TIG-based Petri Nets
for Modeling Ada Tasking

Matthew Dwyer*
Kari Forester!
Lori A. Clarke*

CMPSCI Technical Report 92-84
December 1992

* Software Development Laboratory
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

t Department of Computer and Information Science
University of California
Irvine, California 92717

This material is based upon work sponsored by the Defense Advanced Research Projects Agency under Grants #
MDA972-91-J-1009 and #MDA972-91-J-1012. The content does not necessarily reflect the position or the policy of
the U.S. Government, and no official endorsement should be inferred.)

TIG-based Petri Nets for Modeling Ada Tasking

Matthew Dwyer *
Kari Forestert
Lori Clarke

*Department of Computer Science
University of Massachusetts, Amherst

1Dept. of Information & Computer Science
University of California, Irvine !

Abstract

This paper presents a Petri net model for concurrent programs that is based on a representation of
concurrent programs called task interaction graphs (TIGs). The size of these TIG-based Petri nets
and the applicability of existing Petri net analysis techniques to them is discussed. A comparison
of TIG-based Petri nets to an existing Petri net model of concurrent programs is also included.

1 Introduction

Analyzing concurrent software is a complex and difficult task. Asynchronously running processes
produce an exponential number of potential interleavings that are hard to analyze with static
methods.' Erroneous patterns of communication can produce anomalies, such as deadlock or race
conditions, that can be difficult to discover or reproduce. Analysis and verification of concurrent
programs is an active area of research. Many different approaches to static analysis of concurrent
programs exist, including Petri nets [MR87, MSS89, SMBT90], state based models [Tay83b, LC89,
YTFB89, McD89, YY90|, data flow [TO80, DS91, LC91], and constrained expressions [ADWRS86,
ABC*91]. There has also been research on dynamic analysis of concurrent programs [HL85, TK86,
Tai85] and on the formal specification and verification of concurrent programs [0G76, Lam83,
Dil90).

In this paper, we look at two models proposed as the basis for static analysis of concurrent
programs that use rendezvous style communication: a well developed Petri net model and a recently
proposed model called TIGs. We propose a Petri net model based on the TIG representation that
exhibits the same reachability graph compaction as the TIG representation. We evaluate the size
of this model and its potential as a basis for Petri net based static analysis.

Petri nets [Pet81] are a well studied and widely applied formalism for modeling systems. Murata
classifies analysis methods for Petri nets into three groups: reachability tree method, matrix-
equation approach, and reduction or decomposition techniques [Mur89]. In [MR87, SC88, MZGT85]

!This work was supported by the Defense Advanced Research Projects Agency under Grant MDA972-91-J-1609.

Petri nets have been used to model and analyze concurrent programs that use rendezvous style
communication. The reachability graph of such a Petri net has been used to perform analysis of
Ada tasking programs [SC88, MR87]. More recently, the matrix-equation approach has been used
to detect a class of deadlocks in Ada tasking programs [MSS89] and in [TST] a set of reduction
rules for Petri nets are given that preserve the properties necessary for detection of deadlock in
Ada tasking programs.

Another approach to modeling concurrent programs that use rendezvous style communication was
introduced by Taylor [Tay83b]. In this and subsequent work [LC89, YTFB89], tasks are modeled
as individual flow graphs. Task flowgraphs can be combined to generate control flow concurrency
graphs. These concurrency graphs contain all of the possible concurrency states of the system and
are analogous to the reachability graph derived from Petri nets. Long and Clarke have proposed
a model for representing tasking programs that hides control flow information called TIGs[LC89).
TIGs can be used to generate more compact reachability graphs.

In the following section we give a brief overview of Petri nets and TIGs. Section 3 shows how
a TIG-based Petri net is constructed and discusses the applicability of existing Petri net analysis
techniques to TIG-based Petri nets. Section 4 analyzes the size of TIG-based Petri nets. It compares
the results of this analysis to an existing Petri net model of tasking programs. Finally it discusses the
implications of the results with respect to the effectiveness of existing Petri net analysis techniques.
Section 5 mentions directions for future work.

2 Overview

This section defines general Petri net and TIG terminology. Reachability analysis is described in
general terms and applied to both Petri net and TIG representations. Finally we introduce a simple
example to illustrate the concepts presented in the paper.

