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Abstract

This paper reports preliminary results of work focused on reflexive and reactive controllers for man-
aging a 20 degree-of-freedom (DOF) hand/arm system performing grasping tasks. The goal is to provide
a framework for sensor-based controllers that acquire visual and haptic information on-line and use this
data stream to refine grasping solutions. We will present several such behaviors and illustrates how they
can be used to suppress local errors in the neighborhood of a grasp solution.
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1 Introduction

A great deal of work has focused on developing cooperative and dextrous manipulation systems. This
domain is composed of independently challenging issues: dimensionality, redundant degrees of freedom,
uncertainty resolution in modeling, planning, and execution. '

1.1 Dimensionality

The “find-path” problem for configuration spaces obstructed by polynomially described boundary (given
perfect information) has already been completely solved by Schwartz and Shahir[40]. A nearly optimal so-
-lution has been suggested by Canny for this class of problems as well[8]. However, combinatoric algorithms
for finding a path with algebraic constraints are exponential in the number of degrees of freedom (DOF)
in the systeme].

Moreover, “complete” process models are expensive to build. Detailed plans for grasping which are beyond
the limits of model certainty and reliability are of little value, consume scarce system resources, and
may subsequently require significant replanning. The active sensing paradigm addresses these perceptual
expenses by directing sensory resources to important features of the process. Various objectives to direct
the sensing strategy have been proposed, among these: model acquisition [1, 2, 3, 42], grasping[3, 21],
recognition[13, 18, 23], gaze fixation(4], and navigation[16]. Since these techniques attempt to determine
what information is necessary and when it is required, they couple the control problem to the perceptual
problem. The evaluation can be accomplished by executing a control hypothesis and actively resolving
inconsistencies between the model and observation. The incremental control hypothesis constitutes an
active, control-based model revision.

Complexity and dimensionality issues have led to behavior-based system architectures. In this paradigm,
complex state spaces are decomposed into tractable subspaces which form a basis for all system behaviors
[5, 6, 19, 38]. This factorization greatly enhances run-time performance. For example, the subsumption
architecture|5, 6] and Raibert’s hopping platforms(38] partition a complex state space into disjoint con-
trollers that are activated by sensory events. It has been demonstrated that this approach can be used to
generate controllers for rather complex processes.

The system we propose incorporates behaviors (controllers designed to optimize particular performance
criteria) to regulate the state of the process. Elements of the suite of behavior are activated in a competitive
scheme in which a task (conjunction of sub-goals), the local gradient of the performance indices, and the
ability of the robot to address each gradient is considered. The objective of this work is to discover a
means of modulating control such that incremental evidence and the current environmental context can
continually adjust the solution strategy.

1.2 Redundancy Resolution

Analogous to this behavior-based control methodology are the pseudoinverse-based techniques aimed at
exploiting redundant degrees of freedom in a robot mechanism. This work establishes a prioritized set of
behaviors in the form of performance indices and attempts to address low priority sub-goals of the task in
the null space remaining after the solution of high priority sub-goals. Conditioning metrics for redundant
manipulators have been used as a design tool for relating a manipulator to a task domain[39], as scalar
objective fields for optimizing the inverse kinematic solution [9, 10, 27, 29, 30, 33, 47, 48].

The performance metric is used to discriminate between competing configurations in a redundant manip-



ulator. For example, Yoshikawa employs a pseudoinverse (least-squares) solution to the inverse kinematics
problem with two forms of second priority configuration objectives[47]. The controller is expressed as:

0=Jte+(I-J ) (1)

where & is an internal or null space motion which optimizes a performance metric:

=K. 2
s=K T (2)
The first priority task in the control expressed by Equation 1 is the Cartesian velocity command. If

the redundant manipulator has excess degrees of freedom, then the posture is adjusted to optimize the
secondary preformance metric, p.

In this literature, researchers have focused primarily on optimizing the posture of the robot during the
execution of a Cartesian trajectory. The performance metrics reported include:singularity avoidance, ma-
nipulability, obstacle avoidance, postural bias, inverse kinematic accuracy and feasibility, and the compat-
ibility of manipulator posture with task specified forces and velocities. Multiple, prioritized performance
specifications can be addressed in a uniform manner. However, the relationship between the behavior
produced in such a system and the behavior specified in the controller design is not clear. The behavior
that emerges from the controller depends directly on the null space preserved after the indulgence of higher
priority performance metrics. The performance of the system with respect to any of these criteria varies
with the manipulator Jacobian.

1.3 Reasoning in the Force Domain

Considerable progress in grasp planning has been published in the 1980’s. The Grip Transform was
developed to express the transformation from a set of contact forces or velocities to a net object frame
force or velocity|32, 39]. Mathematical programming techniques employing frictional constraints have been
described to formulate the grasp force solution[20, 26, 33]. The computed torque control technique has been
augmented to include object dynamics and internal grasp forces so that object position and orientation
can be regulated within the workspace of the hand[28]. The quantitative formulation of a force closure
grasp[36]) and the effective stiffness of the grasp provides a means of comparing grasp configurations to
task specifications(37]. Researchers have also investigated the use of contact geometry (“liftability”(45])
for grasp formation, and friction and compliance to generate object reorientations in 2D[15, 31].

The problem of designing the grasp configuration has also received a good deal of attention. Results have
been reported for several “knowledge-based” grasp planners. Fast geometric algorithms for finding force
closure contact geometries for polygonal (planar) objects have developed [37] and have been extended
(to significantly slower algorithms) for two contacts on piecewise polynomial planar objects{14]. Other
work derives grasp controllers from human grasp taxonomies(12, 24, 35, 44]. We refer to this perspective
as “knowledge-based” because they rely to a large degree on complete geometric information about the
world in the first case, and because they rely on emulating human grasps in the latter case. Moreover,
taxonomy-based controllers require multiple sensorimotor mappings to express alternative manipulation
tasks. The resulting “ezponential cortez” may not be a viable control architecture for highly redundant,
general purpose systems.

Grasping has also been approached as an optimization problem. Jameson and Leifer describe a system
which optimizes a grasp goal function[25). Artificial potential fields which avoid first order slip conditions
and which penalize unfavorable contact geometries are superimposed to generate a search space. These
potential fields penalize contacts near the tip of the finger, the palm, contacts near the table top, and
finger configurations with extreme joint angles. This work also requires complete geometry. Qur approach
decouples the hand and the object — reducing the complexity of the state space. Moreover, we proposed



to control grasp formation on the basis of incomplete geometry. Jameson and Leifer noted that geometric
smoothing should simplify the optimization problem. We are investigating smooth models in the force
domain which are also convex.

2 Sensorimotor Behavior Design Specification

2.1 Reflexive, Reactive, and Deliberative Behavior

For the sake of discussion, we have adopted a nomenclature for distinguishing three forms of behavior in
terms of the computational complexity and the source and scope of knowledge employed by the controller.

Reflexive behaviors are hardwired encapsulations of behavior. Biological organisms develop light-weight
transformations computed on the basis of local stimulation, the local connectivity of the peripheral nervous
system, and the musculoskeletal configuration. Prototypical examples include the human grasp reflex which
appears for a short period in the first year of infant development, and the plantar reflex in human gait
control. This form of behavior is event driven and characterized by very tight sensor-effector arcs. There
is no persistence or interpretation of the sensory information.

Reactive behavior differs from reflexive behavior in its capacity to incorporate new information, perhaps
extending or modifying the current context. In this sense, reactive behavior is based on more global in-
formation accumulated in persistent models rather than on local sensory information exclusively. These
behaviors permit the continuous deformation of control surfaces and thus allows the data stream to mod-
ulate individual behaviors of the system and the composition of behavior.

