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Abstract

The introduction of hard timing constraints to the semantics of a computation
presents a set of design challenges that are significantly different from those of con-
ventional systems, requiring the ability to guarantee that timing constraints are met.
Such systems must consider the worst case, rather than the average case, behavior of
the system and application software. The Spring system uses a scheduler construct-
ing explicit plans for executing application programs to ensure that both logical and
temporal constraints are satisfied. Such scheduling requires a detailed representation
of the worst case run-time behavior of the application. Constructing the behavioral
description requires detailed information about the properties and requirements of the
application, system, and target hardware.

The Spring system description language (SDL), plays vital roles in both its source
and compiled forms. SDL source files enable developers to specify the properties of all
parts of the system in great detail. When compiled, this information is available for use
by all tools needing to use, modify, or add to it. The SDL thus provides vital support
for specification, compilation, and execution of applications on the Spring system, as
well as for specifying input information to simulations run under Spring’s scheduling
testbed.

This document presents the many sections of the SDL in detail, discusses its roles
within the Software Generation System, the use of the information it provides at run-
time, and describes the set of interface routines available for use by tools wishing to
use or modify SDL information stored in compiled form.

*This work was supported by ONR under contracts NOOO14-85-K-0398 and NOOO14-92-J-1048 and by
NSF under grant DCR-8500332.
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1 Introduction

Hard real-time systems such as nuclear power plants, space stations, avionics, and many
process control applications require very careful design, implementation and evaluation to
ensure that explicit and individual timing constraints are met. The introduction of timing
constraints to the semantics of a computation presents a set of design challenges that are
significantly different from those of conventional systems. Current designs at all levels of
conventional systems generally concentrate on improving average case performance.

Real-time application software implemented within systems having an essentially con-
ventional character smplicitly assumes that the average case orientation of the system design
and implementation will be sufficient to support adequate performance under all scenarios
within which the system is expected to function. Yet, such average case design is fraught
with difficulties and subject to catastrophic failure if used to support systems with hard
deadlines. For example, the copy-on-write approach found in the MACH operating system
provides significant performance savings on the average, but might cause high execution time
costs at exactly the wrong moment, causing important deadlines to be missed. Numerous
similar examples exist in other areas of operating system and hardware design including: vir-
tual memory, IPC, scheduling, I/O, caching, pipelining, memory refresh and bus contention
in multiprocessors. Systems requiring the ability to guarantee that timing constraints are
met must consider the worst case, rather than the average case, behavior of the system and
application software. Further, the worst case behavior must be predictable, since it must be
available for consideration before a program executes.

Spring is a real-time operating system providing support for predictable execution of
real-time application software. The system is reflective in that it uses information about its
current state and predictions of worst case application behavior when deciding how to sched-
ule computations. The Spring scheduler constructs explicit plans for executing application
programs thus guaranteeing they will meet their deadlines, subject to some basic assump-
tions about the accuracy of the behavioral predictions and the failure modes of the system|[7].
The Spring scheduler assumes a task based run-time representation of a computation, where
a task is defined as having a known worst case execution time (WCET) and set of resources
requirements[6].

The Spring system description language (SDL) provides a simple but comprehensive way
to collect, use, modify, and exchange descriptive information at the level of detail required
to write, translate, and predictably execute real-time programs. However, it is important
to note that the SDL is not intended as a high level requirements language, specification
language, or design method. Some of the information normally specified at these higher
levels is represented by the SDL, but most of it addresses lower level details, including: a
vocabulary to describe the structure and properties of application and system software, a
way to specify the task based run time representation of a program’s behavior, a set of
statements describing the location of all software within the target hardware’s memory, and
a way to describe the important properties of the target hardware.

The SDL also serves the important role of effectively defining the set of information
required to support a predictable real-time system. As such, it also represents a reasonable
target for higher level design, requirements, and specification languages, since any such higher
level approach would have to generate the detailed descriptions required for translation and



execution as defined and supported by the SDL. It is also possible that the SDL itself could
be expanded to support one or more higher level interfaces in the future. Further, graphic
user interfaces could replace the source language for specifying many types of information,
including: target hardware architecture, network topology, and the assignment of processes
to processors.

Finally, it is important to note that the compiled form of the SDL provides a standard
method for exchanging this descriptive information among all parts of the system that use,
modify, or add to any part of it during compilation, at run-time, or during system simulation.
The SDL thus provides vital support for system execution and simulation, as well as a way
to integrate and coordinate the development and use of a wide range of tools.

The SDL plays a central role in the Spring programming and run-time environments.
The programming environment includes the Spring-C programming language and the soft-
ware generation system (SGS). The SGS includes the compiler, linker, and related tools.
The Spring-C language supports a relatively conventional programming model, describing
computations as sets of processes, where a process is a single thread of control within an
independent address space. The SGS is responsible for translating from the process based
programming model to the task based run time representation required by the Spring sched-
uler. The translation method involves predicting the worst case run-time behavior of the
application program at compile time.

The translation depends on significant restrictions to the programming language and
practices as well as a wide range of information about the application process and target
system. The SDL is used to specify the information required as input to the translation
method. When made, the behavioral predictions are also described using the SDL and are
included in Spring executable files produced for each process during compilation. The SDL
information in the executables is then used by the system during process activation to build
and initialize the run time data structures used by the scheduler as it constructs execution
plans. The Spring-C language and the translation method are described elsewhere[2, 3].

The compiled descriptive information helps coordinate the development and use of the
various parts of the Spring project by providing a common form within which to produce
and exchange information. When used to describe properties of a real-time application
and target system for simulation using Spring’s scheduling testbed, most of the information
used as input by the simulation, include the task group representation of a computation, is
specified using SDL source files. In contrast, when describing an application program that
runs on the real system, the SDL descriptions of the processes are included in the Spring-C
source files of the programs, but the task group representation of their run time behavior
i1s generated, in compiled form, during translation. However, tools using the task based
description neither know nor care whether it was generated by compiling an SDL source file,
or derived during translation.

The SDL thus provides relatively mundane, but vital, support for stepwise system devel-
opment by decoupling the production of descriptive information in compiled form from its
use. In the initial stages of system development, the developer must specify everything using
SDL source files. Then, as portions of the SGS and related tools are improved, more and
more information is derived rather than specified. However, since the portions of the system
using the information always work with the compiled form, they are completely insulated
from such changes.



Figure 1: Programming Environment Information Flow

Section 2 of this document briefly describes the source and compiled forms of the SDL,
and discusses in general terms how the SDL is used by various parts of the Spring system,
particularly the programming and run-time environments. Section 3 discusses the source
form of the SDL in detail, and Section 4 gives an example of how it can be used to describe
real-time computations. Section 5 then describes the basic interface routines provided by
the SDL library. This information is sufficient for anyone wishing to write a description for
any portion of the system, or to write a tool using compiled descriptive information as input
for analysis, or as a basis for deriving further descriptive information. Finally, Section 6
describes the current status of the SDL, and concludes the paper.

2 The SDL’s Role in the Spring System

This section discusses the many roles of the SDL in the Spring system. Figure 1 illustrates
the information flow in the Spring system, showing the central part played by the SDL. The
figure 1s divided into three horizontal sections, illustrating the processing of Spring-C source
files, SDL source files, and how the information compiled or derived is used to help control
many aspects of system execution and simulation.

The middle section illustrates the processing of the source files which contain only SDL
statements. This is emphasized by showing that the compiler used is sdl_ce, although
spr_cc can also process files containing only SDL information. The SDL source files are
compiled, and produce objects files containing only descriptive information. The sdl_merge



tool is then used to accumulate the descriptive information from the files as they are created,
producing a full description of the system in the file full. db. This information is then available
for use by several different parts of the system.

Much of the information derived from files written only in SDL is required to properly
compile and link Spring-C programs, as illustrated in the top section of Figure 1. The boxes
representing the object and executable files show that a Spring executable file contains a
representation of the code, as well as the compiled form of the SDL information as specified
by or derived from the Spring-C source during compilation. Examples of data supplied in
SDL source files that have a bearing on the compilation and linking of executables include:
the section specifying the target node structure, and the system layout section specifying the
location of each process and shared segment within the target node. Further, information
derived during compilation of some application source files is often required when compiling
other source files.

For example, an application process will often be described using more than one source
file. The main procedure of the process will often call procedures described in other source
files. When compiling code for conventional systems this presents no problems, because
each source file can be compiled independently of the others, and all unresolved references
to routines or data structures in other files are resolved during linking. However, when
compiling code for a real-time system requiring behavioral predictions during compilation,
we must already have a behavioral description for all procedures called by the procedure
being compiled. This implies constraints on how the procedures of a program are grouped
into source files, and on the order in which the source files are compiled. The basic rule is
that a given procedure can only be compiled when all of the procedures it calls have been
compiled, and a description of their behavior is thus available.

