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Abstract

In this paper we consider rate-based flow control throttles feeding a sequence of single
server infinite capacity queues. Specifically, we consider two types of throttles, the token
bank and the leaky bucket. We show that the cell waiting times at the downstream queues
are increasing functions of the token buffer capacity. These results are established when the
rate-based throttles have finite capacity data buffers as well as infinite capacity buffers. In
the case that the data buffer has finite capacity, we require that the sum of the capacities
of the data buffer and token buffer be a constant. Last, we establish similar results for the
process of number of losses at the last downstream queue in the case that the waiting buffer

has finite capacity.
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1 Introduction

Rate-based flow control has been proposed as a mechanism for reducing the burstiness of traffic
sources in high-speed networks (e.g., ATM). One mechanism that has received considerable
attention is the leaky bucket rate-based flow control throttle [16]. Numerous performance studies
have evaluated the effectiveness of this mechanism through either simulation or analysis (see
(15, 14, 2] for examples of such studies). The goal of this paper is to investigate qualitatively
the burst reduction properties of two variations of this mechanism: the token bank and the
leaky bucket. Specifically, we study the effect that different parameters have on waiting times,

queue lengths, and losses at switches handling traffic allowed to enter the network from such a
throttle.

A rate-control throttle is associated with each source. The throttle generates tokens periodi-
cally and each cell generated by a source is required to pair up with a token before it is allowed
to enter the network. In the event that no token is available at the time that a cell arrives, the
cell is stored in a data buffer. As soon as a token is generated, the oldest cell is permitted to
enter the network. Similarly, there is a token buffer associated with the token generator. Cells
entering the network then traverse a sequence of switches until they reach their destination.
The token bank and leaky bucket differ from each other in their behavior when the token buffer
is full. In this case, the token bank continues to generate tokens (which are thrown out so long
as the token buffer is full) whereas the leaky bucket ceases generating tokens until the token
buffer becomes non-full.

In this paper we examine the effect of the token generation rate and token buffer capacity
on the delays that cells incur while going through individual switches of the network. We
model the path taken by cells belonging to a single source as a tandem queueing network fed
by a traffic source controled by a rate-control throttle. Interfering traffic at each queue in the
network is accounted for by increasing the cell service time. Some of our results are based on
the assumption that service times are deterministic whereas others are not. Such a model can
be used to represent a system that partitions bandwidth between sources at each switching
node (e.g., [7, 8, 6]).

Using sample path arguments, we show that the cell delay at each switch decreases as
the token buffer capacity decreases and/or the token generation rate decreases when no losses
occur. In the case that the buffer corresponding to the last switch on the path has limited



buffer capacity, we show that the number of losses is an increasing function of the token buffer
capacity and/or the token generation rate. We also establish comparisons between the token
bank and leaky bucket.

Several papers have also studied the burst reduction properties of rate-control throttles.
Results on the effects of different parameters on the departure process from the throttle can
be found in [9, 10] for the case of the token bank, and [12] for both throttles. Anantharam
and Konstantopoulos [1] studied the effect of varying the token buffer capacity on the buffer
occupancy of the first queue on the path in the network. They showed that the stationary buffer
occupancy at this queue with deterministic service time is a stochastically increasing function
of the token buffer size for the case of a token bank. Low and Varaiya [13], using a fluid model,
obtained several monotonicity properties in the case of a rate-based throttle feeding a tandem
queueing network. However, using a fluid model does not allow then to distinguish between the
token bank and leaky bucket — both reduce to the same model using their approach.

Last, in a related study, Budka [4] examined monotonicity and convexity properties of the
throughput of several rate-control throttles including the token bank and leaky bucket using
sample path arguments. Our use of the terminology “token bank” and “leaky bucket” is taken
from this study. Berger and Whitt [3] used similar arguments to study the effect of buffer
allocation between the token bank data buffer and the buffer at the first downstream node.

The remainder of the paper is organized as follows. Section 2 defines and introduces a
formal model for the two throttles feeding a tandem queueing system. Section 3 establishes the
equivalence between two LB or TB schemes having different token and data buffer capacities.
Section 4 contains preliminary sample path comparison results that will be needed in the paper.
Monotonicity results regarding cell delays and queue lengths at each node of the network in the
case of no losses are established in Sections 5 and 6 respectively. Monotonicity results regarding

losses are shown in Section 7. Finally, concluding remarks are provided in Section 8

2 Model and Notation

We consider a rate-control throttle feeding a tandem queueuing network consisting of J single
server queues. The first J—1 queues, labelled 1,. .., J—1 have infinite capacity and deterministic

service times whereas the last queue, J, has a finite capacity ¢ and independent and identically
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Figure 1: Rate-control throttle feeding a tandem queueing system.

distributed service times taken from an arbitrary distribution (Figure 1). Two rate-control
throttles will be considered: the token bank (TB) and the leaky bucket (LB). Both throttles

contain a data buffer of size 0 < Bp < oo and a token buffer of size 0 < Br < oco. Let
B = Bp + Br be the total buffer size. In order to avoid triviality, we assume that B > 1.

The two throttles differ slightly in the way the tokens are generated. The token bank
generates tokens periodically with constant rate 7-! < oo (or period length T > 0). A generated
token is accepted by the token buffer if there is empty space, i.e., if the token buffer is not full.
A token that finds the token buffer full at the time of its arrival is rejected.

The leaky bucket generates tokens periodically with constant rate 7! < co. When the
token buffer is full, the token generator is shut off. The token generator is turned on again
when the token buffer has space for at least one token. Note that, if at time ¢ the queue length
of the token buffer drops from Bt to Bt — 1, the next token arrival occurs at time ¢t + 7.

When a cell (or fixed length packet) arrives, it is accepted by the data buffer if it not full.
A cell that finds the data buffer full at the time of its arrival is rejected. A cell leaves the data
buffer and is transmitted to the downstream system if there is a token in the token buffer. When
a cell leaves the data buffer, it consumes one token. i.e., a token leaves the token buffer at the
same time. By convention, we will assume that when a token and a cell arrive simultaneously
in the system, both the cell and the token are accepted, whatever the status of the data buffer
and the token buffer may be. In such a case, a cell and a token leave the system simultaneously.

The leaky bucket is not defined when Br = 0. We follow the convention in this case that



there is a token buffer which is always empty. Under such a convention, the leaky bucket
behaves exactly in the same way as the token bank.

Note that there is no need for a buffer to store tokens and that a counter suffices. The token
buffer serves to visualize the way these mechanisms work. :

We define the following notation concerning the flow control scheme:

a,: arrival time of the n-th cell; a; > 0; for notational simplicity and without loss of

generality, we assume that there is at most one cell arrives at any time;

® a, = a, — a,_1: n-th inter-arrival time; a; = a;;

@y,: arrival time of the n-th accepted cell; @; = a;;

® gn: time epoch when the n-th token is generated; by convention, we assume g, = 0,

1< n < Br, and gpp4+1 > 0;

Gn: the arrival time of the n-th accepted token; by convention, §, = 0,1 < n < B, and
aBT+1 > 0;

dn: time epoch of the n-th cell departure; It is clear that dn, = max(gp,@n);

0n = dn — dn—1: n-th cell inter-departure time; §, = d;.

