Su, Rq represent the set of constrained input coordinates and set of rigid
coordinates respectively and v, represents the input constraint vector V, with
w’s replaced by zero. Following the arguments in [18], we can conclude that
a constant c can be effectively computed such that every point SR-reachable
with respect to So — R from (gq, vo) has its ith component value < ¢ for some
i € Sq — Ry. We shall treat the reduction as |S, — R, | cases, one corresponding
to each element in Sq — R4. For each case, we shall modify G4 into at most
c+1 new Gg's. In total, we generate at most |S, — Rgl(c +'1) GVASS’s.

Select any 7 in Sq — Rq. We make two cases:

Case 1: Suppose II;(V,') = w. Replace w by 0,1,2,...,c each giving a new
Gao. This results in (¢ + 1) new GVASS’s G1,G?,...,G°*!. As in Reduction
2 (R2), the state structure of each of the new GVASS’s is the same. Let the
mappings M;’s, Y;’s, I;’s and F;’s be the same as in case of R;. Let us denote
this reduction by R3.

Proposition 7 Under Reduction R3, and for the mappings defined above, all
CR-paths in G from (q1,2) to (g, VW'W') which satisfy the property that when
the path is inside G, its ith coordinate is < c have equivalent C R-paths in some
G* and every CR-path in any G* has an equivalent CR-path in G.

Proof: The same as proof of Proposition 6 and 5. O.

Case 2: Suppose II;(V,') = b. Let II;(V,) = a. Let G, have g states. We
replace G, by two new VASS’s denoted by G,' and H respectively. G, has a
total of g(c + 1) states and VASS H has one state (which is also denoted by H
since there is no ambiguity). A state of G, has as its label a pair (g,) where
q is a state of G, and 0 < n < ¢. There exists an arc labeled u from (g, 7)
to (¢',7) iff in G4 there is an arc labeled u from g to ¢’ and 7' = 5 + I;(u).
The input state of G’ is (¢a,a).The input constraint of G’ is V,, the set of
rigid coordinates R, U {i}. The output constraint of G,' is the V,,’ with the ith
coordinate being a instead of b. Let us denote this by V,,”. Thus,

A "o a ifj =3
0;(Va)—{ O;(Va') otherwise

32

The n-tuple label on z is given by

b—a ifj=1i
0;(z) = { otherwise
The input and output constraint of VASS H is V,’ and the set of rigid coordi-
nates of H is Rq U {i}. The first component of the sizes of G,' and H is one
less than that of G,. Let us denote this new GVASS by G’. Call this reduction
Rs.
Consider the following mapping M for the above reduction

8 if s is a state in some VASS G;, i # a
M;(s) {(s,t)J0 <t <L ¢} ifi=a and s # ¢’
{(s,)0<t<c}UH ifi=aands=gq,

= {H }, I; maps the initial configuration (ql,z) to (Mi(q1),2). fa=3s
(i.e. Ga, is the final VASS of G, then F; maps (g,, V¥'W') to (H,VW'W'), else
it maps (g, V¥%') to (M;(q,), yw.w).

Proposition 8 Under Reduction R4, and for the mappings defined above, all
CR-paths in G from (q1,2) to (¢, V¥'W') which satisfy the property that when
the path is inside G, its ith coordinate is < ¢ have equivalent CR-paths in G'
and every CR-path in any G' has an equivalent CR-path in G.

Proof: Suppose p is a CR-path from (q1,2) to (g,, V¥.¥’) in G such that
when the path is inside G, its ith coordinate is < c¢. Consider the portion of
this path inside G, and let us denote it by the state sequence below

qa—#ll—blz—o...—»!m—bqa'

Let ¢ denote the edge in G, between /; and 4, with e being the edge
between g, and /; and e™*! being the edge between I, and ¢,'. Let r; denote
the sum of the values in the ith coordinate for vectors that appear from states
ga Up to l;, with ro = a and rm41 = b (this has to be the case since the path in
question is C R-path and by definition a C R-path satisfies its input and output
constraint. Since the ith coordinate of every vector on this C R-path is < ¢, all
ri’s are < ¢, We can construct an equivalent portion of the above path in Go'
as shown below

(qa,a) b d (l], 1'1) ceo (’.’, r;) -_— . .(qa',b)

The other way round, i.e. if there is a CR-path in G’ then it is also a CR-path
in G is trivially true from the construction of G'. O

Using Propositions 7 and 8 we conclude that under Reduction R3 Property 1
holds. Thus Theorem 10 is proved (Propositions 5, 6, 7 and 8). O.

