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ABSTRACT

The loss probability in queueing systems is a very useful metric in the design and analysis of
high-speed communication networks. In this paper, we investigate the convexity properties
of this metric for the finite-buffer, single server M/M/1/K queue. We demonstrate that
the loss probability in the M/M/1/K queue is convex with respect to the traffic intensity
(arrival rate) for values of the traffic intensity below a certain value p*(K) and is concave
for values of the traffic intensity larger than p*(K). We establish several useful properties of
p*(K). Second, we show that the loss probability is convex with respect to the service rate.
Last, we show that the throughput is jointly concave in the arrival and service rates while
the loss rate is jointly convex with respect to the same.
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1 Introduction

Convexity properties of performance measures of queueing systems are useful in solving op-
timization problems in stochastic systems. The loss probability in queueing systems has
acquired significance, recently, in the design and analysis of high-speed communication net-
works [12, 4, 1, 19]. Consequently, we are witnessing an increasing study of optimization
problems involving loss performance measures in queueing networks [14, 17, 11]. In this
paper, we, hence, examine the convexity properties of the probability of a full buffer or the
loss probability in the M/M/1/K queue which will be useful in the design and analysis of
high-speed networks.

Several researchers in the past have examined convexity properties of queueing system
performance. We consider results for finite buffer queueing systems. Meister and Shantiku-
mar [9] establish the concavity of the throughput of a tandem queueing system with respect
to the buffer capacity. The tandem system in [9] is a set of exponential servers with finite buf-
fer storage between servers. The servers block, i.e., service is not initiated, if the downstream
buffer is full. Note that the tandem arrangement with two stages can be used to mimic a
single finite buffer queue. Harel [5] investigates the convexity of the Erlang loss formula
for the M/G/K/K queue with respect to the traffic intensity and service rate. The author
shows that the Erlang loss formula is convex with respect to the traffic intensity for values of
the traffic intensity below a value which depends on the number of servers and concave for
values above. The Erlang loss formula is, however, shown to be convex with respect to the
service rate. In this paper, we consider the single-server, finite-buffer M/M/1/K queue and
study the second-order monotonicity properties of the loss probability function with respect
to the traffic intensity and service rate. We find that the results for the M/M/1/K queue
are similar in flavour to those for the M/G/K/K queue discovered in [5] suggesting similar

results for other finite buffer queues.

There are a number of convexity results for infinite buffer systems [8, 3, 20, 16, 6, 7] as
well. We will not detail these results here but point out that most of the work on infinite
buffer systems focuses on the mean and variance of the waiting time in these systems.
Finally, note that the M/M/1/K queue can be modeled as a closed queueing network. In
this context, Trivedi and Sigmon [15] show that the inverse of the throughput in a closed
queueing network which models a linear storage hierarchy is a convex function of the relative
utilizations at the nodes or alternately the average service demand (per storage reference)
at the nodes.

The first result of this paper is that there exzists a buffer-size dependent value of p, p*(K),
that delineates the conver and concave regions of the loss probability function with respect
to the traffic intensity. Further, we outline the numerical computation of p*(K) and present
sample results. We also detail a number of useful properties of p*(K) and their implications
for the behaviour of the loss probability with respect to the traffic intensity. Second, we show
that the loss probability in the M/M/1/K queue is conver with respect to the service rate.



Finally, we conclude by establishing joint convezity and concavily respectively for related
performance measures, viz., loss rate and throughput, of the M/M/1/K queue with respect
to the arrival and service rate.

2 Convexity of the loss probability

We investigate second-order monotonicity properties of the loss probability, or probability
of a full buffer, in the M/M/1/K queue. The probability of loss in the M/M/1/K queue is

given as:
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where, as usual, p = A/p is the traffic intensity and K is the buffer size.