We define the following notation. Cells arrive to the data buffer at time a¢; < a; < ---
where a, = a, — a,_; denotes the n-th interarrival time, n = 1,2, ..., with ag = 0. Tokens are
generated at times g1, gs,... with the convention g, = 0,1 < n < Br, and 9Bp+1 > 0. Let @,
and g denote the arrival time of the n-th accepted cell and token respectively; by convention,
gn=0,1<n < Br,and §,41 > 0. Let d, = max(g,,3,) denote the time of the departure of
the n-th cell. Let §, denote the n-th cell inter-departure time; 8, = d, — dn_; and §; = d;.

Let A= {an};2, and G = {gn}32, be the cell arrival and token generation time sequences
respecively; A = {@,}2, and G = {gn}2L; be the arrival sequences of accepted cells and tokens
respectively. Note that in the leaky bucket scheme, sequences G and G are identical. Denote
by V' = {vn}32, the indices of accepted cells, viz., @, = a,,,. Note that when the data buffer is
infinite, the sequences A and A coincide, and v, =nforalln =1,2,.--. Let @ = {an}Z, and

8 = {6n}72, be the sequence of inter-arrval times and the sequence of inter-departure times.
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Define K to be the set of indices of accepted cells which are instantaneously transmitted to
the downstream system: K = {n|n € IN,, @, = d,}, where IN, is the set of strictly positive
integers. Let K = IN, — K.

We are interested in the following processes: {@P : ¢ > 0}, the number of cells waiting in the
data buffer, {Q7 : ¢ > 0}, the number of tokens waiting in the token buffer, {Z, &ef QP -QF:
t > 0}, the difference in the queue lengths, and {D; : t > 0}, the number of departures. These
processes are assumed to be right-continuous. Thus, Q?n and Q% represent the numbers of

cells and tokens, respectively, waiting in the system just after the arrival of the n-th accepted
cell. Unless otherwise stated, we will assume throughout this paper that the token buffer is
initially full (QF = Br).

Cells departing the throttle enter a tandem queueing network consisting of J single-server
queues labelled j = 1,...,J, where the first J — 1 queues have deterministic service times. We

introduce the following notation concerning the downstream tandem network:

e 0j: the service time of the n-th cell that arrives to the j-th queue in the downstream
network; for j=1,---,J —1,0] = o’ foralln > 1;
e di: the n-th departure time from the j-th downstream queue (and the n-th arrival time

at the j + 1-st downstream queue if j < J); by convention, d2 def d,, denotes the n-th
departure time from the control scheme (and the n-th arrival time in the tandem queueing

network);
e Wj: the waiting time of the n-th cell that arrives to the j-th downstream queue;
o N3: the length of the j-th downstream queue as seen by the n-th cell to arrive to it;

n

o M,

.

: the length of the j-th downstream queue at time ¢ > 0.

) Uf : the remaining service time of the cell under service (if any) at time ¢ > 0 in queue j;

o L;: the number of cells that are lost in the last downstream queue by time ¢ > 0.

It is understood that Ly = M = Ug = 0. The processes L;, M] and U,j are also assumed to



be right-continuous. Thus, Lq, represent the numbers of losses in the last downstream queue
just after the arrival of the n-th cell in that queue.

The above quantities will be parameterized, when necessary, by (1) the type of control
scheme, TB (for token bank) or LB (for leaky bucket), (2) the size of the data buffer, (3)
the size of the token buffer, and (4) the length of the token generation period. For example,
Wi(TB, Bp, Br,T) (resp. Wi(LB, Bp, Br,T)) denotes the waiting time of the n-th cell in the
j-th downstream queue departing from the token bank (resp. leaky bucket) scheme with data
buffer size Bp, token buffer size By and token generation period length T'.

The reader should note that the service times within the tandem network are not affected
by changes in the parameters of the throttle. This might be reasonable in a network in which

bandwidth is partitioned between different sessions as exemplified by hierarchical round robin

[8], stop-and-go (7], weighted fair queueing [6]. A similar approach has been taken in [13, 5].

3 Duality

The following lemma is a restatement of Theorem 3.1 in [3].

Lemma 3.1 Consider two rate-control throttles C and C with data buffer sizes Bp > 0 and
Bp >0, respectively, and token buffer sizes By > 0 and Br > 0, respectively. Assume that
Bp + By = Bp + By. Let QP and QT (resp. é? and é?} be the lengths of data buffer and

token buffer of scheme C (resp. C') at time t, respectively. If
Q3 +(Br-Q5) = @5 +(Br - Q7), (3.1)

then for any arbitrarily fized cell arrival sequence A = {an}2, and token generation sequence

G = {gn}3L,, cells (resp. tokens) are accepted in C if and only if they are accepted in C', and

QP + (Br - Q7)
(Bp - QP)+ QT

QP +(Br-Q7), t>0; (3.2)
(Bp-@P)+QF, t>o. (3.3)

This lemma has as its direct consequence the following theorem, also established in [3],
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Theorem 3.1 Consider two flow control schemes C and C', that are either both token banks or
leaky buckets, with data buffer sizes Bp > 0 and Bp > 0, respectively, and token buffer sizes
Br > 0 and By > 0, respectively. If Bp + Br = By + Bf, then for any token generation period
length T and any arbitrarily fized cell arrival sequence A = {a,}22,, the arrival sequences of

accepted cells are identical:

A(TB,Bp,Br,T) = A(TB,Bbp,By,T), (3.4)
Z(LB:BD:BT’T) = ‘;{(LB)Bb:Bé'aT)' (35)

Proof. The result for token banks is a result of lemma 3.1. Consider the case of two leaky
buckets. According to our convention,
@3 (LB,Bp,Br,T) = Qf(LB,B}p,By,T) = 0;
Br - Q3(LB,Bp,Br,T) = Bp-Qi(LB,Bp,Br,T) = 0.

Note that if for some ¢, Q7 (LB, Bp, Br,T) = By > 1 and if

QT (LB, Bp,Br,T)+ Br - QT(LB, Bp, Br,T)
= QT(LB,B},By,T)+ By - QT (LB, B, By, T),

then QP(LB, Bp, Br,T) = 0, so that Q7 (LB, B}, By, T) = 0 and QT (LB, B}, By, T) = BY.
Therefore, it is readily proved by induction (as in Lemma 3.1) that at event times 0 = ¢; < 3 <
+++ <ty < -+, acell (resp. token) is accepted at time ¢, in C if and only if they are accepted
in C’, and that the token buffer is full in C if and only if it is full in C’.

