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Current real-time kernels present inadequate, incomplete, and missing
functionality in their interfaces. As a result of these poor interfaces, real-
time systems are difficult to design, maintain, analyze, and understand.
Here, I present examples of the poor interfaces and suggest improvements
for scheduling, memory management, and interprocess communication. Ba-
sically, I am suggesting a need for a much higher level of functionality than
is currently provided. This argues against the trend for microkernels for
real-time operating systems (at least in one respect as discussed below).

Scheduling: Most real-time kernels provide a fixed priority scheduling
mechanism together with a few system calls that can adjust priorities. This
works well when tasks’ priorities are fixed. However, in general, this mech-
anism is inadequate because many systems require dynamic priorities and
mapping a dynamic scheme onto a fixed priority mechanism can be very
inefficient. Let me give an example. Suppose we are using an off-the-shelf,
black box, real-time POSIX compatible kernel and we are given a fixed pri-
ority scheduler with 16 levels. The application programmer might want to
implement earliest deadline scheduling for aperiodic tasks. When the first
task arrives, the policy module (an application task) must assign a priority
based on the relationship of deadlines of all the tasks. In this case it is the
only task so the policy module could assign any of the 16 numbers. Suppose
it assigns the highest priority. Then a second task arrives with an earlier
deadline. No problem, the policy module simply lowers the priority of the
first task and gives the second task the highest priority. However, because
the priority mechanism is in the interface of a black box kernel, the policy
module must first issue a system call to remove the previous task, and then
two more system calls to reinsert the two tasks. Further, the policy module
is required to keep track of all the tasks and their deadlines, outside the ker-
nel, so that it can re-adjust the priorities when certain arrival patterns make
it necessary. In the worst case a new arrival might require every task to be
removed and reinserted. Of course, it is possible to significantly improve
the performance just described by various techniques such as adding system
calls that insert and or remove a set of tasks, or a call that simply shifts a
task’s priority. Even with these additional interface primitives, the use of



a fixed priority scheme can be inefficient because it is the wrong model for
dynamic priority scheduling.

I propose that the underlying support should be a dispatcher that simply
removes the next task from an ordered list, checking a start time field for
the task to make sure that the next task to execute has an arrival time that
has passed. This latter feature is useful for periodic tasks and aperiodics
with future start times. The ordered list itself is maintained by the policy
module, but the dispatcher has direct access to it, obviating the need for
separate copies of information. The policy module can be whatever the
application requires but for efficiency becomes part of the kernel in the
sense that its data structure is visible to the dispatch mechanism. With this
scheme we also eliminate the granularity issue where there are not enough
priority levels, e.g., only 16 in the above example. In that case, multiple
tasks are usually mapped to a single level, thereby possibly violating the
scheduling policy such as earliest deadline. With the suggested approach,
the granularity issue is now a function of the size of the time field which,
in my opinion should always be explicitly represented in a real-time system
anyway (and not converted to a priority), and needs to be at least 32 bits.
Various real-time policy modules should be available at load time, or even
at run time. FCFS and round robin should not be provided. These are
not real-time scheduling algorithms and if users really want them, let them
provide them. To emphasize the real-time nature, the policies available
should include earliest deadline, least laxity, rate monotonic, sporadic server,
stack resource policy, and the Spring scheduling algorithm. This is exactly
the opposite of the approach taken by real-time POSIX.

Fixed priority scheduling is also incomplete because it deals only with
the CPU resource. Since we are interested in when a task completes we
must consider all the resources that a task requires. An integrated view of
resource management should be part of the interface including the ability
to specifically identify the needed resources and to reserve them for the (fu-
ture) time when they will be needed. I suggest that the interface support
the specific reservation of sets of resources in an atomic fashion for a given
duration. For example, I might specify that process A requires 10 millisec-
onds of CPU and data structure resources B and C, and 3 new pages of
memory. The system should be able to perform the atomic reservation of
this entire set of resources for a duration of 10 milliseconds within a time
window that extends from the current time to the deadline. It should also
be possible to specify a start time for the reservation such as please reserve
the execution beginning at 3 o’clock. The reservation should proceed via a



best effort approach and if it is not possible, then a specified policy (part of
the interface) should be invoked. Reservations need not be the only resource
management strategy employed in the system. For example, a priority ceil-
ing protocol manages resources by imposing a structure on how resources
can be acquired without reserving them atomically. Both reservations and
means for identifying ceilings on resources could specifically be in the in-
terface. With this level of support an application designer can develop a
system more quickly, analyze it easier, and understand its operation better.

