Intelligent Data Analysis
Paul E. Silvey, Cynthia L. Loiselle, Paul R. Cohen

Computer Science Technical Report 92-79

Experimental Knowledge Systems Laboratory
Department of Computer Science
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

We believe the problem of automating the process of building mod-
els from empirical data is a critical issue for both Artificial Intelligence
and other scientific computing researchers. Although both fields re-
quire models of the behavior of complex systems, as Al researchers
we may more directly address our particular needs. Al researchers
require models that let us determine the influence of design decisions
and environmental factors on the performance of Al programs so as
to inform the design of the next generation of intelligent agents. Our
research includes the complementary projects of building a blackboard-
based automated model-building assistant and analyzing the efficacy
of heuristics used in function finding programs.

This research was supported by DARPA-AFOSR contract F49620-89-C-00113.



Introduction

As Artificial Intelligence researchers, our basic objec-
tive is to increase our knowledge of how and why intel-
ligent agents work the way they do. We view intelligent
behavior, whether natural or artificial, as unexplained
phenomena that we wish to better understand. As
computer scientists, we write and study computer pro-
grams. Many of these programs exhibit behavior that
we would consider intelligent, yet we are frequently at
a loss to explain exactly how they do it, or to identify
particular changes in circumstances that would lead
them to stop doing it. The behavior of a large complex
computer program (such as a real-time expert system)
is often only understood in very qualitative terms. We
might know, for example, that a system’s performance
degrades as we add additional tasks, but we don’t know
by precisely how much, nor whether there are signif-
icant interaction effects with other changing external
conditions.

The level of understanding we seek would enable
us to determine the influence of both design deci-
sions and environmental factors on a program’s per-
formance. We know whether an increased runtime is
due to, say, restructuring the knowledge base (an archi-
tectural change) or an increase in the amount of data
it must handle (an environmental change). Such an
understanding would allow us to predict and analyze
the behavior of AI programs. Because such an under-
standing informs design, it would let us build better
programs in the next iteration. Central to our ability
to obtain this level of understanding is the existence of
models that describe these influences.

We can attempt to build these models analytically,
using techniques such as complexity analysis. Such
models may or may not be relevant to running pro-
grams, however. For example, a worst-case analysis
may not be useful in program design if the scenario that
gives rise to such a state is unlikely in the extreme or
trivially avoided. Furthermore, analytic models often
require simplifying assumptions in order to make them
tractable. Ascertaining whether these assumptions are
justified may not be possible without implementation.

An alternative is to construct models of program
behavior by observing the program itself. This ensures
both that our models will be relevant to our systems,
as implemented, and that any simplifications will be
borne out by program behavior.

We are interested in improving our scientific under-
standing of a computer program’s behavior through
empirical analysis of its observable characteristics. In
order to facilitate this, we are developing knowledge-
based tools for data analysis; to help automate the
process of finding interesting patterns in experimental
data sets and to help us develop models that capture
significant behavioral properties of our programs. The
general models we hope to develop consist of causal,
functional relationships between observable character-
istics of a program’s architecture, its environment, and

its behavior.

We believe the problem of automating the process of
building models from empirical data to be one of the
critical issues for both Artificial Intelligence and sci-
entific computing—for Al because we must have such
models of our programs to inform the design of the next
generation of intelligent agents, and by extension, for
scientific computing because many fields require mod-
els of the behavior of complex systems.

We seek to understand the process of incremen-
tally building models from data, whether by hu-
man researchers or by machines, and are designing
a computer-based tool to both assist and investigate
that process. As an automated assistant this work
represents the development of an enabling technology
for more principled Artificial Intelligence research that
bases the analysis and design of Al systems on predic-
tive models. As an investigative tool it allows us to
study the application of Al techniques to the experi-
mentation and analysis phases of scientific research.

In the next two sections we outline our research plans
for constructing a blackboard-based automated model
building assistant and for investigating the efficacy of
existing techniques for the empirical discovery of func-
tional relationships. The last section describes related
research from the Experimental Knowledge Systems
Laboratory.

