A First-Order Isomorphism Theorem

Eric Allender*

Department of Computer Science, Princeton University
35 Olden St., Princeton, NJ, USA 08903

allender@cs.princeton.edu
Jose Balcézarf

U. Politécnica de Catalunya, Departamento L.S.I.
Pau Gargallo 5, E-08071 Barcelona, Spain
balqui@lsi.upc.es

. +
Neil Immerman*

Computer Science Department, University of Massachusetts
Ambherst, MA, USA 01003

immerman@cs.umass.edu

(appeared in STACS-93)

Abstract

We show that for most complexity classes of interest, all sets com-
plete under first-order projections are isomorphic under first-order iso-
morphisms. That is, a very restricted version of the Berman-Hartmanis

Conjecture holds.

1 Introduction

In 1977 Berman and Hartmanis noticed that all NP complete sets that they
knew of were polynomial-time isomorphic, [BH77]. They made their now-famous

*On leave from Rutgers University; supported in part by National Science Foundation
grant CCR-9204874.

tSupported in part by ESPRIT-II BRA EC project 3075 (ALCOM) and by Accién In-
tegrada Hispano-Alemana 131 B

tSupported by NSF grant CCR-9207797.

isomorphism conjecture: namely that all NP complete sets are polynomial-
time isomorphic. This conjecture has engendered a large amount of work (cf.
[KMR90, You] for surveys).

The isomorphism conjecture was made using the notion of NP complete-
ness via polynomial-time, many-one reductions because that was the standard
definition at the time. In [Coo|, Cook proved that the Boolean satisfiability
problem (SAT) is NP complete via polynomial-time Turing reductions. Over
the years SAT has been shown complete via weaker and weaker reductions, e.g.
polynomial-time many-one [Kar], logspace many-one [Jon], one-way logspace
many-one [HIM], and first-order projections (fops) [Dah]. These last reduc-
tions, defined in Section 3, are provably weaker than logspace reductions. It has
been observed that naturel complete problems for various complexity classes
remain complete via fops, cf. [I87, IL, SV, Ste].

On the other hand, Joseph and Young, [JY] have pointed out that polynomial-
time, many-one reductions are so powerful as to allow unnaturel NP-complete
sets. Most researchers now believe that the isomorphism conjecture as originally
stated by Berman and Hartmanis is false.!

We feel on the other hand, that the problem is simply that the choice of
reduction at the time was made for historical rather than scientific reasons.
Since natural complete problems turn out to be complete via very low-level
reductions such as fops, it is natural to modify the isomorphism conjecture to
consider NP-complete reductions via fops. Motivating this in another way, one
could propose as a slightly more general form of the isomorphism conjecture the
question: is completeness a sufficient structural condition for isomorphism? Our
work answers this question by presenting a notion of completeness for which the
answer is yes. Namely for every nice complexity class including P, NP, etc, any
two sets complete via fops are not only polynomial-time isomorphic, they are
first-order isomorphic.

There are additional reasons to be interested in first-order computation. It
was shown in [BIS] that first-order computation corresponds exactly to compu-
tation by uniform ACP circuits under a natural notion of uniformity. Although
it is known that ACP is properly contained in NP, knowing that a set A is com-
plete for NP under polynomial-time (or logspace) reductions does not currently
allow us to conclude that A is not in AC?; however, knowing that A is complete
for NP under first-order reductions does allow us to make that conclusion.

First-order reducibility is a uniform version of the constant-depth reducibil-
ity studied in [FSS, CSV]; sometimes this uniformity is important. For a con-
crete example where first-order reducibility is used to provide a circuit lower
bound, see [AG92].

Preliminary results and background on isomorphisms follow in Section 2.
Definitions and background on descriptive complexity are found in Section 3.

10ne way of quantifying this observation is that since Joseph and Young produced their
unnatural NP-complete sets, Hartmanis has been referring to the isomorphism conjecture as
the “Berman” conjecture.

The main result is stated and proved in Section 4, and then we conclude with
some related results and remarks about the structure of NP under first-order
reducibilities.

2 Short History of the Isomorphism Conjec-
ture

The Isomorphism Conjecture is analogous to Myhill’s Theorem that all r.e. com-
plete sets are recursively isomorphic, [Myh]. In this section we summarize some
of the relevant background material.