Thus, the token arrival times are identical in both schemes, so that Lemma 3.1 still applies.
|

Remark: Owing to Lemma 3.1, the duality holds for general token arrival sequence and

arbitrary initial token number provided the initial condition (3.1) is satisfied.



4 Basic Sample Path Characteristics

We now present several preliminary comparison relations which will be used to prove our main
results.

The first one characterizes the departure process of cells from the throttle.

Theorem 4.1 Let C be a rate-control throttle with token generation period length T, token buf-
fer size Br > 1 and the arrival sequence of accepted cells A. Let K = {ny,na, -, g, -+, Tk, }
where kg < 00, 1 =n3 < np < :+- < By < -+ < ng, (by convention, ng, = oo if kg = ).
Then, for all k > 2,

dn, —dn,_, =8pn, —Gn,_,. (4.1)

Moreover, for all2 < k < ko, if ng > ng_1 + 1, then
bny 1 +1 ST, bn, 2=+ =68p1=T, 6, 2T. (42)
Further, if kg < 00, then

67!1:0 +#1 8T, =T, i> Nk, + 2. (4.3)

Proof. Equation (4.1) trivially follows from the definition of the set of instantaneous departure
points K.

Assume now np > ng_; + 1. Observe that if the data buffer size is zero, then nj = k for
all k > 0. Therefore, relation ny > ng_; + 1 implies that the data buffer size is at least one.
Consider 7 such that np_; +1 < i < np — 1. Now i ¢ K so that @; < d; = gi- As this is
true for all 4, ng—; + 1 < i < ng — 1, the token buffer is always empty during the time interval
(dny_y1dny—1]- Therefore, as Br > 1, no token is lost during the time interval (d,,_,,dn,—1].
Thus, forallng_y +2<i<n -1

Si=di—diy=Gi—Gioa=T.

Moreover,

61:., = dn,, - dn.;,—l 2 ang - dnk—l = ang - E’nk-—l =T.



Since ng—1 +1 ¢ K, QF = 0 < By for all dn,_, <t < dn,_,+1. Thus, no token is generated
during the time interval (dn,_,, dn,_, +1), so that

by 1= ny 41— dn,_ <T.
Hence, relation (4.2) holds.
Relation (4.3) is shown by the same arguments. |

The remainder of this section is devoted to deriving inequalities among the arrival times of
accepted tokens for different parameters. This is based on the following evolution equations.

Theorem 4.2 Assume By > 1. Then for any cell arrival sequence a, and for all n > 1,

gn+1(LB, Bp,Br,T) = max(ga(LB, Bp, Br,T), @nt1-B,)+ T, (4.4)
§n+1(TB, Bp, Br, T) = [max(gn(TB, Bp, Br, T) + T, aﬂ+1—BT)/T] -T, (45) A

where [z] denotes the smallest integer which is greater than or equal to z. By convention,
g =0ifz<0.
Proof. Consider first relation (4.4). According to our convention, §,(LB, Bp, Br,T) = 0 for
all 1 < n < Br. Therefore, equation (4.4) holds for 1 < n < By — 1.
For n > Br, if g.(LB, Bp, Br,T) < @n41-B,, then
gn(LB,BD.BT,T)(LB’BD’BT’T) = Br,
and the first token departure after time gn(LB, Bp, Br,T) occurs at time @,+1-p,. Hence,
9n+1(LB, Bp, Br,T) = @ny1-By + T = max(§.(LB, Bp, Br,T), Gnt1-8,) + T-

If, however, §.(LB, Bp, Br,T) > Gnt1-B,, then

Q% (8.8 8.1\ LB, Bp, Br,T) < Br,
so that

§n+1(LBa BD: BT) T) = gn(LB) BD: BT: T) +T = max(?n(LBs BDa BTaT): aYH-I—B:I') +T.
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In both cases, equation (4.4) holds.

Similarly, for token bank, by our convention, §,(T'B, Bp, Br,T) = 0 for all 1 < n < Br.
Therefore, equation (4.5) holds for 1 <n < By — 1.

For n > Br, if g.(TB, Bp, Br,T) < @n41-B,, then

QI

g“(TB |BD,BT,T)(TB! BD’ BT, T) = BT}

and that the first token departure after time §,(T'B, Bp, Br, T) occurs at time @41 Bp- Hence,

3ns1(TB, Bp, By, T) = [“—"iil T=|

max(?ﬂ(TBs BD)BT) T) £ T! aﬂ+1-'5’r)-’ .T
T .

T

If, however, go(TB, Bp, Br,T) > Gny1-B,, then

gr

gn

(TB.BD,BT,T)(TB’ BD) BT; T) < BT,

so that

Gus1(TB, Bp, By, T) = 4.(TB, Bp, By, T)+T = "max(gn(TB,BD,BT,T) + T, %+1—Br)} T

T

In both cases, the equation (4.5) holds. o

Corollary 4.1 Assume Bt > 1. Then for any cell arrival sequence a, and for alln > 1,
Eﬂ-}-l(LB:OO:BT + I,T) = EH(L31°O1BT3T) (46)

Gnt1(TB,00,Br +1,T) = §,(TB,o0,Br,T) (4.7)

Proof. Relations (4.6) and (4.7) can simply be shown by induction on n using the evolution

equations (4.4) and (4.5). The detailed proof is omitted. |

Theorem 4.3 Assume By > 1. Then for any cell arrival sequence ar,
En(TB:m:BT:T) < ﬁﬂ(LB:m:BT)T) (48)
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a(LB,00,Br +1,T) < §.(TB,o0,Br,T) (4.9)
9n(LB,0,Br,T) < Gn(LB,o0,Br,T"), T'>T (4.10)
9a(TB,00,Br,T) < §ua(TB,00,Br,T'), T'=mT, meIN, (411

Ga(TB,00,Br +1,T) < §u(TB,00,Br,T'), T'>T (4.12)

Proof. We will prove these inequalities by induction on n. Clearly, all these relations are true
for 1 < n < Br. Assume they hold for some n > Br.

It then follows from the evolution equation (4.5) that
gn+1(T B, 00, Br, T) < max(gn(T B, 0, Br, T)’an+1-BT) +T
< max(?’n(LBa w:BT:T)ian+1—BT) +T

= §n+1(LBs oa, BT: T)’

where the second inequality comes from the inductive assumption, and the equality from (4.4).
Therefore, by induction, relation (4.8) holds for all n > 1.

In order to show (4.9), we first prove the following inequality:
9n(LB, 0, Br,T) < Gu(TB, 0, Br,T) + T, n> 1. (4.13)
Clearly, (4.13) holds for all 1 < n < Br. Assume it holds for some n > Br. Applying (4.5)
entails that
gn+1(LB,00, Br,T) = max(ga(LB,,Br,T),8nt1-8;) + T
< max(gn(TB,, Br,T) + T,@nt+1-B;) + T,
where the inequality comes from the inductive assumption. Using further (4.5) implies that
gn+1(LB,00,B7,T) < max(§n(TB,00,Br,T)+ T,@nt1-By)+ T
< Gnt1(TB,00,Br,T)+T.