An Automated Model-Building
Assistant

Overview

Our basic approach to model formulation is to in-
tegrate the complementary strategies of exploratory
and confirmatory data analysis (e.g., [Tukey, 1977,
Wickens, 1989]) in a knowledge-based decision aid.
Combining these approaches in a single system allows
us to iteratively characterize subsets of a user-provided
data set, detect and identify dependency relationships,
and synthesize and evaluate complex models from sim-
pler elements.

A model produced by such an automated decision-
aid will consist of a set of hypothesized relation-
ships between sets of variable data terms. Model
terms are identified as observed attributes in the in-
put data set, or they are derived from other terms
through combination, transformation, or data set par-
titioning. Relationships between terms in the model
can be described in multiple ways: as causal de-
pendencies, qualitative trends, functional forms, or
precise functional relationships. The model-building
process uses both data-driven and goal-driven mech-
anisms in the search for models that characterize
the data well, and alternate methods may exist
for deriving similar results at each step. For ex-
ample, several researchers have developed alternate
techniques for inferring causal structure from data
(e.g.,[Glymour et al., 1987, Pearl and Verma, 1991}).



Frequently, the model-building process begins in a
data-driven manner. A correlation coefficient or other
pair-wise measure of association might be used to iden-
tify potential bivariate dependencies, or the presence
of a multi-modal univariate distribution could suggest
the utility of data set partitioning. At higher levels of
abstraction, bivariate relationships may suggest term
combination alternatives or identify probable elements
of multivariate relationships.

At the same time, goal-driven processing provides a
useful means to constrain the search for terms and rela-
tionships. Attention may be focused on terms deemed
relevant by the human experimenter based on their
experimental roles as dependent or independent vari-
ables. Information about the kinds of models we ex-
pect to find, whether provided by the experimenter or
by the system’s initial examination of the data, will
similarly guide the application of lower level compo-
nents. If we suspect that the most plausible model
is non-linear, then we may favor deriving terms that
produce non-linear behavior over those that maintain
linear relationships. High-level techniques such as path
analysis can be used in the confirmatory stage to eval-
uate candidate models.

Decision Aiding

Our long-term objective is to evolve to more fully
automated model-building and discovery mechanisms
driven by an opportunistic control strategy. How-
ever, we believe it is prudent to first develop a system
that facilitates model building from data, but requires
the active involvement of a human analyst. This ap-
proach also allows us to incorporate techniques for sci-
entific visualization, and to consider important issues
of human-computer interaction. We expect to develop
automated strategies from our experience with the sys-
tem as a manual analysis decision aid, letting users
provide much of the initial reasoning control strategy.
Although we are developing this system in the domain
of modeling complex program behavior, we believe use-
ful analytic strategies can be developed that apply to
more general scientific modeling problems.

Architecture

The combination of multiple levels of abstraction,
alternate methods for deriving intermediate results,
and opportunistic reasoning, motivates our deci-
sion to implement the system using a blackboard
architecture[Nii, 1986]. A shared blackboard data
structure holds elements of the developing model or
models, and the individual knowledge sources operate
on those elements to create terms, hypothesize rela-
tionships, fill-in attribute slots, or perform statistical
tests. Blackboard levels reflect the space of hypotheses
explored during the process of model building. They
include the raw data table, univariate terms, bivari-
ate relationships, multivariate model components, and
causal linear path models.

Data analysis and model construction requires a rich
set of analytic tools. Many of these “tool-kit” knowl-
edge sources compute important statistics for describ-
ing terms and relationships. Examples include knowl-
edge sources that characterize univariate distributions
by their statistical moments, identify outliers in the
raw data set, and compute measures of association
such as linear correlation. Higher level analytic knowl-
edge sources include ones that assess non-linearity
in bivariate relationships, partition the data set into
classes, create new terms through arithmetic combi-
nation, perform multivariate regression, and evaluate
path-analytic models.