In the following, we will be first interested in ascertaining if G(p) is a convex function
of p for a fixed value of K. We shall subsequently investigate the convexity of G(p) with
respect to the service rate, p, for fixed values of A and K. Before we proceed to the proofs,

we show that G(p) is a continuous function of p which will prove useful in the subsequent
analysis. We will, also, find it useful to adopt the interval notation, I' = [0,1] and I = (0,1).

Lemma 1 G(p) is a continuous function of p on [0, 00).

Proof: Clearly, both (1 — p)p¥ and 1 — pX*! are continuous on (0,00) [13, Theorem
4.2]. Hence, by Theorem 4.2 [13], G(p) is continuous on (0, 00) except at p = 1.0 where
1 — pE*t = 0. At p = 1.0, G(p) is also continuous since by application of L’Hospital’s
rule [13, Theorem 5.11], lim, ,; G(p) = 1/(K + 1). Now, consider the left end-point p = 0.
Since lim, ,o+ G(p) = G(0) = 0 (easily proved by using the corollary to the fundamental
limit theorem [13, Thm 3.4]), we have that G(p) is right-continuous at p = 0 and hence is
continuous on [0, c0) [13, pp.100]. ]

We, now, restate a theorem from [2, Theorem. 94| which states an important property

of convex functions:

Theorem 1 Suppose that f(z) possesses a second derivative f (z) in the open interval

(z1,23). Then a necessary and sufficient condition that f(z) should be convez in the interval

is f (z) > 0.

However, in certain cases we will be interested in proving convexity over a closed interval
rather than the open interval. A footnote in [2, pp. 76| states that the above theorem

extends to the closed interval, [z, z,], provided the value of the function at the end-points is



not less than the limiting value of the function at that end. Note that this latter property is
indeed true for functions that are continuous on [z, z5]. This implies that all results for the
convexity of G(p) with respect to p need be proved only for open intervals with automatic
extension to the corresponding closed intervals. As a final comment on Theorem 1, we note
that the reverse inequality is satisfied by concave functions.

2.1 Convexity of the loss probability with respect to traffic in-
tensity

In this section, we first establish that there exists a value p*(K) for the traffic intensity
that delineates the convex and concave regions of G(p). Next, we outline the numerical
computation of p*(K); sample results are deferred to a later discussion. We then proceed to

analytically establish various useful properties of p*( K) followed by sample numerical values

of p*(K).

Theorem 2 There exists a value p*(K) > 0 of p such that for p € [0, p*(K)], G(p) is convez
in p and for p € [p*(K),00), G(p) is concave in p.

Proof:

We will need the second derivative of G(p) with respect to p in the following proof. Hence,
we compute this first. Using Mathematica [18], we have that

Oy = PR — (24 3K + K?)p"? + (5K + K*)p"*! — K(K + 1)p + K(K —1))
(p) - (1 o pK_|_1)3

(2)

for general K. The above equation can be written more compactly as

() = ) (3

where
Al(p) = pK_27
As(p) = 2p°HD — (243K + K*)p" " + (5K + K*)p"*! — K(K +1)p + K(K — 1),
As(p) = (1—p")>% (4)

Consider the factor As(p) in equation (3). Note that Ay(p) is a polynomial in p of degree
2(K + 1). We will be interested in determining the real roots of As(p). First, note that
Ay(1) = 0. Hence it will be useful to first separate any factors of p — 1 from Ay(p). In the
following, we will show that (p — 1)? is a factor of A,(p) for general K i.e.,

Ax(p) = (p—1)°As(p) (5)



In order to carry out the factorization of Ay(p), we adopt Horner’s scheme [10, pp. 153]:

Az(p) = (p—1)Au(p)

K-1
A(p) = 20"+ 69" TP K(K + 1)p" + Y GK(F - K)p" T (6)
7=1
Also, note that
K .
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=0

Taking into account the factoring of As(p) and Asz(p) above, we can write the second deri-
vative as:

Note that A;(p) > 0 and the denominator is also always positive. Hence G (p) > 0 when

(8)