Therefore, relation (4.13) holds for all n > 1.

Relations (4.6) and (4.13) imply that
Gas1(LB,00,Br +1,T) = §au(LB,o0, Br,T)
n(TB,00,Br,T)+ T

§n+l(TBi 0, BT1 T)

IAN

IA
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Thus, by induction, inequality (4.9) holds for all » > 1.

Consider now relation (4.11). It follows from (4.5) that

an_]_]_(TB, Co, BT, T’)

[ max(gn(T B, o, Br,T') + T", ﬁn+1—Br)1 T
T!

-ma‘x(.aﬂ(TB: 00, BT; T') T TI; aﬂ-{-l—BT)-'
> .70
- T
> 'max(ﬁn(TB, 00, BT; T) + T: aﬂ-!—l—BT)-l T
— T k!

= §n+1(TB:°°:BTiT)1

where the first inequality uses the fact 7" is an integer multiple of T', the second inequality

comes from the inductive assumption. Hence, (4.11) holds for all n > 1.
In order to establish relation (4.12), we first show the following inequality:
gn(T B, 00, By, T) < gu(TB, 00, By, T') + T". n>1.
Clearly, (4.14) holds for all 1 < n < By. For n > Br,

§n+1(TB, co, BT, T)

IA

max(?ﬂ(T-B) ©0, BT: T): a"“71.+1--B-_-;-) s

IA

max(gn(TBr o0, BT; T’) + T’: a-'n+1—.BT) +T

,’ma‘x(aﬂ(TB: 0, BT: T’) + Tl; an-l-l—BT)
TI

IN

“ . Tl + Tl
= §n+1 (TB: o0, BT: T’]
Therefore, (4.14) holds for all n > 1.

Using (4.7) and (4.14) we obtain

Gn+1(TB,0,Br +1,T) Gn(T B, 00, B, T)

IA

gn(TB, 00, By, T") + T"

IA

§n+1 (TB, Cco, BT, T')

Thus, by induction, inequality (4.12) holds for all n > 1.

12
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Finally, we turn to (4.10). It readily follows from (4.4) that

§n+1(LB,°°,BT,T) = ma'x(gn(LB’m)BT)T)va‘n+l—BT)+T

IA

ma.x(ﬁn(LB, 0, BT) TI): a‘lH-l—BT) + T,
= §n+1(LBs oo, Br, T'):

where the inequality comes from the inductive assumption. Therefore, by induction, inequality
(4.10) holds for all » > 1. [

Finally, the following property will also be used.

Theorem 4.4 Consider two rate-control throttles C and C', which have the same arrival se-
quence of accepted cells A, but different arrival sequences of accepted tokens § = {9n}2, and

5= {G,}52,, respectively. Let K and K' be the sets of instantaneous departure points of C and
C', respectively. Let d, (resp. dy,) be the n-th departure time in C (resp. C'). If for alln > 1,
Gn > 05, then K C K' and d,, > d.,.

Proof. Note that n € K if and only if @, > §,. Thus, foralln € K, @, > §» > g4, so
that n € K'. Therefore, K C K'. The inequality d,, > d/, follows from the fact that for all

n=1,2,---

dn = max(@n,Jn) > max(dn,J,) = dy.

5 Comparison of Waiting Times

We first derive comparison results between two -/G/1 queues with FCFS service disciplines.
These will be essential in establishing the comparison results of this section. Let QU), j =
1,2, be two such queues with arrival times {t&’ )},",°=1, service times {o’,(,j )},°,°=1, departure times

{dS;’ )}:":1, and waiting times {W,(;j) }32,, 7 =1,2. We will find the following relations useful.
Wi = WP+l —df), +Py, (5.1)
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(STRTIPON L STRPTIWN

i) — . ld j . (i 3

wy = ma.x{(W,,+ ;an Y +t,,’) , n+11r§a:.‘§m (.‘:u o; — )+t ) ,

m=n+1,n+2,..., (5.2)

dil = (@, + a8, (5.3)
where j = 1,2,2=0,1,..., and (z)* denotes max(0, z).

Assume that for all n > 1, ts,l) > t&z), and a',(.l) = a',(;z) = 0n < T where T is a constant.

Assume further that there is a set of indices K = {n;,na,--,nk,-+, 7, }, where 1 = n; <

N <-+- <My < -+ < gy < 00 (by convention, ng, = oo if kg = 0), such that

o forall 1<k < ko, &89 = £2;
o forall 1 < k < ko such that ngy — np > 2:

<T, i=ne+1;

- 0 =T, m+2<i<mgr -1 (5.4)
2> T) i= Npeq1.

. ifko<oothent$‘2+1—t$,2 STa,ndtgl)—tg)l=TforaJ.li2n1.,o + 2.

Lemma 5.1 For the above two -/G/1 queues Q(1) and Q(?),

W1£1) < Wrs.z)) n=1,2,---, (5’5)
dV > 43, a>1. (5.6)
If in addition service times are deterministic, then there is a set of indices K = {fa, gy, gy -, ﬁ,;o},

wherel =) <fip < - < Ap <+ < fig, < oo (by convention, fig, = 00 if ko = 00), such that
dP =d?, 1<k <k, (5.7)
and for all 1 < k < ko such that fipqy — g > 2:
<T, i=fp+ 1;
d) —d =T, f+2<i< g - 1 (5.8)

2T, i= ﬁk+l)
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and if ko < oo then

di)pn-d) <T=dV-dl),  iza 42 (5.9)

Proof. Consider (5.5). Assume first that kg = co. We show by induction on k that for all

k=1,2,-- relation (5.5) holds for all n < n;. It is clear that Wl(l) = Wl(z) = 0. Assume there
is some k > 1 such that (5.5) holds for all n < n.

It then follows that
N+l = (Wr(;i) + Ony — tSllk)'l‘l + t‘g;:))-’.

< (W + on, —t0) + Y

The two equalities are due to (5.1) and the inequality follows from the inductive hypothesis,
and the relations t,(,l) = ts.z), n € K and ts.l) > ts,z), n¢g K.

If np41 = ng + 1, then relation (5.5) holds for all n < ngyy. If, however, npyy > ng + 1,
then relation (5.4) allows us to simplify (5.2) in the case of Q1) for all ng + 2 < m < ngyq to

t=ng

+
m-1
W,(nl) = (W,(‘i) + Z o — tg) + tSzl,,)) ,
so that

+
m-1
wil) = (W,(.P+ > a.--ts,1>+ts,1))

i=n,

+
m-—1
< (W,(,P +Y -1+ ts,i))

1=n;

m~-1 +
< (W,&i’ + 3 0=t + 1)

i=ny

15



+ +
m-—1 m-—1
2
< ma.x{ (W,(l:) + ) oi- #2) 4 ts,'i)) ) DBx (;ﬂ: o; — t2) 4 4( )) }

i=n;

= W,(,f).