But more importantly, the combinatorics of explor-
ing the space of possible models requires a strate-
gic control component. In addition to external guid-
ance provided by the human analyst, there are con-
trol knowledge sources to suggest which terms to com-
bine into new terms, which operators to apply to those
terms, and where the system’s focus of attention should
be at various blackboard levels. The blackboard archi-
tecture allows us to incorporate both analytic tool-kit
knowledge and strategic control knowledge in a mod-
ular and incremental fashion. This modularity in turn
provides us with the ability to evaluate the relative con-
tributions of various knowledge sources through abla-
tion studies, thus utilizing the methodology for which
the tool is being developed to better understand the
tool itself. (See the section on Previous and Related
Research for more on this methodology.)

Modeling and Empirical Discovery

Researchers in the machine learning subfield of empir-
ical discovery have investigated the problem of deriv-
ing models to capture relationships in a given data set.
When such models take the form of mathematical ex-
pressions, we usually refer to the problem as one of
function finding. In service of developing the tool-kit
and control knowledge sources for the model building
assistant described in the previous section, we have be-
gun to investigate the utility of existing model building
techniques found in such function finding programs.
Most existing
function finding programs (e.g., [Langley et al., 1983,
Falkenhainer and Michalski, 1986,
Zytkow, 1987, Zembowicz and Zytkow, 1992]) com-
bine a search strategy with an evaluation heuristic to
search the space of potential models. ! For example,
IDS [Nordhausen and Langley, 1990] uses beam search
on nodes ranked by the correlation of the model’s com-
puted values with the known dependent values from
the data set. The search space is, of course, defined
by the set of term creation operators chosen for the
particular system. Term creation operators are cho-

'For a notable exception see [Schaffer, 1991] which sug-
gests that function finding might be more properly viewed
as a classification problem.



sen to reflect the kinds of models we expect to find—if
we anticipate that data will be well modeled by lin-
ear relationships then our operators create new terms
accordingly.

The effectiveness of any function finding technique
depends, therefore, on the ability of the chosen search
strategy and evaluation heuristic to accurately reflect
the search space’s terrain. Said more simply, different
function finding techniques will be more or less effective
in discovering different kinds of models. We view this
terrain, the space of models that may be considered, to
be the environment of the function finding algorithm.
As with any Al program, we seek to understand func-
tion finding programs in terms of how architectural
components (the search strategy and evaluation heuris-
tic) operate in specific environments (the model space)
to produce behavior (the effectiveness of the algorithm
in discovering the underlying relationships).

The goal of our function finding research is to iden-
tify effective heuristics for automated model building.
We believe these heuristics fall into two classes. First
are those that suggest specific classes of models and
therefore identify the appropriate term creation op-
erators. This can be seen most clearly in the case
of bivariate relationships where the shape of a curve
can suggest appropriate models. In addition to the
familiar linear relationship, superlinear and sublinear
curves suggest various exponential, reciprocal and log-
arithmic relationships (e.g., a superlinear curve where
y increases as z increases might suggest either a power
function y = az?® where 8 is a constant > 1, or an ex-
ponential form y = aeP* where & and 8 are constants,
with 8 > 0).

Second are those heuristics that evaluate terms as
potential (possibly partial) models. Recalling the char-
acterization of function finding as search, these heuris-
tics evaluate the promise of a node in the search space
in terms of its likelihood to lead to a solution, an ac-
ceptable model. Evaluating the effectiveness of these
heuristics must be done in the context of the search
strategy in which they are embedded and the charac-
teristics of the model space we wish to search. We wish
to build models of computer programs, specifically Al
programs. Thus we must perform this evaluation in
the environment corresponding to the space of models
that may describe the behavior of Al programs.

To this end we are building a highly parameter-
ized, modular function finding system that will allow
us to investigate the effectiveness of heuristics from
the latter class. Within this system we may select a
function finding technique by choosing from a set of
search strategies (e.g., exhaustive search, beam search,
A*) and evaluation heuristics (correlation, equality,
goodness of fit measures). Similarly, sets of term
creation operators (addition, multiplication, division,
transformations, etc.) will be chosen to reflect different
model spaces. Given a target model and correspond-
ing data set, each such instantiation may then be used

to map the terrain of the corresponding search space
as viewed by this function finding technique (combina-
tion of search strategy and evaluation heuristic). This
will allow us to evaluate the ability of these evaluation
heuristics to guide search in the context of different
search strategies and model spaces.