This obviously implies that behavioral descriptions be included with all procedures within
an object file archive, and that this information be available when a procedure is compiled,
not only when the program executable is linked as is true in conventional systems. A rea-
sonable approach would thus be to begin compilation of an application by adding behavioral
descriptions of procedures in libraries used by the application to the full.db file. Then, as
each source file is compiled, the behavioral descriptions for the procedures it contains are
added to the full.db file.

Information about the procedures called is not the only information required to derive
a behavioral description of a procedure during compilation. For example, just as vital for
producing the behavioral description is the ability to answer the question: “how long will
this memory reference take”. How the information required to answer this question during
compilation illustrates both the range of information represented by the SDL, and its central
role in supporting program compilation and execution.

In a conventional uniprocessor system without caches memory reference time is usually
a constant. However, many next generation real-time systems may be implemented us-
ing shared or distributed memory multiprocessors, some of which will have a non-uniform
memory access (NUMA) hierarchy. A Spring node, for example, is a distributed memory
multiprocessor with a two level memory hierarchy, as illustrated in Figure 2. Each node con-
tains a set of single board processors which each have local memory. One of the processors
is the system processor (SP), while the rest are application processors (AP). Each processor
i1s connected to the node’s VME backplane, giving each board access to the memory of the



Figure 2: Spring Node Architecture

other boards, and to the global memory (GM) board connected to the bus.

The portion of the SDL described in Section 3.4 enables a developer to specify the
structure of the node within which the application and system code will run. This description
includes classification of each board as a memory or processor board, specification of its
physical address range when address from the system bus, and categorization of its use. For
example, a processor board can be used as an SP, AP or for I/O, while a memory board can
be used to hold data, or represent a set of memory mapped control and status registers for
an external device. Access by a processor to the local memory on the processor board, a local
access, is faster than access by that processor board to the memory of other processors or to
the GM board, a global access. This is not surprising since a global access requires use of the
system bus with the associated arbitration overheads, while a local access does not. These
are the two main levels of the NUMA hierarchy in the current Spring node architecture.

The reflective memory illustrated in the diagram, represents a potential third level to
the hierarchy, although in the current configuration its access time is the same as to the
GM board. The memory is “reflective” in that the reflective memory boards in each of
the Spring nodes always contain the same information, subject to transmission delays. The
reflective memory boards thus effectively represent a single memory board shared among
all the nodes on the ring. An additional level in the NUMA hierarchy would be present in
target hardware that contained instruction or data caches, which the current Spring node
does not. Calculating at least a portion of the effects of instruction caches on the worst case
behavior of a procedure is a non-trivial problem, but can be done under some circumstances
[4].

The memory access time is ultimately determined by the location within the memory



hierarchy of the data structure being accessed relative to that of the process accessing it.
Knowledge of the node architecture is only a part of the information required to determine
memory access time, but the SDL represents all of the required information. Another impor-
tant factor is the location of each process within the node, which is described by the layout
part of the SDL described in Section 3.6.

Determining the the location within, the NUMA hierarchy, of each data structure at
compile time is a bit more complicated, requiring information from several parts of the SDL.
The executable image of a Spring process is compiled using the conventional model of a
contiguous area within the address space of the process beginning with the process’s text
section, followed by the data section. The stack page is placed at the top of the address
space. Each of these areas is private to the process, and each is supported by memory local to
the processor board on which the process is activated, as specified in the layout specification.

If a process requires access to any shared data, or to the memory mapped control and
status registers of an external device, the relevant shared memory segments are attached to
the address space of the process during process initialization at boot time. In conventional
systems the creation of shared segments and attaching them to a process’s address space
is done only at run-time, using system calls. While Spring provides system calls for this
purpose, it also provides an interface with a compile-time component with several advantages
for supporting shared segments containing pointers and predicting memory access time.

In the Spring system, shared memory segments can exist as independent “objects” at
both compile and run times, and are specified using separately compiled source files. This
makes it possible to use shared segments in a number of different ways, which are discussed
in detail elsewhere [5]. For the purposes of this discussion, it is sufficient to note that when
compiling a procedure, the compiler must be able to distinguish references to private data
from those to shared data, it must know how shared data are grouped into segments, and
where those segments are located.

Distinguishing references to private and shared data in a completely general way that
accounts for the use of pointers is extremely complicated, and will require significant modi-
fications to the Spring-C compiler beyond those completed or being implemented. A general
solution will include extensions to Spring-C typing which will distinguish pointers to private
and shared data, significant modifications to the compiler’s intermediate code representation
and to the assembler it emits to support annotations distinguishing private and shared access,
and extensive modifications to the portion of the compiler making behavioral predictions.

However, we begin by supporting a less general, but simpler, method of access to shared
data that supports distinguishing private and shared data accesses fairly easily. This simpler
approach assumes that all shared data are accessed by name, rather than by pointer. Under
the current method, shared data structures are grouped into sets represented as resources.
These are the resources whose use by tasks in the group representing a process at run-time
is of concern to the Spring scheduler. Resources can also be used to represent other types of
objects or scheduling constraints, but are most often used to represent shared data.

A resource is defined using the portion of the SDL described in Section 3.2, which includes
a list of the shared data structures represented by the resource, as well as its name, modes
of access, and its association with a shared segment. Resources are grouped into sets, and
assigned to a shared segment. The portion of the SDL described in Section 3.3 supports
the definition of shared segments, which includes giving it a name, specifying a virtual and



physical base address, and listing the resources it supports.

Now consider the flow of information illustrated in Figure 1, with respect to determining
memory access time, and knowing the behavioral descriptions of all called procedures, during
the compilation of a given procedure. Several constraints on the order of compilation should
now be evident. First, the node architecture and software layout specification, illustrated
in the middle section of the Figure, must be compiled, and merged into full.db. Then,
information about the behavior of library routines used by the application should be merged
into full.db. This prepares the SGS to begin compiling the application source files, which
should begin with the compilation of the files defining the shared segments, and merging
their SDL descriptions into full. db. This provides the information required to classify as
shared or private, all references to data that are made by name, since the layout specifies
the shared segment location, the shared segment definition lists the resources it supports,
and the resource definition lists the data structures it represents.

The compilation of the application procedures can then begin, starting with those that
call only library procedures, since these are the only ones for which behavioral descriptions
are known. Behavioral descriptions of these procedures are added to the set in full.db as they
are produced, enabling subsequent compilation of procedures calling them. In this way, all
of the application procedures can be compiled from the "bottom up”. During compilation
of a procedure, its access to global data structures is detectable since they are made by
name. However, the access time is also a function of the location of the procedure, which
is determined by the process within which it executes. The association of the procedure
providing the processes’ entry point is obvious, but it is less so for other procedures. The
solution used at the moment is to assume a global access time for all shared data references,
except those from the entry point procedure. In the case of the entry point procedure, the
SDL provides information enabling the compiler to know if the process making the access
and the shared segment being accessed reside on the same board. As we gain experience
with application code, support for associating a particular procedure with a process or set
of processes can be added to Spring-C and the SDL.

When all the application code is compiled, then executable files can be produced for each
process. SDL information about shared segments accessed by a process is used by the loader
spr_ld to resolve references to data structures supported by the segments. Executables
for independent processes are complete when linked, and contain all of the SDL information
required to build the run-time data structures describing them to the Spring scheduler. How-
ever, for processes that are part of a group engaging in synchronous communication, some
post-processing is required to complete the SDL description. The spr_grp command reads
the SDL information contained in the executable of each process in the group, and performs
the analysis to write the complete descriptive information back out to the executable files.
The analysis performed is described elsewhere[3].

If only application code is being produced, then full. db and the set of process executables
are all that is required by the debugger sbug, which downloads the system and application
code onto the Spring node(s) as described by the layout section of the SDL. The vertical
dashed line symbolizes the fact that the download operation crosses the system boundary
separating the development machine from the Spring target node. However, the SDL can also
be used to provide input information to simulations associated with the Spring system. This
information can describe actual application software, or describe an imaginary workload.



The bottom section of Figure 1 illustrates the workload generator, scheduling simulation,
and Spring Scheduling CoProcessor (SSCoP) simulation testbeds. The workload generator
uses the information in full. db, as well as a model of the workload, to generate a detailed
system workload for specific experiments. If the workload is intended to drive the actual
system, then sbug takes care of providing the workload to the running system as required.
However, the system description and workload can also be used as input to the scheduling
simulator to conduct a scheduling experiment. The scheduling simulation testbed enables re-
searchers to experiment with different scheduling algorithms within a context that accurately
reproduces many aspects of the actual Spring system [1].

The workload generated, and the information in full.db can also be used as input to the
simulation of the SSCoP, which is a coprocessor designed to provide hardware support for
Spring’s explicit execution plan construction approach to system scheduling. The SSCoP
interface code embodies algorithms and code that are drawn from the Spring system subsec-
tions addressing both process activation and the system scheduler. It uses the information
in full. db to construct the run-time data structures used by the system, while the workload
specifies the order and timing of the scheduling operations required. The SSCoP interface
considers each set of computations requiring scheduling, and performs a number of prepro-
cessing steps required to prepare the information in the form required by the SSCoP. This
is then given to the simulation of the coprocessor, which gives the output back in a form
requiring some postprocessing. The SSCoP interface code then uses the coprocessor out-
put to update the system schedule as required, and records the results of each part of the
simulation.

