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Abstract. A salvage-embedding (S-embedding) maps an Al -leaf complete binary
tree G into an (N > M)-leaf complete binary tree M, the fraction G of whose
leaves have been labeled Goop. The S-embedding maps leaves of G one-to-one to
GooD leaves of H; it may be many-to-one on internal nodes. The quality of an
S-embedding depends on its harvest, the ratio H =qf M/GN, and its congestion,
the largest number of edges of G that get “routed” across the same edge of H. We
study three scenarios. In the worst-case scenario: given any target harvest H# < 1/2,
one can S-embed a 2U°8HGN] leaf G in H with congestion loglog N+ a constant
depending only on G and H, no matter how the GooD leaves are distributed; this
congestion cannot be lowered by more than a small constant factor. In the ezpected-
case scenario, where leaves of H are labeled GooD or not, independently, with fixed
probability: with probability exceeding 1 - N~%(1), for any target harvest H < 1/8.
one can S-embed a 2l#Nl.leaf G in H with congestion O(logloglog N). In the
salvaging scenario: we present an algorithm that, in time O(C N (log N)3¢+?), S-
embeds in a given a leaf-labeled # the largest possible G, subject to the prespecified
bound C on congestion. This work is motivated by the problem of salvaging a fault-
free subnetwork of a leaf-tree machine — a tree architecture whose leaves hold
“full-power” processors and whose nonleaf nodes hold “rudimentary” processors
that route messages and perform simple combining tasks.
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1 Introduction

This paper studies salvage-embeddings (S-embeddings) of small complete binary trees
into large ones, motivated by the problem of tolerating faults in a type of tree-structured
parallel architecture that we call a leaf-tree machine. Our study is among the first that
concentrates solely on the congestion of embeddings.

1.1 Basic Notions

A. Trees and Forests

The height-n complete binary tree T, is the graph whose 2"*! — 1 nodes comprise the set
of all binary words of length at most n and whose edges connect each node z of length
less than n with its children 0 and z1. For each £ € {0,1,...,n}, the 2¢ words/nodes of
length £ form level n — £ of T ;' the unique node at level n is the root of T, and the 2"
nodes at level 0 are the leaves of T,. We say that node z is a (proper) ancestor of node
y, or, equivalently, that node y is a (proper) descendant of node z, just when the string
z is a (proper) prefix of the string y. For each node z of T ,, the subtree of T, rooted at
z is the induced subgraph of 7, on the nodes {zy : 0 < |y| < n —|z|}, i.e., the set of
descendants of z.

Finally, our study calls for a nonstandard notion of forest. For our purposes, a forest
is a nonempty set of complete binary trees of distinct sizes.

Our focus on complete binary trees simplifies notation and calculations. The ideas in
our study translate readily to complete trees of arbitrary degree.

B. Salvage-Embeddings -

Let us be given a complete binary tree 7,, the fraction 0 < G < 1 of whose 2" leaves
have been labeled GOOD; call the fraction G the yield of the labeling. Let us further be
given a complete binary tree T, where 2¢ < G2". We wish to embed T into T ,, using
only the GOOD leaves of the latter; for mnemonic emphasis, we henceforth denote by G,
(for guest) the copy of Tk, and by H, (for host) the (leaf-labeled) copy of T .

A salvage-embedding (S-embedding, for short) of Gi in H,, where 2% < G2", is given
by:

e an assignment a of the nodes of G, to nodes of H, that

!For notational convenience, we number tree levels from the leaves toward the root, rather than in
the more conventional opposite direction.



— maps each leaf of G; to a unique GOOD leaf of H, (so is one-to-one on the
leaves of Gy)

— is progressive, in that it preserves all ancestor-descendant relations among
nodes of G.2

e a routing function p that assigns to each edge (z,y) of G, the unique path in H,
that connects nodes a(z) and a(y).

By extension, an S-embedding of a forest of trees in H, is a set of S-embeddings of
the trees in the forest, whose leaf assignments are node disjoint. This node disjointness
guarantees that if any subset of the trees in the forest are grown and combined into a
single tree, an S-embedding of that single tree in H, can use the leaf assignments of the
S-embedding of the forest in H,.

C. The Costs of an S-Embedding

Let us be given an S-embedding (o, p) of the m-tree forest {Gg,,Gky,---, Gk} in Hap,
where each k; < kj;. We are interested in two costs of the embedding:

The harvest of the embedding is the ratio of the number of leaves in the largest tree
in the forest (namely, Gi,.) to the number of GOOD leaves in H,; symbolically,

2km—n

Harvest((a, p)) = e

The congestion of the embedding is measured by focussing just on those p-routing
paths that are used to S-embed Gy, in H,: it is the maximum number of such paths
that cross any single edge of H,. Symbolically,

Congestion({a, p}) = {(w,v) € Edges(G«,.) | p(u,v) contains edge (z,y)}|.

max
(z,y)€Edges(Hn)

1.2 Accomplishments

Throughout we consider the tree H, with N = 2" leaves. We denote the yield of H, by
G; i.e., we assume that the fraction 0 < G < 1 of H,’s leaves have been labeled coOD.

A. The Problems of Interest

The Congestion-Harvest Tradeoff Problems. Given n, G, and the desired harvest®
0 < H £ 1/2, determine the smallest congestion C = C(n,G, H) for which there is a

*The algorithmic benefits of progressiveness are mentioned in Section 1.3, where the motivating
machine model is discussed. ‘

3We cannot aim at harvests exceeding 1/2: the number of harvested leaves must be a power of 2. but
the largest power of 2 not exceeding G2%, namely, 2L"8H#G2"] nay be close to G2~ 1.



congestion-C S-embedding of G1egmean) into Ha:

(a) in the worst-case scenario, i.e., no matter how the GOOD leaves are distributed in
Ha;

(b) in the expected scenario, i.e., with probability > 1 — 2-U") | when leaves of H, are
labeled GOOD or not, independently, with some fized probability.