P
Definition 2.1 For A, B C X*, we say that A and B are p-isomorphic (4 = B)
iff there exists a bijection f € FP with inverse f~1 € FP such that A <m; B via
f (and therefore B <m A via f~1).

Observation 2.2 ([BH77]) Allithe NP complete sets in [GJ] are p-isomorphic.

How did Berman and Hartmanis make their observation? They did it by
proving a polynomial-time version of the Schroder-Bernstein Theorem. Recall:

Theorem 2.3 ([Kel, Th. 20]) Let A and B be any two sets. Suppose that
there are 1:1 maps from A to B and from B to A. Then there is a 1:1 and onto
map from A to B.

Proof Let f: A — B and g: B — A be the given 1:1 maps. For simplicity
assume that A and B are disjoint. For a,c € AU B, we say that c is an ancestor
of a iff we can reach a by a finite (non-zero) number of applications of the
functions f and/or g. Now we can define a bijection h : A — B which applies
either f or g~
or not:

according as whether a point has an odd number of ancestors

h(a) = g~ !(a) if a has an odd number of ancestors
- f(a) if a has an even or infinite number of ancestors

The feasible version of the Schroder-Bernstein theorem is as follows:

Theorem 2.4 ([BHTT7]) Let f : A <m B and g : B <m A, where and
g are 1:1, length-increasing functions. Assume that f,f~1,g9,9~1 € FP where

P
f 1,971 are inverses of f,g. Then A= B,

Proof This follows from the proof of Theorem 2.3 because in this case all
ancestor chains are at most linear in length. |

Consider the following definition:

Definition 2.5 ([BHT7]) We say that the language A C X" has p-time padding
functions iff there exist e,d € FP such that

1. Forallw,z € ¥, we A & e(w,z) € A

2. For allw,z € &%, d(e(w,z)) =z

3. For allw,z € ¥*, |e(w, z)| > |w| + |z]

As a simple example, the following is a padding function for SAT,
e(w,z) = (w) AciAcaA---Acy

where c; is (y V §) if the it bit of z is 1 and (§ V y) otherwise, where y is a
Boolean variable numbered higher than all the Boolean variables occurring in
w.

Then the following theorem follows from Theorem 2.4:

Theorem 2.6 ([BHT77]) If A and B are NP complete and have p-time padding

P
functions, then A = B.
Finally, Observation 2.2 now follows from the following:

Observation 2.7 ([BH77]) Allthe NP complete problems in [GJ] have p-time
padding functions.

Hartmanis also extended the above work as follows: Say that A has logspace-
padding functions if there are logspace computable functions as in Definition 2.5.

Theorem 2.8 ([Har]) If A and B are NP complete via logspace reductions
and have logspace padding functions, then A and B are logspace isomorphic.

Proof Since A and B have logspace padding functions, we can create func-
tions f and g as in Theorem 2.4 that are length squaring and computable in
logspace. Then, the whole ancestor chain can be computed in logspace because
each successive iteration requires half of the previous space. |

Here, we show that sets complete under a very restrictive notion of reducibil-
ity are isomorphic under a very restricted class of isomorphisms. This result
is incomparable to a very recent result of [AB], showing that all sets com-
plete under one-way logspace reductions (1-L reductions) are isomorphic under
polynomial-time computable isomorphisms. (This work of [AB] improves an
earlier result of [A88].) Note that it is easy to prove that the class of 1-L reduc-
tions is incomparable with the class of first-order projections. Other interesting
results concerning 1-L reductions may be found in [BH90, HH].

3 Descriptive Complexity

In this section we recall the notation of Descriptive Complexity which we will
need to state and prove our main results. See [I89] for a survey and [IL] for an
extensive discussion of the reductions we use here including first-order projec-
tions.

We will code all inputs as finite logical structures. The most basic example is
a binary string, w of length n = |w|. We will represent w as a logical structure:

A(w) = ({0,1,...,n—1}, R)

where the unary relation R(z) holds in A(w) (in symbols, A(w) = R(z)) just
if bit z of wis a 1. Asis customary, the notation |A| will be used to denote the
universe {0,1,...,n—1} of the structure A. We will write |.A| to denote n, the
cardinality of |A|.