For example, if correlation is used to reflect the
promise of a node in terms of estimated distance to
a solution, then we expect that states in the search
space closer to the solution should yield higher cor-
relations than those father away. Said more precisely,
such states should correspond to candidate models that
predict values more highly correlated: with those pro-
duced by the target model, than those predicted by
candidate models corresponding to states farther from
the solution. A simple examination of the correspond-
ing correlations for specific target models and data sets
will let us know if this expectation is borne out.

But since distance to the goal is used differently by
different search strategies, the results of the above ex-
amination may be more or less relevant to those spe-
cific strategies. If correlation is found to correspond
well with proximity to the solution in most cases, but
occasionally far flung nodes also display surprisingly
high correlations, then best first search, by focusing
on the single most highly correlated candidate model,
may be led astray into pursuing false leads, but beam
search, which considers the top set of promising nodes,
may be less susceptible to this effect.

We believe that understanding the effect of differ-
ent search strategies and model spaces on the efficacy
of search evaluation heuristics will allow us to con-
struct appropriate function finding techniques more
finely tuned to the expectations we have about the
nature of the underlying model. The knowledge we
gain from these experiments will be used to inform
the corresponding knowledge sources in our automated
model-building assistant.

Previous and Related Research

The Experimental Knowledge Systems Laboratory
(EKSL) performs research in the design of autonomous
agents for complex, real-time environments. The need
for a principled approach to this problem has led to
the development of the Modeling, Analysis and De-
sign (MAD) methodology [Cohen, 1991], an approach
we believe bridges the gap between theoretical and
systems-oriented Al research. MAD combines ana-
lytical modeling with empirical substantiation to jus-
tify the agent architectures that we use. EKSL has
developed a number of tools that support model-
building and analysis, as well as the Phoenix sys-
tem [Cohen et al., 1989], a testbed environment for
this research. These tools include statistical analy-
sis and data manipulation packages, several analytic
techniques, and a prototype model-building decision
aid. This prototype was developed to evaluate graphi-
cal user interface techniques for manual term creation



and assessment, and for incremental model visualiza-
tion. It also provided the basis for the design of the
blackboard-based model building assistant described
above.

The Common Lisp Analytical Statistical Package
(CLASP) [Fisher, 1990] was developed for the statis-
tical analysis of large data sets. This modularized
system can be used as an interactive analysis tool,
providing powerful data manipulation tools, many of
the most common parametric and non-parametric sta-
tistical tests, and plotting capabilities. It can also
be accessed as a runtime library by programs (e.g.,
Phoenix agents) using statistical and probabilistic
models. CLASP manipulates data using the Rela-
tional Table Manager (RTM), a relational database
management tool we developed which provides type-
and consistency-checking as well as the powerful oper-
ations of relational algebra.

EKSL has worked extensively in analyzing the be-
havior of complex computer programs. Howe {1992,
1992] developed the procedure of failure recovery anal-
ysis, a method of analyzing execution traces to discover
when a planner’s actions may be causing failures, and
recommending redesigns to avoid or mitigate the fail-
ures. Critical to this technique is the statistical analy-
sis of execution data for dependencies between actions
and failures. Hart and Cohen [1992] examined the
environmental and architectural factors affecting the
performance of the Phoenix planner, testing predic-
tions about the planner’s robustness against variations
in some of these factors. This analysis employed the
statistical technique of patk analysis [Li, 1975] for con-
structing and testing causal explanations of the plan-
ner’s behavior. Path analysis is a useful technique for
constructing the kinds of linear path models envisioned
for our system.

Tools such as these provide the base capabilities for
our automated model-building assistant. Initial knowl-
edge sources can draw on our statistical tools, such
as CLASP’s path analysis module, as well as our ex-
perience in analyzing the performance of the Phoenix
planner.