A4(p) < 0 and vice-versa. Consider the expression for A4(p) in equation (6). It is useful to
consider two separate cases. For K = 1, we have A4(p) = 2p and since A4(p) > 0 for p > 0,
we have p*(1) = 0. Now consider the case K > 2. We note that there is only one change
in the sign of the series of coefficients of A4(p). Hence by Descartes’ theorem [10, pp. 193],
A4(p) has a single positive real-valued root. We claim that this root of A4(p) is precisely
the p*(K) that we seek. Note that 44(0) = —K(K — 1) < 0 and since p*(K) > 0, we have
A4(p) < (>) 0.0, p < (>) p*(K). This completes the proof. |

We now make a brief comment on the computation of p*(K). In order to determine the
exact value of p which delineates the convex and concave regions of G(p), we only need to
compute the positive root of A4(p). This can be accomplished by any standard root-finding
algorithm since the above proof established that A4(p) has a single positive valued real root.

We will present sample values of p*(K) in a later discussion.

Having established the existence of p*( K') above, we will find it useful to consider different
properties of p*(K). Specifically, we claim the following bounds on the values of p*(K) for
different ranges of values of the buffer size:

1. p*(1) = 0.0
2. 0 < p*(2), p*(3) < 1.0
3. p*(4) = 1.0

4. 1< p*(K) < h(K) < 1.84, K > 5 where h(K) = (1+ K(K + 3)/2)Y/%. Note that this

has the interesting implication that G(p) is convex for p € I', K > 4 which is typically
a regime of practical interest in communication system analysis.



5. limg 00 p*(K) = 1.0.
Proof:

We will consider, as above, different cases.

CASE 1 (K =1):

The proof of this case is embedded in the proof of the theorem for the existence of p*(K)
above.

CASE 2 (K =2, 3):

For K = 2,
" 2(1 — 3p2 — p3)
G = 9
(p) (1+p+ p?)3 (9)
Now, let 0 < p < 0.5. We then have
Pi(p+3) < 0.875,
< 1.0. (10)

Hence, we have G”(p) > 0 for 0 < p < 0.5, K = 2. However, it is easily verified numerically
that G"(0.6) = —0.0786. Hence, it is clear that 0.5 < p*(2) < 0.6 which implies 0 <
p*(2) < 1. Similarly, for K = 3, we can show that G"(p) > 0 for 0 < p < 0.66 but
G"(0.85) = —0.00759. Hence, we have 0.66 < p*(3) < 0.85 which implies the corresponding

claim.

CASE 3 (K = 4):

Here we have

G'(p) = 2(1 — p)p2(6 + 14p + 20p% + 20p® + 10p* + 4p° + p°)
’ (L+p+p2+p%+p%)°

. (11)

Hence, we have that G" (0) > 0 for p € I and G"(0) < 0 for p € (1,00). Hence, we have
p*(4) = 1.0.

CASE 4 (K > 5):




First, we attempt to show that p*(K) > 1.0.

It is easily verified numerically that A4(0) = —K(K — 1) < 0.0. We will show in the
following that A4(1) < 0.0 which implies that p*(K) > 1.0.

We have
K-1 K-1
A1) = Y (G+1D)G+2)+ ) JK( - K),
7=0 7=1
K-1 K-1 K-1 K-1
= P24+3) j+2K+K > 2 —K?*>j,
Jj=0 Jj=0 Jj=1 j=1
K-1 K-1
= (K+1)) 7+B—-K?*)_ j+2K,
7=1 7=1
K+ 1)K - 1)K(2K —1 — K%K - 1)K
- (KD -DREE-1) | G- KK DK |y

K
= g((K —1)(=K?+ K +8) + 12).

(12)
For K > 5, we have (K —1)(K? — K —8) > 12 and hence A4(1) < 0. This leaves the second
part of the proof, viz., p*(K) < 1.84.