A vocabulary 7 = (R]* ... R% ,cy,...,cs) is a tuple of input relation and con-
stant symbols. Let STRUC]7] denote the set of all finite structures of vocabulary
7. We define a complexity theoretic problem to be any subset of STRUC[r] for
some T.

For any vocabulary 7 there is a corresponding first-order language £(7) built
up from the symbols of 7 and the logical relation symbols and constant symbols?:
=,<,BIT,0,m, using logical connectives: A,V,—, variables: =z,y,z,..., and
quantifiers: V, 3.

First-Order Interpretations and Projections

In [Val], Valiant defined the projection, an extremely low-level many-one reduc-
tion.

Definition 3.1 A k-ary projection from S to T is a sequence of maps {p,},
n=1,2,..., such that for all n and for all binary strings s of length n, py,(s) is
a binary string of length n* and,

sES & pu(s)eT.

Let s = 5981 ...5n_1. Then each map p, is defined by a sequence of n* literals:
{lo, 11, ..., lyn_1) where

l,’E{O,l}U{Sj,§j|0§an—1}.

Thus as s ranges over strings of length n, each bit of p,(s) depends on at most

one bit of s,
pu(s)lli]] = (s

2Here < refers to the usual ordering on {0,...,n — 1}, “BIT(4,)" means that the i** bit
of the binary representation of j is 1, and 0 and m refer to 0 and n — 1, respectively. For
simplicity we will assume throughout that n > 1 and thus 0 # m. Sometimes the logical
relations are called “numeric” relations. For example, “BIT(z,7)” and “¢ < j” depend only
on the numeric values of 7 and j and do not refer to the input.

Projections were originally defined as a non-uniform sequence of reductions
— one for each value of n. That is, a projection can be viewed as a many-one
reduction produced by a family {C,} of circuits with depth one and no gates.
That is, the circuits consist entirely of wires connecting inputs to outputs. If the
circuit family {C,} is sufficiently uniform, we arrive at the class of first-order
projections. (Recall that first-order corresponds to uniform ACP [BIS].) We find
it useful to work in the framework of first-order logic rather than in the circuit
model. The rest of this section presents the necessary definitions of first-order
reductions.

The idea of our definition is that the choice of the literals (lg,l1,...,l»_1)
in Definition 3.1 is given by a first-order formula in which no input relation
occurs. Thus the formula can only talk about bit positions, and not bit values.
The choice of literals depends only on n. In order to make this definition, we
must first define first-order interpretations. These are a standard notion from
logic for translating one theory into another, cf. [End], modified so that the
transformation is also a many-one reduction, [I87]. (For readers familiar with
databases, a first-order interpretation is exactly a many-one reduction that is
definable as a first-order query.)

Definition 3.2 (First-Order Interpretations) Let o and 7 be two vocabu-
laries, with 7 = (R7*,..., R%",¢1,...,¢5). Let S C STRUC[o], T C STRUC|7]
be two problems. Let k& be a positive integer. Suppose we are given an r-tuple
of formulas ¢; € £(0), 1 = 1,...,r, where the free variables of ; are a subset
of {z1,...,2k.q,}. Finally, suppose we are given an s-tuple of closed terms3
t1,...,ts from L(o). Let I = Ay, 2, {(¥1,--,Pr,t1,-..,t5) be a tuple of these
formulas and closed terms. (Here d = max;(ka;).)

Then I induces a mapping I from STRUC[o] to STRUC[7] as follows. Let
A € STRUC[o] be any structure of vocabulary o, and let n = ||A||. Then the
structure f(A) is defined to be:

I(A) = ({0,...,nF —1},Ry,...,R,)

where the relation R; is determined by the formula ¢;, for : = 1,...,r. More
precisely, let the function (-,---,) : |[A|¥ — |I(A)| be given by
(u1,u2,...,ug) = Ug +Ug_1m+ -+ unk1
Then,

R; = {(<u1:"':u'k>:"':<u1+k(ai—1):--':u’kai>) | A':‘pi(u'la---u'kai)}

3A closed term is an expression involving constants and function symbols. This is as
opposed to an open term which also has free variables. In this paper, since we do not have
function symbols, closed terms are synonymous with constant symbols. Note that a more gen-
eral way to interpret constants and functions is via a formula ¢ such that F (Vz)(3ly)e(Z,y).
However, in this paper the simpler definition using closed terms suffices.