In both of the Congestion-Harvest Tradeoff Problems, we assume that the harvest
fraction H = ©(1); i.e., we aim for a harvest that is a fixed fraction of the number of
GOOD leaves.

The Harvest-Maximization Problem. Given an allowable congestion (i.e., an in-
teger) C < n, find the largest k for which there is an S-embedding of Gi in H, with
congestion < C.

In this last problem, we insist that C < 7, since the problem of S-embedding trivializes
when C > n.

B. The Results Obtained

The Worst-Case Congestion-Harvest Tradeoff. For any yield 0 < G < 1 and
harvest 0 < H < 1/2, one can S-embed G|1ogGan| into H, with congestion® °

log!® N + &(F, G),

no matter how the GOOD leaves are distributed in H, (Theorem 2.1).

Moreover, in general, this amount of congestion is necessary, to within a constant factor:
i.e., there ezist yields G with associated patterns of GN GOOD leaves for which any
S-embedding of G1og G2 nto H, has congestion k(F,G) Iog(z) N (Theorem 2.2).

The Expected-Case Congestion-Harvest Tradeoff. For any harvest 0 < H < 1/8:
if leaves of H, are labeled GOOD or not, independently, with probability 1/2 (an arbitrary
fized constant), then, with probability exceeding 1 — N -0(1), one can embed G [log H2v| into
‘H, with congestion

log® N + x(H).

(Theorem 3.1). It remains an inviting challenge to determine whether or not a smaller
congestion suffices.

*All logarithms are to the base 2. The iterated logarithm log!*) is defined by:
log!™ N = log N; log(k'i'l) N =loglog!*! V.
SFor given parameters 4, B, ..., Z, we denote by x(4, B, ..., Z) a constant that depends only on the

parameters; instances of “x(4, B,..., Z)” in different expressions may denote different constants. Thus,
we use the x-notation in very much the same way as the big-O notation.



The Harvest-Maximization Algorithm. For any congestion bound C and any la-
beling of the leaves of H,, one can determine in time O(Cn®C+22™) the largest Gy that
can be S-embedded into H,, with congestion < C (Theorem 4.1). Note that this time is a
low-degree polynomial in N = 2" even when C is as large as ; log(N/ log N).

We study the worst-case congestion-harvest tradeoff problem in Section 2, the expected-
case congestion-harvest tradeoff problem in Section 3, and the harvest-maximization
problem in Section 4. It is worth stressing here that our study focusses on developing
algorithms that effect S-embeddings with certain costs, rather than merely on proving
that such S-embeddings exist. '

1.3 The Inspiration for Our Machine Model

The idea of studying fault tolerance using S-embeddings was suggested by a genre of
tree-machine that has appeared several times in the literature.

A leaf-tree machine (LTM) is a parallel architecture consisting of N “full-power”
processing elements (PEs) and N — 1 “rudimentary” PEs. The 2N — 1 PEs are inter-
connected by a network having the topology of a complete binary tree: the leaf-nodes
of the tree hold the “full-power” PEs of the LTM that do the “real” computing; the
nonleaf-nodes hold the “rudimentary” PEs that do simple auxiliary tasks such as routing
and broadcasting messages and performing simple combining and accumulating tasks.

The leaf-nodes of H,, represent the “full-power” PEs of the LTM; the nonleaf-
nodes represent the LTM’s “rudimentary” PEs.

While interconnection networks with the topology of a tree are inherently inefficient
due to the presence of communication bottlenecks, research has shown that an LTM
can be a useful auziliary network when adjoined to a processor network having a richer
topology (say, a mesh or hypercube): A variety of computations were shown in [4] to yield
to the simple, fast combining mechanism that is inherent in the structure of trees; these
abilities of trees are exploited in (3] and [11], where LTMs are adjoined to data-processing
machines for speedy searching, selection, and combining tasks; most recently, in {5, 6],
LTMs have been adjoined to MIMD hypercubes with the end of using the trees’ fast
combining and broadcasting capabilities for processor synchronization, as well as other
simple combining and broadcasting tasks.

The problem we study here arises from the vulnerability of aggressive V'LSI designs
to fabrication defects which almost certainly disable some positive fraction of an archi-
tecture’s “full-power” PEs. (Wires and “rudimentary” PEs, being considerably smaller
than “full-power” PEs, are commensurately less vulnerable to both defects and faults



[12].) Our study of S-embeddings abstracts one approach to the problem of rendering
an LTM tolerant to defects in its “full-power,” leaf-PEs. Although this problem is nomi-
nally subsumed by studies of fault tolerance in tree architectures, such as (1], the special
structure and mode of use of LTMs opens avenues to fault tolerance that are exponen-
tially more efficient than analogous techniques for general tree machines: we achieve the

desired tolerance to faults merely by adding small-capacity queues to the edges of the
LTM.

e H, is the physical LTM; its GOOD leaves are the leaf-PEs that are free
of defects. The yield of the labeling is the yield of the leaf-PE fabrication
process.

e G is the logical, ideal LTM we want to “salvage” from H,.

e The S-embedding is the salvage process; its congestion is the capacity of
the largest edge-queue; its progressiveness ensures that, as in the ideal LTM.
messages follow an up-then-down path in the salvaged LTM.

e The dilation [8] of an S-embedding is not relevant here because of the
assumed speed of the ideal LTM relative to the speed of each individual PE;
see, e.g., [5].