Using Theorem 10, we can prove the following proposition:

33

Proposition 9 (q.,vW-W‘) is infinitely-R-reachable from (q1,z) in a GVASS
G iff (Mi(g,), V¥'W') is infinitely-R-reachable from (Mi(q1),z) for some G".

Proof: Since a reduction transforms a GVASS G into finitely many GVASS’s,
if (¢s, VW'W') is infinitely-R-reachable from (g, z) then for every such C R-path,
there is an equivalent path from (M;i(q1), z) to (Mi(g,), V¥'%") in some G* (The-
orem 10). Since there are only finitely many G*’s, one of the G*’s must be such
that (Mi(g,), V™'"') is infinitely-R-reachable from (Mi(q1),z). The other di-
rection is trivial. O

7.2 Decidability Of Strong stability

We are now in a position to prove Theorem 2. By Proposition 4, if there exists
any state s that is bad (as defined in Definition 11), then program P is not
strong stable for the given synchronizer.

We sketch below an algorithm to check if a given state of the synchronizer is
bad. A state s is obviously not bad if SLA(s) = . So we consider only those
states for which SLA(s) # 3, i.e. SLA(s) C }_. We convert the synchronizer
into a GVASS by replacing the label on each arc by a l-tuple as explained in
Section 5.1. This GVASS contains a single VASS; the input constraint vector
for this VASS is zero in all coordinates. The final vector class of interest for
this GVASS is WW*:U* (Recall that U* is the unsuitable vector class for state s).
The output constraint vector has zeroes in the coordinates specified by U? and
w’s in all other coordinates.

We now construct a tree of GVASS’s using the reductions described earlier.
The root node of the tree is the above GVASS. When a GVASS at a node v does
not satisfy property 6 (refer to Section 7), we construct GVASS’s G*,G2,...G!
by using the reductions described earlier. We create t children for node » and
attach GVASS G’ to the ith child.

We continue this process of expansion until all the leaf nodes contain a
GVASS for which one of the three conditions below hold:

1. All the component VASS’s have size (0,0,0). In this case, following ar-
guments in [18], we can decide if there exists a CR-path from (go,0) to

(s, V”"v?). We collect all such leaf nodes for which the above C R-path
exists into set Z,.

2. Property & is satisfied and conditions for infinite-R-reachability specified
in Theorem 8 hold. We collect all such leaf nodes into set Z,.

We prove the following proposition.
Proposition 10 State s is bad (refer Definition 11) iff
1. ay € SLA(s) and set Z; is not empty (Condition 1); OR

34

2. a) & SLA(s) and any one of set Z, or Z; is not empty (Condition 2).

Proof: We prove that conditions By, B; and Bj in Definition 11 imply
conditions 1 or 2 above and vice-versa. Firstly, as explained earlier, a state s is
good if SLA(s) = Y_. Therefore it suffices to consider only those states for which
SLA(s) C Y. For such a state s, if By holds, then our algorithm will terminate
with set Z2 non-empty (follows from Theorem 8 and 10). Thus Condition 1
holds. If B; holds, then by Definition 11, @) does not belong to SLA(s). Also,
from Theorem 8 and 10 set Z2 will be non-empty. Thus Condition 2 holds. If
B3 holds, then obviously set Z; will be non-empty.

To prove in the other direction, consider a state s for which SLA(s) C 3.
We make a case analysis.

Case 1: Suppose a; € SLA(s). If Condition 1 holds when the algorithm
terminates, then from Theorem 8, By holds for state s. (Note: Since a; belongs
to SLA(s) Condition 2 cannot arise.)

Case 2: ay € SLA(s). If set Z, is non-empty then Bj holds for s. If set Z
is non-empty and U(s) C {1,2,...,{—1} B, holds. If set Z; is non-einpty and
U(s) ={1,2,...,1 -1} B; holds. O.

This proves Theorem 2. Now assuming all states are good, we show how to
determine the strong stability constant k. (k has the following significance: k
or more processes are strong safe for the given synchronizer.)