Fixed priority scheduling has missing functionality because it substitutes
a single priority number for possibly a set of issues such as the semantic
value of completing the task, the timing constraint of the task, and fault
properties of the task. Further, a fixed priority ignores the fact that semantic
information is often dynamic, i.e., a function of the state of the system. I
propose that as part of the interface deadline or other timing constraint,
value, fault semantics, and precedence constraint information be specifically
input to the operating system (when necessary), and be easily alterable by
application level policy modules. In this way, the system could implement
sophisticated decision making modules and avoid anomalies that occur when
you map multiple parameters onto a single number, or erroneously assume
that the relative priorities of tasks are fixed. All real-time applications
require support for timing and reliability. Why not explicitly provide it,
rather than leaving it to the designers?

Memory Management: Some real-time kernels support only a phys-
ical address space. This is a bad idea because of poor protection between
modules and because it has poor maintainability properties for long lived
real-time systems. Other kernels support virtual memory. This is also a bad
idea, even if you are allowed to lock pages into memory. In these systems
even if certain pages are locked, non-determinism arises from TLB misses,
map table maintenance, possible blocking due to paging I/O from other
pages, and secondary effects from less available pages. The interface should
support multiple logical address spaces for protection and maintenance (new
programs can easily be loaded dynamically) reasons. However, the entire ad-
dress space should be loaded so that there is never a page fault, never a TLB
miss, etc. The system should also provide an interface for manipulating the
address space of a process. This would support controlled overlap of address
spaces, thus supporting shared data, as well as making hardware control and
status registers directly available to processes requiring them.

IPC: Many real-time kernels support standard synchronous or asyn-
chronous IPC or both, and send information across node boundaries via



layers of communication protocols implemented in a non real-time fashion.
If queuing occurs, it is FCFS. There is nothing real-time about these prim-
itives at all. We need to support real-time virtual circuits where delivery
is guaranteed by a deadline and where the deadline, value, and reliability
requirements of the message are part of the interface. Then an application
task requiring end-to-end delivery by a deadline must request a real-time
virtual circuit. The implementation is likely to require a reservation of a set
of resources. If an application task can live with a best effort delivery of the
message, then it should invoke a real-time datagram with a similar interface
as for the virtual circuit except that the semantics of delivery is best effort
rather than guaranteed. It is important to note that these communication
primitives by themselves are not sufficient since the processes making the
calls must also be scheduled.

Many other aspects of what a real-time kernel interface should be are not
addressed in this short note, but they all need to put reservations, timing
constraints, value, and reliability requirements explicitly into the interface.
Further, I should note that many implementation issues such as minimizing
interrupt latency, interrupt service time, preemption latency, and context
switch time are also very important real-time kernel issues. However, these
issues are implementation issues and are not part of the interface. Fur-
ther, the execution time costs required for these factors are relative to the
application at hand.

Finally, let’s consider a current hot topic, microkernels for real-time.
Basically, the use of microkernels is a good implementation technique, so I
do not argue against using microkernels. However, I think that the current
designs are attempting to find the core ingredients from the wrong, current,
higher level interfaces. An interface like I suggest here should be the basis
upon which to develop a microkernel should you choose to build your system
that way. I am well aware that many people advocate very simple real-time
kernels or even microkernels where most of the functionality I suggest would
clearly be outside the kernel. I think that this somewhat irrelevant for real-
time systems designers. These designers require certain system run-time
support, and it doesn’t really matter to them whether its a black box mi-
crokernel with all the functions they need running on top of it, or an open
system model that lets them compose what they require into a run time
system. Remember, it is the entire embedded system which is important,
not the kernel nor microkernel, per se. Another problem with all the recent
emphasis on real-time microkernels is that such simple kernels focus real-
time operating system efforts in the wrong place. We already know how to



