Multivariate Decision Trees

Carla E. Brodley
Paul E. Utgoft
Department of Computer Science
University of Massachusetts

Ambherst, Massachusetts 01003 USA

COINS Technical Report 92-82
December 1992

Abstract

Multivariate decision trees overcome a representational limitation of univariate decision
trees: univariate decision trees are restricted to splits of the instance space that are orthogonal
to the feature’s axis. This paper discusses the following issues for constructing multivariate
decision trees: representing a multivariate test, including symbolic and numeric features,
learning the coefficients of a multivariate test, selecting the features to include in a test, and
pruning of multivariate decision trees. We present some new and review some well-known
methods for forming multivariate decision trees. The methods are compared across a variety
of learning tasks to assess each method’s ability to find concise, accurate decision trees.
The results demonstrate that some multivariate methods are more effective than others. In
addition, the experiments confirm that allowing multivariate tests improves the accuracy of
the resulting decision tree over univariate trees.
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1 Introduction

For inductive learning, decision-tree methods are attractive for three principal reasons.
Firstly, the methods find trees that generalize well to the unobserved instances, assum-
ing that the instances are described in terms of features that are correlated with the
target concept. Secondly, the methods are efficient, generally requiring a total amount
of computation that is proportional to the number of observed training instances. Fi-
nally, the resulting decision tree provides a representation of the concept that humans
find easy to interpret.

A decision tree is either a leaf node containing the name of a class or a decision
node containing a test. For each possible outcome of the test there is a branch to a
decision tree. To classify an instance, one starts at the root of the tree and follows the
branch indicated by the outcome of each test until a leaf node is reached. The name
of the class at the leaf is the resulting classification.

One dimension by which decision trees can be characterized is whether they test
more than one feature at a node. Decision trees that are limited to testing a single
feature at a node are potentially much larger than trees that allow testing of multiple
features at a node. This limitation reduces the ability to express concepts succinctly,
which renders many classes of concepts difficult or impossible to express. This repre-
sentational limitation manifests itself in two forms: features are tested in one or more
subtrees of the decision tree (Pagallo & Haussler, 1990) and features are tested more
than once along a path in the decision tree. For the replicated subtree problem, forming
Boolean combinations of the features has been shown to improve the accuracy, reduce
the number of instances required for training, and reduce the size of the decision tree
(Pagallo, 1990; Matheus, 1990).

Repeated testing of features along a path in the tree occurs when a subset of the
features are related numerically. Consider the two-dimensional instance space shown in
Figure 1 and the corresponding univariate decision tree. The univariate decision tree
approximates the hyperplane boundary, y + # < 8, with a series of orthogonal splits.
In the figure, the dotted line represents the hyperplane boundary and the solid line
represents the boundary of the univariate decision tree. This example illustrates the
well known problem that a univariate test can only split a space with a boundary that
is orthogonal to that feature’s axis (Breiman, Friedman, Olshen & Stone, 1984). This
limits the space of regions in the instance space that can be represented succinctly, and
can result in a large tree and poor generalization to the unobserved instances.

Multivariate decision trees alleviate the replication problems of univariate decision
trees. In a multivariate decision tree each test can be based on one or more of the input
features; each test in the tree is multivariate. For example, the multivariate decision
tree for the data set shown in Figure 1 consists of one test node and two leaves. The
test node is the multivariate test y + « < 8. Instances for which y + z is less than or
equal to 8 are classified as negative; otherwise they are classified as positive.

In this paper we describe and evaluate a variety of multivariate tree construction
methods. The first part is devoted to discussing the issues that must be considered to
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Figure 1: An example instance space; “+”: positive instance, : negative instance.

The corresponding univariate decision tree.

construct multivariate decision trees. We review some well-known methods and intro-
duce some new methods for multivariate tree construction. The second part reports
and discusses experimental results of comparisons among the various methods. The
results indicate that some multivariate decision tree methods are more effective than
others. In addition, our experiments confirm that allowing multivariate tests improves
the accuracy of the resulting decision tree over univariate decision trees. We focus on
multivariate tests that are linear combinations of the initial features that describe the
instances. The issues and methods we describe are not restricted to first-order linear
combinations; they can be used to combine higher order features or features that are
combinations of the initial features (see Sutton and Matheus (1991) for an approach
to constructing more complex features).

Specifically, in Section 2 we first review the standard decision tree methodology
and then outline the following issues one must consider to construct a multivariate de-
cision tree: including symbolic features in multivariate tests, handling missing values,
representing a linear combination test, learning the coefficients of a linear combination
test, selecting the features to include in a test, and avoiding overfitting. In Section
3 we describe four algorithms for finding the coefficients of a linear combination test.
In Section 4 we describe three well known and two new approaches to selecting which
features to include in a multivariate test, and in Section 5 we present a new method for
avoiding overfitting when multivariate tests are used in decision trees. In Section 6 we
present the results of empirical experiments of the described methods for several differ-
ent learning tasks and discuss the strengths and weaknesses of each presented method.
Finally, in Section 7 we summarize our conclusions resulting from this evaluation and
we outline an avenue for future work in multivariate decision tree research.



2 Issues in multivariate tree construction

There are two important advantages of decision-tree classifiers that one does not want
to lose by permitting multivariate splits. Firstly, the tests in a decision tree are per-
formed sequentially by following the branches of the tree. Thus, only those features
that are required to reach a decision need to be evaluated. On the assumption that
there is some cost in obtaining the value of a feature, it is desirable to test only those
features that are needed. Secondly, a decision tree provides a clear statement of a
sequential decision procedure for determining the classification of an instance. A small
tree with simple tests is most appealing because a human can understand it. There is
a tradeoff to consider in allowing multivariate tests: simple tests may result in large
trees that are difficult to understand, yet multivariate tests may result in small trees
with tests that are difficult to understand.

In this section we describe issues of importance for multivariate decision tree con-
struction. Sections 2.1 through 2.6 discuss issues specific to forming multivariate tests
and general decision tree issues in the context of multivariate tests. addition of multi-
variate tests affects general decision tree issues such as overfitting. Many of the issues
for constructing multivariate decision trees are the same as for univariate decision trees.
For both multivariate and univariate decision trees there are two stages in tree con-
struction: building the decision tree from labeled examples and then pruning branches
from the tree that are not statistically valid.

Given a set of training instances, each described by n features and labeled with
a class name, a top-down decision tree algorithm chooses the best test to partition
the instances using some merit selection criterion. The chosen test is then used to
partition the training instances and a branch for each outcome of the test is created.
The algorithm is applied recursively to each resulting partition. If the instances in a
partition are from a single class, then a leaf node is created and assigned the class
label of the single class. During decision tree construction, at each node, one wants
to select the test that best divides the instances into their classes. The difference
between univariate and multivariate trees is that in a univariate decision tree a test is
a single feature, whereas in a multivariate decision tree a test is based on one or more
features. There are many different partition merit criteria that can be used to judge the
“goodness of a split”; the most common appear in the form of an entropy or impurity
measure. Breiman, et al. (1984), Quinlan (1986a), Mingers (1989a), Safavian and
Landgrebe (1991), Buntine and Niblett (1992) and Fayyad and Irani (1992b) discuss
and compare different partition merit criteria.

In addition, for both univariate and multivariate decision trees, one wants to avoid
overfitting the decision tree to the training data in domains that contain noisy instances.
A noisy instance is one for which either the class label is incorrect, some number of
the attribute values are incorrect or a combination of the two. Noise can be caused
by many different factors which include faulty measurements, ill-defined thresholds
and subjective interpretation (Quinlan, 1986b). Overfitting occurs when the training
data contain noisy instances and the decision tree algorithm induces a classifier that



classifies all instances in the training set correctly. Such a tree will usually perform
poorly for previously unseen instances. To avoid overfitting, the tree must be pruned
back to reduce the estimated classification error.

2.1 Symbolic and numeric features

One desires that a decision tree algorithm be able to handle both unordered (symbolic)
and ordered (numeric) features. Univariate decision tree algorithms require that each
test have a discrete number of outcomes. To meet this requirement, each ordered
feature z; is mapped to a set of unordered features by finding a set of Boolean tests
of the form z; > a, where a is in the observed range of z;. (See Fayyad and Irani
(1992a) for a discussion of the issues involved in mapping ordered features to unordered
features.)

When constructing linear combination tests, the problem is reversed: how can one
include unordered features in a linear combination test? One solution, used in CART
(Breiman, et al. 1984) is to form linear combinations using only the ordered features.
An alternative solution is to map each unordered feature to m ordered features, one
for each observed value of the feature (Hampson & Volper, 1986; Utgoff & Brodley,
1990).

In order to map an unordered feature to a numeric feature, one needs to be careful
not to impose an order on the values of the unordered feature. For a two-valued feature,
one can simply assign 1 to one value and —1 to the other. If the feature has more than
two observed values, then each feature-value pair can be mapped to a propositional
feature, which is TRUE if and only if the feature has the particular value in the instance
(Hampson & Volper, 1986). This avoids imposing any order on the unordered values
of the feature. With this encoding, one can create linear combinations of both ordered
and unordered features.

2.2 Filling in missing values

For some instances, not all feature values may be available. In such cases, one would
like to fill in the missing values. Quinlan (1989) describes a variety of approaches for
handling missing values of unordered features. These include ignoring any instance
with a missing value, filling in the most likely value, and combining the results of
classification using each possible value according to the probability of that value. For
linear combination tests, ignoring instances with missing values may reduce the number
of available instances significantly as there may be few instances with all values present.

Another approach for handling a missing value is to estimate it using the sample
mean, which is an unbiased estimator of the expected value. At each node in the tree,
each encoded symbolic and numeric feature is normalized by mapping it to standard
normal form, i.e., zero mean and unit standard deviation (Sutton, 1988). After nor-
malization, missing values can be filled in with the sample mean, which is equal to
zero. In a linear combination test this has the effect of removing the feature’s influence



from the classification, because a feature with a value of zero does not contribute to
the value of the linear combination.

2.3 Numerical representation of a multivariate test

For two class learning tasks, a multivariate test can be represented by a linear threshold
unit (Nilsson, 1965; Duda & Hart, 1973). For multiclass tasks, there are two possible
representations: a linear threshold unit or a linear machine (Nilsson, 1965; Duda &
Hart, 1973). A linear threshold unit (LTU) is a binary test of the form WTY > 0,
where Y is an instance description (a pattern vector) consisting of a constant 1 and the
n features that describe the instance. W is a vector of n 4 1 coefficients, also known
as weights. If WTY > 0, then the LTU infers that Y belongs to class 1, otherwise if
WTY < 0, then the LTU infers that Y belongs to class 2. If there are more than two
classes, then the LTU partitions the set of observed instances into two sets that each
may contain instances from one or more classes.