Petri Nets

Petrinets are a graphical formalism used for specifying concurrent systems. A Petri net is a directed
bipartite graph with node called places and transitions. Typically, places are drawn as circles and
transitions as bars. The edges of the graph are called arcs. Arcs are labeled with a positive integer
representing their weight. A marking is an assignment of an integer to each place in the net and
represents the number of tokens at that place. Tokens are drawn as black dots inside of places. A
marking is given by a k-vector, M, where k is the number of places in the net and M (i) denotes the
number of tokens at place i. Formally, a Petri net is a tuple (P,T,F,W,M), where P is the set of
places, T is the set of transitions, F C (P x T')U(T x P) is the set of arcs, W is a function assigning
weights to arcs, and My is the initial net marking. Associated with each transition is a set of input
places, places at the head of incoming arcs, and output places, places at the tail of outgoing arcs.
A transition is enabled if each input place of the transition is marked with at least as many tokens
as the weight given on the associated input arc. A transition fires by removing W(p;,t) token from
each input place p; and adding W(t,p,) tokens to each output place p,. A transition may not fire
unless it is enabled.

In this paper all of the Petri nets discussed are ordinary, having arc weights of 1, and safe, having
a maximum of 1 token per place.

task body T1 is task body T2 is

begin begin
loop loop
select T1.E1;
accept El; T1.E2;
or end loop;
accept E2; end T2;
end select;
end loop;
end T1;

Figure 1: Ada tasking example
Task Interaction Graphs

TIGs have been proposed by Long and Clarke [LC89] as a compact representation for tasks that is
amenable to analysis. The TIG abstraction hides control flow information internal to a task thereby
facilitating concurrency analysis. TIGs divide tasks into maximal sequential regions, where such
task regions define all of the possible behaviors between two consecutive task interactions. A task
interaction is any point where the behavior of one task can be influenced by the behavior of another
task. Formally, a TIG is a tuple (N, E, S, T, L, C), where N is the set of nodes representing task
regions, E is the set of edges representing task interactions, S is the start node, T is the set of
terminal nodes, L is a function assigning labels to edges, and C is a function assigning pseudocode
to nodes. The start node represents the region where task execution begins and the terminal nodes
represent regions where task execution potentially ends. Each node has a fragment of pseudocode
associated with it that represents the code in that task region, which in our examples are Ada
statements, plus two non-executable statements, ENTER and EXIT, that mark region entry and
exit points. The edges of a TIG are labeled with the tasking interactions that cause transitions
from one region to another. The tasking interactions we consider are Ada entry calls and accept
statements. There are four distinct kinds of tasking interactions: starting an entry call, ending an
entry call, starting an accept statement, and ending an accept statement. It is necessary to model
both the start and end of a rendezvous explicitly because accept bodies are themselves task regions
that perform sequential computation that must be captured in the representation.

Figure 1 presents a simple Ada program that will be used as an example throughout the rest of
the paper. Task T1 consists of 5 sequential regions. To illustrate the idea of maximal sequential
regions consider the initial region of T1. Region 1 enters at the beginning of the task and exits
at the select statement. There are two exits out of this region. The first exit is on the start
of the accept for E1 and the second is on the start of the accept for E2. The pseudocode for
task T1 is given in figure 2. The TIGs for tasks T1 and T2 are given in figure 3. Given that
regions represent all sequential execution paths between pairs of consecutive tasking interactions,
it is possible for distinct TIG nodes to contain pseudocode for the same program statements.
When EXIT pseudocode statements are duplicated in this way, multiple TIG edges may be used
to represent a single Ada communication statement in the source program. This is illustrated by
the duplication of the statement EXIT(ACCEPT_START(E1),2) in regions 1, 4 and 5 of task T1 in

EXIT(ACCEPT_START(E1),2);
or
EXIT(ACCEPT_START(E2),3);

end select;
end loop;
end T1;
C(2) = ENTER(ACCEPT_START(El)); C(3) = ENTER(ACCEPT_START(E2));
EXIT(ACCEPT_END(E1),4); EXIT(ACCEPT_END(E2),5);
C(4) = loop C(5) = loop
select select
EXIT(ACCEPT_START(EI),2); EXIT(ACCEPT_START(E1),2);
ENTER(ACCEPT_END(EL)); or
or EXIT(ACCEPT_START(E2),3);
EXIT(ACCEPT_START(E2),3); ENTER(ACCEPT_END(E2));
end select; end select;
end loop; end loop;
end T1; end T1;

Figure 2: Pseudocode for task T1 of example

figure 3. Note that a TIG represents a single task instance. The potential behaviors of a collection
of tasks can be modeled by matching edges from different TIGs, whose labels represent call and
accept requests for the same task entry.