Deliberative behavior requires relatively complete information about the world, and it uses this knowledge
to predict the sequence of future states of the system. This prediction permits the system to compare the
future consequences of all candidate actions and to optimize the system performance. A fundamental issue
facing the designers of deliberative behavior is the non-stationary nature of the world, and that the process
of observation itself is prone to error. This implies that, in general, all deliberative behavior must involve
some degree of risk.

Perhaps the most compelling justification of reflexive and reactive behavior, is the property of local, bounded
error suppression and its value to deliberative behavior. When the state of the world is not quite what
it appears we may rely to some extent on reflexive and reactive behavior to suppress deviations between
our models and reality. Reactive systems may be able to find solutions to simple problems in complex
environments. Moreover, they may be capable of occasionally stumbling onto very good solutions. However,
to increase the probability of a favorable outcome, these experiences must be fused over time and a
deliberative agent must be devised to exploit this increasingly global information. In this sense, deliberative
behavior can be used to position the reactive subsystems upstream of a particularly robust solution to a
specific problem — relying on the local competence of these reactive systems to attain the goal with no
further cognitive expense.

2.2 Declarative Behavior

Reflexive behavior must be formulated in light of specific sensors and mechanisms to be useful. They
express procedural responses to fundamental constraints in the system and exploit particular kinematic and
computational structures in the mechanism. Brooks’ subsumption architecture precompiles the structure
of the robot, the range of environment, and the task domain into a hardwired, procedural repertoire.
Environments which are not anticipated cause these precompiled strategies to fail. Likewise, broad ranges of



tasks may require mutually exclusive behaviors which cannot be selected solely on the basis of instantaneous
sensor information. :

This work attempts to capture the quality of successful interaction with the world in the form of a set of
declarative behaviors. This behavioral specification permits the on-line compilation from resources, tasks,
and environment into an instance of a procedural solution. Our goal is to produce substantially more
flexibility in the response of the system to novel circumstances. The reactive grasp controller we describe is
declarative in the sense that sub-goals are expressed in a task/device independent manner. One behavior
controls the configuration of contacts which collectively produce wrench closures. This metric space is
modulated by observing object geometry in the process of executing a grasp. Another behavior controls
the posture of the mechanism allocated to the task by analyzing the relevant manipulator Jacobians.

2.3 Relationship to Psychological Models

There is a similarity between the notion of behavior employed in this approach to robot control and
the composition of control observed by psychologists observing the development of reaching and grasping
behavior in humans(7, 43). Bruner cites constituent acts (7] and Thelen observes certain component abilities
[43] defined as motoric actions, that are not necessarily independent or adequate for all situations. In both
these studies, behavior (or the soft-assembly of heterogeneous component abilities) is constructed for a
specific purpose or task. Our approach is motivated by the same computational issues as were postulated
by Thelen, i.e., that component abilities are necessary to overcome the incredible complexity involved in
combining the available resources. The same complexity forbids the existence of pre-defined procedures
or prefigured patterns of behavior. The maturation process described by both Bruner and Thelen is
proposed as a mechanism by which constituent acts are composed to yield solutions to the broad domain
of manipulation tasks given the perceptual context. A hypothesis common to both the psychological
literature and the approach proposed here is that there can be a limited set of behaviors whose collective
response is modulated by the current world state.

A significant difference to the human developmental sequence exists as well. In the first year of development,
humans acquire coarse-motor skill (reaching), followed by fine-motor skills, culminating in the ability
to perform dextrous, fingertip manipulation. During this year, the infant also acquires experience with
objects in the world and begins to associate these forms with function. This concurrent motor — cognitive
development is absent in our controllers. We have expressed relatively rich strategies for fine-motor control
in the robot behaviors rather than learning these strategies from experience, consequently, our robot knows
how to address certain tasks, but it doesn’t have the slightest clue why. This knowledge is almost certainly
required to make effective use of a dextrous machine. It is fair to assume that purely reactive dextrous grasp
controllers can’t hope to respond to the breadth of manipulation contexts without exploiting knowledge-
based constraints.

3 The “Grasp” Problem

In this work, a contact configuration is defined as a hand/arm configuration and a contact geometry
which transmits contact wrenches to the object via the surface geometry. The goal is to decompose this
complex planning problem into decoupled controllers which independently regulate aspects of the planning
problem and to compose a solution from these constituent controllers.

A grasp solution is stable if the contact configuration is capable of rejecting arbitrary perturbation forces.
This requires that external wrenches can be supressed by contact wrenches derived from normal and fric-
tional contact forces. Stability is enhanced when contact forces are evenly distributed over the contacts;34].



A grasp configuration can be designed to effectively apply task specific wrenches to the object. A
grasping task is described in the force domain by specifying a set of wrenches (forces and torques) relative
to an object coordinate frame. In this work, we will address n-fold, rotationally symmetric, convex object
geometries.

The approach reported in this paper, refines a grasp estimate by iteratively descending a composite error
surface in toward the nearest “optimal” contact configuration. Performance indices (and associated error
surfaces) are derived from models of the object geometry and from manipulator kinematics. Such models
can exhibit many local minima (see Figure 2). We will describe heuristic control surfaces based on smoothed
force domain models and on locally planar surface geometries. The former is used to solve for a force closure
grasp while avoiding many local minima. The latter is used to refine the resulting contact geometry for
this class of objects. This control surface yields moment closure grasps in the vicinity of approximate force
closure grasps. The grasp synthesis process manipulates the placement of frictionless point contacts in
the contact configuration space. We will consider the placement of qualitative, normalized contact forces
on the object’s surface. This representation characterizes the ability of the geometric surface to transmit
task specific contact wrenches. A third controller is described that regulates the hand configuration with
respect to the manipulability metric. Behavior compositions are employed as iterative estimators on a
family of observed error surfaces.

3.1 Controlling a Grasp Geometry in the Force Domain

Given a contact geometry with associated contact models, the set of forces on the surface of an object,

F={flfe R}, (3)

maps to a set of object frame wrenches,
W = {@|@ € R™}, (4)
W C R™, ()

using a linear mapping G. If we restrict ourselves to the case where no contact torques are applied to the
object’s surface, then the mapping is defined by Equation 6.

G : R* — R™ such that ‘
G(fi) = (fis (7i x £3)) (6)
G(F)=W
where 7 is the position vector of the contact location relative to the task frame.
Grasp stability requires that the union of the wrench subspaces generated by the contact system and
external forces must span six dimensions. If this condition is met, infinitesimal perturbations of the object
may be resisted by forces generated in the manipulator and/or environment. The robustness of this stability
is related to the magnitude of perturbations that the contact system can resist.

The subsequent discussion will make use of the following nomenclature.

@; a particular wrench space vector resulting from the #*® interaction force.

W; the set of normalized wrenches applied at the ith contact position.

W = [W; W, ... W, ], is the Grasp matriz.



We will refer to the wrench derived from the force along the surface normal as an independent wrench, and
the wrench derived from an associated tangential contact force as a dependent wrench.

Figure 1 illustrates a two contact grasp configuration. This system of forces produces a corresponding

Figure 1: A Grasp Geometry

system of wrenches at contact positions 0 and 1. These wrenches are recorded columnwise in the W
matrix shown in Equation 7.