Hence, relation (5.5) holds for all » < ng41. By induction, it holds for alln =1, 2, - --.

If kp < oo, then, the above induction shows that relation (5.5) holds for all n < ng,. A
similar argument establishes (5.5) for all n > ng,.

A simple induction on n using relation (5.3) with d&l) = tgl) +0y= t(lz) +oy = d{” implies
that relation (5.6) holds.

Consider now relation (5.7). Define
K=K\ J{m+jlmek, 1<j<nu-n—1, W,>o}

Let Ut(j ) be the unfinished work in queue Q) j = 1,2 at time ¢. It follows from relation
(5.6),for alln > 1, U((I,)) > U((zz)) Therefore, by the definition of set K,

L -t

W =wld, mek, (5.10)
so that
d) =d?, n ek (5.11)

Consider an arbitrary k such that ng,y — ng > 2. Let

Jo=min{l < j < npyy — ng | W(i)ﬂ- = 0},

n

where, by convention, the minimum over an empty set is taken as n44; — nz. Then, due to the

assumption on the arrival sequence {ts,l)}, it is readily seen that

W(l) >0, 15j<j0)

et { =0, jo<J<Mpy1 — Ng. (5.12)
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Using further relation (5.10) and the fact that t$ > 2 for all n > 1, we obtain that for all

1< 7 < jo, W,(:)_H > 0. Hence,

dff,.’ﬁ = dg,‘) +j-o= dﬁ) tj-o= dﬁ)ﬁ’ 1< <jo. (5.13)

In view of (5.11) and (5.13), relation (5.7) holds.

For all jo < j < Tg41 — ng, relation (5.12) implies that df}k)ﬂ = tf.lk) +; T 0, so that

1 1 1 1 1 1 1
df‘h)+jo - dslh)"'jo—l = ts:g)+jo +o- (tszg)+jo—1 + Wf(zkh-jo—l +0)< tslk)-i-io - ts"k)'i'jo—l <T, (5.14)

1 1 ' .
dgn.)ﬁ - df,,,)+j_1 = tleg)ﬂ' to- (tfxl,,)+,-;_1 +o)= tStlg)ﬂ' - ts"'lk)'i'j—l =T, Jjo<j <y (6h)
1
ds.il, - df;,g)“—l = tgh)ﬂ to- (tgl,,).,,l—l +o)= tg,).“ - tS;?“—l 2T (5.16)

Relations (5.14), (5.15) and (5.16) entail (5.8).

In case kg < 0o, relation (5.9) can be verified in an analogous way. The proof is thus com-
pleted. [ |

The following comparison results follow from the above lemma.

Theorem 5.1 Assume Br > 1 and that T > 0} a.s. forall1< j < J and alln > 1. Then

for any fized cell arrival sequence A,

Wi(LB,, Br,T) < WI(TB,o,Br,T), (5.17)
Wi(TB,c0,Br,T) < W3i(LB,oo,Br+1,T), (5.18)
Wi(TB,00,Br,T) < Wi(TB,0,Br,T"), T =mT,melN, (5.19)
Wi(LB,oo,Br,T) < WJ(LB,»,Br,T"), T>T (5.20)
Wi(TB,c0,Br,T) < Wi(TB,»,B;T), T>T',1<Br< B} (5.21)

foralll<j< Jandalln>1

Proof.  The proof is by induction. We only consider relation (5.17). The proofs of the
remaining relations follows in a similar manner. For j = 1, the basic sample path properties of

Theorems 4.2, 4.3, 4.4 allow us to apply Lemma 5.1 and to obtain relation (5.17).

17



Moreover, for j = 1, Theorems 4.2, 4.3 and 4.4 and Lemma 5.1 imply the existence of a set
Kj — {n{,n;,- . -,ni,- . -,nJ.},

where 1 = n{ & ng < e < n‘,l <0 < nij < oo (by convention, nig = oo if k} = o0), such that
0

&;(LB, o, Br,T) = dj’;,k-(TB,oo,BT,T), 1<k<k, (5.22)
k

a.ndforalllsk-(kgsuchthatnf;H—nf;22:
_ /i
6(LB,o0,Br,T){ =T, ni+2gz‘gni+l—1; (5.23)
> T, i=ni+1,

and ifkg < oo then

§; _ (LB,oo,Br,T)<T =6/(LB,co,Br,T), i> nl; +2. (5.24)
0

i

n . +1
J

kﬂ

Furthermore,
di(LB, o0, Br,T) > di(TB,c0, Br,T), n>1. (5.25)

Assume relations (5.22), (5.23), (5.24) and (5.25) for some 1 < j < J. Then, an application
of Lemma 5.1 implies that relation (5.17) holds for j+1. Hence, (5.17)holds forall1 < j < J. N

Theorem 5.1 implies the following monotonicity of the waiting times with respect to the
token buffer size.

Corollary 5.1 Assume Br > 1 and forall1 <j < J and alln > 1, T > o*-,'{ a.s. Then for any

fized cell arrival sequence A,

Wi(TB,00,Br,T) < Wi(TB,00,Br+1,T), 1<j<J, n=12,--- (5.26)

W3i(LB,,Br,T) < W3(LB, o0, Br +1,T), 1242 ‘n21,25.. (5:27)
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When the token buffer has infinite capacity, the downstream tandem queueing network is
fed by the arrival sequence A. Denote by W,{(A) the waiting time of the n-th cell in the j-th
downstream queue with network arrival sequence A. The following result indicates that the

leaky bucket and the token bank flow control schemes reduce the waiting times:

Corollary 5.2 Assume Br > 1 and foralll1 < j< Jandalln>1,T > ol a.s. Then for any

fized cell arrival sequence A,

ijl(TBJ 00, BT) T)

IA

Wi(4), 1<3j<J, n=1,2,-, (5.28)
Wi(LB,o0,Br,T) < Wi(4), 1<j<J, n=1,2,--- (5.29)

As a consequence of Theorem 3.1 and Corollary 5.1, we obtain the sensitivity of the waiting
times with respect to the partitioning of B = Bp + Bt when the data buffer is finite.

Theorem 5.2 Assume Bp > 0, Br >l end foralll1 < j< Jandalln>1, T > di a.s.

Then for any fized cell arrival sequence A,

Wi(TB,Bp+1,Br,T) < Wi(TB,Bp,Br+1,T), 1<j<J, n=1,2,--(530)
Wz(LB)BD + l,BT7T) < Wr{(LB)BD’BT + 1’T)’ 1<j<J, n=1,2,.. (531)

6 Comparison of Queue Lengths

Since the service discipline is first come first serve, the queue length seen by any customer is

increasing in its waiting time. More precisely, we have that forall1 < j< Jand alln > 1,

wiol o _ _ Wi =0
"l if{m>1| X0l > Wi, Tr'el < Wi}, Wiso.

t=1 “n—i

Therefore,

Theorem 6.1 All the assertions of Theorems 5.1 and 5.2, and Corollaries 5.1 and 5.2 are
valid with W3 replaced by N3.
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We prove now that the queue lengths at all time instants are bounded. We consider the

case of single downstream queue J = 1.