If the accept statement of a rendezvous has no accept body then we can reduce the size of the
TIG representation without loss of information. A single interaction, comprising both start and
end of a rendezvous, is used to model such an accept statement and any entry calls made on it.
Since the accept statements given in task T1 of figure 1 have no accept bodies, the TIGs for tasks
T1 and T2 can be reduced as shown in figure 4.

Reachability

Many static analysis techniques rely on searching a program’s state reachability graph for properties
of interest. Any state based representation of concurrent programs is amenable to this analysis.
To accomplish this we require a definition of the set of potential system states, the state successor
function, and the initial system state. The reachability graph is the transitive closure of the
successor function applied to the initial system state.

For Petri nets the set of states is the set of net markings reachable from the initial marking M.
The state successor function is defined for each marking by the set of enabled transitions and the
markings produced by firing each individually. A Petri net transition is dead if there is no reachable
marking for which it can be enabled.

For a concurrent program modeled as a set of m TIGs where (N;, E;, S;, T;, L;, C;) is the ith TIG,
the set of potential states is a set of m-tuples (¢1, ¢, ..., cm), where ¢; € N;. The initial state is the
m-tuple (S, Sa,...,Sm), of start nodes for each TIG. The state successor function is defined such

T2:

El
e T1.El
Bl
e m
B2
B2

Figure 4: Reduced TIGs for example

that (nezty,nezt,,...nexty,) is a successor of a state (c1, €2, ...¢y) if and only if 3i and j such that
((ciynezt;) € E; and (cj, next;) € E; and L(c;, nezt;) and L(c;j, next;) represent a potential task
interaction) and Vk # i or j, (cx = neztr). As an example, the reachability graph constructed from
the set of TIGs in figure 4 is illustrated in figure 5. Although often manageable in size in practice,

Taylor [Tay83a] demonstrated that, in general, the size of the reachability graph is exponential in
the number of tasks in the program.

(1 4y ———=(25)———=(36)

Figure 5: Reachability graph from Reduced TIGs and TPN for example
3 TIG-based Petri net model

We propose a Petri net model for Ada tasking programs that hides the details of task control flow.
These TIG-based Petri nets (TPN) are constructed from a set of TIGs. A TPN maintains a strong
relationship with the set of TIGs; each place in the Petri net has a one-to-one correspondence
with a tasking region and each transition represents a potential task interaction. TPNs can be
constructed quite simply by creating a transition for each pair of TIG edges whose labels represent
a call and accept on the same task entry and by making the source and destination regions of these
edges the input and output places of the new transition. More precisely:

Input: Set = (T'igy,Tigs,...,Tigr) a set of TIGs

Output: (P, T, F,W, M) is a Petri-net

Algorithm:

VTig; € Set
Vn € N;
P = PU create-place(n)

t
Thew = create-transition

T=TUThpew

F = F U (place(nl®d), T,.,)
F = F U(place(nl=*d), T,.,)
F = F U (Tpew,place(nfe))
F = F U (Tpew,place(ni))

Ve; = (nfeed, nloll), e; = (nlt**?, n'o) where ¢; € E, A ¢; € Em A # mA match(La(e:), Lm(e;))

W=1

My = create-marking(place(S?),place(S?),...,place(S5¥))

where match(label,label) is true if label represents a call and an accept of the same task en-
try, create-place(node) creates a unique place for a given TIG node value, place(node) re-
turns place for a given TIG node value, create-transition creates a unique transition, and
create-marking(place-1list) creates a marking with 1 token at each place appearing in the ar-
gument list and 0 tokens at all other places. We note that Pezzi, Taylor and Young independently
developed [PTY] a similar algorithm for constructing Petri nets from labeled flow graphs.

This algorithm constructs a Petri net that overestimates the possible task interactions of the
program. All potential task interactions are included as a result of the simple and efficient matching
of TIG edge labels, but some of these interactions can never be executed. In section 5 we discuss
an approach for eliminating the corresponding dead transitions. It should be noted that building
a Petri net with transitions for only the executable task interactions is equivalent to construction

—a

region before region before

call-start accept-start
rendezvous-start
region between call-start region between accept-start
and call-end and accept-end
rendezvous-end
region after region after
call~end accept-end

Figure 6: TIG-based Petri net representation for Ada rendezvous

of the reachability graph and therefor is intractable in general.