The two testbeds can be used on the same input information to compare the results
produced by a simulation of a scheduling algorithm, and by the SSCoP. This is an important
part of the testing process for the coprocessor. Further, results of the simulations can be
compared to the behavior of the system actually using the SSCoP, once it is implemented.

This completes the discussion of how the SDL information is accumulated and then
used by various portions of the Spring system. Most of the information flow illustrated in
the figure, and discussed in this section, is enforced by proper use of the make command.
When the developer is writing the makefile, he or she is responsible for making sure that
the various processing steps are done in an order ensuring that information is available
when required. However, while a bit more complex than those for conventional systems,
the ordering constraints on the compilation steps are no different in principle from those
requiring that all the object files required to build an executable be produced before linking
occurs.

While they illustrate the central role played by the SDL, the details of exactly what
information is used by which tools is less important than the idea that the descriptive
information included in each file, and accumulated for the system as a whole, is stored
in a common form, thus making it available to all present and future tools in the system
requiring any part of it. The uses of the SDL information are by no means restricted to those
discussed. For example, the download function of sbug was considered, but the descriptive
information is used during debugging as well. Other tools will be developed over time which
use the descriptive information, and may derive much of what is now explicitly specified by
the developer.

One example of this would be a tool which would derive a layout for the system, taking



config_info ::= [conf_item]* system layout [confitem|* network topology [conf.item]*
| [conf_item]* network_topology [conf.item]* system layout [confitem]*
confitem = node_desc
process_desc
process_group_desc

shared_seg_desc

|
|
| resource_desc
|
| task_group_desc

Figure 3: System Description Language Top Level

process requirements and properties into account. Some of the requirements information
might be given by or derived from a higher level specification in a separate requirements
language or requirements extension to the SDL. Such a tool would use the information
about processes to discover a layout for the system which could make it easier for the system
to fulfill the specified requirements, or it might seek to minimize IPC traffic by grouping
processes that communicate onto the same node or even the same processor.

Other tools might conduct analyses related to specified fault tolerance requirements, and
produce a process group specification appropriate to the level and type of fault tolerance
required. The SDL is thus intended to support the orderly evolution of the system by serving
as a target for higher level analyses, and by supporting a common format for the use and
exchange of all relevant information. Further, the definition and implementation of the SDL
makes it easy to add to or modify descriptive information. The interface supporting the use
and modification of the SDL information by Spring tools is described in Section 5.

3 SDL Source Language

As a foundation for development, the SDL provides a significant portion of the framework
within which a predictable real-time system can be established, and then gradually refined.
Figure 3 shows the high level structure of a system description. The SDL grammar permits
an arbitrary stream of language elements with a single instance each of the system layout
and network topology specifications at any place in the stream. This is done to preserve
flexibility in processing the application source files, since portions of the system description
may appear at many locations within a source file, and can thus be processed by the SDL
compiler in almost any order. However, it is reasonable to require a single system layout
specification and a single network topology specification within the stream of definitions, as
the grammar indicates. It also is important to note that the developer is not necessarily
limited to providing input in source form. As development of the system proceeds, it is
possible to imagine creating a graphic user interface for specifying some classes of informa-
tion, including: target hardware architecture, network topology, and software layout. This
interface would then produce the corresponding SDL description in compiled form, for use
by other parts of the system.

The descriptions of individual items are compiled and combined by the SGS as it processes



each of the source files, forming a cumulative system description, as discussed in Section 2
and illustrated in Figure 1. The system description file holds the SDL in compiled form, and
1s thus readable by all the elements of the Spring programming and run-time environments
(compiler, linker, system loader, and the debugger) requiring any of the information it con-
tains. The information describing individual computations is included in the executable files
describing their run-time representation to the system. These descriptions are read by the
system as it activates processes during system boot.

Since it plays many roles, the SDL has several fairly distinct sections. One of the more
interesting is the SDL’s support for describing computations in terms of processes, process
groups, and their run-time representations as groups of precedence related tasks. The SDL
also supports the description of the resources and shared memory segments in the system,
which are used by processes and considered by the system scheduler. A section of the SDL
provides for describing the target nodes onto which the software must be loaded. This in-
cludes a description of each processor and memory board within each node, and the topology
of the network connecting the nodes. The last part of the SDL specifies the system layout.
This entails listing every process, resource, and shared memory segment that is assigned to
each processor or memory board within each node.

3.1 Computation Descriptions

The specification of computations for a real-time system, or any system, can be done in a
myriad of ways. In the Spring system we have adopted the process, a single thread of control
through an independent logical address space, as the basic unit of computation. Each process
1s represented to the scheduler as a group of tasks, related by precedence constraints. A
computation can be implemented as a single process, or as a group of processes. The structure
of the process group is specified using precedence constraints, as with the task group. Process
groups are useful for representing coarse grain concurrency within a computation, as well as
describing structures used to support fault tolerance.

Processes communicate with one another either through messages or through shared data
structures. Messages are sent and received through ports, using the interprocess communi-
cation (IPC) facilities. Asynchronous communication is not represented in the SDL, since
it has no impact on the run-time representation of a computation, or on how it is sched-
uled. Shared data structures represent address space overlap among the processes doing the
sharing, since the shared structure is visible in each of their address spaces.

When specifying the structure of a group using precedence constraints we use the simple,
but effective, representation called a successor list. The list has a Begin node which is always
the first item, but represents no part of the computation being described. The reason for
this 1s that the group might contain several members that can execute concurrently from
the very beginning. For each item in the group, we list its successors. If the item has no
successors, then the imaginary End node signifying the end of the computation is implicitly
assumed as its successor. Figure 4 specifies the grammar for a successor list.

The basic structure of the list is obvious, although the grammar is slightly complicated
by the fact that successor lists can be constructed for groups of tasks, groups of processes,
or groups containing process groups. The simplest form of a lLst_itemn identifies another
element of the same group by name. However, it is also necessary to specify precedence

10



succ list = succ_begin [succ_item]*
succ_begin = Begin: prec list;
succitem = name: preclist;
prec list = prectem

| preclist, prec.item
precitem = list_item

| (list_item delay_val)
list item = proc_group_name

| proc_name

| (proc_name task_name)

| task_name
delay_val = INTNUM

| (Comm-_delay port_name list)
| (Comm_delay INTNUM port_name_list)

Figure 4: Successor List

constraints that cross task group boundaries, since they are required to represent synchronous
communication. A member of a group is uniquely identified by the pair giving the name of
the group and the name of the group member. Precedence constraints can also have a delay
value associated with them. The simple form for the delay value is as an integer number
expressed in the basic time units of the system. This is useful for describing delays resulting
from the use of the delay statement in Spring-C.

However, delays can also be created by synchronous communication, which is more com-
plicated, since delay associated with a communication channel is only known at boot time.
This i1s why the grammar permits expressing a delay value in the communication delay form
to specify a list of port names. More than one port name is permitted since the delay between
tasks in a group may represent more than one communication act. This is a consequence of
the translation described in [3]. Further, a given precedence constraint may represent the
delay associated with both communication and delay statements, and so permits an integer
argument. When communication is involved, the actual delay value used is determined at
process activation or scheduling-time by taking the maximum of the delays associated with
all of of the ports involved, and that arising from delay statements, if any.

For example, consider a group of two processes engaging in synchronous communication
using port A. The task group representing the processes will contain a precedence constraint
between a task in the sending process and a task in the receiving process arising from the
sync_send call, which sends a synchronous message on port A. Since the sending process
should not continue execution until the message can make it to the receiving side, the delay
associated with the precedence constraint would be: (Comm._delay A). However, the commu-
nication delay can only be evaluated when the locations within the network of the sending
and receiving processes using port A are known, so that the worst case delay associated
with the connection can be evaluated. The SDL description of the task group in the process
executables thus contains the (Comm_delay A) form, and is evaluated during process acti-
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vation. The value for the delay is associated with the precedence constraint in the run-time
representation of the task group used by the Spring scheduler.

At several places in the description of a computation, we wish to support the specification
of both actual application code, and of a simulated workload based on that application. As
a result, the SDL supports language elements of the distribution type. The distributions are
used to specify certain values; particularly execution times, deadlines, and laxities. These are
obviously important when specifying a workload for simulation, but have in some cases also
been defined as specifying worst case values. The reason for this is that some distribution
types, technically speaking, place no limit on the maximum value of the random variable.
In such cases, the values in question play a slightly different role in the simulation where a
distribution is required, and in the actual system, where a maximum value is needed. The
distributions supported include the constant, uniform, exponential, and normal distributions.
The grammars for the distribution types and those of other simple language elements such
as names, numbers, and lists are specified in the complete SDL grammar in Appendix A.