build and provide interrupt handlers, priority schedulers, semaphore sup-
port, standard IPC mechanisms, etc. These efforts are simply implementing
functionality that has existed for many years. They are re-inventing the
wheel. However, with these simple functions as primitives, real-time sys-
tems design and implementation has not progressed satisfactorily. It is still
to costly and error prone to build real-time systems. The real effort should
be in proving applications with explicit algorithmic support for meeting
deadlines, meeting fault tolerance requirements, and meeting monitoring,
analysis, and understandability requirements. With the correct primitives,
we can elevate the designer from having to carefully select priorities so that
no matter what happens in the system (including all forms of blocking, in-
terrupts, new task arrivals, failures, etc.) the selected priorities will be such
that all deadlines are met. Rather, there should be algorithmic run-time sup-
port that attains the same goal. Further, choosing a non real-time interface
for real-time systems (which is what these low level, priority based inter-
faces are) provides implementation problems requiring users to get around
the problem.

EDITORIAL: RESOURCE ALLOCATION IN REAL-TIME SYSTEMS
by
Prof. John A. Stankovic

Large real-time systems are complex. In these systems there are usually
many periodic and aperiodic tasks, a high degree of concurrency, and sig-
nificant asynchronous behavior. Requirements often demand careful design
and analysis so that the system is predictable. Unfortunately, much of the
analysis has focussed on a too simplistic model. For example, the basic rate
monotonic result requires many simplistic assumptions which are not met
in practice. Consequently, for a complex system it does not matter that you
have a beautiful theorem with precise analysis because the coverage of the
assumptions compared to the real system is low. While the basic approach
may still be useful for an approximate analysis, it must be noted that any
approximate analysis is more limited for a real-time system than for a gen-
eral purpose timesharing system because designers require precise analysis
with respect to deadlines of specific tasks. Another example of simplistic
analysis is earliest deadline scheduling. Simple formulas can again provide
precise results based on assumptions such as all tasks are preemptable at
any point, there is no sharing of resources, and no overloads will ever exist.
Again, if the manner in which these assumptions match the real system is



poor than the precise analysis is not precise at all for the system in question!
One key problem with the basic rate monotonic and earliest deadline poli-
cies and their analyses is that they fail fo recognize that all resources must
be addressed by the analysis and not just the CPU. In other words, what is
required is an integrated resource allocation model for real-time where

e all resources are addressed,

e the assumptions made in the model and the actual system (including
the environment) match to an acceptable degree,

e the run time system supports the model in a precise manner,
e it is analyzable, and

e the system is understandable.

In this short note, I briefly consider three alternatives for an integrated
resource allocation approach. One, is the rate monotonic scheduling with
priority ceiling based on an underlying on-demand resource allocation model
[9]; two, is the planning approach (typical of the Spring [10] and Maruti
systems [2]) which is not based on an on-demand model; and, three, is
static real-time systems based on table driven, cyclic [4, 5] or time driven
[3] approaches. To a large extent these are also not based on the on-demand
model.

Rate Monotonic with Priority Ceiling:

Many useful extensions to the basic rate monotonic algorithm have been
produced including the priority ceiling protocol which effectively creates
an integrated resource allocation model. It can be said that this protocol
works in conjunction with an on-demand paradigm found in many systems
including all general purpose timesharing systems.

The on-demand approach has come into existence mainly for efficiency. It
is a lazy allocation approach, i.e., resources are assigned only when actually
required so that the system never wastes an assignment that will not be used.
The penalty paid for this is non-deterministic blocking. For time sharing
environments this blocking is usually quite acceptable, on the average. But
in a real-time environment, the non-deterministic blocking is the source of
analysis difficulty. Note that all the other real-time approaches mentioned in
this editorial carefully avoid these blocking complexities. Since blocking is
permitted in the on-demand model, we must impose some structure on this
blocking, e.g., as priority ceiling does, to bound the blocking time. Doing



this enables us to re-introduce nice analysis properties, but does so with

severe limitations in some situations.