Our starting point will be the second derivative for G(p) in equation (3). Rearranging

terms in Ay(p), we have

As(p) = pHH(2p" T + 5K + K? — (243K + K*)p) + K(K — 1) — K(K + 1)p,
= pET (205 13K+ K* — (243K + K*)p) + 2Kp* ™ + K(K — 1) — K(K + 1)p,
= p**g1(p) + 92(p) (13)

where
gi1(p) = 20" +3K + K* — (2+ 3K + K*)p,
g2(p) = 2Kp"" + K(K —1)— K(K + 1)p. (14)

We will now demonstrate that gi(p) > 0.0 and g2(p) > 0.0 for p > A(K) > 1.0. Rewriting
g1(p) we have

g91(p) = 2p(p™ — 1) — (3K + K*)(p — 1). (15)
Since p > p — 1 and 2(p¥ — 1) > 3K + K2 for p > h(K), we have g,(p) > 0.

Now rewrite ga(p) as

g2(p) = K(2p""' + K —(1+p+ Kp)),
= K(K+p"" + " — (14 p+ Kp)). (16)



Clearly, K > 1 and p¥*! > p. Hence it remains to be shown that pK*' > Kp. Since
p > h(K), we have pX > K(K +3)/2 +1 > K and ga(p) > 0. Hence A5(p) > 0.0 and
G"(p) <0.0.

Clearly, p*(K) < h(K). Numerically evaluating h(K) for K = 5 yields h(5) = 1.838.
Further, in Appendix A we establish that h(K) is a decreasing function of K. Hence, we
have p*(K) < h(K) < 1.84 for K > 5 and this completes the proof.

CASE 5:

Since h(K) > 1.0 and is a decreasing function of K (see Appendix A), we havelimg o h(K) =
1.0 [13, Exercise 2.11]. Further, since 1 < p*(K) < h(K), we have proved Claim 5 above [13,
Theorem 2.2]. u

Having proved the various bounds on the value of p*(K), we will find it instructive to
numerically compute the values of p*(K) for sample buffer sizes. Table 1 shows values for
h(K) and p*(K) for different values of K. It can be immediately seen that the sample values
conform to the earlier established bounds. Further, the numerical values show that that
h(K) is a relatively tight upper bound for p*(K) for large K as expected. We also see,

interestingly, that p*(K) appears to first increase and then decrease.

2.2 Convexity of the loss probability with Respect to Service
Rate

In this section we examine the convexity of the loss probability in the M/M/1/K queue with
respect to the service rate. Our approach will be similar to that in the previous section for
the traffic intensity.

Theorem 3 The loss probability, G(p), in the M/M/1/K queue is conver with respect to
the service rate for p, A € (0,00) and fized A and K.

We will use the notation G’ (p) to denote the derivative with respect to the service rate.

Using Mathematica [18], we find that

() = e o

where

F(p) = KX (= A) + Kpf (1= A) + 22p(A - p). (18)



F(p) can be factored according to Horner’s scheme and it can be shown that

F(p) = (n—=2)*(Ep"™" +2XK - 1)p" 7 + 3N (K — 2)p" 7 + - + KA

=K . .
= (n=2)® D G(K —(j — 1)V 1" (19)
7=1
Hence
" MEYEHEK + 1) (p — A)3F
G (p) = 3 lﬁ{ ( K+1 e ) Kl(llu) K3 (20)
(= AR5+ A=t 4o+ AT 4 MK
where
j:K . .
Fi(p)= > (K- (G -1))N "7 >0 (21)
7=1
Hence G”(p) > 0 and that completes our proof. [ ]

Remark: The above result implies that the loss probability is entirely convex with
respect to the mean interarrival time with the g and K fixed.

3 Convexity of Related Performance metrics

In this section, we consider the convexity of two related performance metrics for the M/M/1/K
queue, viz., the throughput and the loss rate. We will establish that the loss rate is jointly
convex with respect to the arrival and service rates while the throughput is jointly concave.