Theorem 6.2 Assume Bp >0, Br > 1 and foralln > 1, T > o} a.s. Then for any fized cell

arrival sequence A,
M(TB,Bp,Br,T) < Br+1, t>0, (6.1)
M(LB, Bp,Br,T) < Br, t>0. (6.2)

Proof. Consider first (6.1). We show by induction on n that relations (6.3) and (6.4) below
hold.

M‘(TB3 BD3BT$T) + Q?(TB, BD: BT)T) < BT +1,
gn-1(TB, Bp, Br,T) < t < go(T B, Bp, Br,T), (6.3)

Mg,j(TB,BD,BTIT)(TB: Bp, BT; T) + Qf;(TB,BD,BT,T)(TB’ Bp, Br, T) <Br+1. (6'4) .

Clearly, they are true for n < By. Assume they hold for some n > Br. Then, since there is at
most one customer arriving at the downstream queue at time §,(T'B, Bp, By, T), the inductive

assumptions (cf. (6.3) and (6.4)) implies that
M;, (rB,8p,851)T B, Bp, Br,T) + an(TB'BD’BT_T)(TB, Bp,Br,T)< Br +1. (6.5)

During the time interval (§,(T B, Bp, Br,T),§n+1(T B, Bp, Br,T)), the quantity M(TB, Bp, Br,T)+
Q';"(TB,BD,BT,T) is unchanged when there is an arrival at the downstream queue and is
decreased by one each time there is a departure at the downstream queue. Since there is at

least one departure during that time interval if ME,.(TB, Bp, BT'T)(TB, Bp,Br,T) > 1, we con-

clude from (6.5) that relations (6.3) and (6.4) hold for n + 1. Therefore, by induction, the
relation

Ml(TBl Bp, BT; T) + QtT(TBi BD! Br, T) <Br+1
holds for all ¢ > 0, so that (6.1) holds.

Consider now (6.2). The idea of the proof is similar. We show by induction on n that
relations (6.6) and (6.7) below hold.

Mt(LBa BD: BTrT) + Q{(LB: BD, BT; T) < BT’
an—l(LB; BD: BTaT) <t< ?n(LB: BD; BT’ T): (66)
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M, 58.8p,8r,1) (LB, B, B, T) + QL 15 5 g 1y(LB, Bp, Br,T) < Br.  (6.7)

Clearly, they are true for n < Br. Assume they hold for some n 2 Br. Then, since there is at
most one customer arriving at the downstream queue at time §,(L B, Bp, Br, T), the inductive
assumptions (cf. (6.6) and (6.7)) implies that

M5, (18,85,87.7)( LB, BD, Br,T) + Q2 15 5 5 7y(LB,Bp,Br,T)< Br.  (6.8)

During the time interval (§»(L B, Bp, Br,T),§n+1(LB, Bp, Br, T)), the quantity M,(LB, Bp, Br, T)+
QT (LB, Bp, Br,T) is unchanged when there is an arrival at the downstream queue and is

decreased by one each time there is a departure at the downstream queue. If
T
M. (L8,8p,8:,1) (LB, B, Br,T) + Q3,1 5, ,.1)(L B Bp, Br, T) < Br,
then, it is easily seen that relations (6.6) and (6.7) hold for n + 1. If, however,
T
Mg, (1B,Bp,B;,1)(L B, Bp, Br,T) + QE,.(LB,BD,BT,T)(LB’ Bp,Br,T) = Br,
then,

o either M;n( LB,Bp, BT,T)(LB’ Bp, Br,T) > 1, in which case, there is at least one departure

in the downstream queue during the time interval [§,(LB, Bp, Br,T),§n+1(LB, Bp, Br,T)),
so that we conclude from (6.8) that relations (6.6) and (6.7) hold for n + 1;

or, QTZ“,.(LB,BD,BT,T)(LB’BD’BT’T) = Br, in which case, the next token arrival occurs

only T time units after a cell arrives (this cell is immediately transmitted to the do-
wnstream queue), so that, again, there is one departure in the downstream queue during
the time interval (§,(LB, Bp, Br,T),n+1(LB, Bp, Br,T)). Hence, relation (6.8) implies
that (6.6) and (6.7) hold for n + 1.

Therefore, by induction, the relation
M,(LB, Bp, Br,T) + QT(LB, Bp, Br,T) < Br

holds for all ¢ > 0, so that (6.2) holds. a
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7 Comparison of Losses

In this section, we consider the case when the last queue in the downstream tandem queueing
network has finite-capacity waiting buffer. We compare the number of losses in the last queue.

We will assume that all the queues in the tandem network have deterministic service times: for
al1<j<Jandalln>1, 0l =07, a.s. Notehowever that the results in this section hold
when the last queue has service times with increasing failure rate (IFR) distributions, see the

remark at the end of this section.

Our comparison results are based on the following lemma concerning the two -/G/1 queues

Q) and Q(?) described at the beginning of Section 5. Let {ng)} denote the process of the

number of losses in Q(), j =1,2.

Lemma 7.1 For the two -/G/1 queues Q1) and Q(2),

M<I®, >0 (1.1)

provided service times are deterministic and the buffer capacity is finite.

Proof. See Appendix A. |

Consider first the case that the data buffer of the rate control throttles have infinite-capacity
data buffers: Bp = oo. '

Theorem 7.1 If Br > 1 and forall1 < j < J, T > o7, then for any fized cell arrival sequence
4,

Ly(LB,oo,By,T) < Ly(TB,0,Br,T), (7.2)
L(TB,c0,Br,T) < Ly(LB,oo,Br+1,T), (7.3)
L(TB,c0,Br,T) < LyTB,c0,Br,T'), T =mT,me N, (7.4)
Ly(LB,c0,Br,T) < L(LB,co,Br,T'), T>T (7.5)
L(TB,c0,Br,T) < L(TB,0,By,T), T>T',1<Br< B, (7.6)

fort>0.
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Proof. The proof is similar to that of Theorem 5.1 using induction and Theorems 4.2, 4.3
and 4.4, together with Lemmas 5.1 and 7.1. The details are left to the interested reader. ]

Theorem 7.1 implies the following monotonicity of losses with respect to the token buffer
size.