It is important to note that our abstraction deals only with the problem of tolerating
defects in the LTM. we do not deal with the problem of tolerating defects in any primary
network that interconnects the “full-power” PEs of the LTM, should such exist (say. as
in the scenario in (5, 6]). There is an abundant literature on techniques for salvaging the
latter network, e.g., (2, 7, 9, 13].

1.4 A Fundamental Observation

The algorithms we present here depend in an essential way on a correspondence between
adding binary representations of numbers, on the one ha.nd and devising S-embeddings
of complete binary trees, on the other.

For each node z of the leaf-labeled tree H,, define the yield at =, denoted Yield(z).
to be the number of GOOD leaves in the subtree rooted at z. Transparently, if ¢ is a leal.
then Yield(z) is either 0 or 1, and if z is not a leaf, then

Yield(z) = Yield(z0) + Yield(z1).

The binary representation of the numbers Yield(z) play a fundamental role in our study.
The statement of the following lemma is depicted schematically in Figure 1.



Lemma 1.1 Let z be a node of H,. The binary representation of Yield(z) has 1s in posi-
tions {ky, ka, ..., ka} if, and only if, there is an S-embedding of the forest {Gr,,Gry,- .-, Gk}
in H,, with congestion d on the edge leading from node x to its parent.

Proof. The lemma is verified by an easy induction.

The lemma is obvious when z is a leaf of H,,, for then Yield(z) is either 0 because z
is not GOOD, or is 1 because z is GOOD, hence admits a unit-congestion S-embedding of

Go.

The situation when z is not a leaf is depicted schematically in Figure 2. If both
Yield(z0) and Yield(z1) have 1s in bit-position k, then there is a carry into bit-position
k + 1 when these Yields are added to obtain Yield(z). Within the tree, there are, by
induction, copies of G, S-embedded in the subtrees of H, rooted at nodes z(0 and rl.
By embedding a new G-root-node at node z, the S-embeddings of the copies of G, can
be combined into an S-embedding of a copy of G4, rooted at . Continuing, if one of
Yield(z0) and Yield(z1) has a 1 in bit-position k + 1 also (by induction at most one of
these numbers can have such a 1), then the addition leads also to a carry into bit-position
k+2. In the tree, we can S-embed yet another G-root-node at node z, thereby combining
the S-embeddings of the old copy of Gi+1 coming from either z0 or z1 with the new copy
just S-embedded at z, to obtain an S-embedding of a copy of Gr,z rooted at x. The

reader can easily continue the narrative if the chain of carries in the addition is even
longer. O

2 Optimizing Worst-Case Congestion

Given the leaf-labeled tree H,, the yield 0 < G < 1, and a target harvest 0 < H - 1,2,
we wish to find an S-embedding of the tree G|i,gG2n) in the tree '7'{,,, that incurs as small
congestion as possible (as a function of n, G, and H). This section is devoted to deriving
both upper and lower bounds on the amount of congestion Cpn that we must suffer in
order to accomplish this task no matter how the GOoD leaves are distributed among the
leaves of H,.

2.1 An Upper Bound on Worst-Case Behavior

We formulate and analyze a “greedy” S-embedding algorithm which yields an upper
bound on the quantity Cpmin that is optimal to within constant factors.

A. The Algorithm



Overview. The algorithm proceeds from level 0 to level n in H, (i.e., from the leaves
toward the root), processing each node at level £ before proceeding to level £ + 1. As
each level-£ node z is encountered, the algorithm assigns the node a label A(z) which is
the length-(n 4+ 1) binary representation of the level-£ interim assessment of how many
GOOD leaves can be harvested from the subtree rooted at z; we call this quantity the
level-£ potential of z, denoted Pot(z). Thus, if

Az) = An(2)An=1(2) - - - Ao(),
then ) -
Pot(z) = z_: Xi(z)2"

The following features of the string A(z) are germane to our algorithm.

o Omnes(A(z)) = {i| Ai(z) # 0} = the set of nonzero bit-positions in A(z);

e Wgt(A(z)) = |Ones(A(z))| = the weight, or, number of nonzero bit-positions in
Az).

By Lemma 1.1, if node = of H, receives label A(z), then there is an S-embedding of
the forest {Gr : k € Ones(A(z))} in the subtree of H, rooted at x, with congestion
Wgt(M(z)). Note that the progressiveness of S-embeddings implies that Ax(z) = 0 for
all k > level(z). Because of Lemma 1.1, our embedding algorithm is fundamentally a
labeling algorithm.

The Labeling/Embedding Procedure. Say that C' is the maximum congestion we
are willing to allow in any S-embedding. We exploit the fact that all labels have the same
length (namely, n + 1) by specifying each label A(z) implicitly, via the integer Pot(A(x)).
In overview, our labeling/embedding algorithm proceeds from level 0 to level n in H,.
labeling each node at level £ before any node at level £ + 1. A node’s label is chosen as
follows.

1. If node v is a GOOD leaf, then Label(v) — 1.
2. If node v is 2 non-GOOD leaf, then Label(v) — 0.

3. If node v is a nonleaf, then

(a) Add the labels of v’s children.
(b) “Prune” the sum: keep only the C highest-order 1s.

(c) Perform the embeddings dictated by the carries in the label-additions at the
nodes.



The detailed version of our labeling/embedding algorithm is called Algorithm Worst- -
Case.