Figure 6 illustrates the Petri net fragment that represents a single Ada rendezvous between a
calling and accepting task. In the case of multiple callers this fragment is replicated with the
accepting task participating in all potential rendezvous. The resulting TPNs are ordinary, as
W = 1, and safe, as My has only values of 0 or 1, and for all transitions ¢, |input places of
t| = |output places of t| = 2, so the number of tokens is preserved across transitions. As such many
existing Petri net analysis techniques apply to TPNs, for example reachability, invariant methods,
and structural reductions [Mur89]. Reachability graphs for TPNs are isomorphic to the reachability
graph generated from the set of TIGs to which the TPN corresponds. We note that the reduction
applied to TIGs, in the case of a bodyless accept, is also applicable to TPNs. In fact this reduction
is equivalent to applying the FPP and FST structural reductions discussed in [Mur89).

Continuing with our example, figure 7 illustrates the TPN constructed from the reduced TIGs
in figure 4 where the executable transitions and arcs are in bold. The reachability graph for this
TPN is given in figure 5.

4 Analysis

For a Petri net we are interested in the number of places and transitions as a measure of the size
of the representation. We consider two different analytical approaches in this section. First, we
argue that TPNs will have few places for all Ada tasking programs by showing an upper bound
on the number of places in a TPN. Then, we reason about the number of transition in a TPN by
considering skeletal Ada tasking programs that represent common communication patterns. We
discuss the implications of these results for applying existing Petri net analysis techniques to TPNs.
Finally, we compare our results to an existing Petri net model of Ada tasking programs.

Places

As discussed in section 3 each place in a TPN corresponds to a single node of one of the TIGs that
represents a task in the program. The number of places in a TPN is independent of the number
of potential task interactions. The total number of places in a TPN is the sum of the number of
nodes of the TIGs representing the program. A single Ada task may have a number of entry calls
and accept statements, these may be either a synchronizing rendezvous, where an accept has no
body, or a remote procedure call (RPC), where an accept has a body. Consider a task with c,ynch

Task T1: Task T2:

Figure 7: TIG-based Petri net for example

synchronous entry calls, ¢,pc RPC entry calls, a,yncn synchronous accept statements and a,p,c RPC
accept statements. The TIG representing such a task has < 2(¢ppc) + 2(@rpe) + Coynch + Goynch + 1
nodes. For each RPC rendezvous the start and end interactions are modeled separately, while for
each synchronizing rendezvous the start and end interactions are collapsed to a single interaction
in the TIG model. Each modeled interaction produces at most 1 TIG region, the region for which
it is the entry interaction. The additional node is to model the initial region of the task. We note
that this is a strong upper bound. Furthermore this bound demonstrates that the number of TPN
places is linear in the number of communication statements in the program.

We mentioned that TPNs are ordinary and safe. In fact they have a well defined structure that
allows us to reason about the size of the reachability graphs they generate. The reachable markings
of a TPN are restricted such that the sum of the tokens in the places that correspond to regions
of a single task, which we call a task sub-net (TSN), is 1. This single token per TSN indicates
the current execution state of the task, i.e., the current task region. A TSN place hides task state
information that might otherwise be represented explicitly in the net. Not surprisingly, TPNs
generate smaller reachability graphs than Petri nets with similar structure that explicitly represent
more task details.

Petri net reduction techniques attempt to recognize patterns in a Petri net and replace the pattern
with a Petri net fragment that has fewer places [TST]. These reductions are not information
preserving; they are designed to retain certain liveness properties in the reduced net that are
sufficient to detect deadlock. If we wish to only check for deadlock in a program modeled as a TPN
we can apply these reduction techniques as well.