10 -1 0 ]
0 0707 0 0.707
0o 0 0 0
W= [WIWil=10 o o o (7)
o 0 0 o0
L0 0707 0 0.707 |

The span of W can be identified by computing the singular value decomposition of grasp matrix.
W = UV
The result of the SVD of the grasp matrix, Equation 7, yields;
£ = diag[1.414, 1.0, 1.0, 0.0]

[-1 0 0 07
0 1 0 0 -0.707 0 0 -0.707
0 0 01 _ 0 0.707 0.707 0

U=10 0 0 0 V=1 011 o0 0  -0.707 (8)
"0 0 0 0 0 0.707 -0.707 0 ’
| 0 0 -1 0 ]

There are three nonzero singular values which define the rank of the contact system to be three. Cor-
respondingly, the first three column vectors in U define the space spanned by the contact system. U

(Equation 8) shows that this grasp configuration can apply restorative forces in the — f; and f, directions
and a restorative moment about the z axis, —mh,. The forth column vector in I identifies the null space of
the system. A null space combination of contact wrenches may be scaled up arbitrarily without producing
a net external wrench on the object. Therefore, the family of such solutions is:

A [ =0.707%; — 0.707w3), (A < 0). (9)



3.1.1 Sufficient Grasp Geometries

The criteria we will employ for a stable grasp configuration is the construction of a null space within the
grasp matrix (Section 3.1).

Principle 3.1 (Null Space Sufficiency) If a null space can be constructed from a set of independent
wrenches, {w}n, derived from normal contact forces, then a grasp wrench, wess within the wrench space
spanned by these normal wrenches and their associated frictional wrenches, {w}eze € span({wn}U{ws}),
can be ezecuted through an appropriate linear combination of contact wrenches.

This observation is valid for three dimensional objects and two or more soft finger contacts or for 3 or more
point contacts with friction. Extensions of this approach are required in order to take advantage of lower
order contact constraints and/or compound contact types. Given these assumptions, if wrenches derived
from frictional forces are insufficient for the task, the object can be squeezed within the null space until
Wezt is achieveable. This observation establishes an equivalence class of sufficient contact geometries which
can meet force domain specifications [21, 41].

The null space condition can be expressed by a quadratic form based on a normalized residual wrench
vector, p.

€s =

) .
= ((‘7— %i@;) (t-’— % id’;) (10)
i=1

i=1

where £ is an optional wrench closure bias, and the residual wrench vector, 7, expresses the net wrench

over 1 < j < n contacts. The elements, ¢; € [—1,1], of £ and the elements, w;; € [-1,1] of @; are
qualitative in the sense that they do not reflect engineering units of force and torque, but express the
relative ability of a contact configuration to transmit forces and torques through the object’s surface.
That is, the maximum(minimum) force/moment applied to the object by a single contact is +1(—1). The
solution contact configuration is an optimization based on shape rather than dimension. Equation 10 is
zero iff there exists an equivalent linear combination of contact wrenches, £ = (1/n) ¥ &; for wrench task,
t.

Differentiating Equation 10 with respect to §; yields:

Jes - 1 . To ({— ,1_,2.“;’{)
_3—0: 2(t—;2i:wg) 36

T
~ 1 . Ow; 1
= —2(t—;;w,) B—H;n
2 7

= ——=pG;
n

2 1.
= —;Gg'p, (11)
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Figure 2: The Force Model, the Sufficiency Metric (¢ = 0), and the Attractors for the Square

and, therefore,

Equation 12 evaluates to 0 in one of two circumstances;

(a) 7=0, and
(b) when 7 is orthogonal to GT such that GT5 = 0.

The first condition is the desired convergence criterion and results in a grasp geometry that can be scaled
(in the sense of Principle 3.1) to span the task. The second criterion is equivalent to a local minimum
in the control surface. This class of attractors results when a local tangent to the wrench surface, G, is
orthogonal to the residual vector, p. A simple example of this phenomena is when a single contact is

placed on a circle (sphere) with task bias wrench, ¢ = 0. Here the contact wrench, &, is orthogonal to the
derivative wrench, 84i/84.

Figure 2 demonstrates these two types of equilibrium grasp configurations. This figure illustrates the
wrench functions, fz(8), f4(9), and m.(@), the error surface, and the positions of attractors in the metric
space for a square shape. In this figure, a contact is located at § = 0 (solid circle) and the error surface is
used to regulate the position of the second contact. Both contacts are modeled as frictionless point contacts.
The moving contact will migrate toward one of four separate attractors in the error metric depending on
the initial configuration. Of these equilibrium grasp configurations, only the global minimum is sufficient.

11



The other minima are generated at contact locations where the local wrench gradient, G, is orthogonal to

the residual vector, p.

The Hessian of Equation 10 is in the form:

[ 9%¢ 3%¢ 3% T
802 00,06, 98,86,
82 e 93¢
060,86, 89; 86,66, ( 1 3)
5%¢ 8¢ e
| 99,86, 88,06; ET7
The diagonal terms of the Hessian look like:
0% 8Gt - T
o ~ " [ 7+ 6t 5
_ 2 G}"G 0GT
T nl n 89; 0. °
and the off diagonal terms are of the form:
d%e T
5656, = [e7es]
so that,
GIG, _ 8GT GIG, GTGa T
( n 06 m n n
2 9 GIG, (6262 _ 261 GIGa
d_f. = — n n 96, n (14)
df
GIG fei{e; GIG. oGT
e =7 (=52 - %65P)
T T T [ 96T >
Gl Gl Gl G2 Gl G a6, p r
2 Gg'Gl chz G%‘G 2 8—c;"—p‘ ;
= —-2' - 2 (10)
n n
GIG, GIG, --- GIG, 86T
L 06,

To establish convexity in this metric, we must demonstrate that the eigenvalues of Equation 14 are all
positive. Equation 15 demonstrates that this may not be as difficult in general as one might think. The

first term in Equation 15 is the product of two matrices, GTG, as is therefore positive (semi)definite.
However, as we shall see, care must be taken to guarantee convexity in general.

3.1.2 Force Closure Behavior

The multiplicity of attractors in the control policy illustrated in Figure 2 is addressed by smoothing the
image of the object in the wrench domain — or equivalently, smoothing the error surface defined by
Equation 10. One “smooth” approximation is the projection of the force domain model of the object onto

sinusoidal basis functions with characteristic frequency of lﬁf_%.

12



The force and moment diagrams for this class of objects projected onto the 1% harmonic basis yields:

wy = fo = —cos(6)cos(9) Wy
wy = fy = —sin(f)cos(d) ws
wy = f:= —Sin(¢) We

me=0
my =0 (16)
m, =0

Note that using this approximation for n-fold symmetries reduces the control of grasp sufficiency (wrench
closure) to a force closure optimization. This is due to the fact that the moment diagrams for n-fold

symmetries exhibit characteristic frequencies of n%‘f

and are therefore ignored in the 1% harmonic ap-

proximation. Moreover, it can be shown that this wrench model yields a convex sufficiency metric over
a portion of the contact configuration space in the planar case when the task wrench bias, ¢ = 0 (see

Appendix A.2).

The sufficiency metric for this force closure model yields:

n T n
[ﬂﬁzmo[&§ZM)

i=1 =1

£°

Il

=1 =1

and a contact wrench Jacobian in both the § and ¢ directions.

sin(6)cos(¢1) —cos(6y)cos(¢r) 0 0
s sin(f0;)cos(¢a) —cos(f2)cos(d2) 0 0
8 = : :
sin(0,)cos(dn) —cos(br)cos(¢n) 0 O
cos(81)sin(¢1) sin(61)sin(¢1) —cos(¢)
of - cos(B3)sin(ds) sin(f;)sin(@2) —cos(¢2)
= : :
cos(ﬂn):sin(d),,) sin(0,)sin(¢,) —cos(dn)
The gradient of Equation 17 with respect to 8, yields:
8efC 2 1 Ofek 2 1 Ofyk
%, _ = (tfz - ;%fz.i) 96, = (tfy - ;#Zkfy.i) 3_;k

2

t -i-1
“tgy+ =
n n i

Agrcos(i) + Bgrsin(fy)
(.43;: + ng)l/zsin(ak + 1/)k)
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o o