Algorithm Worst-Case

Step 0. {Label nodes on level 0 of H,}
Scan the leaves of H,, assigning each leaf z a label A(z) as follows.

. 1 ifzis GooD
Pot(A(z)) = { 0 if z is not GOOD

Step £ > 0. {Label nodes on level £ > 0 of H,}
Scan the nodes at level £ of H,.

Substep {£.a {Assign the string label}
Assign each level-£ node z a label A(z) as follows.

Pot(A(z)) = Pot(A(z0)) + Pot(A(z1))

Substep £.b {Combine small embedded trees}
if there was a chain of carries from bit-positions £k — i,k -7+ 1,...k =1 of
A(z0) and A(z1) into bit-position & of A(z)
then embed the roots of copies of Gr—i+1,...,Gk in node z, and route edges
from those roots, along shortest paths, to the roots of two copies each of
Gk—iy---,Gk-1 that are embedded in proper descendants of z endif

Substep {.c {Honor the congestion bound C'}
for k = 0 to [log Pot(A(z)) — C]
if Wgt(A(z)) > C then \(z) — 0 endif
endfor

B. Worst-Case Behavior of Algorithm Worst-Case

Theorem 2.1 Let some GN leaves of H, be labeled GOOD, in any way, for some 1 -
G < 1. For any rational 0 < H < 1/2, Algorithm Worst-Case finds an S-embedding of
UllegaGN) n T, with congestion

C <log® N —log((1 - H)G) + 1. (1)



Proof. It is clear that, for each node z of H,, Algorithm Worst-Case S-embeds
G logPot(A(z))) in the subtree of H, rooted at node z; hence, overall, the Algorithm S-
embeds the tree G)iogpot(r(r))) in Hn, where 7 is the root of H,. We need only verify

that the salvaged tree represents a big enough harvest when C is as big as the bound in
inequality (1).

Note first that Algorithm Worst-Case never requires us to abandon any GOOD leaves
as we work up from level 0 through level C — 1 of H,, because the high-order bit of
Pot(A(z)) can be no greater than the level of z in H,. To see what happens above
this level, focus on a specific (but arbitrary) node z at a specific (but arbitrary) level
£ > C of H,. The congestion bound may require us, in Substep £.c of the Algorithm, to
abandon one bit in each position k < £ — C of A(z). This is equivalent to abandoning
one GOOD-leafed copy of each tree G, with & < £ — C; however, at most one tree of each
size is abandoned, because any two trees of the same size would have been coalesced (by
embedding a new root) at this step, if not earlier. It follows that, when the Algorithm
processes node z, it abandons no more than ‘

{-C
z 2i < 2[—C+l
1=0
GOOD leaves; hence, at the entire level £, strictly fewer than
2[-—C+l2—lN — 2-C+1N

previously unabandoned GOOD leaves are abandoned. Thus, the entire salvage procedure
abandons fewer than

(TL + 1-— C)2—C+1N

GOOD leaves due to congestion. Since there are GN GOOD leaves in all, we see that more
-
than

(G-(n+1-C)2'°)N

GOOD leaves are not abandoned due to congestion. Now, at the end of the Algorithm,
we may have to abandon almost half of these unabandoned GOOD leaves — because the
GOOD leaves we finally use in the S-embedding must be a power of 2 in number. The
Algorithm will have succeeded in harvesting the desired fraction of GOOD leaves as long
as the number of salvaged GOOD leaves, which we now see to be no fewer than

9llog(G=(n+1-C)2=€)N |

is at least as large as the number of GOOD leaves we want to harvest from H,, which is

2[logHGNJ )

10



Simple estimates show that, if we allow our S-embedding to have congestion C as large
as

C =log® N —log((1 - H)G) +1,
then we shall have accomplished this task. O

2.2 A Lower Bound on Worst-Case Behavior

Theorem 2.2 Let G and H be rationals with0 < G < 1 and 0 < H < 1/2. For each n.
there exists a way of labeling some GN leaves of H, GOOD, such that every S-embedding
of some G in Hn, where 2™ > HGN, has congestion C > «(G, H)log(z) N.

Proof. Let us be given an algorithm, call it Algorithm A, that solves the Worst-Case
Congestion-Harvest Tradeoff Problem. By Section 2.1, we know that the congestion
incurred by Algorithm A for any labeling of the leaves of M., in particular for the
advertised malicious labeling, is C < (G, H )log® N.

The Bad Labeling. The labeling of H, that we claim defies efficient salvage is achieved
via the following algorithm, wherein L is a parameter we choose later. Once we choose
L, let us restrict attention to values of n that are multiples of L. (Clerical adjustments
accommodate all other values of n.)

Algorithm Bad-Label

Step 1. {Mark leaves that will not be labeled GOOD}
for each level £ from 0 to n in steps of L
Proceed left to right along the level-£ nodes of H,, marking all of the leaves in the
subtree rooted at every 2£-th node encountered
endfor -

Step 2. {Label the GOOD leaves}
Label GoobD all leaves not marked in Step 1.

O

This labeling scheme can be viewed as turning H, into a complete (2L — I)-ary tree.
all of whose leaves are labeled GoOD, providing that we look only at levels whose level-
numbers are divisible by L. Therefore, our S-embedding problem now assumes some of
the flavor of the problem of efficiently embedding a complete binary tree into a complete
(2L — L)-ary tree that is only slightly larger (by roughly the factor 1/H). The results in
[8] about a similar problem lead us to expect the large congestion that we now show is
inevitable.