A linear machine (LM) is a set of R linear discriminant functions that are used
collectively to assign an instance to one of the R classes (Nilsson, 1965). Let Y be an
instance description (a pattern vector) consisting of a constant 1 and the n features
that describe the instance. Then each discriminant function g;(Y) has the form WYY
where W, is a vector of n + 1 coeflicients. A linear machine infers instance Y to
belong to class 7 if and only if (Vj,7 # j) g:(Y) > g¢;(Y). For the rare case in which
9:(Y) = g;(Y) some arbitrary decision is made: our implementation of an LM chooses
the smaller of 2 and j in these cases.

2.4 Finding the coefficients of a multivariate test

Deferring the issue of which features should be included in a linear combination until
the next section, this section addresses the issue of how to find the coefficients of a
multivariate test. Given i features, one wants to find the set of coeflicients that will
result in the best partition of the training instances. Because the multivariate test will
be used in a decision tree, this issue is different from finding the linear threshold unit
or linear machine that has maximum accuracy when used to classify the training data.
In a decision tree, the quality of a set of coefficients (and the test that they form) will
be judged by how well the test partitions the instances into their classes.

One dimension along which we can differentiate coefficient learning algorithms is the
partition merit criterion they seek to maximize. Many coeflicient algorithms maximize
accuracy for the training data and when embedded in a decision tree algorithm may
fail to find a test that discriminates the instances (i.e., the test classifies all instances
as from one class). This situation occurs when the highest accuracy can be achieved by
classifying all of the instances as one class. A different criterion is used in the CART
system (Breiman, et al. 1984). CART searches explicitly for a set of coeflicients that
maximizes a discrete impurity measure.



2.5 Feature selection

Which features should be selected for a linear combination test? One wants to minimize
the number of features in the test to both increase understandability and decrease the
number of features in the data that need to be evaluated. In addition, one wants to
find the best combination with respect to some partition merit criterion. For most data
sets it will be impossible to try every combination of features because the number of
possible combinations is exponential in the number of features. Therefore, some type
of greedy search procedure must be used. Two well known approaches to selecting
features for a linear combination test are Sequential Backward Elimination (SBE) and
Sequential Forward Selection (SFS). An SBE search begins with all n features and
removes those features that do not contribute to the effectiveness of the split. SBE is
based on the assumption that it is better to search for a useful projection onto fewer
dimensions from a relatively well informed state than it is to search for a projection
onto more dimensions from a relatively uninformed state (Breiman, et al. 1984). An
SFS search starts with zero features and sequentially adds the feature that contributes
most to the effectiveness of the split. We will discuss these two approaches in detail in
Section 4.

Another factor of feature selection is the decision of whether one is willing to trade
quality for simplicity. If there is a cost associated with obtaining the value of a feature,
then one can bias the selection process to select less expensive features. The criterion
function used to select features can be a function of cost and quality. For example, one
can restrict the number of features permitted in the final test or when using an SBE
search, continue to eliminate features as long as there is not more than an a% drop in
the merit criterion measure.

In addition to searching for the best linear combination using some partition merit
criterion, one must also pay attention to the number of instances at a node relative to
the number of features in the test. If the number of unique instances is not greater
than twice the dimensionality of the number of features in the test, then the test will
underfit the training instances (Duda & Hart, 1973). In other words, when there are
too few instances, there are many possible orientations for the hyperplane defined by
the test, and there is no basis for selecting one orientation over another. In these cases
the feature selection mechanism should only consider tests that will not underfit the
training instances. We call this selection criterion the underfitting criterion. When this
criterion is used with the SBE method, features will be eliminated until the test no
longer underfits the training data. When used with the SFS method, features will be
added only as long as the addition of a new feature will not cause the test to underfit
the training data.

As mentioned in Section 2.4, coefficient learning methods that seek to maximize ac-
curacy on the training instances may fail to find a test that discriminates the instances.
To provide a partial solution to this dilemma, one can add a discrimination criterion
to the feature selection method. Then the goal of a feature selection algorithm is to
find a linear combination test based on the fewest features that maximizes the merit
criterion, discriminates the instances and does not underfit the training instances.



2.6 Avoiding overfitting

A common approach to correcting for overfitting in a decision tree model is to prune
back the tree to the appropriate level. A full tree is grown, which classifies all the
training instances correctly and then subtrees are pruned back to reduce future clas-
sification errors (Breiman, Friedman, Olshen & Stone, 1984; Quinlan, 1987). Quinlan
(1987) and Mingers (1989b) compare commonly used methods.

We cannot apply these pruning methods directly to multivariate decision trees.
Although a multivariate test may overfit the training instances, pruning the entire
node may result in even more classification errors. The issue here is the granularity of
the nodes in a multivariate decision tree; the granularity can vary from a univariate
test at one end of the spectrum to a multivariate test based on all n features at the
other end. In the case where removing a multivariate test results in a higher estimated
error, we can try to reduce the error by eliminating features from the multivariate
test. Eliminating features generalizes the multivariate test; a multivariate test based
on n — 1 features is more general than one based on n features.

3 Learning the coefficients of a linear combination
test

In this section we describe four different methods for learning the coefficients of a
linear combination test. The first method, Recursive Least Squares (RLS) (Young,
1984), minimizes the mean-squared error over the training data. The second method,
the Pocket Algorithm (Gallant, 1986), maximizes the number of correct classifications
on the training data. The third method, Thermal Training (Frean, 1990), converges to
a set of coefficients by paying decreasing attention to large errors. The fourth method,
CART’s coeflicient learning method (Breiman, et al. 1984), explicitly searches for a set
of coefficients that minimizes the impurity of the partition created by the multivariate
test. The RLS and CART methods are restricted to binary partitions of the data,
whereas the Thermal and Pocket algorithms produce multiway partitions.

3.1 Recursive Least Squares Procedure

The Recursive Least Squares algorithm, invented by Gauss, is a recursive version of the
Least Squares (LS) algorithm. An LS procedure minimizes the mean squared error,
> (y:i —9:)? of the training data, where y; is the true value and ; is the estimated value
of the dependent feature, y, for instance 7. For discrete classification problems, the true
value of the dependent feature (the class) is either ¢ or —c. In our implementation of
the RLS procedure we use ¢ = 1.

To find the coefficients of the linear function that minimize the mean-squared error,
the RLS algorithm incrementally updates the coefficients using the error between the
estimated value of the dependent feature and the true value. Specifically, after instance

k is observed, RLS updates the weight vector, W, as follows: Wi = Wj_y — Ki(XF Wi —
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Yr), where X} is the instance vector, y; is the value of the independent variable (the
class), and Kj = PpXj is the weight assigned to the update. Py is a time-variable
weighting matrix of size n X n, which over time decreases and smoothes the errors
made by the linear combination. P is the error covariance matrix. After each instance
k is observed, P is updated as follows: Py = Pp_q — P 1 Xp[1 + XL Pr_1 X3) ' XTI Py
As more instances are observed, each individual instance has less effect, because RLS
minimizes the average squared error. This is reflected in the decreasing values of the
entries of the matrix P.

RLS requires that one set the initial weights Wy and initialize P, the error covariance
matrix. If little is known about the true W and Wj is set to zero, then the initial values
of P should reflect this uncertainty: the diagonal elements should be set to large values
to indicate a high initial error variance and little confidence in the initial estimate of
Wo. Young (1984) suggests setting the diagonal elements to 106. The off-diagonal
elements should be set to zero showing when there is no a priori information about the
covariance properties of W. In this case, the best estimate is that they are zero. When
there is no noise in the data and the number of instances is enough to determine W
uniquely, the RLS algorithm needs to see each instance only once. Otherwise, one must
cycle through the instances some small number of times (our implementation cycles
through the instances three times) to converge to a set of weights. For a detailed

discussion of the RLS algorithm see Young (1984).

3.2 The Pocket Algorithm

Gallant’s (1986) Pocket Algorithm seeks a set of coeflicients for a multivariate test that
minimizes the number of errors when the test is applied to the training data. Note
that this goal is different from the goal of the RLS training method, which minimizes
the mean-squared error. The Pocket Algorithm uses the absolute error correction rule
(Nilsson, 1965; Duda & Hart, 1973) to update the weights of an LTU (or an LM).
For an LTU (or an LM), the algorithm saves in P (the pocket) the best weight vector
W that occurs during normal perceptron training, as measured by the longest run
of consecutive correct classifications, called the pocket count. Assuming that the ob-
served instances are chosen in a random order, Gallant shows that the probability of
an LTU based on the pocket vector P being optimal approaches 1 as training proceeds.
The pocket vector is probabalistically optimal in the sense that no other weight vector
visited so far is likely to be a more accurate classifier. The Pocket Algorithm fulfills
a critical role when searching for a separating hyperplane because the classification
accuracy of an LTU trained using the absolute error correction rule is unpredictable
when the instances are not linearly separable (Duda & Hart, 1973). The Pocket Algo-
rithm was used in PT2, an incremental multivariate decision tree algorithm (Utgoff &

Brodley, 1990).



Figure 2: Nonseparable Instance Space

3.3 The Thermal Training Procedure

The thermal training procedure can be applied to a linear threshold unit or a linear
machine. We discuss its application to linear machines here. (See Frean (1990) for a
discussion of its application to an LTU.) One well known method for training a linear
machine is the absolute error correction rule (Duda & Fossum, 1966), which adjusts W;
and W, where 7 is the class to which the instance belongs and j is the class to which
the linear machine incorrectly assigns the instance. The correction is accomplished by

W, — W, +cY and W; — W, — cY, where correction ¢ = w + €, causes
the updated linear machine to classify the instance correctly. (In our implementation
of this procedure € = 0.1.) If the training instances are linearly separable, then cycling
through the instances allows the linear machine to partition the instances into separate
convex regions.