3.1.1 Processes

The specification of a process is divided into three parts, those parameters related to its
execution, those related to its tzming, and those related to scheduling an instance of it. The
execution parameters specify what file contains the process’s executable image, what data
structures it imports, what shared memory segments it uses, and the ports through which
it engages in synchronous communication. The list of imported data structures specifies
precisely what shared data structures are used by the process. These shared structures will
clearly reside within one or more shared memory segments, but the process may use other
segments which do not contain explicitly exported structures.

As discussed in Section 2, the classification of a data structure as being shared or private
is an important part of determining the time required to access it in a NUMA architecture.
While the system currently determines access time properly for shared structures that are
referenced by name and explicitly exported, this will change. When it does, it will be
reasonable for a process to attach a segment containing no exported symbols, since access
time calculation for references through pointers will be supported. Thus, the list of imported
data structures and that of shared segments are useful, since we clearly wish to know both
sets of information. Although the shared segment list is currently redundant, since the
sharing of the segments is implied by the import list, this is tolerable since it provides a way
to help check consistency.

The specification of communication ports only lists those used for synchronous com-
munication because synchronous communication has an impact on the run-time behavioral
representation and scheduling of processes, while asynchronous communication does not. In
the Spring system, any two processes engaging in synchronous communication are considered
parts of a single computation, and will be represented as part of a task group representing
the process group of which the communicating processes are members. The communication
ports are represented at this level in the SDL because each process attaches to a port and
then sends to or receives from it. At the process group level, one aspect of correctness is that
the use of the synchronous communication ports be consistent. In this context, consistent
means that every send on a port in a process will have a corresponding receive on the port
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process_desc = Process(name) { [proc_attr]* } ;
proc_attr = exec_spec;

| timing_spec;

| sched_spec;

exec_spec = Code name
| Import name list;
| Sharing name list;
| Sync_ports port_list;

timing_spec = Non_Periodic;
| Period INTNUM;
| Periodic;

| Separation INTNUM;

sched_spec n= Deadline dist_spec;
Deadline_type dln_type;
Importance INTNUM,;
Laxity dist_spec;

RT _type rt_type;

port_list n= port_item

| port.list, port_item
port_item = name

| (name use_type)
use_type = Receive

| Send

Figure 5: Process Specification

in the process with which it is communicating. Representing synchronous port use in the
SDL enables the SGS to detect some classes of synchronous communication errors at compile
time, including inconsistent use of the ports.

The timing specification is simple, identifying the process as periodic or nonperiodic. If
it 1s periodic, then it gives the process’s period, and a minimum separation constraint that
must hold between successive instances. The minimum separation constraint is useful with
nonperiodic processes as well, for simulations generating workloads. In that case it specifies
the minimum separation between aperiodic events.

The scheduling parameters specify the process’s deadline value, type of deadline, and
laxity. They also give the process’s importance and type. The sections of the grammar for
these parameters are given in Appendix A. Deadlines may be hard, soft, or non-real-time,
while processes are critical, essential, and non-essential. Note that not all combinations of
process and deadline type are allowed; the combination of a critical process with a non-real-
time deadline is, for example, nonsense.
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task_grp_desc ::= Task_group(proc_name) { tg_def } ;

tg-def = group_def [task]™
group-def = Groupist { succlist } ;
task = Task(name) { [task_attr]* } ;
task_attr = M _time dist_spec;
| Non_Preemptive;
| Preemptive;
| Resources [ru_spec|t;
| sched_spec;
|  W_time dist_spec;
ru_spec = (name [use_attr]™)
use_attr = Start time_val;
| End time_val;
|  Exclusive;
| Sim_prob use_prob excl_prob;
| Shared;
use_prob = FLOATNUM
excl_prob = FLOATNUM

Figure 6: Task Group Specification

3.1.2 Task Groups

A task group represents the worst case run-time behavior of a process which is used by the
scheduler when constructing an execution plan. The grammar used to describe a task group
i1s given in Figure 6. When a task group is declared, it specifies the name of the process
it represents. The task group definition is separated from the process definition in the
grammar as an aid to implementation. This is important because for application code, the
description of the process will appear in its source code, while the task group representation
will be generated by the compiler as it is derived during translation. However, we must also
provide the ability to specify a task group in the SDL to support scheduling simulations.
While we are interested in simulating application code, we are also interested in constructing
simulations for workloads that may not represent actual application code.

The name specified when defining a task group is the name of the process it represents.
The definition of a task group has two parts. The group definition gives the structure of
the group using a successor list. Following that is a description for each of the tasks that
appear in the group definition. Each task has a name, which need only be unique within
the group. The scheduler, when working with all the tasks on the system can uniquely
identify a task by the process name and task name pair. Note that for processes engaging in
synchronous communication, the successor list of a given task group contains references to
tasks in the group representing the other communicating process. Such references are of the
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form ((proc_name task name) (Comm_delay port_name)) mentioned in Figure 4. This form
of the constraint says that the successor of the task listing it is the task name task_name
within the group representing the process proc_name, and having a delay associated with
communication through the port porti_name.

The task has the same scheduling parameter specification sched_spec as a process or
process group, which includes the deadline, real-time type, and so on. When a simulation
is being run which uses computations represented by single tasks, these values can be used
directly. When used to describe a process that runs on the Spring system, the use and
meaning of the sched_spec items depends on the particular scheduling algorithm being used.
For example, some scheduling algorithms require intermediate deadlines to be specified for
each task in the group during a preprocessing phase executed after creation of the process’s
executable, but before scheduling the task group at run-time. Other scheduling algorithms
may assume that the deadline of each task is that of the process or process group within
whose representation it appears.

The use of the worst case execution time is obvious. A mean time is also present to aid in
simulation studies. Both execution times are represented by distributions to aid simulation,
although only a constant value for the worst case time is meaningful for software executing
on the real system. As development of the system proceeds, we also envision expanding our
representation of the WCET. One such extension would represent WCET as a function of
one or more inputs to a computation known at scheduling time.

The specification of the resource use for a task has two forms. The form used to describe
resource use of tasks representing real programs, and a form used only for simulations. The
form representing programs gives the resource name and its mode of use, which is either
shared or exclusive. This form can be used for simulations as well, of course, but the other
form can only be used for simulations. It gives the name of the resource, the probability that
the resource will be used and, if used, the probability that it will be used in exclusive mode.

These declarations all assume that the resource in question will be used for the duration of
the task’s execution, but that may not be true. The other two parameters make it possible to
specify, relative to the beginning of the task, the earliest time at which the use of the resource
can start, and the latest time at which it can end. This information has the potential to
increase the schedulability of a task set, since it enables the representation to specify resource
use closer to the actual process behavior, than if they did not exist. They are particularly
useful for representing nested resource use blocks. However, resource use must be derived by
careful analysis of the application code, as described in [3]. The resource use information is
available to the scheduler in the run-time data structures describing the task group, which
are built during process activation from the SDL information in the processes’ executable

files.

3.1.3 Process Groups

The processes as defined can be used to construct process groups, which have many of the
same attributes as a process, but with important differences. As with tasks, when processes
are assembled into groups, or when process groups act as elements of a larger group, the
scheduling specification at a given level may be superseded by that of a higher level, or may
be used to represent a number of significantly different values. The use and meaning of
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proc_grp-desc = Process_group(name) { [pg-attr]* } ;
pg-attr = Fault_tolerance { ft_spec };

| Process_graph { succlist } ;

| sched_spec;

| timing_spec;

ft_spec = alternative_spec
| copies_spec;
| pb-spec;
| voting_spec;

Figure 7: Process Group Specification

scheduling specifications for elements of a group is determined solely by the scheduler being
used. For example, a deadline for a process may represent an actual deadline when it stands
alone, but be a relative deadline or be ignored when the process is part of a group. Figure
7 gives the elements of a process group description.

The specification of process groups serves several purposes, which has the effect of com-
plicating the grammar. However, the basic idea is fairly simple; a process group defines a
computation to the system. This means that when processes are grouped, we do not activate
or deactivate the processes individually but only as elements of the group. The situation
i1s complicated by the fact that we permit nesting of process groups, to produce arbitrarily
complex structures.

A process group has the same scheduling and timing specification sections as a process,
for the obvious reason that these apply to any computation whether it is described as a
single process or as a process group. The computation as a whole can reasonably specify a
deadline, importance, and so on. These are defined in the scheduling specification sched_spec,
as defined in Figure 5. The computation can also be periodic, and so require parameters
given in the timing_spec. However, when describing a computation as a group of processes,
there are additional properties that can apply.

The most obvious aspect of a process group is the specification of the group structure
using the same successor list method as for a task group. The precedence constraints between
processes are translated into precedence constraints that hold between tasks in the groups
describing the processes involved. Arbitrarily complicated structures can be described since
a given process group can be an element of another process group at a higher level.