11



Bounds on L and C. Before considering our S-embedding problem, we must settle on
a value for the parameter L. Qur labeling of H,, has left the tree with (2% — 1)*/Z coop
leaves. The Worst-Case Congestion-Harvest Tradeoff Problem assumes that the number
of GOOD leaves in H, is a positive fraction G > 0 of the total number of leaves, namely, 2™.
Elementary estimates show that this assumption implies that L > log n —log* n — x(G).
We shall assume, therefore, that L = ©(logn).

In analyzing our putative Algorithm A, we shall assume that we are dealing with
S-embeddings whose congestions satisfy C' < %L (or else, we have nothing to prove).®

The Analysis. For each £ € {0,1,...,n/L}, let AM(£) denote the number of leaves in
the largest GOOD-leafed tree that Algorithm A S-embeds at a level-{L node of H,,. Even
if there were no bound on congestion, the similarity of the labeled version of H, and a
complete (2L — 1)-ary tree would guarantee that, for 0 < £ < n/L,

M(£+1) < (28 — 1)M(2).

In order to appreciate the effect of the bound C on congestion, note that, when the S-
embedding of Algorithm A has congestion < C, each number A/(£) must be representable
as the sum of no more than C powers of 2; in other words, the binary representation of
M(£) can have weight no greater than C.”7 It follows in particular that

M(1) < 2F - 28-C.

Starting from this upper bound on A{(1), we derive a sequence of upper bounds on the
other numbers Af(£). It is clerically convenient to number the bit-positions in the shortest
binary representation of Af(€) from left to right, i.e., high-order to low-order. Moreover.
we need focus only on the L. highest order bit-positions, namely, 1,2,..., L, of AI({), as
will become clear in the course of the argument.

Focus on a specific £ € {0,1,...,n/L -1} and on its associated A/(£). Note the effect
of proceeding from M(£) to M (£ + 1), thence to AM(£ + 2), and so on. Each step in this
progression, say proceeding from M(€ + ) to M(£ 4+ i + 1), consists of multiplying the
“current” number, A[(£ + i), by 2 — 1 (thereby going up L levels in H,), followed by
“pruning” all but the highest-order C 1s in the product. Note that the multiplication
part of this step affects only the rightmost 1 in bit-positions 1,2,..., L of A[(£ + 7): say
that this rightmost 1 appears in bit-position k. The effect of the multiply-then-“prune”

SThis assumption about C simplifies the estimates in the upcoming argument.
" "This is true because we focus on progressive S-embeddings. If we allowed arbitrary S-embeddings.
then A (€) would be the algebraic sum — i.e., the sum/difference — of at most C powers of 2. The
added generality of arbitrary S-embeddings would influence only constant factors in our bounds.
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step is as follows. Our assumption that the rightmost 1 of M(£+1) appears in bit-position
k means that the high-order L bit-positions of M(£ + i) form a string

162+ €k-1100---0 (2)

whose weight is
Wgt(€1éa - €x-1100---0)=w < C (3)

and whose terminal string of 0s has length L — k (since C < 1L). The multiplication
replaces this string with the like-length string

162 -+ - §p-1011--- 1.

When this product string has weight exceeding C, the subsequent “pruning” replaces it
by the like-length, weight-C string

€162+ €=1011---100---0.

Note that the rightmost 1 in the resulting bit-string has moved to a bit-position > k. The
reader can verify easily that in subsequent multiply-then-“prune” steps, the rightmost |
continues to “migrate” rightward, in the sense illustrated in Figure 3.

The important thing to note.in Figure 3 is that eventually the 1 that started in bit-
position k has been annihilated, in the sense that it, and all 1s “spawned” by it in the
course of the successive multiply-then-“prune” steps, disappear from the high-order L
bit-positions of the sequence of M(£)s. When such an annihilation occurs, we have lost
at least the fraction 27%+! of the GOOD leaves we could conceivably have been salvaging
at that point — to the detriment of our ultimate harvest.

The basis for our lower bound on C resides in our ability to bound how many multiply-
then-“prune” steps have to take place before a 1 that began in bit-position & of the
binary representation of some A (£) is annihilated. Sinte each such annihilation loses
us a significant fraction of the GOOD leaves, we wish to maximize the stretches of time
between annihilations. We accomplish this, first, by having Af(1) assume its maximum
possible value, namely, M(1) = 2f —2E-C and, second, by “pruning” as few leaves as
possible after each multiplication. A corollary of this strategy is that we always strive

to have the bit-string in positions 1,2,..., L of our expression for the values A/(£) have
maximum possible weight, namely C.

Let us focus on the 1 in bit-position k of M(£ + i); cf. equations (2, 3). Once
this 1 begins to “migrate” in the multiply-then-“prune” game — which occurs when it
becomes the rightmost 1 in the surviving representation — and until this 1 is annihilated.
the configuration of bit-positions 1,2,..., L of M(£ + i) has the form

§12 -+ 'fk-lom-
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where the bit-string = in bit-positions k+1,k+2,..., L has weight at most C —w+1 (by
equation (3)). Now, the numerical value of & decreases monotonically during the multiply-
then-“prune” game; therefore, the number of multiply-then-“prune” steps required to
annihilate the 1 that began in bit-position k, once it starts to move, cannot exceed

C-w+l _
T(w,k) =def Z+ (L k) (4)

1=0 4

The notation T'(w, k) is appropriate for this quantity since the number of steps depends
only on the weight and length of the bit-string &€z« - éx—1. Since C < %L, we can replace
the summation in definition (4) by the more easily manipulated bound

T(w,k)<2(cf;il). (5)

Inequality (5) allows us to bound easily the quantities that we are really interested in.
namely certain sums of the quantities T(w, k). The analysis goes as follows.