If the instances are not linearly separable, then the error corrections will not cease,
and the classification accuracy of the linear machine will be unpredictable. Frean (1990)
has developed the notion of a “thermal perceptron”, which gives stable behavior even
when the instances are not linearly separable. Frean observed that two kinds of errors
preclude convergence when the instances are not linearly separable. First, as shown in
the upper left portion of Figure 2, if an instance is far from the decision boundary and
would be misclassified, then the decision boundary needs a large adjustment in order
to remove the error. On the assumption that the boundary is converging to a good
location, relatively large adjustments are considered counterproductive. To achieve
stability, Frean calls for paying decreasing attention to large errors. The second kind
of problematic error occurs when a misclassified instance lies very close to the decision
boundary, as shown to the right of the boundary in Figure 2. To ensure that the
weights converge, one needs to reduce the amount of all corrections.

Utgoff and Brodley (Utgoff & Brodley, 1991) extended these ideas to a linear ma-
chine, yielding a thermal linear machine. Decreasing attention is paid to large errors by

_ (w-w)TY

using correction ¢ = where (3 is annealed during training and k = “—575— + €.

B
B+k?
As the amount of error k approaches 0, the correction ¢ approaches 1 regardless of 3.



Table 1: Training a Thermal Linear Machine

1. Initialize G to 2.

2. If linear machine is correct for all instances or emag/lmag < a for the last 2 x n
instances, then return (n = the number of features.)

3. Otherwise, pass through the training instances once, and for each instance Y that
would be misclassified by the linear machine and for which & < &, immediately

(a) Compute correction ¢ = £°_ and update W; and W;.

(b) If the magnitude of the linear machine decreased on this adjustment, but increased
on the previous adjustment, then anneal 8 to a8 — b.

4. Go to step 2.

Default values are a = 0.999 and b = 0.0005.

Therefore, to ensure that the linear machine converges, the amount of correction c is

annealed regardless of k. This is achieved by multiplying ¢ by 8 because it is already
ﬂz

B+k"

Table 1 shows the algorithm for training a thermal linear machine. g is reduced

geometrically by rate a, and arithmetically by constant b. This enables the algorithm
to spend more time training with small values of 3 when it is refining the location
of the decision boundary. Also note that 8 is reduced only when the magnitude of
the linear machine decreased for the current weight adjustment, but increased during
the previous adjustment. In this algorithm, the magnitude of a linear machine is the
sum of the magnitudes of its constituent weight vectors. The criterion for when to
reduce B is motivated by the fact that the magnitude of the linear machine increases
rapidly during the early training, stabilizing when the decision boundary is near its
final location (Duda & Hart, 1973). The default values for a and b remain the same
throughout the experiments reported in this paper.

A thermal linear machine has converged when the magnitude of each correction,
k, to the linear machine is larger than 8 for each instance in the training set. How-
ever, one does not need to wait until convergence; the magnitude of the linear machine
asymptotes quickly, and it is at this point that training is stopped to reduce the time
required to find the coefficients. To determine this point, after each update the magni-
tude of the new set of weight vectors and the magnitude of the error correction emag
is computed. If the magnitude of the new set of weight vectors is larger than any
observed thus far, it is stored in lmag. Training stops when the ratio of the magnitude
of the error correction to lmag is less than a for the last 2 * n instances, where n
is equal to the number of features in the linear machine. Empirical tests show that

annealing giving correction ¢ =
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setting a = .01 1s effective in reducing total training time without reducing the quality

of the learned classifier (Brodley & Utgoff, 1992).

3.4 CART: Explicit reduction of impurity

CART searches explicitly for a set of coefficients that minimizes the impurity of the
partition defined by the multivariate test (Breiman, et al. 1984). The impurity is
minimized if each partition contains instances from only one class; the impurity is at
a maximum if all classes are represented equally in each partition. CART uses a merit
criterion function to measure the impurity of a partition. CART uses only instances
for which no values are missing. CART first normalizes each instance by centering
each value of each feature at its median and then dividing by its interquartile range.
After normalization, the algorithm takes a set of coefficients W = (wy, ..., w,) such
that |[W||? = P, w? = 1, and searches for the best split of the form: 37 , w;z; < ¢
as ¢ ranges over all possible values for a given precision. The search algorithm cycles
through the features, z4,...,z,, at each step doing a search for an improved linear
combination split. At the beginning of the L** cycle, let the current linear combination
split be v < ¢, where v = > ; w;z;. For fixed 4, CART searches for the best split of
the form: v — §(z1 +7v) < ¢, such that § > :1:_57,151 +v>0and § < z”l:fy,ml +~v <0.
The search for § is carried out for v = —.25,0,.25. The resulting three splits are
compared, using the chosen merit criterion, and the § and v corresponding to the best

are used to update v, v' = > | wiz;, where w] = w; — 8, w, = w;,;1 > 1 and ' = ¢+ 67.
This search is repeated for each z;,2 = 2,...n resulting in an updated split vy < ¢f.
The final step of the cycle is to find the best ¢z, and the system searches explicitly
for the split that minimizes the impurity of the resulting partition. The result of this
search is used to start the next cycle. The search for the coeflicients continues until
the reduction in the impurity as measured by a merit criterion is less than some small
threshold, e. After the final linear combination is determined, it is converted to a split
on the original nonnormalized features.

4 Feature selection

At each test node in the tree one wants to minimize the number of features in the
test. In this section we describe five methods for selecting the features to include in a
linear combination test. The two basic approaches: Sequential Backward Elimination
(SBE) and Sequential Forward Selection (SFS) are described in Sections 4.1 and 4.2.
In Section 4.3 we describe a greedy hill-climbing version of SBE. In Section 4.4 we
describe a new heuristic approach that chooses at each node in the tree whether to
perform a SFS or a SBE search and in Section 4.5 we describe a feature selection
mechanism, used in the CART system, that trades quality for simplicity.
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Table 2: Sequential Backward Elimination

1. Find a set of coeflicients for a test based on all n features, producing T,
2. Set ¢ = n, Thest = Th.

3. Find the best T;_1 by eliminating the feature that causes the smallest decrease of the
merit criterion.

4. If the best T;_; is better than Tpes, then set Tyes,; = the best T;_q.
5. If the stopping criterion is met, then stop and return Tpeg;.

6. Otherwise, set ¢ = ¢ — 1 and go to 3.

4.1 Sequential Backward Elimination

A Sequential Backward Elimination search is a top down search method that starts
with all of the features and tries to remove the feature that will cause the smallest
decrease of some merit criterion function that reflects the amount of classification
information conveyed by the feature (Kittler, 1986). Each feature of a test either
contributes to, makes no difference to, or hinders the quality of the test. An SBE
search iteratively removes the feature that contributes least to the quality of the test.
It continues eliminating features until a specified stopping criterion is met. Table 2
shows the general sequential backward elimination algorithm. To determine which
feature to eliminate at Step 3, we need to find the coeflicients for 2 linear combination
tests, each with a different feature removed.

There are two choices that must be made to implement the SBE algorithm: the
choice of merit criterion function and the stopping criterion. For example, a merit
criterion function may measure the accuracy of the test when applied to the training
data, or measure the entropy, as with the Gini (Breiman, et al. 1984) or information-
gain ratio (Quinlan, 1986a) criteria. The stopping criterion determines when to stop
eliminating features from the linear combination test. For example, the search can
continue until only one feature remains or the search can be halted if the value of
the merit criterion for a test based on 72 — 1 features is less than that for a test based
on i features. During the process of eliminating features, the best linear combination
test with the minimum number of features, Tje,, 1s saved. When feature elimination
ceases, the test for the decision node is the saved linear combination test. In our
implementation of the SBE algorithm we use the following stopping criterion: continue
to eliminate features as long the accuracy of the current test based on i features is
either more accurate or is not more than 10% less accurate than the accuracy of best
test found thus far, and two or more features remain to be eliminated. This heuristic
stopping criterion is based on the observation that if the accuracy drops by more than
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Table 3: Sequential Forward Selection

1. Select the best of n linear combination tests, each based on a different single feature,
producing T;.

2. Set i = 1, Tpest = Th.

3. Find the best T;,1 by adding the feature that causes the largest increase of the merit
criterion.

4. If the best T;,q is better than Tpes, then set Tpese = the best Ty
5. If the stopping criterion is met, then stop and return Tpeg;.

6. Otherwise, set ¢ = i+ 1, and go to 3.

10%, the chance of finding a better test based on fewer features is remote.

4.2 Sequential Forward Selection

A Sequential Forward Selection search is a bottom up search method that starts
with zero features and tries to add the feature that that will cause the largest increase
of some merit criterion function. An SFS search iteratively adds the feature that results
in the most improvement of the quality of the test. It continues adding features until
the specified stopping criterion is met. During the process of adding features, the best
linear combination test with the minimum number of features is saved. When feature
addition ceases, the test for the decision node is the saved linear combination test.
Table 3 shows the general SFS search algorithm.

Like the SBE algorithm, the SFS algorithm needs a merit criterion function and a
stopping criterion. The stopping criterion determines when to stop adding features to
the test. Clearly, the search must stop when all features have been added. The search
can stop before this point is reached and in our implementation we employ a heuristic
stopping criterion, based on the observation that if the accuracy of the best test based
on 7 + 1 features drops by more than 10% over the best test observed thus far, then
the chance of finding a better test based on more features is remote. This observation
is particularly germane in domains where some of the features are noisy or irrelevant.

4.3 Greedy Sequential Backward Elimination

The Greedy Sequential Backward Elimination (GSBE) search is a variation of the SBE
algorithm. Instead of selecting the feature to remove by searching for the feature that
causes the smallest decrease of the merit criterion function, GSBE selects the feature
to remove that contributes the least to discriminability based on the magnitude of the
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weights of the LTU (or linear machine). This reduces the search time by a factor of n;
instead of comparing n linear combination tests when deciding which of the n features
to eliminate, GSBE compares only two linear combination tests (7; to T;_;). To be
able to judge the relative importance of the features by their weights, we normalize the
instances before training using the procedure described in Section 2.2.

For an LTU test, we measure the contribution of a feature to the ability to discrimi-
nate by its corresponding weight’s magnitude. We choose the feature corresponding to
the weight of smallest magnitude as the one to eliminate. For an LM test, we evaluate
a feature’s contribution using a measure of the dispersion of its weights over the set of
classes. A feature whose weights are widely dispersed has two desirable characteristics.
Firstly, a weight with a large magnitude causes the corresponding feature to make a
large contribution to the value of the discriminant function, and hence discriminabil-
ity. Secondly, a feature whose weights are widely spaced across the linear discriminant
functions makes different contributions to the value of the discrimination function of
each class. Therefore, one would like to eliminate the feature whose weights are of
smallest magnitude and are least dispersed. To this end, GSBE computes, for each
remaining feature, the average squared distance between the weights of the linear dis-
criminant functions for each pair of classes and then eliminates the feature that has
the smallest dispersion. This measure is analogous to the Euclidean interclass distance
measure for estimating error (Kittler, 1986). This elimination procedure is used in the

LMDT algorithm (Brodley & Utgoff, 1992).