3.1.4 Fault Tolerance

The most interesting part of a process group description describes its fault tolerance prop-
erties. Figure 8 gives four varieties of fault tolerant structures: alternative, copies, primary-
backup, and voting. The alternative type is useful for handling scheduling faults. The
alternative list specifies that different elements of the group represent the computation in
differing ways, and the order in which they should be considered. If the system fails to
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alternative_spec ::= Alternate proc_name list;

copies_spec = Copies proc_name (min_cp, max_cp);
| Copies proc.name INTNUM;
min_cp = INTNUM
max_cp = INTNUM
pb_spec RES primary_proc backup_proc
| backup_proc primary_proc
primary_proc = Primary proc_name;
backup_proc RES Backup proc_name;
voting_spec = Voting { voters arbiter };
voters = Voters proc_name list;

arbiter n= Arbiters proc_name list;

Figure 8: Fault Tolerance Process Groups

schedule one representation, then the next process on the alternative list can be tried.

The other three types are meant to address ezecution faults in different ways. The
primary-backup type specifies a pair of processes which are both scheduled, but where the
primary should be scheduled in such a way that if it completes successfully, the backup
can be canceled. If the primary fails, then the schedule constructed will run the backup
process by its deadline. This is useful for specifying a preferred version of a computation,
the primary, and a minimal version, the backup.

The copies type of fault tolerance is appropriate to situations where only one version of
a computation is available, but the developer wishes to guard against hardware faults. In
that case, the number of copies of the process may be specified. Either an absolute number
of copies, or a minimum and maximum can be given. In the latter case, the scheduler has
some freedom to choose the number in the context of the current system load. Finally, the
voting type of fault tolerance specifies the set of voting processes, and the arbiter process
that collects the results. Note that the arbiter process could itself be a group.

These constructs are a first approximation of those that will eventually be required as
fault tolerance issues are addressed within Spring. The role of the SDL is limited, but
vital, since it serves the role of presenting the system with the fault tolerance information
desired. Supporting the fault tolerance specified is a responsibility shared by many parts of
the system. However, even these constructs present nontrivial issues for process activation
and system booting. In doing so, they help make the basic operations of the Spring system
more robust and bring it closer to the form that will be required when schedulers handling
fault tolerance are implemented.
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3.2 Resources

The computations in the system, described as processes and groups of processes, interact
with one another through messages, shared memory, and the use of resources. Synchronous
messages are exchanged through communication ports, which were discussed in Section 3.1.1.
The implications of synchronous communication on program translation and task group
structure are discussed in [3]. In this section and the next we consider resources and shared
memory segments, which are closely related but separate kinds of objects in the Spring
system.

From the Spring scheduler’s point of view, a resource is simply an abstract object used
by tasks in either shared or exclusive mode. Their use of resources implies constraints on
what tasks can be scheduled to execute concurrently, and thus constrains the execution
plans that can be constructed by the scheduler. From a process’s perspective, resources are
generally data structures that are shared among some set of processes. However, an obvious
exception to this is that the processors on which the processes run are resources for the
purpose of scheduling. Recall that Spring uses a distributed memory multiprocessor as its
target architecture, in which processes are assigned to particular processors, within whose
memory they reside. The assignment of each process to a processor is specified by the system
layout, as discussed in Section 3.6. The use of the appropriate processor resource by a task
is noted in the run-time data structures constructed during process activation.

From the programming point of view, the resources represent objects in the system to
which exclusive access is at least sometimes required. Spring-C supports the with statement
describing the use of a resource, which specifies either exclusive or shared access[3]. Critical
sections in a program can thus be represented as exclusive use of a given resource, and the
scheduler will enforce the exclusive use constraint. While a resource is used to represent a
set of shared data structures to which access must be controlled, a shared memory segment
is required to contain them. Note that this approach works well even in the case of using a
resource to represent a set of hardware control and status registers, since they are usually
memory mapped. The basic problem, then, is to provide a way to describe the abstract
idea of a resource in a way that is appropriate to the requirements of the scheduler, and to
describe shared memory support for the data structures comprising resources in a way that
1s appropriate to the requirements of the SGS and operating system.

Figure 9 gives the grammar for describing a resource. Each resource has a name, and
specifies what kind of access is permitted: shared, exclusive, or both exclusive and shared.
Note that it is superfluous, from a scheduling point of view, to define a resource unless at
least one process uses it in exclusive mode, since otherwise it produces no constraint on
scheduling and could be ignored. However, we can also use the resource definition to group
shared data structures, exporting them for use by the processes requiring them. As a result,
we permit the declaration of a resource which is only used in shared mode.

This is also prudent considering the extent to which software commonly evolves. Intro-
ducing a block of code requiring exclusive use of a data structure which was not already
represented as a resource would require establishing a resource and then finding all uses of
the shared data structure in the code, placing it in a with block. It is much simpler to rep-
resent sets of shared data structures as resources from the beginning. Resources used only
in shared mode can be identified through analysis of the code, during compilation, and the
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resource_desc = Resource(name) { [res_attr]* };
res_attr = Access access_type;

| Segment name;

| export_sym

| Instances INTNUM;

| Mode mode_type;

| Type res_type;

res_type = Read

| Write

| RW
access_type n= Both

| Exclusive

| Shared
export_sym = Export name list;

| Export export_type name list;
export_type = Direct

| Indirect
mode_type n= Appl

| Both

| Sys

Figure 9: Resource Description

software optimized by eliminating the resource in question from the view of the scheduler.
The advantage of this is that when an exclusive use block is introduced, the code only needs
to be recompiled, not rewritten.

Each resource also has a type, specifying whether access to it is limited to reading or
writing, or if both are permitted. This information can be used by the SGS and operating
system to enforce such restrictions. The description specifies a mode for the resource as an
aid in checking the final system layout, and as a way of supporting future development. The
modes declare whether the resource is used by system or application processes, and provides
for the possibility that a resource could be used by both.

The resource description includes a list of the symbol names comprising the resource.
These symbols are ezported from the resource by name, either directly or indirectly. The
latter distinction has extremely important implications for the ability of the SGS to properly
predict access time to the shared data, and for the operating system to provide proper support
for resources at run time. A data structure can be exported directly if all processes using
the data structure reference it directly by name, or by address through a pointer that is
not shared. A data structure must be exported indirectly if a process can access it using a
pointer, which s itself shared. Direct exportation of a shared data structures places a less
stringent constraint on the placement of the shared data structures within the address spaces
of the processes using them, so it is important to draw the distinction.
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The reason for this arises from the fact that the data structures represented by the
resource must be contained within a shared segment that is attached to the address spaces
of two or more processes. If the data structures within a resource were exported directly,
then each process could map the segment to a different address within its space, and still be
able to access the data. However, if the data structure is exported indirectly, then the value
of the shared pointer must be valid in the spaces of every process using it.

This implies that the segment containing the structure being accessed through the shared
pointer must be assigned to the same address in all spaces to which it i1s attached. If the
segment containing the indirectly exported data structure was not assigned to the same
address in all spaces, then the shared pointer’s value would be invalid for at least one pro-
cess. The direct and indirect classification thus helps the SGS in checking for errors during
compilation, is required to support the eventual automation of assigning resources to shared
segments, and has implications for the the problem of determining access time to shared
data, as discussed in Section 2. The classification also has important implications for the
properties of the shared segment containing the resource, as discussed in the next section.

3.3 Shared Segments

Shared segments in the Spring system have a number of interesting and unusual properties,
in addition to those present in conventional systems. A set of system calls enables processes
to create and attached shared segments to their address space at run-time. This interface is
currently intended for use only during process initialization, but could in principle be used
even when executing under real-time constraints. Such shared segments have no internal
structure from the system’s point of view, and must be accessed using conventional methods
of pointer assignment and manipulation. However, this makes the problem of determining
the access time for the structures more difficult, as discussed in Section 2. While the system
will eventually be able to handle the the conventional method of access to dynamically
created shared segments through pointers, it is also convenient to permit the definition of
shared segments at compile time within which data structures are accessed by name.

In the Spring system, shared segments exist as independent objects. They can be defined
at compile time using the SDL, and created during system boot, prior to the activation
of any processes. Figure 10 shows the SDL grammar for a shared segment description.
Segments defined at compile time are said to be predefined, since they always exist when
processes wishing to attach these segments to their address space are activated. On the other
hand, shared segments can also be created during process initialization using the appropriate
system calls. In that case, the order in which the processes using the segment are activated
can influence the location of the segment within the memory of the system. The use of shared
segments by Spring-C programs is discussed further in [3], while the system implementation
issues are discussed in [5].

Predefined shared segments are useful in a number of ways including: as a way to stan-
dardize access to memory mapped control and status areas for external devices of all kinds,
to support system status information made available to application programs, and to ensure
unique logical addresses for segments supporting shared data structures that are exported
indirectly. Every predefined shared segment has a name which is used at compile time by the
SGS, at system initialization time by the system activating a process, and by each process
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shd_seg_desc ::= Shared_seg(name) { [seg_attr]* };

seg-attr n= Code name;
| Logical_base HEXNUM;
| Matching;
| Memory_mapped;
| Mode mode_type;
| Physical base HEXNUM;
| Predefined;
| Resources name list;
|

Size HEXNUM;

Figure 10: Shared Segment Description

attaching the shared segment to its address space using the shared memory system calls
during its initialization.