Assume that we are at the start of the multiply-then-“prune” game, so that the
high-order L bits of Af(1) have the form

10f-¢,
Say that we now play the multiply-then-“prune” game for T(C, C) steps. At some point
A p p

during this period, we shall have annihilated the 1 that began in bit-position C of A/(1);
i.e., the high-order L bits of the then-current Af(£) (where £ < T(C,C)) have the form

.IC—IOL—C+1_.
I[f we play the game from that point for an additional T(C — 1,C — 1) steps, then.
at some point during this period, we shall have annihilated the 1 that began in bit-

position C — 1 of AM(1); i.e., the high-order L bits of the then-current A[({) (where
(E<T(C,C)+T(C —1,C - 1)) have the form

10—20L—C+?
If we continue to play from this point for another T(C — 2, (" — 2) steps, then, at some
point during this period, we shall have annihilated the 1 that began in bit-position (" -2

of M(1); i.e., the high-order L bits of the then-current A (£) (where £ < T(C.C)+T(C -
1,C - 1)+ T(C - 2,C — 2)) have the form

1C—3OL—C+3
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Continuing in this way, it is clear that, by the time we have played the game

fg":nc_i,c <2Z( to1 ) =2(g) -2

steps, from the very beginning of the multiply-then- “prune” game, at some point during
this period, call it time £, we shall have annihilated every 1 that began in bit-positions
., C of M(1); i.e., the high-order L bits of the then-current Af(¢) have the form

1051,

If the game proceeds even one more step from this point, then the high-order L bits of

M(£y + 1) have the form
01¢0%-¢-1.

It is no longer possible to harvest the fraction 1/2 of the original GOOD leaves of H,,.

Say that we now continue to play the multiply-then-“prune” game from time £+ 1. If
we play for T(C, C + 1) additional steps, then at some point during this period, we shall
have annihilated the 1 that started in position C + 1 of M(£y + 1); i.e., the high-order L
bits of the then-current M(£) (where £ < £, + 14+ T(C,C + 1)) have the form

01°-10%-C.

If we then play the game from that point for an additional T(C — 1, C) steps, then. at
some point during this period, we shall have annihilated the 1 that started in position
C of M(& + 1); i.e., the high-order L bits of the then-current A/(£) (where £ < £, + | +
T(C,C +1)+T(C —1,C)) have the form

OIC—20L—C.+1 )

Continuing in this way, it is clear that, by the time we have played the game

35ﬂ0—u$w+1<22( :4)—2L'g—2
=0 J+1 B C '

steps, beyond time £, + 1, at some point during this period, call it £,, we shall have
annihilated every 1 that began in bit-positions 3,4,...,C + 1 of M (€ + 1); i.e.. the
high-order L bits of A ({;) have the form -

01052,

At this point, if the game proceeds even one more step, then the high-order L bits of
M(€ + 1) have the form

001053,
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It is no longer possible to harvest the fraction 1/4 of the original GOOD leaves of H,.

We now continue this pattern of play, to achieve times £,, where the integer parameter
r ranges over the set {0,1,...,[—log H] + 1}. (Recall that H = ©(1).) At each time
o+ £, +- -+ £ in this series, we shall have lost the ability to harvest the fraction 2-(k+1)
of the original GOOD leaves of H,,. By the time we have played the game for

[-log H]+1 [-log H]+1 L—i L
> o <2 (C)—2<2(C>, (6)

i1=0 i=0
steps, then it is no longer possible to harvest the fraction

1 1

of-logHl = H

of the original GOOD leaves of H,; in other words, we shall have failed in our assigned
task of harvesting at least the fraction H of these leaves.

IN

The only way we can be certain that the multiply-then-“prune” game can not be
played long enough to frustrate our attempts to harvest the fraction H of the criginal
GOOD leaves is if the depth n of the LTM H, is small enough to preclude our playing the
game for this many steps. On the basis of the estimates in equation (6), we must have

n L eL\€
—_ < —_
L<2(c)—2<c)

(using standard estimates). Elementary manipulation demonstrates that this inequality
implies C > L = Q(logn). O

3 Optimizing Expected Congestion

This section is devoted to deriving an analog of the development in Section 2 that exposes
the amount of congestion one must incur in order to survive “random” faults in H,. In
order to discuss random faults and the expected behavior of a salvage algorithm. we must
have a fault model in mind. We adopt the model that predominates in the literature by
assuming that the leaves of our trees H, fail to be GOOD independently, with probability
/2.8 We turn now to the task of deriving an upper bound on Cpin for random faults.
We have not vet settled whether or not our bound on Cpy, can be lowered: this question
presents an inviting challenge.

8Changing the probability 1/2 to any other fixed probability p merely changes the constants in onr
results.

16



3.1 An Algorithm with Good Expected Behavior

Using the simple fault model just described, we find that a modified version of Alge-
rithm Worst-Case of Section 2 produces S-embeddings which incur congestion that is
only triply logarithmic in the size of the harvested G, with extremely high probability,
providing that we lower our demands a bit. Specifically, we reduce our demand that
our algorithm be able to harvest any fraction H < 1/2 of the GOOD leaves of H, to the

demand that our algorithm be able to harvest any fraction H < 1/8 of the GOOD leaves
of H,.