4.4 Heuristic Sequential Search

The Heuristic Sequential Search (HSS) algorithm is a combination of the SFS algorithm
and the SBE algorithm. Given a set of training instances, HSS first finds the best linear
combination test based on all n features and the best linear test based on only one
feature. It then compares the quality of the two tests using the specified merit criterion
function. If the test based on only one feature is better, then it performs a SFS search,
otherwise it performs a SBE search. Although intuitively it may appear that HSS will
never select the SFS search algorithm, in practice we have found that it does. If many
of the features are irrelevant or noisy then the SFS algorithm will be the preferred
choice.

4.5 Trading quality for simplicity

CART’s linear combination algorithm differs from the previous four in three ways.
Firstly, it uses only numeric features to form linear combination tests. Secondly, it
uses only instances complete in the numeric features; if the value of any feature in an
instances is missing, then the instance is excluded from the training instances for the
linear combination. Finally, it may choose a linear combination test based on fewer
features even if the quality of the test is less than that of a test based on more features.
CART performs an SBE search to find a linear discriminant function that minimizes
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the impurity of the resulting partition. CART first searches for the coefficients of a
linear combination based on all of the numeric features using the procedure described in
Section 3.4. After the coeflicients have been found, CART calculates, for each feature,
the increase in the node impurity if the feature were to be omitted. The feature
that causes the smallest increase, f; is chosen and the threshold ¢ is recalculated to
optimize the reduction in impurity. If the increase in the impurity of eliminating f; is
less than a constant, 3, times the maximum increase in impurity for eliminating one
feature, then f; is omitted and the search continues. Note that after each individual
feature i1s omitted, CART searches for a new threshold, but leaves the coefficients of
the remaining features unchanged. After CART determines that further elimination is
undesirable, the set of coefficients for the remaining features is recalculated. The best
linear combination found by CART is added to the set of possible univariate tests and
the best of this new set is chosen as a test at the current node. Therefore, even with
the addition of a linear combination, CART may still pick a univariate test. Indeed,
we shall see in Section 6.3 that this is often the case.

5 Pruning classifiers to avoid overfitting

In Section 2.6 we discussed the issue of overfitting multivariate decision trees. In
this section we describe how to prune back a multivariate decision tree. The basic
approach to pruning a decision tree is: for every non-leaf subtree examine the change
in the estimated classification error if the subtree were replaced by a leaf labeled with
the class of the majority of the training examples used to form a test at the root of the
subtree. The subtree is replaced with a leaf if it lowers the estimated classification error;
otherwise, the subtree is retained. There are many different methods for estimating the
classification error of a subtree, which include using an independent set of instances or
using crossvalidation on the training instances (Breiman, Friedman, Olshen & Stone,
1984; Quinlan, 1987).

To address the problem that a multivariate test can overfit, we introduce a modi-
fication to the basic pruning algorithm. We call this modified algorithm multivariate
tree pruning. If pruning a subtree would result in more errors, then the algorithm de-
termines whether eliminating features from the multivariate test lowers the estimated
classification error. This procedure is restricted to subtrees whose children are all
leaves. During training, the instances used to form each test at the node are retained.
To prune a multivariate test, the algorithm uses the SBE search procedure. It iter-
atively eliminates a feature, retrains the coeflicients for the remaining features, using
the saved training instances and then evaluates the new test on the prune set. If the
new test based on fewer features causes no rise in the estimated number of errors then
elimination continues. Otherwise, the test that minimizes the estimated error rate is
returned (for some data sets this will be the original test).
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6 Evaluation of multivariate tree construction meth-

ods

To evaluate the various multivariate tree construction methods we performed several
experiments. In Section 6.1 we describe our experimental method and the data sets
used in the experiments. The next three sections compare different aspects of mul-
tivariate tree construction: Section 6.2 compares the coefficient learning algorithms;
Section 6.3 compares the feature selection algorithms; and Section 6.4 assesses the
utility of multivariate tree pruning.

6.1 Experimental method

In this section we describe the experimental methodology used in each of the next
three sections. In each experiment we compare two or more different learning methods
across a variety of learning tasks. For each learning method, we performed ten four-
fold crossvalidation runs on each data set. A crossvalidation run for one data set was
performed as follows:

1. Split the original data randomly into four equal parts. For each of the four parts,
P1=1,2,3,4:

(a) Use part P; for testing (25%) and split the remaining data (75%) randomly
into training (50%) and pruning (25%) data.

(b) Run each algorithm using this partition.
2. For each algorithm, sum the classification errors of the four runs.

3. Average the other relevant measures, such as time spent learning or number of
leaves in the tree.

The results of the ten four-fold crossvalidations were then averaged. In the exper-
iments we report both the sample average and standard deviation of the errors each
method makes on the independent test sets. To determine the significance of the dif-
ferences among the learning methods we used paired ¢-tests. Because the same random
splits of each data set were used for each method, the variances of the errors for any
two methods are each due to effects that are point-by-point identical.

Table 4 describes the chosen data sets, which were picked with the objective of cov-
ering a broad range of data set characteristics. We chose both two class and multiclass
data sets, data sets with different types of features (numeric, symbolic and Boolean),
data sets for which some of the values may be missing, and data sets with different
class proportions. The last column in Table 4 reports the number of values missing
from each data set. Brief descriptions of each data set follow:
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Breast: This data set comes from the breast cancer domain in oncology and was
collected at the Institute of Oncology, Ljubljani. The two classes represent the
reoccurrence or non-reoccurrence of breast cancer after an operation.

Bupa: The task for this data set is to determine whether a patient has a propensity
for a liver disorder based on the results of blood tests.

Cleveland: This data set, compiled by Dr. Robert Detrano, M.D. (Detrano, Janosi,
Steinbrunn, Pfisterer, Schmid, Sandhu, Guppy, Lee & Froelicher, 1989), was
collected at the Clevland Clinic Foundation. The task is to determine whether a
patient does or does not have a heart disease.

Glass: In this domain the task is to identify glass samples taken from the scene of an
accident. The examples were collected by B. German of the Home Office Forensic
Science Service at Aldermaston, Reading, UK.

Hepatitis: The task for this domain is to predict from test results whether a patient
will live or die from hepatitis.

Iris: Fisher’s classic data set (Fisher, 1936), contains three classes of 50 instances
each. Each class is a type of iris plant. One class is linearly separable from the
other two, but the latter two are not linearly separable from each other.

LED: Breiman, et al.’s (1984) data for the digit recognition problem consists of
ten classes representing whether a 0-9 is showing on an LED display. Each
attribute has a 10% probability of having its value inverted. The optimal Bayes
classification rate for this data set is 74%.

Segment: For this data set the task is to learn to segment an image into the seven
classes: sky, cement, window, brick, grass, foliage and path. Each instance is
the average of a 3 x 3 grid of pixels represented by 17 low-level, real-valued
image features. The data set was formed from seven images of buildings from
the University of Massachusetts campus that were hand segmented to create the
class labels.

6.2 Learning coefficients

In this section, we compare three of the coefficient learning algorithms: the Pocket
Algorithm, the RLS Procedure and the Thermal Training Procedure. Because the aim
of this experiment is to compare the coefficient training methods for linear combinations
only, we omit CART’s training procedure from this comparison. (CART chooses from
both linear combinations and univariate tests.) In this experiment we ran each of
the three coefficient learning algorithms in conjunction with the SBE, SFS and GSBE
feature selection methods to assess the accuracy, running time and size of the trees
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Table 4: Description of the Data Sets

Data Set  Classes Instances Features Type Missing

Breast 2 699 9 N.,S 16
Bupa 2 353 6 N 0
Cleveland 2 303 13 N,S 6
Glass 6 214 9 N 0
Hepatitis 2 155 19 N,B 167
Iris 3 150 4 N 0
LED 10 500 7 B 0
Segment 7 3210 19 N 0

produced by each. In each of the feature selection algorithms we used the information-
gain ratio merit criterion (Quinlan, 1986a) and the discrimination and underfitting
criteria described in Section 2.5. In addition, because one of the feature selection
algorithms, GSBE, requires that the input features be normalized, we normalize the
instances at each node and retain the normalization information for testing. To prune
the trees we use the reduced error pruning algorithm (Quinlan, 1987), which uses a set
of instances, the prune set, that is independent of the training instances to estimate
the error of a decision tree. Because our primary focus in this experiment is to evaluate
the coefficient learning algorithms, we defer comparing the feature selection methods
until the next section.

This section seeks to answer the following questions about the coefficient learning
methods:

1. Which method achieves the best accuracy on the independent set of test in-
stances?

2. Is there any interaction among the coefficient learning algorithms and the feature
selection methods?

3. Which method takes the least amount of computation time?

4. How do the three methods compare in terms of the size of the trees generated?

Table 5 reports the sample average and standard deviation of the errors on the
independent test sets from the ten crossvalidation runs for each two-class data set. We
are restricted to two-class data sets because the RLS algorithm cannot be used with
linear machines. The best coefficient training method for each feature selection method
is reported in bold-face type for each data set. Overall RLS achieves the lowest error
rate; except for the Breast data and for the Bupa data with SBE, RLS achieves the
lowest error rate. Thermal is better than Pocket with two exceptions: the Bupa data
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Table 5: Comparison of Coefficient Learning Algorithms: Errors

Algorithm Selection Breast Bupa Cleveland  Hepatitis
Pocket SFS 292+ 34 121.0+ 6.0 652+ 72 323+6.1
RLS SFS 303+ 24 11544+ 42 559+ 43 26.2+3.3
Thermal SFS 27.5+ 3.7 1204+ 59 603+59 293+3.0
Pocket SBE 303+ 4.6 113.3 +£12.7 63.5+ 4.7 30.6+4.7
RLS SBE 295+ 36 113.7+ 3.9 56.2+ 46 27.5+3.1
Thermal SBE 27.7+£31 11924+ 53 594+45 31.6+34
Pocket GSBE 296+ 54 12224+ 115 688+ 6.9 323+ 3.8
RLS GSBE 292+ 1.8 1164+ 6.6 53.2+ 42 27.24 3.2

Thermal GSBE 27.9+34 11754+ 79 5984+ 41 285+ 4.2

set with GSBE selection and the Hepatitis data set with GSBE selection. In every
case except two (SBE and GSBE with the Cleveland data set), RLS has the lowest
sample standard deviation. In every case except SFS with the Breast data, Thermal
has a lower sample standard deviation than Pocket. The most dramatic difference is
for the Bupa data set with SBE, for which the Pocket Algorithm has a sample standard
deviation of 12.7 error (approximately 10% of the errors) and the RLS algorithm has
a standard deviation of only 3.9 errors (approximately 3.5%).