Segments which are Memory_mapped must also specify the Physical_base address of the
area where the status and control registers are mapped. No physical memory is allocated for
these segments from the page pool maintained for each processor within a Spring node. A
mode is specified for each segment for the same reasons of consistency and error checking as
applied to the resource descriptions given in Figure 9. The Matching attribute specifies that
the segment must appear at the same logical address in all spaces to which it is attached.
This is required to properly support indirectly exported data structures, as discussed in
Section 3.2. Since a Matching segment is always predefined, Matching implies Predefined.

The logical base address of a segment can either be specified using the SDL or assigned
at system boot time, but the choice is constrained by how processes sharing the segment
expect to access the data structures. If the application wishes to access the data structures
in the segment by name, then a logical address for the segment must be specified in the
SDL description. If the segment has the Matching attribute because it contains indirectly
exported data structures, then the Logical base is the address at which the segment will
appear in each space to which it is attached. This is the only option which is currently
supported by the SGS, because of its effect on the problem of determining memory access
time.

The Logical_base must be specified, and an executable for the segment produced, because
an executable image for the process accessing the shared data structures by name cannot be
produced unless the logical addresses of those shared variables are known at link time. The
Spring system makes this possible by using executable files to represent shared segments.
Each shared segment containing symbols referenced by name is described by an executable
file whose symbol table gives the logical address of each symbol, as determined by the base
address specified when the segment’s executable is produced. The Code statement specifies
the name of the executable file. When the executable for a process using the shared segment
1s linked, references to the segment’s data structures are resolved using the address specified
in the segment’s executable file.
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node_desc = Node(name) { [node_attr]* };
node_attr = processor_desc
| mem_board_desc

processor_desc = Processor(name) { [processor_attr|* };
processor_attr BES memory_area_spec

| Use processor_use;
mem _base = HEXNUM
mem_size = HEXNUM
processor_use = Appl;

| 10;

| Sys;
mem_board_desc = Mem _board(name) { [mem_board_attr]* };
mem _board_attr n= memory_area_spec
memory_area_spec ::= Memory_area(mem_board_use, mem_base, mem _size);
mem _board_use n= Data;

| Memory mapped;

Figure 11: Node Structure Grammar

A segment containing only directly exported data structures could specify a Logical_base
of zero. Then, when the process using it is linked, a base address for the segment can be
assigned, and the addresses of the shared structures relocated relative to the assigned base.
Thus, each process using this shared segment could attach it to their address space at a
different place. However, the modifications to the linker required to support this are not
part of the next few steps in the Spring development plan.

If the logical base address is not specified, then it will be assigned during process initial-
1zation, either by the system or when a shared memory system call is made. A segment’s size
1s always specified, and the set of resources supported by the segment is also listed. Under
the current system implementation, each segment must use at least one page of memory.
Since this will often be much larger than required for the data structures of a given resource,
it is prudent to place more than one resource in a segment. While the method of supporting
logical memory may change, obviating the need to group large numbers of shared structures
into a single segment, some need to group resources onto segments will probably always
exist.

3.4 Node Hardware Description

The portions of the SDL which describe application software have been described in
previous sections. This section discusses the portion of the SDL used to described the
hardware onto which the software is loaded. The grammar for this section of the SDL is
specified in Figure 11. Each node is given a name, and contains boards which are either
processor or memory boards. Each processor board is given a name, and the address range
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network_topology ::= Network { [node_connections|* };

node_connections ::= Node (name) { connection_list };
connection list = connection_spec

| connection_list, connection_spec
connection_spec = Connection (node_name) { [connection_attr]* } ;
connection_attr = Latency INTNUM;

| Speed INTNUM;

Figure 12: Network Topology Grammar

of the memory associated with it, if any, is defined. Every memory board is also named, and
its address range specified. The names given to boards only need to be unique within the
node.

Note that the memory board notation is used to describe all memory mapped devices,
as well as normal memory. For example, the memory mapped control and sensor registers
for a robot would be described as a memory board. For such devices, it is reasonable to
permit defining more than one memory area under a single name. Note that in the case
of the memory board, the memory area has a use attribute. This distinguishes between
memory used for data and that mapping device registers, which gives the SGS information
helping it to detect and avoid the error of misusing a memory mapped board by assigning
data structures to it.

Finally, note that the node description does not contain a section specifying how the
processors within a node are connected. Several descriptions are possible, including one
analogous to that given for the network topology in Section 3.5. We currently assume a simple
bus connection among all boards in the node, which is why a single base address is sufficient
to identify the location of the memory associated with the board. Arbitrarily complex target
hardware could be supported by fairly straightforward additions to the grammar to represent
interconnections, and their access time characteristics.

3.5 Network Topology

The compilation and downloading of the system and application software only requires a
view of the structure of nodes, but if the system is meant to run on a network of nodes it is
prudent to permit a description of the connections among them. This information can be of
use to the system as it boots each node, since it must establish connections to its companions
on the network. Figure 12 gives the grammar for describing the network topology. Each
node in the network has a section specifying the names of the nodes to which it is connected,
and the properties of the connection.

The current version of the network specification is quite simple, because the current needs
of the Spring system are modest. Each connection has a basic Latency value associated with
1t, which gives the time require to begin transmission of a message across the network, and the
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system layout = Layout { [node layout]* };

node_layout = Nodelayout(name) { [node_layout_attr]* };
node_layout_attr = processor_layout
| mem_ board_layout

processor_layout = Processor_layout(name) { [proclayout_item|* };
proclayout_item  ::= Applset { [procload_item]* };
| Systemset { [procload_item]* };

mem_board layout ::= Mem _board_layout(name) { [mblayout_item|* };
mb _layout_item = Applset { [mbload_item|* };
| Systemset { [mbload_item|* };

proc_load_item n= Boot_proc name;
| Process_set name list;
| Resource_set name list;
| Shared_seg_set name_list;

mb_load_item = Resource_set name list;
| Shared_seg_set name_list;

Figure 13: System Layout Grammar

Speed attribute, which gives the rate at which information is transmitted, once transmission
has begun. These are intended as generically useful attributes, but others will be required
to properly describe networks supported by different types of hardware.

3.6 System Layout

The sections of the SDL describing all the objects that can be loaded onto a Spring node
have been discussed in previous sections, as have the portions of the SDL describing the node
and interconnection architecture. The only part of the SDL left is that used to describe the
assignment of the software to various portions of the hardware, which requires specifying
the set of items assigned to each processor and memory board within each node. Figure 13
shows the grammar for describing the system layout.

The layout specification reflects two basic ideas: that the application software and system
software are described separately, and that each set of software can be described in terms
of processes, resources, and shared segments. Memory boards, obviously, can only support
resources and shared segments. We list the system and application items for each board
separately to help support effective research and development. This is important because
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while research in real-time applications may use a standard set of system code, many different
versions of the system code may be used for research addressing operating system issues.
Specifying the sets separately makes it easier to understand the structure of a particular
experiment.

While the application and system code are both described as sets of processes, resources,
and shared segments, there are some subtle semantic differences. For example, system and
application processes will not necessarily be scheduled in the same way, and so the role of
resources in the two sets may differ significantly. The system set for each processor must also
identify the booting process (Boot_proc), whose executable is loaded first and its execution
started. The boot process takes care of properly initializing the board, and establishes a
communication channel with the boot processes on the other boards within the node and
with the debugger sbug. The boot process is then ready to start downloading the rest of
the system and application objects, creating and activating them in the boards of the target
hardware as specified by the layout specification.

Using separate resource and shared segment lists creates a certain amount of redundance,
but we accept it for two reasons. First, the two lists address information used by different
parts of the system. The resource list applies to scheduling, since resources represent schedul-
ing constraints, while the segment list specifies some of the executable files loaded on each
board. Second, while most resources will be supported by a shared segment, not all will
require it, and not all shared segments will support resources. Separate lists let the system
retain enough flexibility to handle every situation.

4 SDL Example

The SDL is quite large, and while its function is fairly simple, an illustrative example may
make how it is used easier to understand. In this example we assume that the target node
has the structure described in Figure 14. The node is given the name Robot_controller, and
contains five boards; three processor and two memory boards. The SP processor board is
used for supporting system functions, has 4Mb of memory, which is accessible across the
system bus at the physical address 021000000. The two application processor boards each
have 4 Mb of memory also accessible from the system bus at the addresses specified.

The Scramnet board is a memory board capable of holding data, is 2Mb in size, and
1s visible at the specified bus address. The robot control registers are defined by the Con-
trol_board memory board description, and occupy the 02200 bytes of memory at the specified
address. Such information is quite straightforward, even dull, but is clearly required if the
SGS, debugger, and other tools are to have a clear view of the target hardware structure.
Note how easily the descriptions can be created and modified.