Transitions

In TPNs transitions are used to model potential task interactions. In general the number of
potential interactions in an Ada tasking program is a function of the number of entry calls in a
calling task and of accept statements in the accepting task for each task entry. Such a general
characterization of the number of potential interactions does not provide any information on the
number of potential interactions in realistic Ada tasking programs. We would like to analyze
TPNs with respect to a set of skeletal Ada tasking programs that reflect common communications
patterns found in realistic programs. As a first attempt we consider programs that have appeared
in the concurrency analysis literature [SC88, SMBT90, YTFB89, HL85]). We identify three common
patterns of communication: sequence, iteration and choice, and consider some compositions of these
patterns. Figure 8 gives skeletal Ada programs for the patterns considered in this section. Note
that each pattern can appear in a calling or accepting task, but the syntax may be different, e.g.,
calling choice is an if-elsif-...-else while accepting choice is a select.

task body Choice is task body Sequence is
begin begin
select T1.E1;
accept E1; T1.E2;
or .
accept E2;
T1.En;
end Sequence;
or
accept En;
end select;

end Choice;

task body Choice-Iter is task body Seg-Iter is
begin begin
loop loop
select T1.E1;
accept El; T1.E2;
or .
accept E2;
T1.En;
. end loop;
or end Seg-iter;
accept En;
end select;
end loop;

end Choice-Iter;

Figure 8: Ada tasking programs for communication patterns

seq choice seq-iter choice-iter
seq 2n
choice 2n 2n
seq-iter 2n+1 | 2n+1 2n+ 3
choice-iter [n2+2n [n®+2n [n® +3n+1 | n° +2n° 4+ 2n

Table 1: Number of TPN transitions for communication patterns

Our initial analysis considers pairs of tasks, one calling and one accepting task. The calling task
has a single call to each of the n entries in the accepting task. The accepting task has a single accept
statement for each of its entries. The organization of these calls and accepts varies according to
the communication pattern being considered. Table 1 gives the number of TPN transitions created
from the various combinations of communication patterns, where rows are the calling task, columns
are the accepting task, and the table is symmetric along the diagonal. Here we see that the number
of transitions becomes non-linear in n when at least one the of the tasks has a choice within a
loop. Most of these transitions, except in the case of 2 choice-iteration tasks, are dead. They are
created by the duplication of a task interaction on the exit edge of the initial task region in the TIG
representation, and carried over into the TPN. Choice-iteration tasks with n branches are modeled
by a TIG where each of the n interactions on the branches is the entry to a region and each of
these regions has n exits which enter into these same regions; this models the end of an iteration
and the choice made on the next iteration. This duplication of entry and accept requests as TIG
edges is responsible for the large number of TPN transitions.

We realize the limitations of this analysis, e.g., skeletons eliminate variables that control program
flow, chosen patterns may not fully represent those found in real programs, lack of multiple callers,
lack of multiple call/accepts for a single task entry, real programs may not scale in the number of
select branches. In spite of these limitations we feel the analysis produces a useful characterization
of the number of TPN transitions for a set of communication patterns that do appear in practice.
The impact of the number of TPN transitions on the cost of analysis varies with the Petri net
analysis technique.

The size of a resulting reachability graph is unaffected by the presence of dead TPN transitions.
The existence of a large number of live transitions in a TPN does not increase the number of nodes
in the reachability graph. It will increase the number of edges, which is bounded by the square of
the number of nodes. In practice the large number of live transitions tends to increase the cost of
generating the reachability graph.

As mentioned above, the reductions of [TST] are designed to reduce the number of places rather
than transitions. In fact there is one suggested reduction rule that increases the number of live
transitions in the reduced net. Note that for structural reductions Petri net patterns may match
live or dead transitions. It is not clear at present how the presence of additional transitions affects
the applicability of these structural reduction rules.

By definition [Mur89] dead transitions cannot contribute to the number of transition invariants
of a Petri net, whereas the presence of large numbers of live transitions will increase the number
of transition invariants. Transition invariants have only been applied to the analysis of non-cyclic
tasks [MSS89], however, it is an open question as to how this analysis can be applied to tasks with

10

entry—call

KEY

O alleatry
t) per rendezvous
() all accept
(O accept wibody
QO external

Figure 9: Ada-net representation of rendezvous

the communication patterns we consider above.

Comparison

As a point of comparison we consider an existing Petri net model for Ada tasking , called Ada-nets,
used in Shatz’s toolkit for static analysis of tasking behavior [SC88]. The representation for a single
Ada rendezvous between a calling and accepting task in this Petri net model is illustrated in figure
9. The key describes 5 different classes of places: all entry places are used for modeling entry
calls, all accept places are used for modeling accept statements, if the accept statement has a body
the accept w/body places are also required, per rendezvous places are used for modeling all
potential rendezvous, the external place represents the representation of the program statement
following the entry call. The fundamental difference between Ada-nets and TPNs is that Ada-nets
model concurrent programs by explicitly representing potential tasking interactions, control flow
information, and detailed Ada tasking semantics, whereas TPNs hide control flow information and
do not explicitly model detailed Ada tasking semantics.