If the structure A interprets some variables % then these may appear freely
in the the ¢;’s and t;’s of I, and the definition of f(A) still makes sense.
Suppose that Iisa many-one reduction from S to T, i.e. for all A in
STRUC|o],
AcS o I(AeT

Then we say that ITisa k-ary first-order interpretation of S to T.

Note that I induces a map which we will also call I from £(7) to £L(0).
For ¢ € L(7), I(p) is the result of replacing all relation and constant symbols
in ¢ by the corresponding formulas and closed terms in I. Note that if I is
a k-ary interpretation then each variable in ¢ is replaced by a k-tuple of vari-
ables. Furthermore, the logical relations <, = are replaced by the corresponding
quantifier-free formulas on k-tuples ordered lexicographically. For example, with
k = 2, an occurrence of the ordering relation, < (z,y), would be replaced by

I(z<y) = (z1=y1 A (22 < 32)) V (21 < 91)

The logical constants, 0, m, are replaced by k-tuples of the same constants.
Note that the logical relation BIT when mapped to k-tuples cannot be easily
replaced by a quantifier-free formula. However, BIT on tuples is definable in
FO (with BIT), cf. [Lin].
It follows immediately from the definitions that:

Proposition 8.3 Let o, 7, and I be as in Definition 3.2. Then for all sentences
¢ € L(7) and all structures A € STRUC[o],

AEIl) & Ak

We are now ready to define first-order projections, a syntactic restriction
of first-order interpretations. If each formula in the first-order interpretation I
satisfies this syntactic condition then it follows that Tisalso a projection in the
sense of Valiant. In this case we call I a first-order projection.

Definition 3.4 (First-Order Projections) Let I be a k-ary first-order in-
terpretation from S to T as in Definition 3.2. Let I = {(p1,...,®r,t1,...,1s).
Suppose further that the ¢;’s all satisfy the following projection condition:

pi=ar1V(aa AA) V-V (as AX) (3.5)
where the o;’s are mutually exclusive formulas in which no input relations occur,
and each }; is a literal, i.e. an atomic formula P(z;,,...2;,) or its negation.

In this case the predicate R;({w1,...,%k),.-,{. .., Ukq;)) holds in f(A) if
a1(@) is true, or if o;(@) is true for some 1 < j < t and the corresponding
literal A;(@) holds in A. Thus each bit in the binary representation of f(A) is
determined by at most one bit in the binary representation of A. We say that
Iisa first-order projection (fop). Write S <,,, T to mean that S is reducible
to T via a first-order projection.

Example 3.6 To help the reader grasp an intuition of the way an fop reduction
behaves, let us describe an example. We present here the reduction from 3-SAT,
satisfiability of CNF Boolean expressions with exactly three literals per clause,
to 3-COL, the problem of coloring the vertices of a graph with 3 colors under
the constraint that the endpoints of all edges get different colors. We use the
same reduction as described in section 11.4.5 of [Man], so that the reader in
need of additional help can consult it there.

The respective vocabularies for the input and output structures are as fol-
lows. To describe instances of 3-SAT, clauses and Boolean variables are each
numbered from 0 through n — 1. There are six predicates: P;(z,c), Ni(z, c),
i=1,2,3, indicating that variable z occurs positively or negatively in the 7t}
position of the clause ¢. The vocabulary for the output structures is simply
a binary predicate E standing for the Boolean adjacency matrix of the output
graph. Thus E(u, v) is true exactly when the edge (u, v) is present in the output
graph.

The output graph consists of 6 vertices per clause and two vertices per
Boolean variable, plus three additional vertices usually named T, F, and R
(standing for true, false, and red). Let an arbitrary 3CNF formula be coded by
an input structure,

A = ({0,1,...,n—1}, P1, P, P3, N1, N3, N3)

The output structure will be a graph with 8n 4 3 relevant vertices. The easiest
way for us to code this is to use an fop of arity 2. We will assume for simplicity
that n is always greater than or equal to 9.