Theorem 4 The loss rate, L = AG(p), and the throughput, T = A(1 — G(p)), are jointly

convez and concave respectively in (A, p).
Proof:

Proposition 4 in [5] states that if W (p) is a convex function of g with A fixed, then AW (p)
is jointly convex in (A, p). Since G(p) in our case is a convex function of p, the loss rate,
AG(p), is jointly convex in (A, p). Similarly, —AG(p) is jointly concave in (A, ) and hence
the throughput is jointly concave. [ ]

4 Conclusion

In this paper, we considered the convexity of the loss probability in the M/M/1/K queue
with respect to the traffic intensity and the service rate of the queue. We also considered
the convexity of some related performance measures for the M/M/1/K queue.



With regard to the traffic intensity, we established that there exists a p*(K) which exactly
delineates the convex and concave regions of G(p). We demonstrated as to how p*(K) can
be determined numerically and illustrated the computation for some sample buffer sizes.
Further, we investigated properties of p*(K). Of most interest, we have shown that the loss
probability in the M/M/1/K queue is convex for p € [0,1], K > 4, which is a regime of
considerable practical interest in communication system analysis. We also showed that for
p > h(K) > 1.0, where h(K) is presented in closed-form, the function is entirely concave.
The numerical evaluation of p*(K) confirmed that h(K) is a tight upper bound for p*(K)
for large K. Finally, the value p = 1.0 was found to nearly delineate the convex and concave
regions of G(p) for large K. Second, with respect to the service rate, the loss probability
in the M/M/1/K queue was found to be entirely convex. Finally, we established rather
trivially the joint convexity of the loss rate and the joint concavity of the throughput in the
M/M/1/K queue with respect to the arrival and service rates.

The loss probability in more general queueing systems such as the M/M/c/K queue
where closed-form expressions are available could possibly be studied in a similar fashion.
This remains a topic for further research.
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pendix A

In Section 2.1, we establish the concavity of G(p) with respect to p for p > h(K). In this

appendix, we establish that hA(K) is a decreasing function of K.
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Lemma 2 h(K) is a decreasing function of K for K > 1.

Proof:

Treating K as a real variable, and taking derivatives we have:

dh(K) K +3/2 In(1+ K(K +3)/2)

dK (K(l + K(K +3)/2) K2 J(K). (22)

We now attempt to show that d’;(lf) < 0.0. The proof is by contradiction. Let dh(lf) > 0.0.

d
This implies that

K +3/2 o (14 K(K +3)/2)
K(1+K(K+3)/2) ~ K? ’
K? +3K/2 K?/2 +3K/2 + 1)in(1 + K(K + 3)/2),

(
(K?/2 + 3K/2)In(1 + K(K +3)/2),

>
K?>+3K/2 >
> 3(In(1 + K(K +3)/2) — 1). (23)

K(2—In(1+ K(K +3)/2))

For K > 3, In(1 + K(K + 3)/2) > 2.3. Hence 2 —In(1 + K(K + 3)/2) < 0 and since

In(1+ K(K +3)/2) —1 > 0 we have a contradiction. Hence d’;(lf) < 0.0 for K € (3,00).

This implies that h(K) is decreasing in (3, 00) [13, Exercise 5.14]. Interpreting this result for
integer values of K we conclude that k(5 + 1) < h(j), j > 3. We now simply verify nume-
rically for small values of K that h(K) is indeed decreasing for all K. Numerical evaluation
shows that h(1) = 3.0,h(2) = 2.45,h(3) = 2.15,h(4) = 1.97 and that completes the proof.

|
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Buffer Size (K) | h(K) | p*(K)
1 3.0 0.0
2 2.45 0.53
3 2.15 | 0.843
4 1.97 1.0
5 1.84 1.08
6 1.74 1.13
7 1.67 1.15
8 1.61 1.16
9 1.56 1.17
10 1.52 | 1.174

20 1.31 1.15
50 1.15 1.09
100 1.09 1.05

Table 1: Traffic intensity values that delineate the convex and concave regions of G(p)
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