Corollary 7.1 If Br > 1 and for all1 < j < J, T > o7, then for any fized cell arrival sequence
A,
Ly(TB, o, Br,T) Ly(TB,,Br +1,T), t>0, (7.7)
Ly(LB,oo,Br,T) < Ly(LB,oo,Br+1,T), t>0. (7.8)

IN

When the token buffer has infinite capacity, the downstream tandem network is fed by the
arrival sequence A. Denote by L;(A) the number of lost cells by time ¢ in such a case. The -
following result indicates that the leaky bucket and the token bank fiow control schemes reduce

losses:

Corollary 7.2 If By > 1 and for all1 < j < J, T > o4, then for any fized cell arrival sequence
A,
Lt(TB’°°1 BT,T) Lt(A)a t>0, (79)
Lt(LB,m,BT, T) < Lg(A), t 2 0. (710)

IA

Consider now the case when the data buffers of the rate control throttles are finite: Bp < 0.
As a consequence of Theorem 3.1, together with Corollary 7.1, we obtain the sensitivity of losses
with respect to the partitioning of B = Bp + Br when the data buffer is finite.

Theorem 7.2 If By > 1 and forall1 < j < J, T > o, then for any fized cell arrival sequence
A,
L(TB,Bp +1,Br,T) L(TB,Bp,Br +1,T), t>0, (7.11)
L(LB,Bp +1,Br,T) < L(LB,Bp,Br+1,T), t>0. (7.12)

IA
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Remark: Note that when the service times at the downstream queue are independent and
identically distributed with an IFR distribution, all the results in this section together with
Lemma A.1 in Appendix A hold, with the inequality < replaced by the stochastic inequality <,¢.
A non-negative random variable X has an IFR distribution if fx(z)/[1— Fx(z)] is an increasing
function of z where fx(z) is the probability density function of X and Fx(z) = [5 fx(v)dy.
Two random variables X and Y are comparable by <,, say X <, Y, if for all z € IR,
P[X > z] £ P[Y > z]. The proofs of Lemmas A.1 and 7.1 can be carried out using coupling

arguments (see e.g. [11]).

8 Summary

In this paper we studied the effect that a rate-control throttle has on delays incurred by cells
belonging to the session being controlled. We modelled the path taken by cells belonging to that
session as a tandem queueing network and showed that the cell delays at each switch increase as
the token buffer capacity increases and/or the token generation rate increases. In the case that
the buffer corresponding to the last switch on the path has limited buffer capacity, we showed
that the number of losses also increases as the token buffer capacity and/or the token generation
rate increase. We also established comparisons between the two rate-control throttles. Under
appropriate assumptions on the cell arrival process, similar results can be obtained for stationary

cell delays and cell losses. Examples of the types of assumptions required can be found in (1]
and [12].

A Proof of Lemma 7.1

We first prove the following lemma which will be essential in establishing Lemma 7.1.

Lemma A.1 Consider two single-server queues G/D/1/c with the same arrival sequence, the
same deterministic service time, and the same finite capacity c of the waiting buffer (the server
has no buffer). The service discipline is first come first serve. Customers that find waiting
buffer full are lost. Let L, (resp. L}) be the number of lost customers by time t > 0 in the first
queue referred to as queue Q (resp. in the second queue referred to as queue Q'). Let M, (resp.
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(1)

4

Lg—L;,Qt ,U¢>U">0

/

(2) . (3)
Li=L; Q=Qt+1,0<U, < U} =L;,Q:=Q.+1=1U!=0

(4) (7)
Li=L'+1,Q=Q,0<U<U L>L,Qi=Q, U="U

“ \\
A

() (6)

Lg L+1Qt Q’—1>0 U¢>U'>O L¢=L;+1,Qt=Q£—l=0,Ug=0

Figure 2: Finite state machine representation of two systems.

M} ) be the queue length of queue Q (resp. Q') at timet > 0. Let U, (resp. U]) be the remaining
service time of the customer under service (if any) in queue @ (resp. Q') at timet > 0. The

initial conditions of the two systems are such that:
Lo:La, M0=M621, U0>U6>0.
Then for all t > 0,

L > L.

Proof. We describe the behavior of the two systems when given the same arrival sequence by
a finite state machine (Figure 2) containing seven states which differ according to the relative
values of L;, L}, M;, M{, U; and Uj.



The systems start in state (1). This state remains in this state whenever a customer arrives
(in both systems). When a service completion occurs in Q’, the systems transit to state (2) if

Q' has waiting customers, and to state (3) if @’ becomes empty.

The systems return to (1) from (2) whenever a service completion occurs in @. The systems
remain in state (2) when a customer arrives (in both systems) resulting in no loss in queue @

(i.e., M < ¢), They transit to state (4) otherwise.

The systems transit out of state (3) whenever there is an arrival (in both systems) or there
is a service completion in Q). If there is an arrival, the transition is to state (2), provided
M, < ¢, and to (4), provided M, = c. If there is a service completion in queue Q, the transition
is to state (7).

No transition occurs from state (4) unless a service completion takes place in Q. In this

case the transition is to (5), if @ has waiting customers, and to state (6), if Q' becomes empty.

A transition occurs from state (5) to (4) whenever a service completion takes place in queue

Q'. If a customer arrives, no transition occurs if M; < ¢, or a transition to (1) occurs if M, = c.

If a customer arrives (in both systems) while the systems are in state (6) the systems
enter either state (5), provided M; < ¢, or state (1), provided M! = ¢. If, however, a service

completion occurs in system Q’, then the systems enter state (7).

State (7) is the absorbing state. Once the systems enter this state, their service completions

and their losses synchronize, so that they never transit out of the state.

Since in all these states, we have L; > Li, the assertion of the lemma is thus established. B

Proof of Lemma 7.1

Assume first that kp = oco. In addition to the notation previously defined for Q(%), we

introduce Ut(’) to be the remaining service time of the customer in service (if any) at time
t>0.

Define a new queue, 9, with the same buffer capacity, say ¢, as Q1) and Q(2). Customers

arrive to this queue at the same time as to Q(M), at times £, = ts,l), n=1,2,.... The customer
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service times coincide with those in Q(2) except that the remaining service time of the customer

in service (if any) at time Z,, is increased to o if Q(2) is idle, i.e., Mi(f) = 0. Let L, (resp.
Tk

M,, U:) be the number of losses (resp. queue length, remaining service time of the customer in

service) of the queue at time ¢.

Repetitive applications of Lemma A.1 yields

IM<i, t>o0. (A.1)
We will show by induction that
b, = Ut(fz k=1,2,- - (A.2)
M, > ijz k=12, - (A.3)
M;, +I; < Mt(:z + LE:i k=12, (A4) -
I, < 19, t>o0. (A.5)

For k = 1, it is clear that n; = 1 so that ﬁt’», = Ut-(z) = o, JE—“E = Mi(:) = 1, and
nE k

fgl = ng) = 0. Therefore, relations (A.2), (A.3) and (A.4) hold for k& = 1, and relation (A.5)
1

holds for all 0 < ¢t < fnl.

Assume there is some k > 1 such that relations (A.2), (A.3) and (A.4) hold for k£ and
relation (A.5) holds for all 0 < ¢t < fn,,- Consider k + 1. There are two cases according to

whether ngy1 > np + 1 or not.