Figure 15 shows the specification for two shared segments and a resource. The shared
segment named Instr_seg is used only by application processes, and the logical addresses of
the data structures it holds are given by the symbol table of the executable file instr_seg. The
segment has the Matching attribute, specifies its Logical_base, supports the Instr_res resource,
and 1s 8K in size because of the page size in the current Spring system implementation.
Clearly we would wish to group more resources on the page, if possible, to avoid wasting
space.
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Node (Robot_controller) {
Processor(SP) {
Memory_area(Data, 0x1000000, 0x400000) ;
Use Sys;
};
Processor(AP_1) {
Memory_area(Data, 0x1400000, 0x400000) ;
Use  Appl;
};
Processor (AP_2) {
Memory_area(Data, 0x1800000, 0x400000) ;
Use  Appl;
};
Mem_board(Scramnet) {
Memory_area(Data, 0x14000000, 0x200000) ;
};
Mem_board(Control_board) {
Memory_area(Memory_mapped, 0xc00000, 0x200) ;

};
};
Figure 14: Node Structure SDL Example
Shared_seg(Instr_seg) { Shared_seg(Robot_cntl_regs) {
Code instr_seg; Mode Appl;
Mode Appl; Physical_base 0xc00000;
Matching; Predefined;
Resources Instr_res; Size 0x200;
Logical_base 0x50000; T;
Size 0x2000;
};
Resource(Instr_res) {
Access Exclusive;
Segment Instr_seg;

Export Indirect Instructions;
Export Direct Instr_p;
Mode Appl;
Type RW;
s

Figure 15: Resource and Shared Segment Examples
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Figure 16: Diagram of Example Hardware

The resource definition gives it a name, and specifies that it is exporting the data structure
Instructions indirectly, and Instr_p directly. Access to the elements of the resource is always
exclusive, and the resource is supported by the segment Instr_seg. Only application processes
use the resource, but it can be both read and written.

In contrast to Imstr_seg, the shared segment Robot_cntl regs is not associated with any
resource. It is assigned a physical base address, since it represents control registers mapped
to the specified physical memory addresses. The segment is predefined, and is thus available
to processes wishing to attach it to their address space. As it is attached to each process’s
address space, part of the operation is assigning it a logical address and adjusting the pro-
cess’s memory map accordingly. No resource is associated with i1t, and no executable file is
used to describe its internal structure. The processes using it must thus gain access to its
control registers through pointer assignment and manipulation.

The specifications already given establish the structure of hardware on which the appli-
cation software will run, and the shared segments available for attachment to an application
process’s address space. Figure 16 illustrates the hardware structure specified by the SDL
description of Figure 14. We can now consider three application computations sharing the
target system. The first computation is simple; the single process Reflez which attaches the
Robot_cntl_regs segment to its space, and which implements low level reactive control for the
robot.

Figure 17 shows the SDL process description for Reflez noting that the executable file
containing its code is named “reactive”, that it uses the Robot_cntl regs shared segment, and
1s periodic with a period of 25 time units. Its deadline is also 25, relative to the period,
meaning that the scheduler is free to plan its execution anywhere within each period. Both
the deadline and the process are classified as being hard.
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Pro

};

cess(Reflex) {
* Exec Spec

Code reactive;
Robot_cntl_regs;

Sharing
* Timing Spec
Periodic;

Period 25;

* Scheduling Spec

Deadline 25;
Deadline_type Hard;
RT_type Hard;

Figure 17: Single Reactive Process Example

Process(Planner) {
* Exec Spec

Code planner;
Import Instr_p;
Sharing Instr_seg;

* Timing Spec
Non_Periodic;

* Scheduling Spec

Deadline 300;
Deadline_type Hard;
RT_type Hard;

};

(a) Planner Process

Process(Joints) {
* Exec Spec

Code joint_control;
Import Instr_p;
Sharing Instr_seg,

Robot_cntl_regs;

* Timing Spec
Periodic;
Period 50;

* Scheduling Spec

Deadline 50;
Deadline_type Hard;
RT_type Hard;

};

(b) Joints Process

Figure 18: Process Description Example
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Task_group(Planner) {
Group_list {
Begin: T1;
T1: T2;
T2: (T3 20);
};
Task(T1) {
Non_preemptive; s s :
W_time 50; AR

};

Task(T2) {
Non_preemptive;
Resources (Instr_res Exclusive); rlw
W_time 40;

};

Task(T3) {
Non_preemptive;
W_time 80;

};

};
(a) Task Group Description (b) Task Group Structure

Figure 19: Task Group Example

The other two application computations are a set of two processes that cooperate with
one another by exchanging information through the shared data structure represented by the
Instr_res resource. The two processes obviously share the segment supporting the resource,
and one of them also uses the Robot_cntl_regs segment. Figure 18 shows the SDL describing
the two processes. Figure 18a describes the Planner process, whose executable file is named
“planner”, and which requires access to the shared segment Instr_seg. The segment supports
the resource exporting Instructions indirectly, and Instr_p directly. The Planner process thus
imports Instr_p. The planner is nonperiodic, but when invoked must be completed within
the deadline specified, since the deadline is hard.

Figure 18b describes the joint controller process Jounts, with the file “joint_control” giving
the executable code, and which requires access to Instr_seg, since it imports Instr_p. This
process is periodic, and must complete by the end of its period. The process also requires
access to the control registers of the robot, and so uses the Robot_cntl_regs segment.

Each of the processes, when compiled, will be described as a set of tasks. Figure 19(a)
gives the task group description of the Planner process, while Figure 19(b) illustrates the
structure of the group described. It is a simple linear group, with each task having different
execution times. The second task uses the resource containing the shared data structure
in exclusive mode. The tasks are nonpreemptive, and any deadlines within the group are
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Layout {
Node_layout (Robot_controller) {

Processor_layout (SP) {
System_set { Boot_proc

};

Processor_layout(AP_1) {

Appl_set { Process_set Planner; };
System_set { Boot_proc ap_boot; };

};
Processor_layout (AP_2) {
Appl_set {
Process_set
Resource_set
Shared_seg_set Instr_seg;

};

Joints, Reflex;
Instr_res;

System_set { Boot_proc ap_boot; };

sp_boot; };

};
Mem_board_layout (Control_board) {
Appl_set { Shared_seg_set Robot_cntl_regs; };
};
};
};
Figure 20: Layout Example
S | [ttt L ettty
L |
L———-| lr—::::j| r——— 1 I :
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Figure 21: Target Hardware Loaded
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left for specification by postprocessing after the executable has been produced, or when the
process is activated by a scheduler specific operation. Note the delay associated with the
precedence constraint between 72 and T3.

Given the definitions for all the processes, resources, and segments, it is necessary to
describe how they are placed in the target hardware. Figure 20 gives a layout specification
for the robot control example. It specifies that the SP processor will be loaded only with the
executable for the process required to boot it. The AP_1 application processor supports the
Planner, while AP_2 supports the Joints and Reflex processes as well as the shared segment
Instr_seq and the resource Instr_res it supports. Each of the application processes boots
using the same executable image. The memory board Control_board obviously supports the
shared segment describing it. Figure 21 illustrates the layout specified.

This example has shown how processes, shared segments, and resources can be described,
and their arrangement on the system specified. The important point should be clear; that
the SDL provides a way to precisely describe the information required to load and run the
Spring system. The fact that this information requires a great deal of space is inconvenient
when giving examples, but is a direct result of the level of detail being represented. This
level of detail is not frivolous, but is that required to support the specification, loading, and
running of real-time programs in a predictable manner.

5 The SDL Interface Library

In the Spring programming environment, the SDL information specified by or derived from
different source files in the course of compiling the application code is contained in the
executable files produced, as well as being accumulated in a single file. This was discussed
qualitatively in Section 2 and illustrated in Figure 1, which appears on page 3. This section
discusses the specific set of SDL utility routines available for use by tools needing to use,
modify, or add to the descriptive information contained in a Spring executable, object, or
pure SDL file. The utility routines are contained in the library “libsdl.a”, are used by the
SDL commands sdl_cc, sdl_merge, and sdl_read, and by the Spring-C compiler spr_cc.
Structure and procedure templates required by tools wishing to use the utility routines are
defined in the “sdl.h” header file.

Figure 22 illustrates the three forms that descriptive information takes in different con-
texts. The source form is written by developers either as part of Spring-C source files, or
as independent specifications. SDL source is parsed by sdl_cc, or spr_cc, using the SDL
parsing engine sdl_parse which builds a data structure containing the SDL information in
the memory. This data structure holds each category of information as a linked list rooted
in the db_t structure illustrated in Figure 23.

For example, each process in the system is described by an member of the list rooted
by the process_list field in the db_t structure. As illustrated, each structure describing a
process contains several pointers to other structures. One points to the string containing the
process name, while three other pointers root linked lists of structures specifying the names
of imported data structures, shared segments, and synchronous communication ports used
by the process. The process data structure illustrated thus corresponds to the information
specified in the SDL grammar for describing processes given in Figure 5 in Section 3.1.1.
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typedef struct db {
/*
* the items field is a mask saying what’s here.
* The dir is a set of seek positions that
* indicate the location of various sections
* when the information stored in a file.