Ada-nets are constructed by connecting Petri sub-nets that represent each individual task in
the program with Petri net fragments that represent potential task interactions [SC88]. The sub-
nets that represent individual tasks are called process sub-nets (PSN) and they include places and
transitions that explicitly model program control flow constructs that contain task interactions.

For comparison with TPNs we develop a lower bound on the number of places in an Ada-net.
The total number of places in an Ada-net is the sum of the number of places of the PSNs plus the
places needed to model all potential task interactions. The PSN representing a task with coyncn
synchronous entry calls, ¢,pc RPC entry calls, a;yncs synchronous accept statements, and a,, RPC
accept statements has > 2(cppe) + 4(@rpe) + 2(Caynch) + 2(@synch) + 2 places. As described in the
appendix of [SC88], accept statement with bodies are modeled with 4 places and all other accept
statements and entry calls are modeled with 2 places. The additional 2 nodes model the beginning
and end of the task. This lower bound on the number of PSN places is weak. Additional places

11

seq | choice | seq-iter | choice-iter
seq 24 8n
choice 3+8n|4+8n
seq-iter | 3+8n|4+8n| 4+ 8n
choice-iter | 4+8n | 5+8n | 54 8n 6+ 8n

Table 2: Number of Ada-net transitions for communication patterns

are included to model all control flow statements that contain entry calls or accept statements.

It is clear that the upper bound on TIG nodes, discussed above, is less than the lower bound on
PSN places. Furthermore TPNs require no additional places to represent potential task interactions,
while Ada-nets require 2 places for each potential task interaction. This can result in a large number
of additional Ada-net places since the number of potential interactions grows as the product of the
number of entry calls to a single entry in a calling task and the number of accept statements for
the entry in the accepting task.

Table 2 gives the number of Ada-net transitions created from the various combinations of com-
munication patterns. This confirms that the number of TPN transitions is large.

Preliminary results for some small programs indicate that the effect of additional TPN transitions
on the size of the reachability graph is offset by the reduction in the number of TPN places. More
work needs to be done to understand this tradeoff.

5 Conclusion

In this paper, we have presented a Petri net model for tasking programs based on task interaction
graphs that is efficient to construct. We have developed a strong upper bound on the number of
places of these TIG-based Petri nets. Comparison with an existing Petri net model for Ada tasking
programs provides evidence that the number of places in TPNs is relatively small. The analysis of
the number of transitions demonstrates that for some patterns of task communication the number
of transitions in TPNs is large. Although the number of transitions is of concern, it appears that
the number of places is more important in terms of its impact on certain analysis techniques.

We intend to continue this work along a number of lines. We would like to extend the analysis of
section 4 to include other Petri net models of Ada tasking programs. In addition we would like to
evaluate TPN representation with respect to real programs and thus intend to build a TIG to TPN
translator. This has the additional benefit of enab].iné us to experiment with existing Petri net
analysis tools [MR87]. We are currently looking into methods for pruning dead transitions TPNs.
This involves using conservative dataflow analysis to compute an approximate ordering relation
for TIG edges. For any pair of TIG edges that are guaranteed to be ordered with respect to each
other, i.e., they cannot execute in parallel, we need not construct a TPN transition. A number
of dataflow problems are candidates for this application including B4 [DS91] and CHT [MR91].
Implementation of this technique would allow us to measure the amount of pruning of dead TPN
transitions that is possible on real programs.

12

na

References

[ABC*91]

[ADWRS6]

[Dil90]

[DS91]

[HL85]

[Lam83]

[LC89]

[LC91]

[McD89]

[MRS87]

[MR91]

[MSS89]

[Mur89]

G.S. Avrunin, U.A. Buy, J.C. Corbett, L.K. Dillon, and J.C. Wileden. Automated anal-
ysis of concurrent systems with the constrained expression toolset. IEEE Transactions
on Software Engineering, 17(11):1204-1222, November 1991.

George S. Avrunin, Laura K. Dillon, Jack C. Wileden, and William E. Riddle. Con-
strained expressions: Adding analysis capabilities to design methods for concurrent
software systems. IEEE Transactions of Software Engineering, SE-12(2):278-292,
February 1986.

Laura K. Dillon. Verifying general safety properties of ada tasking programs. IEEE
Transactions of Software Engineering, 16(1):51-63, January 1990.

Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of pro-
cedures using a data flow framework. In Proceedings of the §th Workshop on Software
Testing, Analysis, and Verification. ACM Sigsoft, 1991.

David P. Helmbold and David C. Luckham. Debugging ada tasking programs. IEEE
Software, 2(2):47-57, March 1985.

Leslie Lamport. Specifying concurrent program modules. ACM Transactions on Pro-
gramming Languages and Systems, 5(2):190-222, 1983.

Douglas L. Long and Lori A. Clarke. Task interaction graphs for concurrency analysis.
In Proceedings of the 11th International Conference on Software Engineering, pages
44-52, Pittsburgh, May 1989.

Douglas Long and Lori A. Clarke. Data flow analysis and the rendezvous model of
concurrency. In Proceedings of the {th Workshop on Software Testing, Analysis, and
Verification. ACM Sigsoft, 1991.

C. McDowell. A practical algorithm for static analysis of parallel programs. Journal
of Parallel and Distributed Computing, 6(3):515-536, 1989.

E. Timothy Morgan and Rami R. Razouk. Interactive state-space analysis of concurrent
systems. IEEE Transactions of Software Engineering, 13(10):1080-1091, 1987.

S.P. Masticola and B.G. Ryder. A model of ada programs for static deadlock detection
in polynomial time. In Proceedings of Workshop on Parallel and Distributed Debugging.
ACM, May 1991.

T. Murata, B. Shenker, and S.M. Shatz. Detection of ada static deadlocks using petri
net invariants. IEEE Transactions of Software Engineering, 15(3):314-326, 1989.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(44):541-580, April 1989.

13

[MZGT85] D. Mandrioli, R. Zicari, C. Ghezzi, and F. Tisato. Modeling the ada task system by

[0G76]

[Pet81]

(PTY]

[SC88]

[SMBTS0]

[Tai85]

[Tay83a]

[Tay83b)

[TK86]-

[TO80]

[TST)

[YTFB89]

[YY90]

petri nets. Computer Languages, 10(1):43-61, 1985.

Susan Owicki and David Gries. An axiomatic proof technique for parallel programs.
Acta Informatica, 6(4):319-340, 1976.

J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice-Hall, Englewood
Cliffs, NJ, 1981.

Mauro Pezze, Richard N. Taylor, and Michal Young. Reachability analysis of concurrent
systems. In preparation.

S. M. Shatz and W. K. Cheng. A petri net framework for automated static analysis.
The Journal of Systems and Software, 8:343-359, 1988.

Sol M. Shatz, Khanh Mai, Christopher Black, and Sengru Tu. Design and implemen-
tation of a petri net based toolkit for ada tasking analysis. IEEE Transactions on
Parallel and Distributed System, 1(4):424-441, October 1990.

K. C. Tai. Reproducible testing of concurrent Ada programs. In Proceedings of SoftFair
II, pages 49-56, December 1985.

Richard N. Taylor. Complexitly of analyzing the synchronization structure of concur-
rent programs. Acta Informatica, 19:57-84, 1983.

Richard N. Taylor. A general-purpose algorithm for analyzing concurrent programs.
Commaunications of the ACM, 26(5):362-376, May 1983.

Richard N. Taylor and Cheryl D. Kelly. Structural testing of concurrent programs. In
Proceedings of the Workshop on Software Testing, pages 164-169, Banff, Canada, July
1986. ACM/SIGSOFT and IEEE-CS Software Engineering Technical Committee.

Richard N. Taylor and Leon J. Osterweil. Anomaly detection in concurrent software by
static data flow analysis. IEEE Transactions of Software Engineering, SE-6(3):265-278,
1980.

S. Tu, S.M. Shatz, and T.Murata. Theory and application of petri net reduction for ada-
tasking deadlock analysis. Technical report, Software Systems Laboratory, Department
of Electrical Engineering and Computer Science, University of Illinois, Chicago, IL.

Michal Young, Richard N. Taylor, Kari Forester, and Debra Brodbeck. Integrated
concurrency analysis in a software development environmnet. In Proceedings of the 3rd
Workshop on Software Testing, Analysis, and- Verification, pages 200-209, Key West,
Florida, December 1989. ACM Sigsoft.

Wei Jen Yeh and Michal Young. Compositional reachability analysis using process alge-
bra. Technical report, Software Engineering Research Center, Department of Computer
Sciences, Purdue University, September 1990.

14