Case 1: ngy1 = ng + 1: By the inductive assumption (cf. (A.3)) we have that for all
My > MP). 1 MP > 0, then (cf. (A.2))

tn, St
B+l

Nk41?

Ut"l-}-l = U‘("k)-i-l = (tﬂk+1 - tnk - Ut(“k)) mod o.

If, however, Mt(f) = 0, then, according to the definition of the service times in queue g,
NR+1

—_— — U(z)

Ut“h-'-l =0 = tﬂh,.,‘ .
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Thus, (A.2) holds for k& + 1.
Since M, o 2M e(f) , and since queues Q and Q' have the same buffer capacity, we easily
k41 k41

see that ﬂtng+1 > M‘(:L; . Hence, (A.3) holds for k& + 1.

During the time interval (t,,,tn,,,), the inductive assumption (cf. (A.2) and (A.3)) im-

plies that the service completions in queues Q(2) and @ are synchronized unless Q(2) empties.
Therefore, the inductive assumption of (A.4) implies that for all ¢ € (ta,,tn,,, ),

M+ I, < M:(2)+L£~

At time ¢,, , the arrival customer is either accepted or lost, so that M, + L, and Mt(z) + ng)
are both increased by one. Hence, (A.4) holds for all k + 1.

It now follows from (A.3) and (A.4) that

(2)

Ltuk+l S Lt“k-{»l ¢

As clearly for all ¢ € (t,,,n,,,),
_Zt =1 < Lgil = ng))

we conclude that (A.5) holds for all ¢ < t,, ,.

Case 2: ny; > ng + 1: Recall from the definition of Q, QM) and Q(?) that

tnh"'l_t"h <T, tﬂk+2_tnk+1 == fﬂk+l‘1_t"k+1 -2 =T, iﬂk+1 _iﬂhn—l 2T (A.6)

Due to the fact that o < T, we see that during the time interval (£nx» tnxy, ) only the customer

arriving at time #,, +1 may be lost in queue 3.
If there is no loss in queue § during the time interval (tnytns,,), then, clearly,

L=I; < Lgl SLP,  dn <t<in,,. (A.7)
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If, however, this loss does occur in queue Q then, ¢ "h+1 - t,,,‘ < U and M— = M,
g

t = co
tag 1 ny

If M®) = M, , then, as
tﬂ* tnk
#2)

bngtl — £Slzg) Sippp1 —tn, < ﬁgﬂ = Ut(:z

we obtain that M (2) Mt.(z) = ¢, so that the customer arrving at #2) in queue Q(?) js also

tay+1 ny T+l
lost. Hence,
L, < L(z; =L, fny <t <t
zt = Lf L(z +1< L(z) t&2)+1 <t< tﬂg+1’ (AS)
'Zf +1< L(z) +1< L(z)) tﬁk+1 <t< tﬂk+l'

If Mi(zz # JT/.?‘-M, then, by the inductive assumption (A.3), we have Mz(z) < 1\75 . Using further
n ny n
the inductive assumption (A.4), we obtain Efn,, < ng). Therefore,
ot 3

-~

<L, +1< Lﬁii <I®, i, <t<i (A.9)

N4l

Relations (A.7), (A.8) and (A.9) imply that (A.5) holds for all ¢ < £

Mgyl

Let A2)(s,¢), D()(s,t) and L()(s,¢) (resp. A?)(s,t), D()(s,t) and L(?)(s,t)) be the num-
ber of accepted arrivals, departures and lost arrivals, respectively, in queue Q%) (resp. Q)

during the time interval (s, ¢].
We observe from the above arguments that

Hfu,‘ + Z(t‘"mfmﬁl) 2 M;(:: + A(z)(fﬂgrfﬂg+l)- (A.lO)

Since the arrivals occur earlier in queue Q(?) than in queue d,ie., tS?’ < i, for alln > 1, the
server in § idles during the time interval (fn,,tn,,,), only if the server in Q(?) idles. Using

further relation (A.6), we conclude that the server in queue Q(?) idles (resp. Q) during the time

interval (fn,,%n,,,) if and only if M(z) = 0 (resp. M- = 0), and that Hi;nm = 0 implies
tnpr
M® =o.
t"k-i-l
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We now distinguish two subcases:

(2.a) ﬁf§n+: = 0 (so that ME(E) = 0).

ekl
Then,
Ev3 2
Mgﬂ = Mi( ) = 1,
k+1 k41
2
by = Ui, =0
k+1 Net1

and, owing to (A.5),
+I; <M® +1?

Tl tnra tnpyy

Hence, relations (A.2), (A.3) and (A.4) hold for k& + 1.

(2.b) ¥

- >0
Brt1

It is easily seen that

A(z)(fﬂuiﬂkﬂ) + L(z)(fnk’iﬂnﬂ) = z(fnuiiﬂk+l) + z(fﬂufngﬂ) = Nyl — Nk

Moreover,
D(z)(fn,‘,fn.,ﬂ) < l(fua+; tny ff}“k)/aj +1,
- l.(tm“ —in U)o 41,
= ﬁ(f,,k,{,.r,.l)
Hence
ﬂi,.h ¥ ZE,.,‘ " = ]T’-Ts,.k + Ef,.k + (k41 — ng) — D(Eny, bny 1)

< M® + Lg:i + (Paey1 — i) — D(z)(fngainx+1)’

-— t"‘h

= M@ 4+

R4l t“k-}-l

Hence, relation (A.4) holds for k + 1.
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¥M? > 0, then

t"h+1

D(z)(t—ﬂuiﬂgﬂ) = ﬁ(ing’ina+1) = [(£“k+1 U(z))/"'j

tn,

so that it follows from (A.10) that

—

= Mf,.,k + z(iﬂk’{ﬂri'l) - ﬁ(iﬂuiﬂk+l)

‘."h-n
> Mz(:) + AD(Ey, in 1) = DO(En i i1)
=m0
Furthermore,
By, = U2, = (imas = i ~ U2 modo

Hence, relations (A.2) and (A.3) hold for k + 1.

If, however, Mt.(_z) = 0, then

Rk+1

M, >1=M? |,

tneyy Engyr

and, according to the definition of the service times in queue 3,

— ng)

A tng

=o.
Thus, again, relations (A.2) and (A.3) hold for k& + 1.

This completes the inductive proof. If kg < oo, then, due to the fact that f,,,‘o +1— £nk., <T
and &; — §;_; = T for all i > ng, + 2, similar arguments can be used to show that relation (A.5)
holds for all ¢ < f,,ko +1- Since there is no loss in queue O after time t',,,‘0 +1, we conclude that

(A.5) remains true for all £ > i"ko +1-

Combining relations (A.1) and (A.5) implies that relation (7.1) holds for all ¢ > 0. The
proof is thus completed. |
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