According to Definition 11, the negation of the condition (B V B2V B3) gives
the condition when a state is good. Expanding, we get the following condition
for a good state: :

1. U ={L2,...1- 1} or (s,VY") is not infinitely-R-reachable from (go,0)
(Condition B,); AND

2. U* c {1,2,...1— 1} or (8,VV") is not infinitely-R-reachable from (go,0),
or a; € SLA(s) (Condition Bz); AND

3. (s,VY") is not finitely-R-reachable from (go, 0), or ay € SLA(s) (Condition
Bs);

Now, if (s, VU") is infinitely-R-reachable from (go,0), then by condition B
we have U* = {1,2,...1—1}. From this condition it is clear that processes have
finished executing their last request and there is no deadlock. (recall that if
all coordinates 1,2,...1 — 1 are zero implies that all the processes have finished
executing.) Thus, for all the good states, we can ignore leaf nodes that belong
to set Z,. If for all the states, Z; is empty, then the strong stability constant
is 1. To prove this, observe that if there exists a partial execution of more than
one process which leads to a deadlock, then it contradicts Theorem 8 and 10
which ascertain that an equivalent path for the above path would have been
found in one of the leaf GVASS’s belonging to set Z;.

35

So suppose that for some state, Z; is not empty. Let M be the maximum of
the last coordinate in all the leaf GVASS’s belonging to set Z; for each of the
states. Recall that the last coordinate kept track of the number of occurrences of
the first symbol (or number of processes needed to form that particular partial
execution). Once again it is easy to observe that the strong stability constant
is M.

We now prove decidability of full strong safety, which follows immediately
from the decidability of strong stability.

Corollary 4 Full strong safety is decidable.

Proof: We present a procedure for deciding full strong safety of any con-
current system (P,S). Given such a system, we first test if it is strong stable.
Clearly, if (P, S) is not strong stable, then it is not full strong safe. So suppose
(P, S) is strong stable. Using the decidability procedure for strong stability, we
compute the strong stability constant &, such that for all j > k, (P, S) is strong
safe. Finally, we systematically test if concurrent system (P™,S) is strong safe
for 1 < m < k. Obviously, (P,S) is full strong safe if and only if (P™,S) is
strong safefor l<m <k. O

So far we have assumed that the program for the processes should contain
distinct symbols. The following corollary proves that both strong stability and
full strong safety is decidable even if there are repeated symbols in the program.
The proof is similar to the proof of Corollary 3.

Corollary 5 For a program P = a1az...a; where the a;’s are not necessar-
ily distinct, and @ given synchronizer S, strong stability (full strong safety) is
decidable.

7.3 How To Handle Different Processes

So far we have considered the case when the program for all the processes was
the same. We now consider the case when processes can have different programs.
We begin with the possibility of two distinct programs P, and P;. We initially
restrict all symbols in P, and in P, to be distinct, and we require that there
be no symbol common to both P, and P,. The synchronizer description is as
before.

We first formulate questions concerning strong safety for this model. The
definition below is similar to Definition 7 and describes when an ordered pair
(k1, k2) is strong safe for a given synchronizer.

Definition 12 For a given synchronizer S, k; identical processes with program
Py and k3 identical processes with program P, are strong safe iff for all par-
tial ezecutions py,ps,...,pr, of the first ki processes, for all partial ezecutions

36

P p2',...,pr,’ of the nezt ky processes, and
Vo € (L(S) n PE(PI,PL .o -rPh,Pl';Pz', e ,Pk,'))

(('iLJ: LA:}). U (’D: LAII’?')) nSLA(G(qo,a)) #0

We now define strong stability for this model. The definition is similar to
Definition 8. '

Definition 13 Programs P, and P, are strong stable for a given synchronizer
S iff there ezists an ordered pair (ky, k), such that, for all ordered pairs (k, k')
with the property that either k > ky or k > k2, k identical processes with program
P, and k¥’ identical processes with program P, are sirong safe for S.