To determine whether the differences in the errors among the three methods are
significant, we performed a paired ¢-test between each pair of coefficient learning algo-
rithms for each feature selection method. The results of these tests are shown in Table
6. Each entry in the table reports the probability that the difference in the paired
errors is due to chance; the smaller the value the more significant the difference is. For
example, a value less than 0.05 means that the probability that the observed difference
between the sample averages is due to chance is less than 5%. Values of less than 0.05
are reported in bold-face type to highlight significant differences.

By combining the results from Tables 5 and 6 we see that RLS is significantly
better at the 0.05 level than both Thermal and Pocket in eleven out of the twenty-four
possible cases. The Thermal Training algorithm is significantly better than the Pocket
algorithm in only three out of twelve cases: the Cleveland data set with SFS, and
each of the Cleveland and Hepatitis Data sets with GSBE. From this experiment, we
conclude that for these four tasks the RLS algorithm finds the best linear combinations
out of the three coefficient learning algorithms.

To test for any interaction between feature selection and coefficient algorithm we
ran paired t-tests between each pair of feature selection methods for each of the three
coefficient learning algorithms. There were no statistically significant differences at the
.05 level except for the Hepatitis data set when thermal training was used. We defer
further comparison of the feature selection methods to the next section.
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Table 6: Comparison of Coefficient Learning Algorithms: Paired ¢-test

Selection Coeff. Pair Breast Bupa Cleveland Hepatitis
SFS Pocket-RLS 0.317 0.014 0.016 0.008
SFS Pocket-Thermal 0.318 0.806 0.039 0.225
SFS RLS-Thermal 0.087 0.037 0.103 0.024
SBE Pocket-RLS 0.727  0.929 0.001 0.103
SBE Pocket-Thermal 0.182 0.171 0.183 0.679
SBE RLS-Thermal 0.121 0.011 0.080 0.014
GSBE Pocket-RLS 0.834 0.132 0.000 0.009
GSBE Pocket-Thermal 0.448 0.351 0.005 0.026
GSBE RLS-Thermal 0.340 0.667 0.012 0.283

Table 7: Comparison of Coefficient Learning Algorithms: CPU Seconds

Algorithm Selection Breast Bupa Cleveland Hepatitis

Pocket SFS 204 223 81.6 86.7
RLS SFS 107.9  20.9 139.1 204.2
Thermal SFS 24.2 14.3 38.9 26.7
Pocket SBE 23.5 12.3 35.1 32.9
RLS SBE 172,56  32.3 257.5 420.0
Thermal SBE 24.5 10.8 31.5 31.0
Pocket GSBE 149 119 26.7 23.2
RLS GSBE 34.5 9.1 34.6 40.9
Thermal GSBE 12.7 7.2 13.0 6.9
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Table 8: Comparison of Coeflicient Learning Algorithms: Size

Algorithm Selection | Breast Bupa Cleveland | Hepatitis

T F T F| T F| T F
Pocket SFS 22 50101 32|37 62|18 8.7
RLS SFS 20 51| 29 49|13 89|11 136
Thermal SFS 20 57| 99 32|25 83|15 114
Pocket SBE 1.9 68| 79 46|35 10.7|25 17.0
RLS SBE 1.9 48| 39 47|14 91|13 11.9
Thermal SBE 1.7 6.7 96 4624 108 |13 16.1
Pocket GSBE 25 721123 44|45 87|23 124
RLS GSBE 1.8 50| 32 46|11 85|13 104
Thermal GSBE 24 62| 99 45129 98|15 135

In Table 7 we report the number of CPU seconds ! each algorithm used to find a
multivariate decision tree. We report the smallest time for each data set and feature
selection method in bold-face type. The RLS algorithm takes much longer than the
Pocket and Thermal algorithms when used with the SFS or SBE selection algorithms.
There are two contributing factors to the difference in time. Firstly, RLS updates the
coefficient vector for each observed instance, whereas the Pocket and Thermal algo-
rithms update the coefficient vector only if an observed instance would be classified
incorrectly by the current LTU. The second factor is the number of operations per-
formed per update: RLS must update the error covariance matrix, P, for each update
and therefore needs O(n?) operations (n is the number of features in the LTU), whereas
the Pocket and Thermal algorithms need only O(n) operations per update. This dif-
ference in training time is greatly reduced for the GSBE selection algorithm. Recall
that the GSBE algorithm reduces computation time over SBE by a factor of n, where
n is the number of features in the data set.

In Table 8 we compare the size of the trees resulting from each of the coefficient
training algorithms. Each entry reports the average number of test nodes (T) and the
average number of features tested per linear combination (F). Because each test in the
tree is binary, the number of leaves for each tree is equal to the number of test nodes
plus one. The RLS algorithm produces trees with fewer nodes than both the Thermal
and Pocket algorithms, and the Thermal algorithm produces trees with fewer nodes
than the Pocket algorithm. Note that this ranking corresponds to the ranking of the
algorithms by error rate. The difference in the number of nodes is most striking for
the Bupa and Cleveland data sets. The coefficient training method that produced the
smallest average number of features tested per node varies from data set to data set.

We draw the following conclusions from this experiment:

1. Overall RLS achieves the best accuracy of the three methods.

L All experiments were run on a DEC Station 5000/200
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2. This results is invariant of which feature selection method was used. For these
four data sets there was no interaction among the coefficient learning algorithms
and the feature selection methods.

3. RLS requires far more CPU time than Thermal Training or the Pocket Algorithm.
In all but one case Thermal Training was the fastest of the three methods.

4. For these data sets RLS produced the smallest trees.

Although RLS is computationally more expensive than the other two methods,
overall it produced smaller more accurate decision trees. The one drawback of the
RLS algorithm is that at present we know of no method for using RLS to learn a
multiway partition. Therefore, when faced with a multiclass learning task the only
approach to using RLS is to form subsets of the classes and use RLS to learn a binary
partition. An important issue for future research is the application of the RLS rule to
linear machines.

6.3 Feature selection methods

In this section we evaluate the feature selection methods in two ways. The first exper-
iment compares only multivariate feature selection methods. The second experiment
compares multivariate, univariate, and multivariate plus univariate feature selection
methods.

6.3.1 Multivariate methods

In this experiment we use the RLS coefficient learning method for two-class data sets.
We use Thermal Training procedure for multiclass data sets because, as discussed at the
end of Section 6.2, RLS is restricted to binary partitions of the data. Each algorithm
uses the gain-ratio merit criterion (Quinlan, 1986a), the discrimination and underfitting
criteria, and reduced error pruning. The algorithms differ only in the feature selection
procedure used. This section seeks to answer the following questions:

1. Is SBE better than SFS because of starting from an informed position?
2. Does Heuristic Sequential Search (HSS) select the best method?

3. Does Greedy Sequential Backward Elimination(GSBE) give up any accuracy over
SBE? Is the dispersion heuristic a good one?

4. How do the methods compare in terms of computation time?

5. How is tree size affected by the selection method?
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Table 9: Comparison of Multivariate Feature Selection Methods: Errors

Data Set HSS GSBE SBE SFS

Breast 266 +44 25.1 4+ 2.7 260+ 2.2 263+ 4.1
Bupa 1156 + 6.2 1129+ 55 1158+ 6.4 113.1+ 5.8
Cleveland 572+ 42 55.1 4+ 34 5724+ 4.2 57.8 £ 2.2
Glass 82.3 £ 456 875+ 32 8.5+ 71 86.3 + 7.3
Hepatitis 27.7T £ 2.8 290+ 31 27.7T+ 2.8 299+ 2.7
Iris 8.7+ 14 91+ 3.7 83+ 1.2 7.5+ 1.3
LED 268.2 £ 8.2 269.2 +£ 10.3 267.2 +£ 126 266.5 + 8.2

Segment 113.2 £81 13554+ 6.5 1163+ 11.5 113.6 + 12.8

In Table 9 we report the sample average and standard deviation for each method.
The number of errors of the most accurate method is shown in bold-face type. For
each data set, we report the results of a paired ¢-test for each pair of selection methods
in Table 10 to assess the significance of the difference of the errors. Differences that
are significant at the .05 level are shown in bold-face type.

SBE produced trees that made fewer errors than SFS for the Breast, Cleveland,
Glass, and Hepatitis data sets. The only statistically significant differences between
SBE and SFS were for the Bupa and Hepatitis Data sets. From these results we cannot
conclude that starting from an informed position (SBE) results in trees with lower error
rates.

HSS is a combination of SBE and SFS. Overall it performs better than both SBE
and SFS. For two of the data sets, Glass and Segment, it achieves fewer errors, although
the difference is not statistically significant at the 0.05 level. For the Cleveland Data set
HSS produced the same tree as SBE in each of the ten four-fold crossvalidation runs.
For this data set, SBE had a lower error rate than SFS. This observation, coupled with
the result that HSS was never significantly worse than either SBE or SFS, provides
evidence that the heuristic for selecting between SBE and SFS is effective for choosing
which of the two is a better search strategy at each node.

To evaluate the heuristic dispersion measure used in GSBE, we compare GSBE to
SBE. A surprising result is that GSBE does better, albeit only slightly better, than
SBE for three of the data sets. On the remaining data sets GSBE does not do much
worse than SBE, with one exception: the Segment data set. For only two of the data
sets, Bupa and Segment, is the difference statistically significant.