Advantages of the priority ceiling protocol running on an on-demand

uni-processor system include:

all resources are addressed
run time system supports the model in a precise manner
it is analyzable

it is understandable at a high level meaning that given a set of tasks
we know if they will be guaranteed to make their deadlines

often allows very high utilization on a uni-processor and possibly in a
multiprocessor, e.g., when very few, short global critical sections exist

robust in the sense that the run time mechanism is dynamic where,
for example, worst case execution times for several tasks might have
been computed erroneously yet deadlines are still met because other
tasks dynamically execute at less than their worst case times

overload is not on a specific task overrunning a specific boundary as
in static systems, but is expressed as an overall utilization in excess of
a utilization bound

best technique available for on-demand system model

It is important to note that many of the disadvantages listed below do
not always exist, but when the conditions mentioned do exist, then the
limitations can be severe. Disadvantages mainly arise from (1) pessimistic

assumptions made by the analysis, and (2) as systems scale blocking becomes
complex!. The disadvantages include:

as systems scale in size the assumptions made in the model often don’t
match the actual environment

it is often difficult to understand the actual execution histories of the
system which are completely dynamic, giving rise to difficulty in test-
ing, reproducibility, and for replica determinism. The understandabil-
ity issue is extremely important in safety critical systems and is one
of the main reasons static designs are still so widely used.

!Baker has proposed a modification where a degree of non-blocking is added to the
basic priority ceiling protocol.



if the highest frequency task (or the top n tasks) is very fast and has
non-negligible blocking factors, then those blocking times are amplified
(see the formula used in the analysis) or if there are large critical
sections anywhere in any program then utilization can be very low.
An implication of these issues is that for most sophisticated real-time
systems the answer to most analysis might be that the system is not
schedulable. In that case other techniques will be necessary anyway,
e.g., by using more semantic information about the application, or
significantly overdesigning with very low utilizations.

addressing the critical sections used by the kernel and understanding
how any inhibited preemptions or interrupts in the kernel impact the
analysis has not adequately been addressed, e.g., the tasks may make
system calls which subsequently turns off interrupts when in a critical
section delaying the arrival of work which may invalidate one of the
assumptions of the analysis

if resources are multi-unit then more complicated schemes are neces-
sary with the result of increasing run time cost and being very pes-
simistic about when a task can execute

not easily extensible to multiprocessing [6]; this is a critical limitation
not easily extensible to distributed systems
not easily extensible to precedence constraints

employs an artificial method for integrating the value of a task with
its frequency, and given a particular assignment might cause an im-
portant task from missing a deadline in overload; One technique often
suggested is artificially reducing the period of an important task and
breaking up its execution time, but this is not a good solution when
a task has critical sections. It is difficult to ensure that the critical
section is not held across task executions.

not easily used for systems which must prevent jitter
may have high numbers of context switches

integration of periodics and aperiodics forces everything to look like a
periodic task which can be very inefficient for tasks which are rarely
invoked



Planning: The planning approach assumes a different underlying sys-
tem model than the on-demand model. It is based on reserving resources
into the future [7], thereby avoiding blocking. The planning approach also
carefully isolates interrupts thereby ameliorating another major analysis and
understandability problem. These two main features are very similar to the
main features found in static real-time systems. The main differences be-
tween static systems and planning systems is that planning based systems
are more dynamic and flexible, but less predictable, while the static systems
are less flexible, sometimes too costly in resources, but are more predictable.

Advantages of the planning approach accrue due to its very general na-
ture and because it takes a system-wide view of resource allocation (in-
cluding CPU, other general resources, and even time) rather than focusing
myopically on only what the next operation is to be.

e all resources are addressed

e since the approach is general the assumptions made and the actual
system can match very well, e.g., task sets can be quite complicated
with periodic and aperiodic tasks, precedence constraints, value re-
quirements, fault tolerance requirements, etc.

e the run time system can support the model accurately

o the degree of understandability is higher than the on-demand model
but not as high as the static systems

e can be used for multiprocessors and distributed systems
e provides early notification that a task may miss its deadline
e highly flexible

e highest value work is executed on overload
Disadvantages include:

e no simple formula for analysis, but this does not mean that analysis
cannot be accomplished; deterministic analysis can be done for critical
tasks, stochastic analysis for the others, and at each point in time the
system is actually performing an on-line analysis of the capabilities of
the system (this is a major advantage with respect to the robustness
of the system)



e the execution time cost of planning may be too high (although the cost
of not having on-line monitoring and planning may be even higher in
terms of having a catastrophic failure); further, a VLSI-based schedul-
ing and resource allocation accelerator chip should be able to make
the cost acceptable

e reaction time to interrupts (which were isolated) and then creating the
plan for it may be too long for some tasks; consequently, multi-level
scheduling is usually necessary when using planning

e no preemption of currently executing task may be too long for some
required reaction times

e reserve resources even if not used; but the negative effects of this can
be partially reclaimed in various ways