We now show how to map the synchronizer into a VASS which simulates the
partial executions of processes with these two programs. Let P, = @4, ...a; and
let P = b1by ... b,. With each symbol of the synchronizer we associate a (({—1)+
(t—=1)+1+1)-tuple of integers. If the symbol belongs to the first program, then
we set the first (I — 1) coordinates and the second last coordinate as explained
in Section 5.1 and fill zeroes in the rest of the coordinates. Similarly, if the
symbol belongs to the second program, then we set the (¢ — 1) coordinates after
the first | — 1 coordinates, and the last coordinate, as explained in Section 5.1
and fill zeroes in rest of the coordinates. '

Let ¢ = [— 1. For a state s, the unsuitable vector class U* is now given by

U* = {i—1la; € {SLA(s) — {m1}}} U {(9 +j — 1Ib; € {SLA(s) - b1}}
A state s is “bad” iff

1. U*c{1,2,...1- Lg+1,9+2,...9+t- 1} and (s, VY") is infinitely-R-
reachable from (go,0) (Condition D,); OR

2. U* 2 {1,2,...1-1} and (s, VV") is infinitely-R-reachable from (go, 0), and
a) € SLA(s) (Condition D,); OR

3. U’ 2{g+1,9+2,...9+t—1} and (s, VU") is infinitely-R-reachable from
(90, 0), and b, € SLA(s) (Condition D3); OR

4. (s,VY’) is finitely-R-reachable from (go,0), and a, & SLA(s) and b, ¢
SLA(s) (Condition Ds)

A state is “good” if none of Dy, D3, D3, and Dy are true.

Conditions Dy, D3, D3, and D, are an extension to the conditions in Defi-
nition 11. The proof of the proposition below is based on similar arguments to
proof of Proposition 4.

37

Proposition 11 Programs P, and Py are strong stable for a synchronizer S if
and only if all states of S are “good”.

From Proposition 11 and from arguments presented for the proofs of Theo-
rem 2, we get the following theorem.

Theorem 11 Given programs P, and P; and a synchronizer S, strong stability
ts decidable.

The assumption that all symbols in each of the programs be distinct and
that there be no symbols common to both programs can also be removed as
follows: First, for each common symbol b, replace it by a new distinct symbol b,
in P; and by a new distinct symbol b2 in P;. For each arc labeled with resource
b in 8, replace it with two arcs b; and b;. Now no symbol occurs in both the
programs. If there are any repeated symbols in any of the programs, make them
distinct by following the procedure outlined in the proof of Corollary 3. Let the
transformed programs be P,’ and P2’ and the synchronizer be S’. It is easy to
observe that P,’ and P,’ are strong safe for §' iff P, and P; are strong safe for
S. The proof is similar to the argument presented in the proof of Corollary 3.

In an obvious way, we have the following extension to Theorem 11.

Corollary 6 Given m programs P, P,,...Pn (m fized), and a synchronizer
S, strong stability is decidable.

8 The Gas-Station Customers Problem

So far, the model that we have considered involves one synchronizer and several
user processes which have possibly distinct programs. Before we present our
analysis of the Gas-Station Problem (GSP), we consider two types of enhance-
ments to our model.

Enhancement E1: We allow the synchronizer to have a fixed number of in-
ternal variables which can take finitely many values. In addition to an operation
symbol on each of the arcs, we allow a label of the form

PllA
where

1. P is a predicate formed from equality assertions about the variables plus
boolean connectives.

2. A is an action that specifies a sequence of assignment statements which
change values of any of the variables.

38

The basic interpretation of such a label is as follows: The synchronizer can
perform operation a provided it is in a state s such that a € SLA(s) and
predicate P on the arc which is labeled with a is true. If it makes this transition,
then the action specified by A is executed. An empty predicate or action is
allowed. An empty predicate is always true and an empty action does not
change the value of any variable.

It is easy to see that we can build an equivalent synchronizer in which the
arcs are labeled with just the operator symbols by enumerating all possible
states for each of the combination of possible values that the variables can take.
Further, a program is strong stable for the original synchronizer if and only if
it is strong stable for this new larger synchronizer.

Enhancement E2: Now suppose we have several synchronizers such that
an execution of an operation in one of them invokes an execution of another
operation in the other (Such a situation could arise if a synchronizer needs a
resource controlled by another in order to execute one of its operations).

In order to model such an interaction, we label arcs as follows:

PIIR|A

where the P and A are as explained in Enhancement E1 and R is an op-
eration (executed by some synchronizer). The interpretation now is that the
synchronizer can perform operation a provided it is in a state s such that
a € SLA(s), predicate P on the arc labeled with operation a is true, and an-
other synchronizer executes the operation specified by R. If R is not specified,
it has the same interpretation as in Enhancement E1.