I(A) = {(a,b) : 0<a,b<n},E) = ({0,...n7 —1}, E)

where, E = {((z1,22), (y1,92)) | AE o(z1,22,y1,92) }

It remains to write down the first-order projection, ¢. To do this, we need
some nitty gritty coding. We will let the vertices T, F', and R be the elements
{0,0),(1,0),and (2, 0) of I(A) respectively. The formula ¢ will have three pieces:

oz, 22, y1,92) = a1, 22, 91,72) V B(21, 22,y1,%2) V B(y1,v2, 21, 22) V

(21, 22, Y1,%2) V Y(y1, Y2, 1, B2)

Where « says that there are edges between T, F, and R; § says that vertices
{(z,1) and (z, 2) representing variable z and its negation are connected to each
other and to R; and; v says that for clause C' = (a VbV d), vertices {(C, 6), (C, T),
(C, 8) are connected to each other, and the following edges exist: ({C, 3), (C, 6)),
(C,4),C, 7)), ((C,5), (C,8)), as well as the edges (a, (C,3). (T,(C,3)).
(b, (C,4)), (7, (C, 4)), and (d, (C,5)), (T, (C, 5))

In case anyone really wants to see them, here are the formulas written out:

V (z1=y1 A (3<22<5) A (y2=22+3))

V [(z2=1Ay2=3)APi(z1,¥1)] V [(z2 =2 A y2 = 3) A Ni(z1,91)]

V [(z2=1Ay2=4)APaz1,91)] V [(z2 =2 A y2 = 4) A Na(z1,91)]

V [(z2=1Ay2=5)APs(z1,y1)] V [(z2 =2 A y2 =5) A Ns(z1,y1)] V
(Ti=y1 ANz2#y2 AN (622 <8) A (6<y2 <8))

4 Main Theorem and Proof

Theorem 4.1 Let C be a nice complezity class, e.g., L, NL, P, NP, etc. Let S
and T be complete for C via first-order projections. Then S and T are isomorphic
via ¢ first-order isomorphism.

To prove Theorem 4.1 we begin with the following

Lemma 4.2 Let I be an fop that is 1:1 and of arity greater than or equal to two
(i.e. it at least squares the size). Then the following are expressible concerning
a structure A:

a. IE(A), i.e., f‘l(A) exists.

b. #Ancestors(A,r), i.e., the length of A’s mazimal ancestor chain is r.

Proof Let I = Az, . 5,{¢1,---,9r,t1,...,ts), where each ¢; is in the form
of Equation 3.5. To prove (a) just observe that each bit of the relation R; of
A either (1) depends on exactly one bit of some pre-image B (specified by an
occurrence of a literal A;; in ¢;), or (2) it doesn’t depend on any bit of a pre-
image. In case (2) a given bit of A is either “right” or “wrong.” Thus, A has
an inverse iff no bit of A is wrong, and no pair of bits from A are determined
by the same bit of A’s preimage in conflicting ways. We can check this in a
first-order way by checking that for all pairs of bits from A: R;(a) and R;(b),
either they do not depend on the same bit from B, or the same value of that
bit gives the correct answer for R;(@) and R;/(b). Furthermore, the preimage B
if it exists can be described uniquely by a first-order formula that chooses the
correct bits determined by entries of A. N.B. Since we have assumed that Iis
1:1 every bit of f_l(A) is determined by some bit of A.

(b) To express # Ancestors(A,r), we want to describe the existence of an

Ancestor Chain:

I

AL L L a=a (4.3)

We will then assert that this is the maximal length such chain, i.e.,

~IE(A,) A (Yk < 7)IE(A) (4.4)

Equation 4.4 expresses the existence of the ancestor chain 4.3 inductively in
the following sense: Once we know that A4; exists, we can ascertain the value
Ap[[px]] of the bit at position py of Ay, by exhibiting a certificate:

C(k,pr) = ((Axllpwl], Pr) (Ar-1[lpr—1]], Pr—1); - - -5 (Ao[[po]l, po))

We can say in a first-order sentence that C(k,py) is internally consistent.
That is, for all ¢ with & > ¢ > 0, bit p;11 of A;11 is determined correctly via I
by bit p; of A;.* Note that because each structure A1 is of size at most the
square root of the size of A;, the certificate requires only O(logn) bits, i.e., a
constant number of variables, to express.