=

o o

o

[tf,, + %i cos(0,-)cos(¢;)} + [tfy + —11;2": sin(@;)cos(q&;)] + [

ik

et ESsimt)] a7

i=1

(18)
0
0

(19)
0

E(sin(ﬂ;)cos(g&;))) (cos(8k)cos(dr)) — % (tf; + %Z(cos(&)cos(éi))) (sin(x)cos(dr))

(20)



where,

Age =

S

(tfy + %Z(sin(ﬂ;)cos(tﬁi))) cos(x)

i#k

): 2 (tf,, + %Z(cos(&)cos(qb,-))) cos( )

n i<k
Y = tan~'(Agk/Box)

This result demonstrates that the sufficiency metric employing the force closure model generates a unimodal
error function. Since we want to find the minimum of this error metric, we must satisfy two conditions:

8 eFC

(4) —i- ~ sin(fr + ¥1) = 0, and
a6y
82 ch
(B) 3 = cos(fk + i) > 0.
o6
Condition (A) is the convergence condition and is satisfied at (6x + %) = 0, =, or
Ok = =Yk, ™ — Y.
Condition (B) identifies the minimum in the function. The solution to (A) which satisfies this condition is
- Aek)
8z = —tan™? ('—‘ . 21
k a Bek ( )

Figure 3 illustrates the wrench functions, f-(8), fy(8), and m.(8), the sufficiency metric, and the positions
of attractors in the metric space for the smoothed sufficiency metric for the square shape (Figure 2 shows
the original wrench model, prior to smoothing). Here, the darkened contact on the right side of the square
is fixed in this position. It is clear that since this contact does not respond to the gradient in the sufficiency
metric, that we could replace this contact with an equivalent task bias wrench. The resulting sufficiency
metric is convex in the interval (x/2,37/2). The controller derived from this metric could be used to
optimize the grasp configuration with respect to the sufficiency metric. However, the performance of this
controller is sluggish in the vicinity of the maximum and spurious local minima will be introduced if this
non-convex control surface is composed with other controllers. Better performance can be achieved by
computing a convex (quadratic) controller which has the same stable minima. Appendix B describes a
simple quadratic form derived from the smoothed sufficiency error metric. The resulting quadratic can be
used to compute the gradient of the convexitized force closure sufficiency metric at contact k.

FC -
Des| 0,50~ €5 s (22)
00 ok (6x - 63)
In practice, stability is enhanced in the vicinity of the equilibrium state if maz(e, (6, — 6;)) is used in the
denominator of Equation 22, where ¢ is a small, positive constant.

Equation 22 was used to generate the solution for a planar grasp on a circular object in Figure 4. In this
example, 3 contact locations are controlled by the grasp estimator in a two dimensional force space. The

2D task specification is defined along the f- and fy task basis vectors. The rectangular region plotted in
force space depicts a convex set of forces which can be applied by the current contact system. From left to

14
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The original error function is superimposed on the smoothed force closure metric.
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right the contacts migrate from initial to final positions to generate a null space contact geometry — this
is an instance of an “optimal” force closure grasp.

A similar quadratic regulator for ¢, can be derived by differentiating Equation 17 with respect to ¢,

FC
% = (43, + Biy)sin(dr + tan™'(Agr/Bgr)) (23)
where:
2 ]
n iZk
i#k
—1 [ Aok
r = =t ==
Pi o (B¢k)
so that, FC FC
Oes s~ — €5
=3 =95 S5 24
8¢ g, (b — ;) (24

3.1.3 Moment Closure Behavior

The approximate wrench models employed in the force closure behavior generate predictable, unimodal
control surfaces but disgards a great deal of information in order to do so. The solution generated in
this fashion is, therefore, not always expected to be consistent with the minima in the real error sur-

face (Figure 2). A local, moment closure optimization can be employed based on enriched force domain
information.

Following convergence of the force closure behavior, contacts are positioned on particular planar facets of
the object. The moment closure optimization will adjust the contact placement to eliminate any residual
moment in the grasp. We use the perpendicular of a plane, (o, 8, ¢o), to parameterize the contact plane.
Figure 5 illustrates the parameterization and the geometry from which the wrench models are derived.
The forces transmitted through any pla.nar face are constant at all contact positions on that face. The

moments applied to the object, m = 7 x f , vary linearly with surface coordinate and pass through zero
where the perpendicular passes through the plane. The resulting wrench model is:

wy = fz = —cos(fp)cos(do) wy = my = —rgsin(go)cos(fy) + resin(fo)
wy = fy = —sin(fp)cos(do) ws my = —rgsin(@o)sin(fy) — recos(bo) (25)
wy = f,= -sin(¢o) we m, = rgcos(go)

I

where (rg,74) are the surface coordinates of the contact in the plane. Note that this local planar sur-
face approximation yields constant contact forces which implies that control is derived from the moment
diagrams exclusively.
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$7= [ -sin( ¢o)cos( 90). -sin{¢ 0 )sin(oo ), cos(® 0 )]
g7 = -sin(g)), cos(§)).0]

“T = . o0i o
f [ cos(eo )COS(¢0). sin(§) )cos(g ). -sin(g ) ]

Figure 5: The Moment Closure Model derived from a Parametric Object Plane

The moment closure sufficiency metric can be written as follows.

. 2 Y 2
egIC = |tgz — %Z(—cos(%)cos(tﬁo))] + [tfy - %Z(—sin(@o)cos(%))} + [tfz - %Z(—sin(qﬁo))]

i

. 2 2
+  |tmz - %Z(—rgsin(qﬁo)cos(ﬂo) + r¢sz’n(00))] + {tmy - %Z(—rasin(cﬁo)sin(ﬂo) - r¢cos(80))]

- 2
+ |tmz - %Z(rocos((ﬁo))] (26)

For this model, the contact wrench Jacobian for surface coordinate, 7y is:

GZ, = [0,0,0, —sin(do)cos(8o), —sin(o)sin(bo), cos(o)]
and,
86%, _;
ore —
This result immediately establishes global convexity for the moment closure sufficiency metric by noting

that the second term in Equation 15 is zero and the resulting Hessian is just GTG. The product of any
matrix with itself is trivially positive definite and symmetric.

The controller is derived from this convex surface by transforming from planar surface coordinates to polar
coordinates and then constructing a quadratic regulator with the same equilibrium state as the original
convex metric. Note that 6Gg'/60 is not generally convex, but that 0G,Ta/ Ord is, as was demonstrated
above. The planar surface coordinate where the gradient of e} with respect to 74 vanishes at

-

ok = - ntm+Z(rasin(¢o)cos(00)—r¢sin(00)) (sin(@o)cos(8o))
i ik

— | ntmy + 3 (resin(¢o)sin(6o) + recos(6o)) | (sin(do)sin(8o))k

I itk
+ |ntm, - E(rgcos(tﬁo)) (cos(d0))k
| i1k
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This extremum is a global minimum since the metric is convex (positive definite). The corresponding §
coordinate of this minimum is:

0 = tan™! [TL" : (27)
To
so that, MC Mo
es = 26_5'_—_5_5.. (28)
06 6k (0k - 31,)

A similar result for the moment closure regulator in the ¢ direction can be derived by differentiating
Equation 25 with respect to ¢x.

G, x = [0,0,0, - sin(6o), cos(8o), 0] (29)

and, as before, 3GT /3r4 = 0 establishes the fact that the sufficiency metric for the moment closure model
is globally convex. If we differentiate Equation 26 with respect to ¢, and setting the result to zero, we
can solve for the surface coordinate, rj, that minimizes the moment closure sufficiency metric.