Provided there are no cyclic patterns of invocation of operations on the arcs
(e.g. R = {a} for an arc with operation symbol b in synchronizer S, and,
R = {b} for an arc with operation symbol a in synchronizer S:) it is easy to
construct an equivalent synchronizer whose arcs are of the form specified in
Enhancement E2. A formal transformation is outlined in [22].

8.1 The Gas-Station Customer Problem

In GSP, customers line up to pump gas. They prepay money to an “operator”.
The operator activates a “pump”. The customers then pump gas and leave
after obtaining cash equal to the difference between what they prepaid and the
amount they pumped.

In the spirit of presentation in [22], we use two synchronizers — “Operator”
and “Pump” as shown in Figure 5 (i) and (ii) respectively to model this problem.
Y. is the set containing operations give_money, get_change, activate_pump,
pump_gas and make_pump_available. The program for each of the customers
(refer Figure 5 (iii)) is the string

give_.money pump_gas get_change

39

GAS - STATION PROBLEM

Form of coadition on arcs
of synchronizers:

[| Predicate || resources [| action ||

Operator

Var: boolean customes_op =

VN~

Il customer_op = true || make_pump_availeble {I customer_op :=false I}
get_change
Il customer_op ={false [activate_pump (| customer_op =true I
give_moncy

B\
_ s

Synchronizer

Pump

Var boolean customer pump := falsg

stomer_pump = false (| (I customer_pump := true |l
make_pump_svilsble activate_pump

Il customer pump=true Il f I (i

Program for Customers

Customer 1: give_money pump_gas get change
Customer 2: give_money pump_gas get_change
Customer 3: give_money pump_ges get_change

()

Figure 5: Gas-Station Customer Problem

40

Synchronizer

Operator-Pamp

Var boolean customer_op = false, customer_pump = fi
Var string pump_stato oz Y = falses

Noto: pump_state can take caly three values —"C", "D", and "E"

predicato pl ::= (customer_op = falsc) and
(customer_pump = false) and
(pump_state = "C™)

action al = (customer_op == true);
(customer_pump = true) ;
(pump_state = "D");

0pl0alll

give_money

pump_gas

il (customer_pump = truc) and (pump_state='D") I pump_state := “E" |l

Figure 6: Gas-Station Customer Problem for enhancement E1

The boolean variable customer.op in the synchronizer Operator keeps track
of whether a customer is-being serviced by the operator. The boolean variable
customer_pump serves a similar purpose in synchronizer Pump.

This is a model which fits the description in Enhancement E2. We observe
certain properties of this model before transforming it into a model that fits
description E1. Firstly, the initial request to execute give.money from the
first customer invokes the transition from state A to B in Operator. This
in turn invokes the transition from state C to state D inside Pump, since
R = {activate_pump} for operation get_change. The first customer can then
execute pump.gas (transition D to E in Pump). At this stage, no request for
give_money can be satisfied. Hence the second customer is effectively blocked.
The first customer then invokes get.change in Operator which in turn invokes
the operation make_pump.available inside Pump. Thus, we are back at the two
initial states in the two synchronizers.

We transform this model into an equivalent model which fits Enhancement

41

E1 as shown in Figure 6. (Note: A more formal approach to transform from
the previous model to the model in Figure 6 is outlined in [22].) Synchro-
nizer Operator-Pump replaces synchronizers Operator and Pump. In this syn-
chronizer, we keep track of the state of synchronizer Pump in the variable
pump_state. The resource give_money and get_change are now slightly “over-
loaded” resources. Requests to these resources internally take care of “activat-
ing” and releasing change via make_pump_available. Since these transitions are
transparent to the customer process, they can be ignored. The predicates on
this new synchronizer is a conjunction of the predicates of the two synchronizers
in Figure 5 along with the predicate involving variable pump_state.

Thus our model of concurrency is powerful enough to model the GSP prob-
lem. Therefore, strong stability is decidable for the GSP problem (To decide
strong stability, we need to check if all the states of Operator-Pump are “good”
by applying the algorithm outlined in Section 7.2). Note that we have not
modeled input and output parameters on requests for resources inside the syn-
chronizer as in ([22]. For the GSP problem, these parameters are used in [22]
to obtain the exact amount of money that a customer gets from the pump op-
erator for the amount prepaid for gas but not pumped. Such information is not
relevant to the concurrency characteristics of the model and hence were ignored.