Static Table, Cyclic and Time Driven Systems: Real-time systems
built using table, cyclic, time driven or approaches such as in Cy-clone [4] are
highly predictable?. Each of these are based on different underlying models
but they all avoid blocking and either eliminate or reduce the effects of
interrupts. As pointed out in [4] when sufficient excess resources are supplied
for an application, these approaches can have significant advantages. In fact,
all the needs for an integrated resource allocation model are met, i.e.,

e all resources are addressed,

e the assumptions made in the model and the actual system (including
the environment) match to an acceptable degree,

e the run time system supports the model in a precise manner,
e it is analyzable, and

e the system is understandable because it eliminates interrupts, preemp-
tion and blocking

e handles jitter well

ZBut be careful not to equate predictable in these systems with the notion that this
necessarily means that the system will work properly. This is further based on whether
the many assumptions made in the design are correct such as the worst case execution
time, numbers and types of faults assumed, assumptions made with respect to correlated
faults, assumptions made about the dynamic behavior of the environment, etc.
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e can be used in a network

e can address fault tolerance requirements including replica determinism

Some disadvantages attributed to this approach are fictitious. For ex-
ample, sometimes the way resources are addressed in these methods is ad
hoc. However, this is the fault of the designers, not the approach. It is
not too difficult to develop good algorithms and heuristics that can help
lay out a static allocation of all resources to tasks. These algorithms may
be expensive in terms of execution time, but they are off-line algorithms.
Examples of such algorithms include [11] and [8], and algorithms such as [7]
could easily be modified to operate in a static setting.

True disadvantages arise when the environment is more demanding than
a fixed system can handle or when there are too few resources, or both. See
[5] for a full description of the disadvantages of static systems.

Disadvantages are:

e the execution components can be too rigid (e.g., in some cases all
computation must fit within one time unit and if not the designer
must start arbitrarily breaking up tasks to these rigid boundaries)

e the compositional model, i.e., how tasks related to each other are
scheduled, is too rigid resulting in a difficult to modify system. How-
ever, the resulting schedule is easy to check to make sure it works, and
it is easy to understand how the system is executing.

e minor changes can result in the need for complete redesigns

e if the environment does not operate as assumed, the the fixed, pre-
computed operation may be very bad

e potentially extremely low utilization and high cost

e difficult to handle functions whose computation time is long with re-
spect to the highest rate task

The non-blocking property of these static systems contributes to analyz-
ability and understandability. I would characterize the planning mode ap-
proach as retaining the advantages of the non-blocking aspects of the static
approaches, but, for flexibility, dynamically composing well defined units
into achievable schedules. The units in the planning approach may vary in
size and are completely natural to the computation at hand, rather than
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some single chosen unit which all processing must somehow conform. With
respect to this aspect of the comparison between planning and the static
approaches, we can use an analogy to memory management; one could say
that the cyclic approach is like paging where you choose one fixed page size,
and the planning approach is more like segmentation where the units are
appropriate to the function being implemented.

Summary My comments are meant to emphasize that CPU scheduling
is not the big problem of real-time systems, rather a main issue is integrated
cpu scheduling and resource allocation. Further, resource allocation issues
are far from solved and even which basic model to use is not clear. To block
or not to block, that is the question, and if you block, when to block is a sub-
sequent question. Solutions to this problem should not be divorced for the
overall system goals of predictability, meeting timing and reliability require-
ments, low overall system cost, and understandability. Finally, while each of
the above approaches have particular real-time applications for which they
are best suited, my bias is that any solution for complex real-time systems
(which implicitly has certain types of requirements including operating in
difficult to control environments) at least so far, based on the on-demand
model produces too complicated blocking patterns that have to be too pes-
simistically constrained, so that for scaling and for complex tasks, it is not
efficient, and that solutions based on the static approaches are not flexible
enough to operate robustly in difficult to control environments. I believe
that for complex real-time systems we need hybrid approaches, such as the
planning approach, or other variations of it such as [1] where some degree
of non-blocking has been added to the priority ceiling protocol.
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