Toe = — |Nimz+ Z(rgsin(qSo)cos(Ho) —rgsin(8o)) | (sin(bo))k
i ik
- |ntmy + Z(rgsin(%)sin(&o) + r¢cos(8o)) | (cos(8o))k
i ik

e

This extremum is a global minimum since the metric is convex (positive definite). The corresponding ¢
coordinate of this minimum is:

ér = tan™! [T—"”i] (30)
To
so that, wc e
Oes €gC — €3
- = 22—, 31
86 |y = 2ér-07) ~ (51

3.1.4 Wrench Closure Composition

The goal of this behavior composition is to construct a null space in the contact wrench space of the object.
The problem is formulated as an optimization of the sufficiency metric. However, we have demonstrated
that this metric will have local minima which do not yield sufficient grasp configurations. This problem is
addressed by employing two distinct control surfaces. The first regulates the contact configuration using
a heuristic, force closure model of the object consisting of the projection of the wrench space image of
the object onto a sinusoidal basis function with characteristic frequency lcycle/27. The second employs a
moment closure model consisting of locally planar object geometry mapped into the force domain.

This set of behaviors is capable of producing “correct” grasps in the sense of Principle 3.1 for n-fold,
convex, rotational symmetric objects. This follows from the observation that if the force closure regulator
is permitted to run until convergence, then the moment closure behavior does not need to leave the current
object face to eliminate any residual moment.
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It is our hope that we may actually use these behaviors as the basis for a more general grasp controller.
To that end, we propose to activate wrench closure behaviors in a context dependent manner. The work
described here has counterparts in earlier robotics research. The behaviors described earlier for grasping
have been activated in a finite state automaton[19] — this work was patterned after similar work on hopping
platforms[38]. It was demonstrated that such machines could be used to generate “gaits” in system behavior
representing manipulation sequences. More recent work has viewed the composition problem in the context
of the system utility of competing controllers.

This work employs a form of radial basis function to activate a set of competitive behaviors on the basis
of the system state. Luce’s rule is a composition function derived from game theory which permits the
introduction of multiple decision surfaces, the shaping/profiling of the decision hyperplane, and which
admits domain knowledge in the form of a priori structure for competing behaviors. Luce’s rule is used to
express (hyper)planar decision surfaces in error space and to shape the activation in the neighborhood of
a decision using an exponential switching profile.

e’Yi
A= e (32)
where: -
A; = activation coefficient of behavior #,such that Z A; =1,
;i = the weighted error metric associated with beh’avior i (33)

The switching boundary is modulated by specifying three parameters (r, 8, o)

r — the length of the perpendicular constructor of the switching boundary;
@ — the orientation of the perpendicular constructor;

o — the steepness of the switching profile, expressed as the gradient magnitude at the switching boundary.

Combinations of these parameters can be used to adjust the position, orientation, and switch profile of the
decision surface.

We will use a particularly simple composition strategy consisting of a single linear decision surface to
distinguish two linearly separable activation domains in the error space — or equivalently a single radially
symmetric activation function in the state space. This is a relatively inexpressive composition rule, but
is sufficient for this class of objects. The decision surface is a relatively sharp profile with parameters
r =0.01, § = 0.0, ¢ = 500.0 so that the activation of the wrench closure behaviors is:

e(Trc=TMmc)

Arc = (1+ e("/pc-‘vuc)) (34)

Amc = 1- Arc (35)

The corresponding decision boundary for this activation function is shown in Figure 6. We arrived at
these values by experimenting within a range of values for each parameter over a set of 10 objects, as
detailed in the next section. Overall worst-case and average scores were computed, and the parameters
above represent the best choices, according to our metric.
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Figure 6: The Decision Surface Separating Force Closure and Moment Closure Activation

If de5C/d, and de¥C /dijy are the gradients for force closure and moment closure respectively, where
Jk = (8, @)k is the coordinate of contact k, then the composite gradient is:

d FC d MC
Li-e..i = Arc 5.4 Apc S (36)
diy diy d
The controller employed to regulate wrench closure is derived from the composite gradient.
- deg
At = ~Kwe——= (37)
dyy

Wrench Closure Performance

Figure 7 is a plot of the behavior activation profile for one of two fingers during grasp formation on the
square shape. These results are qualitatively the same as for all numbers of contacts and over all shapes
that we evaluated. The initial activation for this grasp (see Figure 7(a)) is entirely force closure. During

this phase of the grasp, the wrench closure composition by passes a local minimum in the moment closure
sufficiency metric (Figures 7 (b) and (c)).

One may view the grasp synthesis process as one which initially employs the force closure behavior to select
a set of contact faces, and which subsequently refines the solution using the moment closure behavior (a
more precise model of the real wrench surface). Regardless of the particular set of contact surfaces selected,
the moment closure behavior can always succeed in eliminating any residual moment in the grasp for the
objects we tested. This grasp synthesis process is correctly viewed as a force closure heuristic directing a
“best only” search which is subsequently optimized locally. The proposed composition of convex controllers
generates a number of distinct solutions. In fact, the value of the equilibrium error can be used to identify
topologically distinct solutions, each of which can be realized in an infinite number of geometric solutions.

The performance of the system was evaluated on the planar shapes illustrated in Figure 8. Figure 9
illustrates all the distinct grasps that were generated by the controller for the test shapes. The grasp
estimator was executed 100 times for each of 2, 3, and 4 contacts for each shape. Figure 10 shows the
distribution of run-time required for convergence of the grasping behaviors for this sample. Figure 10
reports the mean number of single control steps until convergence from random initial configurations. A
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Figure 7: Wrench closure control dynamics for the formation of a grasp: (a) activation profile, (b) force
and moment closure sufficiency error, and (c) the resulting trajectory in the wrench closure error plane.
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Figure 8: Objects used in the experiments: (a) circle, (b) regular triangle, (c) irregular triangle, (d)
square, (e) rectangle, (f) trapezoid, (g) regular pentagon, (h) irregular pentagon, (i) regular hexagon and
(j) irregular hexagon

single step in the controller is one adjustment of the contact configuration. That is, a single adjustment of
all n contacts. The algorithm is O(n?) each step, where n is the number of contacts. For a 4 contact grasp
estimator, this corresponds to 1.8 milliseconds of CPU time per step on SPARCstation 2 workstation. This
complexity can be reduced for large n by running n-O(n) controllers — one for each contact position.

3.2 Managing Mechanical Redundancy

3.2.1 The Manipulability Index

The manipulability ellipsoid is used in this work to characterize a manipulator’s ability to generate forces
and velocities[48]. The Principal Kinematic Axes (PKAs) of each finger may be identified by examining
the transformation from joint space to Cartesian space expressed by the Jacobian. The singular value
decomposition is employed to represent the character of the transformation. For a complete and detailed
description of the singular value decomposition see Golub et al. [17].

If we map the unit sphere in R* _ o
|6l = 62 + 6 + 6% + 63 (38)

into Cartesian R® space through the Jacobian, the result is the manipulability ellipsoid proposed by
Yoshikaw a[4’ﬂ The ellipsoid describes the Cartesian character of the amplification in the Jacobian trans-
form from joint velocities to Cartesian velocities. If the singular value decomposition of the Jacobian is
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Figure 9: The grasp types for all objects tested. Percentages reported represent the fraction of random
initial contact configurations that led to each solution type. Also recorded is the residual wrench closure
error at convergence. 23
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Figure 10: Histogram of number of steps until convergence for 2, 3, and 4 contacts. The top row illustrates
the results for the pentagon, the bottom row represents the irregular pentagon.