In Table 11 we report the number of seconds used by each method. The ranking
of the methods from least to most time is: GSBE, SFS, HSS, SBE. These results
correspond to the ranking of the methods by the number of linear combination tests
that each method must evaluate in the worst case. In the worst case, GSBE must
eliminate n—1 features, causing it to learn the coeflicients for n—1 separate linear tests.
If the time required to learn the coefficients for a linear combination based on 2 features
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Table 10: Multivariate Feature Selection Methods: Paired #test

Data Set GSBE-HSS GSBE-SBE GSBE-SFS HSS-SBE HSS-SFS SBE-SFS

Breast 0.115 0.424 0.263 0.728 0.827 0.826
Bupa 0.029 0.020 0.814 0.327 0.005 0.002
Cleveland 0.251 0.251 0.027 1.000 0.649 0.649
Glass 0.032 0.265 0.595 0.245 0.173 0.813
Hepatitis 0.142 0.142 0.419 1.000 0.007 0.007
Iris 0.733 0.516 0.152 0.438 0.019 0.104
LED 0.773 0.664 0.223 0.807 0.533 0.821
Segment 0.000 0.002 0.000 0.361 0.923 0.649

Table 11: Comparison of Multivariate Selection Methods: CPU Seconds

Data Set HSS GSBE SBE SFS

Breast 22.0 9.0 165 16.6
Bupa 31.3 93 30.0 21.0
Cleveland 205.9 33.7 261.6 125.2
Glass 18.8 54 10.0 16.2
Hepatitis 321.9 38.2 4054 203.7
Iris 1.0 0.1 0.9 0.9
LED 91.7 23.6 36.6 715

Segment 545.3 128.1 476.9 425.1

2

is m;, then the worst case time complexity of GSBE at a node is: >, m; = O(mn),

where m is the worst case time for learning the coefficients for a linear combination test.
For SFS, the worst case time complexity at a node is: Y77 (n — i + 1)m; = O(mn?).
For SBE, the worst case time complexity at a node is: Y7 _im; ; = O(mn?). SBE
and SFS have the same asymptotic worst case time complexity. However, because
m; 1s smaller than m; ;, we substitute ¢ for m; and rewrite the equation for SFS as
S n—i+1)i = (n®*+9n2+2n)/6 and for SBE as 327 i(i —1) = (2n® — 6n2+4n)/6.
When n > 15, the worst case time for SBE is greater than SFS. In addition to worst
case time complexity, we consider the average case: for most of the data sets an SBE
search will stop before all features have been eliminated and an SFS search will stop
before all feature have been added. Because m; is typically less than m;,;, SFS needs
less time than SBE.

In Table 12 we report the average size of the trees found by each feature selection
method. In each entry of the table, the first number is the average number of test
nodes in the tree (T), the second number is the average number of features tested in
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Table 12: Comparison of Multivariate Selection Methods: Size

Data Set HSS GSBE SBE SFS

T F L T F L T F L T F L
Breast 21 70 31| 28 b5 38| 20 6.9 3.0 2.0 5.7 3.0
Bupa 28 47 38| 34 47 44| 36 47 46| 3.6 4.7 4.6
Cleveland | 15 81 25| 11 82 21| 11 82 21| 13 91 23
Glass 51 63 146| 51 6.2 14.0| 46 8.0 12.7| 44 4.6 129
Hepatitis 1.3 103 23| 13 116 23| 13 116 23| 1.2 13.1 22
Iris 16 29 37| 14 25 34| 16 26 36| 15 21 3.5
LED 74 54 384 | 81 4.7 395 | 72 6.0 36.8| 81 4.0 41.2
Segment 15.0 11.2 36.2 | 119 9.5 285|120 13.8 295 | 11.1 6.5 26.7

each linear combination test (F) and the final number is the average number of leaves
in the tree (L). The method that produced the trees with the fewest number of nodes
varies from data set to data set. For all data sets, GSBE produced trees with fewer
features per linear combination test than SBE. In all but three cases, SFS tests fewer
features per test than SBE. We found no relationship between the low error rates and
the size of the trees in this experiment.

In summary, the conclusions we draw from this experiment are:

1. Which of SBE and SFS produces better trees varies from data set to data set;
starting from an informed position (SBE) is not always better.

2. HSS is effective for selecting which of SBE or SFS will produce the better tree.

3. In seven out of eight cases, GSBE was not significantly different from SBE at the
.05 level. However, because GSBE is much faster than SBE, if time is a factor,
then GSBE can be used in place of SBE.

4. The ranking of the methods from least to most computation time is GSBE, SFS,
HSS, SBE.

5. SFS produced tests with fewer features than GSBE, which in turn produced tests
with fewer features than SBE.

6.3.2 Multivariate and univariate methods

In the second feature selection experiment we compare the five feature selection proce-
dures. In this experiment the best linear combination test found by a multivariate test
procedure was added to the set of possible univariate tests, and the best from this new
set was then chosen. We include two univariate decision tree algorithms, univariate

CART and C4.5 (Quinlan, 1987) to assess the effect of adding multivariate tests on
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accuracy, tree size and training time. We ran four versions of the CART program:
CART with only univariate tests and three versions of CART with linear combinations
added. The three versions all have a different value for 3, the discard parameter de-
scribed in Section 4.5. CART uses the Gini merit criterion (Breiman, et al. 1984). We
ran each of the other feature selection procedures twice, once with the Gini criterion
and once with the gain-ratio criterion, indicated in the tables by “-G” and “I”. For
each algorithm in the experiment, the minimum number of objects on either side of a
test was two. C4.5 was used with the following settings: windowing was disabled, so
that like the other algorithms, C4.5 created only a single decision tree from the data
it was given; and the gain ratio criterion was used to select tests at nodes.

Unlike the other decision tree algorithms, C4.5 does not use an independent set of
instances to estimate the error during pruning; to prune the tree C4.5 estimates the
error from the training data. Because the goal of this experiment is to compare selection
methods for decision trees, we want all other aspects of the algorithms to be identical.
Therefore, in our experiments we include both the original C4.5 algorithm (the pruning
confidence level was set to 10%, which is the default value) and a modified version that
used reduced error pruning, which we call RP-C4.5. CART uses the independent set
of pruning instances to estimate the true error for cost-complexity pruning.

The second feature selection experiment seeks to answer the following questions:

1. Does adding multivariate tests improve performance over univariate decision
trees?

2. How does the addition of multivariate tests affect tree size?
3. Is adding multivariate tests to univariate tests the best method?

4. How does CART’s multivariate method compare to the other methods? Is CART
sensitive to the choice of 87

5. Is there any interaction between the choice of merit criterion and feature selection
procedure?

6. How do the methods compare in terms of CPU time?

Table 13 shows the errors for each of the two-class data sets and Table 14 shows
the errors for each of the multiclass data sets. We report the fewest errors in bold-face
type. The tables show that adding multivariate tests improves accuracy over univariate
decision trees for all four two-class data sets and for three of the four multiclass data
sets. For one of the multiclass data sets, the Glass data set, adding multivariate tests
lowers accuracy, although not significantly. In summary, adding multivariate tests
improves the error rate significantly in five out of eight cases (Breast, Bupa, Cleveland,
LED and Segment), improves the error rate slightly in two cases (Hepatitis and Glass),
and lowers performance in one case (Glass).

In Tables 15 and 16 we show the size of the trees found for each method. Each entry
in Table 15 shows the number of test nodes (T) and the average number of features per
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Table 13: Comparison of Feature Selection Methods (Two-class): Errors

Algorithm Breast Bupa Cleveland  Hepatitis
C4.5 409+ 3.0 1303+ 8.6 81.2+ 6.5 305+ 1.9
RP-C4.5 43.0 £+ 50 1371+ 143 798 +56 30.7+44
CART (Uni) 453+ 6.0 1242479 69.5+58 318+ 23
CART (5=0.0) 29.3+29 1222+ 9.6 62.8 £ 7.1 31.3 £ 3.2
CART (5=0.1) 288 +29 1235+ 8.3 61.1 £ 4.6 315+ 4.1
CART (5=0.2) 299+1.7 121.3+9.38 63.0+ 7.1 31.3+35
GSBE-G + Uni 24.8 £26 116.1 £ 7.3 56.5 + 3.0 29.6 + 3.4
GSBE-I + Uni  26.5 £ 3.7 1154 £ 5.0 585+ 4.7 313+ 4.0
HSS-G + Uni 265+ 34 113.74+ 98 52.9+25 293+ 43
HSS-I 4+ Uni 276 £ 2.7 12044+ 7.0 59.1 £ 4.9 29.0 £ 3.6
SBE-G + Uni 2704+ 32 113.74+98 52.9+25 29.3+43
SBE-I 4+ Uni 2774+ 31 12044+ 7.0 59.1 £ 4.9 29.0 £ 3.6
SFS-G + Uni 26.7 £ 2.1 12724+ 9.2 73.1 £6.4 31.3+£5.1
SFS-I 4+ Uni 26.4 £ 2.1 120.0 £ 5.2 614+ 3.0 33.1+1.7

Table 14: Comparison of Feature Selection Methods (Multiclass): Errors

Algorithm Glass Iris LED Segment
C4.5 77.6 + 64 98+26 2744+ 10.0 12724 16.2
RP-C4.5 8.7+ 64 103 +£1.7 2731+ 64 137.9 £+ 10.0
CART (Uni) 77.8+54 94+16 28194+ 103 137.8+ 11.3
CART (5=0.0) 849+54 83+22 2803+11.3 125.7+12.7
CART (f=0.1) 85.1+46 82+18 279.1+7.0 115.3 + 12.8
CART (5=0.2) 85.7+45 86+22 2788+ 9.6 119.0 £+ 10.5
GSBE-G + Uni 836 +5.0 8.6 +26 262.3+ 134 1153+ 10.0
GSBE-I + Uni 84.1+64 92423 2679+ 7.2 123.0 £+ 9.4
HSS-G + Uni 802+65 79+21 2635+09.1 128.5 £+ 8.5
HSS-I 4+ Uni 80.7+ 55 80+19 2668+ 10.2 125.1 +6.3
SBE-G + Uni 8.1+ 66 85+20 2673494 125.6 + 9.7
SBE-I + Uni 842+ 48 87+26 26544+ 11.7 1271+6.5
SFS-G + Uni 83.0+50 T7.2+29 263.7+6.3 109.6 +9.2
SFS-I + Uni 8.3+ 73 85+15 2665+ 10.3 113.7 £ 13.6
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Table 15: Comparison of Feature Selection Methods (Two-class): Size

Algorithm Breast Bupa Cleveland | Hepatitis

T F T F| T F| T F
C4.5 48 1.0|148 10|87 10|25 1.0
RP-C4.5 47 101|104 10|63 10|28 1.0

CART (Uni) 30 10| 26 1037 1012 1.0
CART (5=0.0) | 1.0 65| 26 27|12 83|05 3.2
CART (f=0.1) | 1.0 41| 24 25|11 63|08 21
CART (=0.2) |1.0 40| 18 31|13 42|07 29
GSBE-G + Uni | 22 63| 89 2331 59 | 1.7 87
GSBE- I+ Uni |25 59| 88 20|36 58|20 6.5
HSS-G + Uni 23 60| 91 3.0|25 10018 159
HSS-I + Uni 23 59| 91 22|32 6.7|15 104
SBE-G + Uni 16 61| 91 3.0|25 100 1.8 15.9
SBE-I + Uni 1.8 63| 91 22132 6.7|15 104
SFS-G 4 Uni 20 53| 99 10|75 1.0142 1.0
SFS-T + Uni 23 52| 96 20|33 64|20 83

test (F), which can range from one to the number of input features. Each entry in Table
16 shows the number of test nodes (T), the average number of features per test (F),
and the number of leaves (L). The number of tests includes both linear combination
tests and univariate tests. In Tables 17 and 18 we break down this number into the
number of linear combination tests (MV) and univariate tests (UV). Note that adding
MV’s and UV’s gives the number of test nodes T, although this number may be off in
the least significant decimal place due to round-off errors.