Thus, in Equation 4.4, we refer to bit py of the structure Aj;, by existentially
quantifying an internally consistent certificate C(k,pg). We know inductively,
that since IE(Ag_1), the bit value determined by C(k, px) is unique and correct.

Lemma 4.5 If S and T are interreducible via 1:1 fops I and J each of arity at
least two, then S and T are isomorphic via first-order isomorphisms.

Proof Let A be a structure in the vocabulary of S, and, as in the proof
of 2.3 define the length of the ancestor chain of A to be the length of the
longest sequence of the form f‘l(A), f‘l(f_l(A)), f‘l(f_l(j_l(A))), ... The
argument given in Lemma 4.2 shows that there is a formula # Ancestors(A, r)
that evaluates to true iff A’s ancestor chain has length r. Lemma 4.2 also shows
that there is a formula computing J=1. The desired isomorphism is now the
function b such that the é-th bit of b(A) is one iff the following first-order formula
evaluates to 1:

Ir4 Ancestors(A,7) A (BIT(0,7) A I(i)) v (=BIT(0,7) A J~1(2))

(Note that this first-order isomorphism b is not, strictly speaking, a first-order
interpretation, since it maps some inputs to strictly shorter outputs, which is
impossible for an interpretation.) |

It now remains to show,

4The reader who is more familiar with bit hacking on Turing machines than with first-
order formulas, could instead convince herself that this can be done by an alternating Turing
machine running in logarithmic time and making O(1) alternations; first-order expressibility

follows by [BIS].

10

Lemma 4.6 Suppose that a problem S is complete via fops for a nice complezity
class, C. Then S is complete via 1:1 length squaring fops for C.

Proof Of course it remains to define “nice”, but here is the proof. Every nice
complexity class has a universal complete problem:

Ue = {M$w#7 | M(w) | using resources fc(r)}

Here fe(r) defines the appropriate complexity measure, e.g. » nondeterministic
steps for NP, deterministic space logr, for L, etc. (Note that we can always
take r to be at least |w|?.)

We claim that Ue is complete via 1:1 length squaring fops for C. In order to
make this claim, we need to agree on an encoding of inputs to Ue that allows us
to interpret them as structures over some vocabulary. Since all of our structures
are encoded in binary, we will encode $ and # by 10 and 11 respectively, and
the binary bits 0 and 1 constituting M and w will be encoded by 00 and 01
respectively. Now, as in, for example, [I87], we consider a binary string of length
n to be a structure with a single unary predicate over a universe of size n. Now
for any given problem T € C accepted by machine M, the fop simply checks
that if ¢ < 2|M | then the odd-numbered bits are 0 and bit number 7 = 2j is the
j-th bit of M, and if 2|M|+ 2 < 4 < 2(|M|+ |w|+ 1) then the odd-numbered
bits are 0 and the even numbered bits are the corresponding bit of w, etc.

To complete the proof of the lemma, let 7" be any problem in C and let S be
as above. Then we reduce T to S via a 1:1, length squaring fop as follows. First
reduce T to Ue as per the claim. Next reduce Ug to S via the fop promised in
the statement of the lemma. It is easy to verify that, using the encoding we
have chosen for Ug, it holds that for every length n, for all 2 < n, there are two
strings = and y of length n, differing only in position ¢, such that # € Uz and
y & Ue. Thus the fop from Ue cannot possibly ignore any of the bits in its input.
It follows that the composition of these two fops is the 1:1 length squaring fop
that we desire. (Note that an fop by definition must have arity at least one and
thus cannot be length decreasing on Boolean strings.) |

From the above three lemmas we have a first-order version of Theorem 2.3
and thus Theorem 4.1 follows.

5 More on the Relationship between Isomor-
phisms and Projections

There are several questions about isomorphisms among complete sets that can
be answered in the setting of first-order computation but are open for general

polynomial-time computation. For example, given a one-way function f, it is
an open question if f(SAT) can be poly-time isomorphic to SAT. In part, this

11

remains open because there is no function f that can be proven to be one-way at
this time. On the other hand, the bijection f(z) = 3z (mod 2/*) was shown in
[BL] to be one-way for first-order computation, in the sense that f is first-order
expressible, but f~! is not. (See also [Has] for other examples.) However, it
is not too hard to show that for this choice of f, f(SAT) is complete for NP
under first-order projections, and thus it is first-order isomorphic to SAT.