Theorem 3.1 Let the leaves of H, be labeled GOOD or not, independently, with proba-
bility 1/2. For any rational 0 < H < 1/8, with probability > 1 — 2= a modification
of Algorithm Worst-Case will find an S-embedding having congestion

—-4H

C <log®N - log~1 +1 (7)

of some G, tn H,, where 2™ > HN.

Proof. The major insight leading to the desired modification of Algorithm Worst-Case
resides in the following combinatorial fact.

Lemma 3.1 Let the leaves of H, be labeled GOODor not, independently, with probability
1/2. If we partition the leaves of H, into blocks of size 10n in any way, then with
probability > 1 — 2=") | at least 2.5n leaves in each block are GOOD.

Proof of Lemma. The proof proceeds by a series of transformations and estimates.
Focus first on a single block of 10n leaves.

Pr(< 2.5n GOOD leaves) = Pr(> 7.5n not-GOOD leaves)
10n
= 271" 3" (number of ways to choose k not-GOOD leaves)
=7.5n+1

This last sum is readily transformed to
z.Si—l (IOn) g-10n < of 107 5 10n <2 (106)25n yotom < o (E)n
= \ k T \2.5n 2.5 -

for some € < 1. It follows that

2" /10n
Pr(> 2.5n GOOD leaves) > (1 -2 (%) ) > exp(—ci1€™/n) > 1 -
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for some constants ¢1,c; > 0. O-Lemma 3.1

Lemma 3.1 tells us that when we look at the labels assigned by our greedy algorithm
to nodes at or above level [log10n] of a randomly labeled instance of H,, then, with
very high probability, we find every node having a label A(z) for which Pot(A(z)) > 2.5n.
This suggests that the following (informally stated) S-embedding algorithm achieves the
goals of the Theorem with the indicated high probability. The reader should note that
only Step 0 of the algorithm is not guaranteed to work as desired. To simplify exposition,
we assume that 10n divides 2" and that 2.5n is a power of 2; removing these assumptions
is merely a clerical task.

Algorithm Expected-Case

Step 0. {Select GOOD leaves of H, for salvage}
Scan the leaves of H,, in blocks of 10n leaves; within each block, select 2.5n to be
salvaged; remove the label GOOD from all unselected leaves.

Step 1. {Salvage small trees within each block}
Invoke Algorithm Worst-Case within each block, with harvest fraction 1/2.

Step 2. {Hook up all the small salvaged trees}
Embed the “top” of a complete binary tree to hook together the 2"/10n small.
21257 leaf, trees salvaged in Step 1.

By Lemma 3.1, Step 0 of Algorithm Expected-Case succeeds, with high probabil-
ity, to collect the desired number of GOOD leaves within each block. By Theorem 2.1.
the congestion incurred by Algorithm Worst-Case when salvaging the small trees as
mandated in Step 1 is no greater that the bound 7. Since Step 1 salvages just one tree
from each block, the embedding of Step 2 incurs no further congestion. This completes
the proof, modulo details that are left to the reader. O

4 Optimizing Worst-Case Harvest

Algorithm Worst-Case of Section 2.1 is guaranteed to be efficient, both in running time
— it operates in time O(2"), which is linear in the size of H, — and in harvest — it
harvests the desired fraction H of the GOOD leaves. But, it is easy to find examples
where a nongreedy strategy allows one to harvest a much larger fraction of the Goop
leaves. In particular, when the GOOD leaves are spread out sparsely, any greedy approach
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abandons many more GOOD leaves than it has to. One finds an analogous deficiency in
a “lazy” salvage strategy — one that coalesces small trees as late as possible, rather
than as early as possible; lazy strategies abandon too many GOOD leaves when the leaves
are packed densely, in clumps. It might be of practical interest, therefore, to find a
computationally efficient algorithm that harvests optimally many GOOD leaves, while
honoring a prespecified limit on congestion. This section presents such an algorithm.

4.1 The Algorithm

A. Overview of the Algorithm

Our salvage algorithm keeps a record of all possible salvage decisions that are consistent
with the bound on congestion (which we denote by C). It then selects as its harvest

the largest of the trees in the record. It follows that the harvested tree has optimal size
(given the bound C).

Our algorithm’s record-keeping consists of labeling each node z at each level £ of H,
with a set A(z) of length-(£ + 1) vectors of nonnegative integers. The set A(z) records
all possible salvage options available at z, given the bound C, with each vector 7 = \(z)
indicating one option. Specifically, say that & = (o, 14,...,v); then:

e for all 0 < k < ¢, there is an S-embedding in the subtree of H, rooted at = of a
GOOD-leafed forest F containing v disjoint copies of Gy;

e ¢ vk <O, so that the bound on congestion is always honored.

When we get to the root r of H, (where £ = n), the algorithm selects the largest m for
which some vector 7 € A(r) has v, > 0. Our haivest, then, is a GooD-leafed copy of Gy.

B. Details of the Algorithm

We associate each level-£ node z of H,, with a trie (i.e., a digital search tree [10]) of height
£ — 1. This trie will store the labeling-set A(z) in the obvious way. We now present the
details of Algorithm Optimal-Harvest.

Algorithm Optimal-Harvest

Step 0. {Label nodes on level 0 of H,}
Assign each leaf z a labeling set A(z), as follows.

\(o) = { {(1)} ifzis Goop
Ae) = {(0)} if z is not GooD
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Step £ > 0. {Label nodes on level £ > 0 of H,}
Assign each level-£ node z a labeling set A(z), as follows.