In a decision tree with univariate tests one would like to minimize the number
of nodes and leaves. In a multivariate decision tree, one would like to minimize the
number of nodes, leaves and the number of features included in each multivariate test
in the tree. Fayyad and Irani (1990) have shown probabalistically that minimizing the
number of leaves in a decision tree leads to the most accurate classifiers; in a decision
tree each leaf represents a homogeneous region in the instance space and the tests at
the internal nodes describe these regions. In addition, the results of Blumer et al.
(1987) show that in general, a small classifier is preferable to a large classifier.

For the two-class data sets the multivariate methods create trees with fewer tests
and leaves, but the nodes are more complex. For the multiclass data sets, the mul-
tivariate methods, with the exception of CART, have either the same or more leaves
than the univariate methods. On average, the trees learned by CART have fewer leaves
than each of the other methods. However, for the LED data set, CART produced trees
with more nodes. In addition, for both the two-class and multiclass data sets, CART
produced trees with the fewest features tested per node. Examination of the number
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Table 16: Comparison of Feature Selection Methods (Multiclass): Size

Algorithm Glass Iris LED Segment

T F LI T F L T F L T F L
C4.5 129 1.0 13925 1.0 35(222 1.0 232|261 1.0 27.1
RP-C4.5 7.7 10 87|22 10 32225 1.0 235|219 1.0 229
CART (Uni) 70 10 80|25 10 35196 1.0 206|250 1.0 26.0

CART (5=0.0) 42 36 52|21 1.7 331|135 19 145|136 4.0 143
CART (5=0.1) 47 28 b5T7(21 16 3.1|13.1 1.7 141 | 13.7 2.1 14.7
CART (5=0.2) 47 20 5723 13 333|138 15 148|142 1.8 15.2
GSBE-G + Uni | 53 55 139|165 28 35| 72 46 33.0|146 9.0 34.0
GSBE-I + Uni 55 54 146 |16 29 36| 74 49 349|159 84 34.7
HSS-G + Uni 53 54 141 |14 24 34| 79 45 333|141 109 34.7

HSS-I 4+ Uni 5.1 6.1 140 |15 24 35| 82 50 373|145 11.1 349
SBE-G + Uni 43 6.6 126 |13 2.7 33| 76 48 314|173 105 359
SBE-I + Uni 47 6.6 13114 24 34| 85 46 343|181 10.8 37.2
SFS-G + Uni 49 42 140|15 19 35| 7.2 44 347|103 6.2 26.1
SFS-TI + Uni 48 4.7 136 |14 20 34| 78 4.0 370|113 6.2 26.5

of linear tests versus univariate tests for the multiclass data sets shows that the ra-
tio of univariate to multivariate tests for the trees produced by CART is higher than
that of any of the other multivariate methods. In summary, adding multivariate tests
decreases the number of tests, but increases the complexity of the tests.

To answer the question of whether the best approach is to add multivariate tests
to univariate tests, we compare the results of this experiment to the results of the
previous section. Note that the same random splits for each data set were used in both
experiments. To compare the two approaches, multivariate only and multivariate plus
univariate, we examine the errors for each data set for each feature selection method.
We use the results of the multivariate plus univariate trees that were built using the
gain-ratio merit criterion, because the gain ratio was used in the previous experiment.
The results of this comparison are shown in Table 19. Each entry shows the better of
the two approaches, multivariate only (M) or multivariate plus univariate (MU), and
reports the results of a paired #-test. The results show that using MU is better for eight
out of 24 cases. Across the four feature selection methods, selecting from the combined
set of possible univariate tests and a multivariate tests made a significant difference in
only two cases: Glass with HSS and Segment with GSBE. What is surprising is that
using only multivariate tests is significantly better in ten out of 24 cases.

To assess the effect of different choices for 8 in the CART algorithm we ran paired
t-tests between each pair of different settings for each data set. There were no statis-
tically significant differences at the 0.05 level. Multivariate CART never produced the
fewest errors for any of the data sets. Because there was no statistical difference in
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Table 17: Feature Selection Methods (Two-class): MV vs. UV

Algorithm Breast Bupa Cleveland | Hepatitis

MV UV |MV UV | MV UV | MV UV
CART (f=0.0) | 1.0 00| 25 02| 1.2 00| 03 0.2
CART (f=0.1) | 1.0 00| 22 02| 1.1 00| 04 0.3
CART (=0.2) | 1.0 00| 1.7 01| 1.3 0.0]| 03 04
GSBE-G + Uni | 14 07| 34 55| 1.8 13| 1.2 0.5
GSBE-I + Uni 1.6 10| 27 61| 20 17| 1.2 0.9
HSS-G + Uni 16 07| 32 59| 15 10| 1.3 05
HSS-I 4+ Uni 1.5 08| 30 61| 1.7 15| 1.1 04
SBE-G + Uni 1.3 04] 32 59| 15 10| 1.3 0.5
SBE-I 4+ Uni 14 04] 30 61| 1.7 15| 1.1 04
SFS-G 4 Uni 14 06| 04 94| 1.0 64| 02 4.0
SFS-T + Uni 15 09| 30 66| 19 15| 1.1 0.9

Table 18: Feature Selection

Methods (Multiclass): MV vs. UV

Algorithm Glass Iris LED Segment

Mv UV | MV UV | MV UV | MV UV
CART (f=0.0) | 29 13| 09 11| 53 82| 7.2 6.5
CART (f=0.1) | 28 19| 05 18| 40 99| 6.6 7.7
CART (f=0.2) | 28 19| 05 18| 40 99| 6.6 7.7
GSBE-G + Uni | 44 13| 15 02| 51 16| 93 4.7
GSBE-I + Uni 42 12| 14 03| 53 20| 99 59
HSS-G + Uni 38 07| 13 02| 58 11| 88 25
HSS-I + Uni 39 11| 13 03| 68 16| 92 35
SBE-G + Uni 38 09| 12 02| 52 12| 85 27
SBE-I + Uni 42 10| 13 03| 6.0 19| 92 35
SFS-G + Uni 40 08| 12 02| 55 12| 81 1.7
SFS-TI + Uni 43 06| 11 02| 65 15| 9.0 25
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Table 19: Multivariate (M) versus Multivariate + Univariate (MU) Tests

Data Set HSS GSBE SBE SFS
Best Sig. | Best Sig. | Best Sig. | Best Sig.
Breast M 0.311 M 0.585 M 0.110 M 0.920
Bupa M 0.283 M 0.163 M 0.005 M 0.008
Cleveland M 0.010 M 0.073 M 0.073 M 0.012
Glass MU 0.047 | MU 0.690 | MU 0.460 MU 0.297
Hepatitis M 0.048 M 0.035 M 0.035 M 0.015
Iris MU 0.702 M 0941 M 0.159 M 0.066
LED M 0656 | MU 0.896 | MU 0.958 | no dif 0.376
Segment M 0.005 | MU 0.005 M 0.038 | no dif 0.988

Table 20: Comparison of Merit Criteria (Gini vs. Info): Paired #test

Selection Breast Bupa Clev Glass  Hep. Iris LED Segment

GSBE 0.309 0.782 0.064 0.202 0.033 0.449 0.898 0.129
HSS 0.509 0.160 0.008 0.959 0.734 0.766 0.765 0.173
SBE 0.659 0.160 0.008 0.983 0.734 0.085 0.775 0.685
SFS 0.755 0.064 0.001 0973 0.373 0.266 0.025 0.438

errors between the three settings of 8 we conjecture that CART’s coefficient learning
method does not find as good a set of coefficients as the RLS or Thermal algorithms.
Indeed, a comparison of SBE-G to CART shows that SBE-G always outperforms CART
(except for the Iris data where CART with 3 set to 0.0 or 0.1 is better by .2 and .3
respectively). There are two differences between CART with g set to 0.0 and SBE-G.
Firstly, the coefficient training algorithms are different. Secondly, after CART elimi-
nates a feature, it re-learns the weight for the constant (the threshold); the coeflicients
remain untouched. Only after elimination ceases, does CART retrain the coefficients.
The SBE-G algorithm in contrast re-learns the coefficients for each elimination. One
problem with CART’s approach is that after a feature is eliminated the relative im-
portance of the remaining features may change. Therefore, one should recalculate the
coefficients after each feature is eliminated to avoid eliminating features erroneously.
For the multiclass tasks there is a third difference between SBE-G and CART; SBE-G
produces multivariate tests that are multiway partitions, whereas CART’s multivariate
tests are binary partitions. We do not however attribute the difference between the
results to this third difference; even for the two-class problems, where the tests formed
by both methods are binary, SBE-G performs better than CART.