Object Number of | Average Standard
contacts | # Steps Deviation
Circle 2 39.450000 | 10.779118
3 59.020000 | 14.169237

4 60.070000 | 16.905115
Triangle 2 58.740000 | 15.180144
3 124.780000 | 62.848637

4 67.650000 | 23.916680

Square 2 60.460000 | 20.197720
3 69.610000 | 19.215364
4 71.250000 | 20.847874
Pentagon 2 52.370000 | 18.321294
3 70.860000 | 20.051963

4 69.190000 | 21.734716

Hexagon 2 56.970000 | 18.359736
3 88.880000 | 28.329690

4 69.230000 | 15.542613

Rectangle 2 62.500000 | 19.279182
3 76.960000 | 28.193387

4 74.120000 | 20.630604

Irregular 2 57.480000 | 20.915163
Hexagon 3 69.180000 | 22.986768
4 67.000000 | 19.614466

Irregular 2 73.910000 | 35.863404
Triangle 3 94.080000 | 41.885771
4 86.150000 | 39.127705

Trapezoid 2 78.910000 | 45.363202
3 89.720000 | 36.505729

4 70.610000 | 30.680463
Irregular 2 66.590000 | 23.036684
Pentagon 3 71.230000 | 19.774412
4 80.240000 | 31.220338
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Table 1: Numbers of steps until convergence, averaged over 100 trials.




- computed, the manipulability ellipsoid is described by the Principal Kinematic Axes (PKAs):
{0'115.10'2'&&:0'3@} (39)

where the o; are the singular values and the u; are the corresponding singular vectors.

Chiu[10] points out that the singular vectors for the force relationship 7 = J7 f are the same as those
describing the velocity domain, but that the singular values are reciprocal. This suggests that the direc-
tion for favorable velocity amplification is orthogonal to the direction for favorable force amplification.
Moreover, since accuracy is inversely proportional to amplification, a reciprocal relationship also exists
between accuracy and amplification in both the velocity and force domains.

The manipulability index of the finger is a scalar metric describing the conditioning of the kinematic
transformation [48]. The index is proportional to the ellipsoidal volume spanned by the PKAs. This
volume is approximated in practice by the product of the singular values. Since the volume of an ellipse
increases as the ellipse becomes more spherical, there is a correlation between high manipulability indices
and isotropic conditioning.

3.2.2 Manipulability-Based Spatial Isotropy

Figure 11 illustrates the manipulability index computed over the workspace of the Utah/MIT finger. This
model is computed within the medial plane of the finger, ie. for 8y = 0.

The manipulability models are computed by enumerating all joint configurations for the finger and saving
-those configurations which produce the largest index at each Cartesian location in a regular sampling of
the workspace. The sampling in this case was on a rectangular, 0.002 meter grid.

e

20+

e 0 0 (1] ° 1 “ 0 (L]

Figure 11: The Max-Manipulability Model for the Utah/MIT Finger/Thumb

The controller that regulates the arm posture ascends the system manipulability metric. The system manip-
ulability is a convex composition of independent, convex fields (note: only a portion of the manipulability
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field is convex for the Utah/MIT finger kinematics, even less for the thumb).
Msys = Z m;

If the contact geometry is held fixed, then the posture of the hand/arm system can be optimized by gradient
ascent with respect to posture modifications.

The gradient is computed as follows:

aM,y,T— oM, O0M,, O0M,y, 8M,y,] (40)

35 - 36, T » 601 ’ 00, ’ 863
Notice that §; in the above expression refers to the arm’s joint angles. The objective here is to maximize
the system manipulability. in general purpose manipulation devices. This permits the system to react to

unexpected interaction with the environment, and can be used to reflexively adjust the hand/arm posture
in response to a task level command.

The gradient can be computed as follows:

dM’y, _ aM,y’ ami af{
& =% om 8w T g (41)
convez scalar field arm Jacobian

where:
My,
M‘y’ = El‘m‘. ﬁ 8m" = 1.

the scalar manipulability metric for finger ¢ expressed in finger ¢ coordinates

the position of the origin of finger i’s coordinate frame expressed in finger ¢ coordinates
the position of the origin of finger ¢’s coordinate frame expressed in world coordinates
gradient of the composition function

gradient of the manipulability-based spatial isotropy metric

®
. ﬁlg_glfi‘h 3

#iRw = rotational transform from world coordinates to the finger ¢ coordinate frame
.’- . - .
%‘ = the arm Jacobian in the world coordinate frame

The controller utilizes this performance gradient to compute arm trajectories which optimize the M,,, of

the task:
dM,,,

Af =K, « (42)

In practice, K,, is normalized gain to improve performance in situations where the manipulability gradient
gets shallow.

The summation in Equation 41 yields a convex composition since the sum of convex functions is itself a

convex function?. Moreover, in this case, the first term in Equation 41 expresses a simple sum of convex
performance indices associated with each finger, and is therefore a convex composition as well. The second

term, %%i, is the gradient of a convex scalar field describing “manipulability” (illustrated in Figure 11).
However, Equation 41 in its entirety is not in general convex because of the manipulator Jacobian. We

?positive definite Hessians sum to positive definite Hessians
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cannot hope to do better than this since this non-convexity expresses the character of the particular
manipulator employed to move the hand about in the world. Reflexive controllers cannot be expected to
provide the deliberative behavior required to optimally posture the arm for the task, they are appropriately
used to react to haptic information to generate small refinements to a predetermined nominal strategy.

Figure 12 illustrates the fingertip trajectories resulting from arm adjustments based on the manipulability

gradient. The arm configuration for this example was the initial configuration illustrated in Figure 13.
Figure 13 illustrates the behavior of this reflexive arm configuration controller when all four fingers influ-

Oudy

0.078¢

-0.0384

0.0

~0.08 -0.023 0.033 0.03 0.073 0.3

Figure 12: The Relative Fingertip Trajectories Resulting from the Manipulability Reflex

ence the arm posture. This example is the trace of the controller (Equation 41) executed on the hand/arm
system®. Suppose the hand expected to encounter a plane parallel to the y — z plane while moving i the z
direction. Instead, suppose that it encounters a plane that is inclined 45°. The dotted hand/arm configu-

ration in Figure 13 represents the hand configuration resulting from this encounter with the inclined planar
surface. The solid hand/arm shows the result of the reflexive, manipulability-based posture correction.

All four fingers have been reconfigured simultaneously during this reposturing. The hand is again compliant
to unexpected interactions with the environment, or to strategic contact placement. This is a direct

consequence of employing the manipulability as our performance metric — which seeks isotropic hand
states.

A vertical (model) plane was expected and a hand trajectory normal to this hypothetical plane was selected -
initially. From the perspective of the hand, the new posture has transformed the observed plane into the
model plane. The hand plane relationship is now approximately equivalent to that expected during the

planning stages of this motion. The model of the world has been reflexively transformed into registration
with observation.

3The hand/arm system consists of a Utah/MIT hand and a GE P50 robot arm.
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Figure 13: Reflexive Adjustment of Arm Posture to Optimize Hand Manipulability. The dotted lines define
the initial hand/arm configuration, the final configuration is drawn with solid lines. Fingertip positions
remain constant.

4 Hand/Arm Grasp Control

Table 2 is a synopsis of the independent controllers for achieving aspects of wrench closure developed in
the preceeding sections.

Figure 14 illustrates a structure for the dynamic recomposition of a grasp controller. The elemental
controllers are the leaves of a control tree structure for each kinematic chain in the robot. The structure
of each tree is derived from the assumptions employed during behavior design. For instance, the moment
closure behavior competes with the force closure behavior without considering the manipulator posture.
The consensus wrench closure composition then runs concurrently with the manipulability-based posture
controller. Figure 15 illustrates the behavior of this reflexive arm configuration controller in a two-fingered
grasp situation.