Substep {.a {Assemble the base labeling vector-sets}
If both A(z0) and A(zl) are nonempty, then
for each pair of length-£ vectors A € A(z0) and ji € A(z1),
place the length-(£ + 1) vector ¥ in A(z), where

_ 0 ifk=¢
EEY Mt pe ifk£L

endfor
else if precisely one of A(z0) and A(zl) is nonempty, then

set A(z) equal to that nonempty set
else set A(z) =0
Substep £.b {Refine the base labeling vector-sets in all ways}
Repeat the following process for each vector 7 € A(z), until no new vectors

are produced: :
for each k=0,1,...,£ -1, in turn

place the |1vy] vectors {#1), 7, .. i/2} in A(z), where each vector ¥
agrees with U except in positions &,k + 1, and in those positions:
i) = bo—2
R = G+
endfor

Substep £.b {Honor the congestion bound C in all ways}

for each vector 7 € A(z)

if 22:0 Ve > C

then replace v in A(z) by all possible vectors #' such that
oy, <y foral 0 < k<!
¢ Zi:ﬂ U;c S C

endif

endfor

Step n + 1. {Harvest a maximum size tree} -
Use the labeling sets to embed a copy of G, in H,, where m is the largest integer
such that some vector 7 in the labeling set A(r) of the root of H, has v, *~ 0.
Specifically:
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Substep n + 1.a {Embed the root of a copy of Gm}
Embed the root of G,, at a node of H, with the highest level-number, whose
labeling set contains a vector 7 with v, > 0.°

Substep n + 1.b {The recursive step}
Say that we have just embedded a node y of G, at level £ of H,, and say that
node y is the root of a subtree G, of G,s.
Then embed the children of y at (not necessarily distinct) nodes of H, with
the highest level-number < ¢, that have labeling sets containing vectors g and
v with g + v > 2.

4.2 Timing Analysis

Theorem 4.1 Let the leaves of H, be labeled GOOD or not, in any way, and let 1 < C -
n. Algorithm Optimal-Harvest finds, in time

TIME(n) = O(Cn3°+22")

an S-embedding of some G in H,, having congestion < C and having optimal harvest
among embeddings with congestion C.

Proof. The correctness and the quality of the output of Algorithm Optimal-Harvest
being obvious, we concentrate on the timing analysis. The number of vectors in the set
A(z) for a level-£ node z of H, can be no greater than

C (L+k
Z( + )= (z+0+1) 3
k=0 k c

This bound is verified by analogy with the problem of assigning < C balls to £ + | urns.
(We are selecting < C trees, each having one of £ + 1 heights, to be carried along to the

next step of the Algorithm.)

At each level-£ node z, we pair the length-£ vectors from the label-sets of its children
z0 and z1, in all possible ways. We then add each pair together componentwise, and we
append a 0 (at the “high-order” end) of each sum-vector (to increase its length). The
pairing operation leads to fewer than €3¢ pairs of vectors, so the addition step produces

20ur insistence on the highestlevel-number in Step n+1 serves to keep the dilation of the S-embedding
low, while neither decreasing the harvest nor violating the congestion bound. Note, however, that this
insistence could increase the actual congestion incurred by the embedding.
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fewer than £2¢ sum-vectors. Producing a sum-vector takes O(¢) steps. Hence, this part
of the processing of node z takes time O(£2¢+1).

Next, we adjust each sum-vector, in order to produce all possible salvage options.
This involves selecting, in all possible ways, one level k such that we can combine paired
level-k trees into single level-(k + 1) trees. This level can be selected in at most £ ways.
and the combination process requires no more than O(1) operations per pair. Since the
set A(z) initially contains fewer than £2C vectors, and since (by induction) no entry in

any vector in either A(z0) or A(z1) can exceed C, this part of the processing of node =
takes time O(C£2¢+).

Finally, we “prune” the vectors in A(z) in order to honor the bound on congestion.
Since each vector (vg,v1,...,v) at a level-£ node is in the worst case (before pruning)
the sum of two vectors from level-(£ — 1) nodes, it is possible that ¥ o vk = 2C. Hence,
when we prune a vector in all possible ways, we may be adjusting it by adding as many

as
L+C+1
C

“correction vectors”. Each correction is a vector addition requiring O(£) steps. Since
A(z) may have grown as large as O(£2°*!) by this time (due to its expansion during the
embedding of new roots), the time required for pruning A(z) may be as much as (but
can be no more than)

) | < (const)f€

O(f) . O(eC) . O(ZZC+1) — O(£30+2)_

Since £ < n in this timing analysis, and since the processing we are analyzing takes
place at every node of H, — although the processing at lower-level nodes is simpler
because they require no pruning — it follows that the time required for this algorithm is

TIME(n) = O(Cn3°+22%).

This is certainly within the realm of computational feasibility even when C is as big as,

say,
1 n
¢= 3 (logn —3) ’

which makes TIME(n) quadratic in the size of H,, and all the moreso when C is more
modest in size. O
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Figure 1: Binary representations and S-embeddings: the typical picture
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Figure 2: Binary representations and S-embeddings: combining like-sized trees

26



1€z - - €y 1007F
i} MULTIPLY by 28 — 1
G162+ - Epr 015
PRUNE
€162+ - €61 01C "W 1QE-C kw1
MULTIPLY by 2% — 1
6162 e ‘Sk_lOlC—wOlL-C—k-l-w-l

! . PRUNE
6162 v fk_IOIC—WO].OL_C-k-H"-z
1 MULTIPLY-and-PRUNE
€182 Ee10mna -+ Lk
i} MULTIPLY-and-PRUNE

6162 Lo €k~10L-k+l

Figure 3: The “migration” of the rightmost 1
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