To test whether there is an interaction between the choice of merit criterion and
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Table 21: Comparison of Feature Selection Methods: CPU Seconds

Algorithm Breast Bupa Clev Glass Hep. Iris LED  Seg.
C4.5 1.0 0.1 0.0 0.0 0.0 0.0 0.0 255
RP-C4.5 1.0 0.0 0.0 0.1 0.0 0.0 0.0 258
CART (Uni) 3.0 1.2 1.3 1.2 1.0 0.0 5.0 10.6
CART (5 =10.0) 54 4.0 4.6 34 1.0 1.0 84 411
CART (8 =0.1) 6.1 4.2 5.0 3.8 1.0 1.0 8.8 443
CART (8 =0.2) 6.1 4.3 5.2 3.9 1.1 1.0 8.9 444
GSBE-G 9.8 16.5 56.8 6.7 55.0 0.8 29.1 296.7
GSBE-I 9.0 13.3 453 6.6 47.3 0.8 28.0 286.1
HSS-G 23.9 456 325.0 239 513.0 1.0 104.3 654.5
HSS-1 21.3 37.7 2506 203 363.5 1.0 97.7 614.7
SBE-G 175 424 398.6 158 6099 1.0 47.6 467.6
SBE-I 14.3 33.0 276.0 109 4156 1.0 415 366.3
SFS-G 184 326 2309 18.8 4322 1.0 785 733.8
SFS-1 174 264 1669 17.0 219.7 0.9 749 696.3

the feature selection method we ran a paired ¢-test for each data set to determine if the
difference in the errors between merit criteria were significant. The results are shown
in Table 20 (differences at the .05 level are shown in bold-face type). From the table
we see that there is no interaction between the merit criteria and the feature selection
methods. However, there was some interaction between choice of merit criteria and
data set. For the Cleveland data set the choice of merit criteria was very important;
independent of the selection algorithm, trees formed using the gain ratio criterion made
fewer errors.

Table 21 reports the average number of CPU seconds used by each decision tree
method. An entry of 0.0 indicates that the method required less than one second. The
univariate methods needed the least amount of time. Multivariate CART needed far
less time than the other multivariate methods. One reason that multivariate CART
is faster is because CART does not re-learn the coefficients each time a feature is
eliminated from a test during the feature selection process. By far the most time
consuming part of forming a multivariate test is finding the coefficients of the test.

From this experiment we draw the following conclusions:

1. In general, adding multivariate tests improves the performance over univariate
decision trees.

2. Adding multivariate tests decreases the number of nodes in the tree, but increases
the number of features tested per node. It does not increase the number of the
input features that are tested somewhere in the tree.

3. Adding a multivariate test to the set of possible univariate tests and then selecting
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Table 22: Difference in Pruning Methods for the Hepatitis Data Set

Selection Errors Test Size Time

HSS -1.0 -1.2 +0.9
GSBE -0.6 -1.2 +1.1
SBE -0.2 -1.7 +1.1
SFS 0.0 -1.3 +0.5

the best did not perform as well as multivariate tests only.
4. CART is not particularly sensitive to the choice of .

5. There was no interaction between the choice of merit criterion and feature se-
lection method. However, there was an interaction between the choice of merit
criterion and data set.

6. The univariate methods require far less time than the multivariate methods. Of
the multivariate methods, CART required the least amount of CPU time.

6.4 Pruning procedures

In this section we compare multivariate tree pruning (MTP) to the basic pruning
algorithm (BTP), which prunes subtrees but not multivariate tests. For each of the
ten crossvalidation runs of each data set, we grew a tree and then pruned it in two
different ways: once with MTP and once with BTP. Except for the Hepatitis data set
the trees produced by the two pruning methods were identical. Table 22 reports the
difference (MTP - BTP) between the two methods for the Hepatitis data set. We report
the reduction in errors, the reduction in the average number of features tested per node,
and the increase in computation time of the MTP method over the BTP method. The
number of nodes remains the same for each of the methods, because multivariate test
pruning is used only when pruning a node will result in more classification errors. From
these results, we conclude that in most cases MTP will not improve accuracy.

In conclusion, pruning methods for multivariate decision trees need further investi-
gation. In our implementation of MTP we simplify a multivariate test only if all of its
children are leaves. A more general approach would try to simplify subtrees near the
leaves of the tree. Such an approach would require backtracking to create a subtree
with simpler tests.
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7 Conclusions

This paper began by asserting that multivariate tests alleviate a representational lim-
itation of univariate decision trees. The experimental results in Section 6.3.2 show
that multivariate decision trees make fewer errors on previously unobserved instances
than univariate decision trees for seven of the eight tasks. In addition to illustrating
that multivariate tests are useful, this paper compared various well-known and new
methods for constructing multivariate decision trees. Of the four coefficient learning
algorithms for linear combination tests described, the Recursive Least Squares (RLS)
method was shown to be superior on the data sets chosen. However as pointed out in
Section 6.2 RLS is restricted to two-class problems. An open research problem is how
to use RLS for multiclass tasks. Of the five feature selection methods described, the
results from the experiment reported in Section 6.3.1 show that Heuristic Sequential
Search (HSS) is the best method.

The HSS feature selection method begins to address a fundamental issue in machine
learning: automatic detection of the best learning strategy for a given data set. A
surprising result of this research was that the addition of multivariate tests to the set
of possible univariate tests did not always lead to better decision trees. For one data set,
including multivariate tests increased the number of errors. This result suggests that
the method for choosing between a multivariate and a univariate test using the merit
criterion does not necessarily produce the best partition of the data. This observation
coupled with the result that HSS was the best feature selection method points to a
new direction for future research: how to determine automatically for each test node
in a tree whether a univariate or a multivariate test is a better representation.

Acknowledgments

This material is based upon work supported by the National Aeronautics and Space
Administration under Grant No. NCC 2-658, and by the Office of Naval Research
through a University Research Initiative Program, under contract number N00014-86-
K-0764. The pixel segmentation data set was donated by B. Draper from the Visions
Lab at UMASS. The Breast, Bupa, Cleveland, Glass, Hepatitis, Iris and LED data sets
are from the UCI machine learning database. We wish to thank J. Ross Quinlan for
providing us with a copy of C4.5 and California Statistical Software, Inc. for providing
us with a copy of the CART program. We thank Jeffery Clouse, Jamie Callan, Tom
Fawcett, Margie Connell, Gila Kamhi and Wray Buntine for their helpful comments.

References

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1987). Learnability
and the Vapnik-Chervonenkis dimension, (UCSC-CRL-87-20), Santa Cruz, CA:

University of California.

34



Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and

regression trees. Belmont, CA: Wadsworth International Group.

Brodley, C. E., & Utgoff, P. E. (1992). Multivariate versus univariate decision trees,
(Coins Technical Report 92-8), Amherst, MA: University of Massachusetts, De-

partment of Computer and Information Science.

Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-
tree induction. Machine Learning, 8, 75-85.

Detrano,R., Janosi,A., Steinbrunn,W., Pfisterer, M., Schmid, J., Sandhu, S., Guppy,
K., Lee, S., & Froelicher, V. (1989). International application of a new proba-
bility algorithm for the diagnosis of coronary artery disese. American Journal of

Cardiology, 64, 304-310.

Duda, R. O., & Fossum, H. (1966). Pattern classification by iteratively determined
linear and piecewise linear discriminant functions. IEEFE Transactions on Electronic

Computers, EC-15, 220-232.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York:
Wiley & Sons.

Fayyad, U. M., & Irani, K. B. (1990). What should be minimized in a decision tree?
Proceedings of the Fighth National Conference on Artificial Intelligence (pp. 749-
754). Boston, MA: Morgan Kaufmann.

Fayyad, U. M., & Irani, K. B. (1992a). On the handling of continuous-valued attribute
in decision tree generation. Machine Learning, 8, 87-102.

Fayyad, U. M., & Irani, K. B. (1992b). The attribute selection problem in decision tree
generation. Proceedings of the Tenth National Conference on Artificial Intelligence
(pp. 104-110). San Jose, CA: MIT Press.

Fisher, R. A. (1936). Multiple measures in taxonomic problems. Annals of Eugenics,
7, 179-188.

Frean, M. (1990). Small nets and short paths: Optimising neural computation. Doctoral
dissertation, Center for Cognitive Science, University of Edinburgh.

Gallant, S. I. (1986). Optimal linear discriminants. Proceedings of the International
Conference on Pattern Recognition (pp. 849-852). IEEE Computer Society Press.

Hampson, S. E., & Volper, D. J. (1986). Linear function neurons: Structure and train-
ing. Biological Cybernetics, 53, 203-217.

Kittler, J. (1986). Feature selection and extraction. In Young & Fu (Eds.), Handbook

of pattern recognition and image processing. New York: Academic Press.

35



Matheus, C. J. (1990). Feature construction: An analytic framework and an appli-
cation to decision trees. Doctoral dissertation, Department of Computer Science,
University of Illinois, Urbana-Champaign, IL.

Mingers, J. (1989a). An empirical comparison of selection measures for decision tree
induction. Machine Learning, 3, 319-342.

Mingers, J. (1989b). An empirical comparison of pruning methods for decision tree
induction. Machine Learning, 4, 227-243.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Pagallo, G., & Haussler, D. (1990). Boolean feature discovery in empirical learning.
Machine Learning, 71-99.

Pagallo, G. M. (1990). Adaptive decision tree algorithms for learning from ezamples.
Doctoral dissertation, University of California at Santa Cruz.

Quinlan, J. R. (1986a). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1986b). The effect of noise on concept learning. In Michalski, Car-
bonell & Mitchell (Eds.), Machine learning: An artificial intelligence approach.
San Mateo, CA: Morgan Kaufmann.

Quinlan, J. R. (1987). Simplifying decision trees. Internation Journal of Man-machine
Studres, 27, 221-234.

Quinlan, J. R. (1989). Unknown attribute values in induction. Proceedings of the Sizth
International Workshop on Machine Learning (pp. 164-168). Ithaca, NY: Morgan
Kaufmann.

Safavian, S. R., & Langrebe, D. (1991). A survey of decision tree classifier methodology.
IEEE Transactions on Systems, Man and Cybernetics, 21, 660-674.

Sutton, R. S. (1988). NADALINE: A normalized adaptive linear element that learns
efficiently, (GTE TR88-509.4), GTE Laboratories Incorporated.

Sutton, R. S., & Matheus, C. J. (1991). Learning polynomial functions by feature
construction. Machine Learning: Proceedings of the Eighth International Workshop
(pp. 208-212). Evanston, IL: Morgan Kaufmann.

Utgoff, P. E., & Brodley, C. E. (1990). An incremental method for finding multivariate
splits for decision trees. Proceedings of the Seventh International Conference on
Machine Learning (pp. 58-65). Austin, TX: Morgan Kaufmann.

Utgoff, P. E., & Brodley, C. E. (1991). Linear machine decision trees, (COINS Tech-
nical Report 91-10), Amherst, MA: University of Massachusetts, Department of
Computer and Information Science.

Young, P. (1984). Recursive estimation and time-series analysis. New York: Springer-

Verlag.

36