5 Conclusion

We have demonstrated the performance of a hand/arm controller which is designed to generate multifin-
gered, dextrous grasps on rotationally symmetric, convex shapes. The results support the value of this
approach for improving the run-time performance of controllers for high dimensional systems. We have
also experimented with the ability of such a local grasp estimator to reject bounded uncertainty in a grasp
plan. To test this idea, the proposed controller was examined while it performed grasp estimates from
random initial configurations, rather than from planned contact configurations. The result for this class of
objects suggests that even a rather brute-force behavioral composition produced robust results despite the
fact that the estimator revised the grasp estimate from arbitrarily bad initial configurations. The grasp
estimator could, in fact, alleviate the need for planning grasps at all for this class of objects. It exhibits a
great deal of local competency is this type of grasping task and under these circumstances it is capable of
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WRENCH CLOSURE BEHAVIOR | CONTROLLER

force closure —53 5€ = Equation 22
@SIWe = Equation 24

moment closure ﬂ,i MC — Equation 28
Fra ﬁc = Equation 28

composition Apc = Equation 34

Apmc = Equation 35

SPATIAL ISOTROPY BEHAVIOR | CONTROLLER

manipulability Equation 42

Table 2: Constituent Hand/Arm Controllers for Grasp Formation

arm
controller

ml m2 mn
finger 1 finger 2 finger n
controller controller controller
FC MC FC MC FC MC

Figure 14: Asynchronous, Reactive Grasp Controllers
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model-less grasping. It is probably also true that the same approach can suppress uncertainty during the
execution of a knowledge-based grasp for more general object shapes. We have also devised a means for
extracting object models from vision and proprioceptive information in the hand. This sensory apparatus
permits an object model to be constructed incrementally during grasp formation. It is possible that the
same model can provide a reactive context for reflexive behavior composition. We view this currently, as
a reinforcement learning problem where knowledge about object geometry influences the composition of
reflexive grasp estimators. The choice of the behaviors presented in this paper was heavily influenced by
a commitment to incremental, sensor-based reactive controllers and to the learning problem.
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Figure 15: Behavioral Repertoire Applied to the Irregular Pentagon. (A) The hand-arm-object solution,
(B) a detail of the grasp solution, and (C) the arm angles during grasp formation.
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A Admissible Controllers

Another long term goal of this work is to discover properties by which high dimensional state spaces may
be decomposed into computationally tractable subspaces. The on-line recomposition of behavior must
certainly consider the complex interactions that exist between behavioral sub-spaces. This suggests that
the composition of behavior will itself be a dynamic process. It is necessary to constrain the expression of
elemental behaviors so that this dynamic composition process yields admissible composite control surfaces.

Rimon and Koditschek[46] established a formal basis with which to define a class of admissible navigation
functions. The work addresses the “find-control-law” problem in configuration space which maps the robot
state — position and velocity — into torque inputs at each joint which results in a feedback compensator
that moves to the goal without hitting obstacles. The planning phase does not generate a sequence of
reference positions for the robot controller, but instead designs the controller itself. Rimon et.al. define a
suitable navigation function as one which;

1. is analytic on the domain — continuously differentiable and expressible as a power series at every
point,

2. is polar — there is a unique position within the domain of any behavior where the gradient of the
scalar metric field goes to zero.

3. is Morse on the domain — non-singular Hessian implies no ”stacked-up” saddle points,
4. has its maximal value uniformly/exactly on the boundary, and

5. bounded gradient magnitude — there is a compact neighborhood about the single extremum where
the gradient magnitude is less than e. This implies that controllers derived from the scalar field can
be guaranteed to converge to within this neighborhood. :

These properties are important characteristics of control surfaces that guarantee that predictable controllers
may be derived from local properties of the control (or navigation) function.

Connolly and Grupen[11, 22] show applications of harmonic functions in robot control motivated by similar
formal properties of admissible control functions. Connolly et.al. illustrate a means of deriving controllers
from harmonic solutions over the robot’s configuration space. Any motion constraint that projects onto
the configuration space may be used in theory to incrementally modify the control surface employed by the
robot. Both Rimon et.al. and Connolly et.al. attempt to provide a formalized basis for control subject to
constraints expressed in the configuration space. In the Rimon et.al. approach which relies on conformal
deformations of spherical geometries, environmental complexity and system dimensionality are challenging
practical issues. In the Connolly et.al. work, it is theoretically possible that individual configuration spaces
may be cascaded to yield higher dimensionality, but this approach has not vet been demonstrated.

A.1 Properties of the Hessian

If given a multivariable control function, F, defined on domain, ®, we may classify the admissibility of F
into several categories based on properties of the Hessian of F, §*F/802.

9F ?F .. _&F
88§ 86,08, 86,08,
8°F/80? = : : (43)
2F 3 F 8F
86,86, 96,06, 362
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Convex Control Functions: If the Hessian is positive (semi-)definite over the domain ©, then the
function F is convex over ©. Intuitively, this is equivalent to requiring the change in slope of the tangent
to the control surface to be monotonic along any section through the surface. Such a control surface will
possess a single extremum (minimum for positive definite) and if that extremum is in the interior of O,
then the control surface will converge to this point.

A necessary and sufficient condition for positive definite-ness of the Hessian is presented in Theorem A.l.

Theorem A.1 (Sylvester) H € R™ x R™ is positive definite iff the following n determinants are all
positive:

Dy = H;>0
Hy Hiy
Dy, = >0
2 Hy Hoy
Hll le ttt Hln
Dn = * > O
Hnl an oo Hnn

The converse of this theorem is not true; that is, the conirol function need not be negative definite if all n
determinants are negative. Negative definite-ness can be established by proving that — H is positive definite.

Harmonic Control Functions: The harmonic constraint requires that the trace of the Hessian (or
Laplacian) is identically zero:
9*F @*F 8*F

2p . sl g
VEi=%@gtaet

=0.

This constraint also produces a class of admissible control surfaces[11] and is similarly closed under linear
composition. However, the equality constraint suggests that physically derived performance metrics that
meet this criteria are rare.

Sub-Harmonic Control Functions: As the name suggests, sub-harmonic functions are closely related
to harmonic functions. This class of admissible controllers requires the Laplacian to be less than or equal

to zero: RF  o°F 92 F
2P e bk —— < (.
V¢F 30§+09'{’+ +80,2,‘0

Once again, this form of control surface is closed under linear composition. The inequality constraint
permits local maxima in a function with a single, global minimum. This suggests that there will be
additional (unstable) singular points in the surface — but more important, there will be regions of the
surface that are inaccessible due to local upward pointing gradients. This fact could have an unfortunate
effect on the completeness properties of an admissible control function. Completeness requires that if a
path to the goal exists, then there will be a gradient in all states of the system that lead to the goal®. The

*There are problems in practice related to numerical precision which we will not deal with here.
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spurious bubbles in the state space allowed in the sub-harmonic constraint means that it may be possible
that sub-harmonic functions cannot be proven complete.

All of these Hessian-based constraints on the control function, F(@), are closed under linear composition.
Consider two control functions, F} and Fy. If both F; and F, are convex control surfaces, i.e., they exhibit
positive definite Hessian matrices, then a linear combination, ¢; F} + ¢ F, will also yield a positive definite
Hessian provided that ¢; and c, are both positive, since ¢;0?F, /802 + ¢20? F;/3©? must also be positive
definite. The same reasoning applies to harmonic and sub-harmonic functions as well.

A.2 Planar Force Closure Sufficiency Metric Hessian

Planar grasping is much easier than the general 3D case! The force closure wrench model (Equation 16)
simplifies to:

w, = fr=—cos(d)
w, = f, = —sin(6)
wg = m,=0.

tz — 7 Li(—cos(6:))

~ =~ 1 - .
p=t- n z i= | gy — %Ei("sm(ai)) (44)
i tmz
) sin(9;) ) cos(6;)
and: Go;i = | —cos(6;) 9Gai = | sin(6;)
0 9 0

Therefore the diagonal terms in the Hessian look like:

2 T T
Oe_2 (%— _9Gk ") = -:I - (tg= - -::Z —cos(8;))cos(0r) — (tsy — 11—1,2 —sin(6;))sin(0)

6—9,": “n n 00, P : :
and the off-diagonal terms look like:
A%

2 1 2
50,00, = ;-l;Gj Gk = = (sin(8;)sin(6k) + cos(8;)cos(b)).