The next result shows that the class of sets complete under first-order pro-
jections is not closed under first-order isomorphisms. (This also seems to be
the first construction of a set that is complete for NP under first-order (or even
poly-time) many-one reductions, that is not complete under first-order projec-
tions.)

Theorem 5.1 There is a set first-order isomorphic to SAT that is not complete
for NP under first-order projections.

Proof Let g(z) be a string of |z|? bits, with bit z; ; representing the logical
AND of bits ¢ and j of z. Let A = {{z, g(z)) : z € SAT}. By an extension of the
techniques used in proving Theorem 4.1, it can be shown that A is first-order
isomorphic to SAT. However a direct argument shows that there cannot be any
projection (even a nonuniform projection) from SAT to A. (Sketch: For all =,
one can find bit positions ¢ and j that are independent of each other and are
independent of every other bit position, in the sense that for any setting b of
bit j there are two words that differ only in bit %, having b in position j, such
that one of the words is in SAT and one is not. No projection reducing SAT to
another language can “ignore” either ¢ or j. But since 7 and j are independent
of all other bit positions, no projection can encode the AND of bits ¢ and j.) il

A natural question that remains open is the question of whether every set
complete for NP under first-order many-one reductions is first-order isomor-
phic to SAT. A related question is whether one can construct a set complete
for NP under poly-time many-one reductions that is not first-order isomorphic
to SAT. Since so many tools are available for proving the limitations of first-
order computation, we are optimistic that this and related questions about sets
complete under first-order reductions should be tractable.’ Furthermore, we
hope that insights gleaned in answering these questions will be useful in guiding
investigations of the polynomial-time degrees.

Acknowledgments The authors wish to thank the organizers of the 1992
Seminar on Structure and Complexity Theory at Schloi Dagstuhl, where this

50ne possible approach might be to attempt to construct a first-order analog of the “scram-
bling” and “annihilating” functions studied in [KMR89]. However, we suspect that this par-
ticular approach is likely to be difficult, since this would involve constructing sets having a
sort of “immunity” property relative to AC?. Related problems (although not precisely this
problem) were shown in [AG91] to imply the solution to some longstanding open questions in
complexity theory.

12

work was initiated. We also thank Richard Beigel and Jose Antonio Medina
Peralta for comments on an earlier draft.

References

[AB]

[A88]

[A89]

[AG91]

[CSV]

[Coo]

[Dah]

Manindra Agrawal and Somenath Biswas, “Polynomial Isomorphism
of 1-L-Complete Sets,” to appear in Eighth Annual Structure in Com-
plezity Theory Symp. (1993).

Eric Allender, “Isomorphisms and 1-L Reductions,” J. Computer Sys.
Sci. 36 (1988), 336-350.

Eric Allender, “P-Uniform Circuit Complexity,” JACM 36 (1989),
912-928.

Eric Allender and Vivek Gore, “On Strong Separations from ACO,”

Proc. FCT ’91, Lecture Notes in Computer Science 529, Springer-
Verlag, 1991, 1-15. To appear in the DIMACS Special Year volume,
ed. Jin-Yi Cai, AMS Publications.

Eric Allender and Vivek Gore, “A Uniform Circuit Lower Bound for
the Permanent,” DIMACS Tech Report 92-30. A preliminary state-
ment of the results appeared in [AG91].

D. Barrington, N. Immerman, H. Straubing, “On Uniformity Within
NC',” J. Computer Sys. Sci. 41 (1990), 274-306.

Len Berman and Juris Hartmanis, “On Isomorphism and Density of
NP and Other Complete Sets,” SIAM J. Comput. 6 (1977), 305-322.

Ravi Boppana and Jeff Lagarias, “One-Way Functions and Circuit
Complexity,” Information and Computation 74, (1987), 226-240.

Hans-Jorg Burtschick and Albrecht Hoene, “The degree structure
of 1-L reductions,” Proc. Math. Foundations of Computer Science,
Lecture Notes in Computer Science 629, Springer-Verlag, 1992, 153—
161.

Ashok Chandra, Larry Stockmeyer, and Uz Vishkin, “Constant
Depth Reducibility,” SIAM J. Comput. 13, (1984), 423-439.