9 Conclusion

We have formulated questions regarding weak and strong stability for a very
basic concurrency model in which a synchronizer controls resources and pro-
cesses request resources from the synchronizers. We have shown for this model
that weak and strong stability are decidable. The proof of weak stability is
based on bounds on chain lengths on a particular sequence of vectors in the
the positive orthant. The proof for strong stability is based on the the decid-
ability of infinite-R-reachability of vector classes in a Vector Addition System
with states. We also showed how to enhance the synchronizer and still answer
decidability questions regarding the enhanced model by transforming the given
synchronizer(s) into a single synchronizer of the proper form.
This work suggests number of directions for future research, including

¢ enhancing the model so that processes are finite state devices rather than
strings.

e an efficient algorithm for judging if a state is good.

e expanding the work to consider systems in which the synchronizer grows

in a regular way as the number of processes increase, e.g. as in the dining
philosophers problem.

42

References

[1] A. Valmari. A Stubborn Attack On State Explosion. Computer Aided
Verification, 1990.

[2] E. M. Clarke, Emerson, and Sistla. Automatic Verification Of Finite-state
Concurrent Systems Using Temporal Logic Specifications. 10th ACM Sym-
posium on Principles of Programming Languages, 1983.

[3] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning About Networks
With Many Identical Finite State Processes. Proc. 5th ACM Symposium
on Principles of Distributed Computing, August 1986.

[4] Ginzburg and Yoeli. Vector Addition Systems And Regular Languages.
Journal of Computer and System Sciences, 1980.

(5] K. Ramamritham. Synthesizing Code For Resource Controllers. [EEE
Transactions on Software Engg, August 1985.

[6] Louis Rosier and Hsu-chun yen. A Multiparameter Analysis Of The Bound-
edness Problem For Vector Addition Systems. Journal of Computer and
System Sciences, 1986.

[7] Mahesh Girkar and Robert Moll. Bounds On Chain Lengths For Collections
Of Non-negative Points In n-space. Technical Report, Dept. of Computer
Science, Untv. of Massachussetts, April 1992.

[8] Mayr E. W. An Algorithm For The General Petri Net Reachability Prob-
lem. Proceedings of the 18th ACM Symposium on Theory of Computing,
1981.

[9] Milner R. A Calculus Of Communication Systems. Lecture Notes in Com-
puler Science, 1980.

(10] Partice Godefroid. Using Partial Orders To Improve Automatic Verification
Methods. Proc. Workshop on Computer Aided Verification, june 1990.

(11] Partice Godefroid and Pierre Wolper. Using Partial Orders For The Effi-
cient Verification Of Deadlock Freedom And Safety Properties. Not Sure
whether published or not.

(12] James L. Peterson. Petri Net Theory And The Modeling Of Systems. Per-
tice Hall, Inc. Englewood Cliffs, New Jersey, 1981.

(13] R. P. Kurshan. Modelling Concurrent Programs. Symp. on Applied Math-
ematics, 1985.

43

[14] R.P. Kurshan and K. McMillan. A Structural Induction Theorem For Pro-
cesses. Proc. Symp. on Eigth ACM Symposium on Principles of Distributed
Computing, August 1989.

[15] Rudiger Valk and Guy Vidal-Naquet. Petri Nets And Regular Languages.
Journal of Computer and System Sciences, 1981.

(16] S. German and A. P. Sistla. Reasoning With Many Processes. Proc. Symp.
on Logic in Computer Science, June 1987.

(17] S. German and A. P. Sistla. Reasoning About Systems With Many Pro-
cesses. JACM, July 1992.

[18] S. Rao. Kosaraju. Decidability Of Reachability In Vector Addition Systems.
Proceedings of the 16th ACM Symposium on Theory of Computing, May
1982.

[19] Sacerdote and Tenney. The Decidability Of Reachability In Vector Addition
Systems. Proceedings of the 9th ACM Symposium on Theory of Computing,
1981.

[20] Tadoa Murata. Petri Nets, Properties, Analysis, And Applications. Pro-
ceedings of IEEE, 1988.

[21] Ugo Buy. Automatic Synthesis Of Resource Sharing Concurrent Programs.
Phd. Thesis, University of Massachussetts, Amherst, 1990.

[22] Ugo Buy and Robert Moll. Analysis And Synthesis Of Inter-process Com- .
munication Code. To appeat.

44