This Hessian is difficult to analyze in general, but if we consider two contacts when the external bias
wrench, ¢ = 0, the Hessian becomes: '

a_ze _ —608(01 - 02) 603(01 - 92) (4,)
962 | cos(6,—6;) —cos(6,—86,) |’ 2
Sylvesters theorem requires:
—cos(6, - 6;) > 0,and (46)
—cos(6y — 6;) cos(8, — ;)
cos(6, — 82) —cos(6y — 6,) > 0 (47)

The first condition is satisfied when 7/2 < (6, - 6;) < 37/2. The determinant of the Hessian is identically
zero. The Hessian is, therefore, positive semi-definite in this interval (with a single positive eigenvalue).
This result is illustrated in Figure 3.
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B A Quadratic Regulator for Unimodal Metric Spaces

Given the metric evaluated for the current configuration, and the metric evaluated at the optimal config-
uration,

Es = fs(ok)
63 = 65(02)1
and requiring the gradient to vanish at the minimum,
Oes
=2l =90
Ol
we may solve for the coefficients of a quadratic control surface with the same properties.
Consider,
f(6) = ab® + b0 + ¢,
the conditions enumerated above require:
f(ek) = aﬁ;‘: + b0k + c = €5
F(6) = a2 +b0i+c=cs
fl(8r) = 2a6;+b=0.
This set of three equations and three unknowns yields:

a = (es—€5)/(6k - 6;)° (48)
b = -2af; (49)
¢ = €5+ ab;? (50)
Therefore, the quadrtatic fit to the sufficiency metric for contact k& becomes:
€s — €5 -~ L e
)= —=-(0-6;)+¢ 51
f( ) (0k_0;)2( k) S ( )

C Kinematics of the Utah/MIT Dextrous Hand

Figure 16 describes the kinematics of the Utah/MIT finger. For this coordinate system, the forward
kinematics of the finger are given Equation 52.

z = [losin(@) + hisin(0y + @) + Lsin(6; + 0, + @) + l3sin(8y + 8, + 03 + ¢)] sin(6o) (52)
y = locos(®) + licos(8y + @) + lacos(6y + 02 + ¢) + lacos(6; + 8, + 85 + @)
z = [losin() + lLisin(0y + @) + lrsin(6y + 02 + ¢) + I3sin(8; + 82 + 03 + ¢)] cos(bo)
The Jacobian for the finger geometry illustrated in Figure 16 is defined by Equation 53.
[losd + sl + 125124 + 135123¢) 0  [lyclg + 12c126 + 13c123¢] 0  [loc12¢ + 13c123¢]s0  [l3c123¢) 50

J = 0 =l151¢ — 155129 = 1351230  —1a512¢ — 1351230 —135123¢0
(los¢ + lis1d + 1512 + 135123¢) —s0  [l1c1 + lc12¢ + [3¢123¢]c0  [l2c126 + l3c1238)c0  [l3c1236)] c0
| (53)
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\ 12°' 18° ©
FINGER: \ THUMB:
10 =2.8575 cm 9, 10 = 1.2700 cm
Il =4.4450 cm ¥ 11 = 4.4450 cm
B2 =3.1750 cm INDEX 12=3.1750 cm
13 =2.5400 cm FINGER 13 =2.5400 cm
Figure 16: The Utah/MIT Finger/Thumb Geometry
where:
¢ = 0.5236 rad (30 degrees),
cijkd = cos(b; +0; + 6k + @), and
sijk¢ = si‘n(ag +0; + 0 + ?).
The forward kinematics of the thumb are given Equation 54.
T = [lo + 11605(91) + 12005(91 + 02) + 13008(01 + 02 + 93)] Sin(eo) (54)
y = bLsin(6) + lysin(6, + 62) + l3sin(6y + 02 + 63)
2 = [lo + 11603(01) + 12603(01 + 02) + lgcos(Bl + 02 + 03)] cos(Bo)

The Jacobian for the thumb is expressed by Equation 55.

[lo + el + 15¢12 + 13¢123]c0  [=lys1 — lps12 — 13512350 [—1p512 — [35123]s0 [-135123]s0
J = 0 Liel + 1312 + 13¢123 {12 4+ 13¢123 [3¢123
o + licl + 12¢12 + 13¢123] =50  [—l151 — l512 ~ [35123] c0 [—l2512 — [35123]c0 [-[35123]c0
53)

D Parametric Decision Surfaces - Luce’s Rule

The switching “boundary” is, by convention, the locus of points in this continuous activation function
where, A9 = A4) = --- = A, = 1/(n+1). The v are computed using the parameters (x;, 55, 5;;) illustrated
in Figure 17. For two competing behaviors, the switching boundary is defined as the locus of points in the
error plane where competitive behaviors are equally activated, i.e., 49 = A; = 1/2, or equivalently:

ekﬂﬂl +by _— ekl €1+by , or

koéo + bo = k161 + b]_, and
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6 relative strength:
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Figure 17: The Parametric Switching Surface

_ kb (bi-bo)
€ = ko €6+ %o

_ ko (bo — b1)
€6 = kl € + —_kl

The slope/intercept form of the switching boundary defines the ¢q and ¢ intercepts illustrated in Figure 17.
This geometry yields:

tan(9) = —%1—
0
or equivalently,
sm(0) = T'Kl/(bo - bl) = TK1/(2bo) (56)
cos(6) = rKo/(by —bg) = rKo/(—2bo) (37)

The switching profile is modulated by controlling the gradient magnitude, o, at the switch boundary.

0Ag? 0403
2 = 0 '} 5
o’ =|VA4q = [ o + . (38)

By convention, we have selected the negative root of Equation 58 so that activation Ag increases in the #
direction. )

e(Koeo+bo)
Ao = e(Koeo+bo) + e(Kiei+br) (59)
Differentiating Ao with respect to ¢ and ¢; yields:
-6;4—0 - KQC(K"E" +bﬂ)e(K| aq+b) (60)
Oeo [e(Kc-€o+bu) + e(Kie1+by )] 2
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= Kodohr
6‘40 —Kle(KOCO""bO)e(KIq +b;)
_3? - [e(Koeo+bo) + e(K;¢1+bl)]2
= —K1AOA1.

Therefore,

1/2
IV Ao|| = —Ao4, [Kg + Kf]

and o is computed by evaluating this gradient on the switching boundary where, Ag = 4; =1/2,

, —(K2? + K2)1/2
g= |VA0|boundary = ( g 2 1) .
Now,
Eqn64 = (KZ+K3)V?*=-4o
Egn56 = K = 2bo/rsin(6)
Egn 57 = Ko = —2bg/rcos(6).
Therefore, )
4 o 4k, M
(7cos (9) + —2 sin (9) = —4o
And finally,
bo = =2rc
2bo
Ko = —Tcos(0)=4a'cos(6)
K, = %sin(o) = —4osin(8)

(61)
(62)

(63)

(64)

Figures 18, 19, and 20 illustrate the effect of these parameters on the decision surface in the error space.
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Figure 18: Influence of # over the decision surface (r = 0.0,0 = 0.5)

r=-—4.0 r=0.0

r=4.0

Figure 19: Influence of r over the decision surface (§ = —x/4, ¢ = 0.5)

o =0.25 o =10.50

Figure 20: Influence of o over the decision surface (6 =

40

o = 1.00

= —-7/4, r =0.0)
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