Stephen Cook, “The Complexity of Theorem Proving Procedures,”
Proc. Third Annual ACM STOC Symp. (1971), 151-158.

Elias Dahlhaus, “Reduction to NP-Complete Problems by Interpre-
tations,” in Logic and Machines: Decision Problems and Complezity,
Borger, Rodding, and Hasenjaeger eds., Lecture Notes In Computer
Science 171, Springer-Verlag, 1984, 357-365.

13

[End]

[FSS]

[Has)

[Har|

[HIM]

[187]

[189]

[TL]

[Jon]

[3Y]

Herbert Enderton, A Mathematical Introduction to Logic, Academic
Press, 1972.

Merrick Furst, James Saxe, and Michael Sipser, “Parity, Circuits, and
the Polynomial-Time Hierarchy,” Math. Systems Theory 17 (1984),
13-27.

M. R. Garey and D. S. Johnson, Computers and Intractability,
Freeman, 1979.

Johan Hastad, “One-Way Permutations in NC°,” Information Pro-
cessing Letters 26 (1987), 153-155.

Juris Hartmanis, “On the logtape isomorphism of complete
sets, Theoret. Comp. Sci.7 (1978), 273-286.

Juris Hartmanis, Neil Immerman, and Stephen Mahaney, “One-Way
Log Tape Reductions,” 19th IEEE FOCS Symp. (1978), 65-72.

L. Hemachandra and A. Hoene, “Collapsing Degrees Via Strong Com-
putation,” to appear in J. of Computer Sys. Sci..

Neil Immerman, “Languages That Capture Complexity Classes,”
SIAM J. Comput. 16, (1987), 760-778.

Neil Immerman, “Descriptive and Computational Complexity,” Com-
putational Complerity Theory, ed. J. Hartmanis, Proc. Symp. in Ap-
plied Math., 38, American Mathematical Society (1989), 75-91.

N. Immerman, S. Landau, “The Complexity of Iterated Multiplica-
tion,” Fourth Annual Structure in Complezity Theory Symp. (1989),
104-111. Revised version submitted to Information and Computation.

Neil Jones, “Space-Bounded Reducibility among Combinatorial
Problems,” J. Computer Sys. Sci. 11 (1975), 68—85.

Deborah Joseph and Paul Young, “Some Remarks on Witness Func-
tions for Non-polynomial and Non-complete sets in NP,” Theoretical
Computer Science 39 (1985), 225-237.

Richard Karp, “Reducibility Among Combinatorial Problems,” in
Complezity of Computations, R.E.Miller and J.W.Thatcher, eds.
(1972), Plenum Press, 85-104.

John L. Kelley, General Topology, 1955, Van Nostrand Reinhold.

Stuart Kurtz, Stephen Mahaney, James Royer, “The Isomorphism
Conjecture Fails Relative to a Random Oracle,” 21st ACM STOC
Symp. (1989), 157-166.

14

[KMR90] Stuart Kurtz, Stephen Mahaney, James Royer, “The Structure of

[Lin]

[Ste]

[Val]

[You]

Complete Degrees,” in Complezity Theory Retrospective (Alan Sel-
man, Ed.), Springer-Verlag, 1990, pp. 108-146.

Stephen Lindell, “A Purely Logical Characterization of Circuit
Uniformity,” Seventh IEEE Structure in Complezity Theory Symp.
(1992), 185-192.

Udi Manber, Introduction to Algorithms: A Creative Approach,
Addison-Wesley, 1989.

John Myhill, “Creative Sets,” Zeitschrift fir mathematische Logik
und Grundlagen der Mathematik, 1 (1955), 97-108.

S. Skyum and L.G. Valiant, “A Complexity Theory Based on Boolean
Algebra,” JACM, 32, No. 2, April, 1985, (484-502).

Tain Stewart, “Using the Hamiltonian Operator to Capture NP,” to
appear in J. Comput. Sys. Sci. (1992).

L.G. Valiant, “Reducibility By Algebraic Projections,” L’Enseigne-
ment mathématique, 28, 3-4 (1982), 253-68.

Paul Young, “Juris Hartmanis: Fundamental Contributions to Iso-
morphism Problems,” in Complezity Theory Retrospective, Alan Sel-
man, ed., Springer-Verlag (1990), 28-58.

15