Acknowledgments

We wish to thank Dave Hart for many thoughtful
comments on drafts of this paper. The terrain map-
ping research proposed in the section on Modeling and
Empricial Discovery is based on an idea from Eric
Hansen. This research was supported by a DARPA-
AFOSR contract, F49620-89-C-00113. The United
States Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwith-
standing any copyright notation hereon.

References

Cohen, Paul R.; Greenberg, Michael L.; Hart,
David M.; and Howe, Adele E. 1989. Trial by fire:

Understanding the design requirements for agents in
complex environments. AI Magazine 10(3):32-48.

Cohen, Paul R. 1991. A survey of the Eighth National
Conference on Artificial Intelligence: Pulling together
or pulling apart? Al Magazine 12(1):17-41.

Falkenhainer, Brian C. and Michalski, Ryszard S.
1986. Integrating quantitative and qualitative discov-
ery: The ABACUS system. Machine Learning 1:367~
401.

Fisher, David E. 1990. Common Lisp Analytical
Statistics Package (CLASP). Technical Report 90-15,
Computer Science Department, University of Mas-
sachusetts, Amherst, MA.

Glymour, C.; Scheines, R.; Spirtes, P.; and Kelly, K.
1987. Discovering Causal Structure: Artificial Intel-
ligence, Philosophy of Science, and Statistical Model-
ing. Academic Press, Orlando, FL.

Hart, David M. and Cohen, Paul R. 1992. Predict-
ing and explaining success and task duration in the
phoenix planner. In Proceedings of the First Inter-
nation Conference on Al Planning Sysiems, College
Park, MD. Morgan Kaufmann Publishers, Inc. 106-
115.

Howe, Adele E. and Cohen, Paul R. 1992. Debugging
plan failures by analyzing execution traces. Technical
Report 92-22, Computer Science Department, Uni-
versity of Massachusetts, Amherst, MA.

Howe, Adele E. 1992. Analyzing failure recovery to
improve planner design. In Proceedings of the Tenth
National Conference on Artificial Intelligence, San
Jose, CA.

Langley, Pat; Bradshaw, Gary L.; and Simon, Her-
bert A. 1983. Rediscovering chemistry with the BA-
CON system. In Michalski, Ryszand S.; Carbonell,
Jaime G.; and Mitchell, Tom M., editors 1983, Ma-
chine Learning: An Artificial Intelligence Approach.
Morgan Kaufmann Publishers, Inc., Palo Alto, Ca.
chapter 10, 307-329.

Li, C. C. 1975. Path Analysis—A Primer. Boxwood
Press.

Nii, H. P. 1986. Blackboard systems. AI Magazine
7(2 and 3):38-53, 82-106.

Nordhausen, Bernd and Langley, Pat 1990. A robust
approach to numeric discovery. In Porter, Bruce W.
and Mooney, Ray J., editors 1990, Proceedings of the
Seventh International Conference on Machine Learn-
ing, Austin, Texas. Morgan Kaufmann Publishers,
Inc. 411-418.

Pearl, J. and Verma, T. S. 1991. A theory of inferred
causation. In Allen, J. A.; Fikes, R.; and Sandewall,
E., editors 1991, Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Second Inter-
national Conference, San Mateo, CA. Morgan Kauf-
mann Publishers, Inc. 441-452,



Schaffer, Cullen 1991. On evaluation of domain-
independent scientific function-finding systems. In
Piatetsky-Shapiro, Gregory and Frawley, William J.,
editors 1991, Knowledge Discovery in Databases.
AAAI Press. chapter 5, 93-104.

Tukey, John W. 1977. Ezploratory Data Analysis.
Addison-Wesley, Reading, MA.

Wickens, T. D. 1989. Multiway Contingency Tables
Analysis for the Social Sciences. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Zembowicz, Robert and Zytkow, Jan M. 1992. Dis-
covery of equations: Experimental evaluation of cen-
vergence. In Proceedings of the Tenth National Con-
ference on Artificial Intelligence, San Jose, CA. MIT
Press. 70-75.

Zytkow, J. M. 1987. Combining many searches in
the FAHRENHEIT discovery system. In Proceedings

of the Fourth Iniernational Workshop on Machine
Learning, Irvine, CA. 281-287.