*/

int items;

long dir [DB_NUM_ITEMS];

/*

* These are the lists of the various items

*/
process_list_t process_list; /* processes */
proc_group_list_t proc_group; /* process groups */
res_list_t res_list; /* resources */
seg_list_t sh_seg_list; /* shared segments */
task_group_list_t task_group; /* task groups */
node_struct_list_t mnode_struct_list; /* target node arch */
layout_t layout; /* software layout */
net_top_t net_top; /* network topology */
itg_list_t itg_list; /* irred time graph */

} db_t%;

Figure 23: SDL Data Base Structure Type: db_t

The same approach is taken to the other types of information represented by the SDL
and discussed 1in earlier sections. All tools using, deriving, or modifying the SDL information
operate on the lists held by the db_t structure. The linked list approach is easy to understand
and unlikely to incur any significant performance penalty since the number of items on each
list is usually fairly small. However, if SDL descriptions become large enough to require it,
as the system evolves, more efficient indexing schemes can easily be added while preserving
the basic list structure and thus backward compatibility with existing tools.

Note that the itg_list field roots the set of irreducible time graph (ITG) representations of
the run-time behavior of each procedure that has been compiled, although there is currently
no SDL grammar for specifying ITGs in source files. This section of the SDL, as discussed in
Section 1, is used to store the ITGs of each procedure as they are derived during compilation.
The ITGs of each procedure are then available during compilation of procedures calling them
for substitution into the time graphs of the procedure being compiled. However, if it becomes
desirable to create a source grammar for describing I'TGs, it is a straightforward matter. One
reason a source grammar for ITGs may be needed is to specify the ITGs of Spring system
calls.

When a tool using, deriving, or modifying a set of descriptive information is finished,
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it needs to write each list of descriptions rooted in the db_t structure out to a file in such
a way that the original set of lists can be reconstructed. The routine write_db supports
this operation, taking a pointer to the db_t structure as input, and writing the linked list
data structures out to memory in “compiled” form, as illustrated in Figure 22. Note that
the db_t structure is the first thing written to the file. Tools using the compiled form of
the SDL as input use the read_db routine to read them, and reconstruct the original linked
lists in memory. The read_db routine uses the first two fields of the db_t structure to help
access specific sections of the SDL information in compiled form, thus speeding up operations
concerned with a specific item.

The items field is a bitmask showing which of the linked lists contains information, while
the dir field is a table of seek positions within the file where the information for each linked
list begins. When a program calls the read_db routine, it can set the ttems field within the
db_t structure given as an argument, thus specifying which lists should be read. The read_db
routine then uses this information, and the seek positions specified in the db_t structure
stored at the beginning of the file to read only those sections requested. It is important
to note that the same format for the compiled SDL information is used in a file containing
only SDL, and for the SDL section of a Spring executable file. As a result, the read_db and
write_db routines can be used by a tool operating on either type of file.

Finally, the print_db routine provides the ability to print descriptive information in read-
able form. Other interface routines exist to print information in summary form, add items to
lists, merge information stored in more than one db_t structure, search for descriptive infor-
mation by name of the object, and to help tools locate the SDL section of Spring executable
files.

The rest of this section will present the utility routines in each category. Note, however,
that we do not discuss the sdl_parse routine since our current view is that sdl_cc and
spr_cc should be the only tools used to compile SDL source, and that all other tools using,
producing, and manipulating SDL information should work with the memory and compiled
forms.

5.1 Utility Routine Definitions

Programs wishing to use, generate, and manipulate the SDL information can do so easily by
using a simple set of utility routines falling into just a few categories. A routine wishing to
work with a set of SDL information must allocate a db_t structure, and then initialize it:

extern void
init_db(db_t *db);

The #nit_db routine initializes the items field to indicate that the SDL data structure is empty,
and initializes every component list as empty as well.

When that is done the tool may wish to read SDL information in compiled form from
a pure SDL or Spring executable file. An important consideration at this point is that
since Spring is set up as cross compilation environment, it is important to know if the file
containing SDL information is in host or target format. In general, all executable files contain
SDL information in target format, and all non-executable files are in host format. All tools
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are expected to open the file containing the SDL information and thus obtain an active file
pointer for the file. When that is done, the routines:

int
is_exec_file(FILE *fp);

void
seek_to_sdl_section(FILE *fp);

serve to identify the file as an executable, and to position the file pointer at the beginning
of the SDL section respectively. Note that seek_to_sdl section works correctly on both exe-
cutable and non-executable files. When the file pointer is positioned correctly, the routine
reading the SDL information can call one of two routines to perform the operation:

int
read_db(FILE *bin_file, db_t *db);

int
read_db_target (FILE *bin_file, db_t *db);

Note that the tool using the routines is responsible for identifying the input file type, so that
it knows which routine to call. When the read routine returns, the db_t structure contains
the roots of linked lists holding the SDL information contained in the input file. Note that
the tool can also specify what categories of information it desires by initializing the items
field in the db_t structure. When set to zero, as the wnit_db routine does, the items fields
requests all available information.

Some routines may read SDL information from more than one source, using separate db_t
structures for each set of information, but wish to merge the information into a single set.
The routine:

void
merge_db(db_t *dbl, db_t *db2);

supports this information, merging the information in db7 and db2 together, storing it in
db1, and leaving db2 empty.

Searches for objects in the db_t structure can be conducted by name in each category.
The routine:

item_t *
get_db_item_name(db_t *db, int type, char *name);

supports this operation, taking a pointer db to the db_t structure holding the information,
the information type, and the name of the objects as arguments. Note that the constants
identifying each category are defined in the “sdl.h” header file.

Tools generating SDL information use the various allocation routines defined in “sdl.h”
to create new structures of any given type, and then will fill them in with the descriptions
being created. When new information is generated and should be added to the set held by
the db_t structure, the routine:
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void
store_db_obj(db_t *db, int type, item_t *obj);

supports the operation. The first two arguments are the same as for the get_db_item_name
routine, while the third is a pointer to the object being added.

When the tool manipulating the SDL information is finished, it may wish to write its
results out to a file. It is responsible for positioning the file pointer in the output file correctly,
using the seek_to_sdl_section routine. When properly positioned, the routines:

int
write_db(FILE *bin_file, db_t *db);

int
write_db_target (FILE *bin_file, db_t *db);

write the contents of the db_t structure out to the file in the host and target formats, respec-
tively.

Finally, whether the information was written out or not, the tool doing the manipulation
will often wish to deallocate all the heap storage used to hold the SDL information. The
routine:

void
dealloc_db(db_t *db);

supports this operation, deallocating all structures holding information in the db_t structure
given as the argument. However, note that individual deallocation routines exist for each
object type, and for lists of each object type. Templates for these routines are given in
“sdl.h”.

While simple, the interface routines discussed here will be sufficient for most of the tools
wishing to read, manipulate, and write SDL information. For those with more ambitious
plans, the host of routines defined in “sdl.h” are available.

6 Current Status and Conclusion

This document has presented the SDL, shown how it can be used to describe many aspects
of a real-time system, how that descriptive information is made available to all parts of the
system, and how the information is used to control many aspects of program compilation
and execution. This is a moderately prosaic, but vital, aspect of a real-time system. The
SDL is designed to play a central role in the Spring system, but this will necessarily emerge
as the system implementation matures.

Currently, the SDL tools sdl_ce, sdl_read, and sdl_merge are fully operational, and
the SDL interface library “libsdl.a” is available, and being used by several areas of current
development in the Spring system. Within the SGS, the SDL parsing engine sdl_parse is fully
integrated into the Spring-C compiler spr_cc, enabling the compiler to take Spring-C source
files containing SDL statements as input, and producing object files containing the SDL
information in compiled form. However, modifications to the Spring linker spr_ld are still
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required to properly propagate the SDL information from object files into the executables.
That issue will be addressed in turn, but for the moment, it is a simple matter to use
sdl_merge to accumulate the SDL information in the object files being linked, and add_sdl
to write the merged information into the newly created executable’s SDL section.

The Spring operating system boot operations are currently being extended to use the
SDL layout information to control the order in which sbug sends shared segment creation
and process activation requests to the system, and to use the SDL information contained
in the processes’ executables when building the scheduler’s run-time data structures during
process activation. This code is being written so that most of it can also be used on Spring for
process activation, and on the host to prepare the Spring Scheduling CoProcessor simulation
input.

The current version of the Spring Simulation Testbed uses the previous version of the
SDL, which described computations as sets of independent tasks. It will be modified to use
the new version, and thus take a process oriented perspective, as those using it require the
new abilities. It is important to note that many people are still interested in investigating
new approaches to scheduling independent tasks, so the current version is still in active use.

In summary, the SDL is fully implemented, and performing its function as an infor-
mation exchange medium and basis for integrating the many parts of the Spring system.
Development on several parts of the system is proceeding, and uses the SDL information
made available by other tools, though full integration will be achieved only after current
development is complete. Changes to SDL are easy to make, and will be made in response
to problems that arise, and as requirements for new types of information emerge from our
implementation experience. When complete the Spring SDL will represent an extremely
rich, diverse, and quite detailed specification for the set of information required to write,
compile, load, and execute real-time application software.
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A SDL Grammar

System Description Language Top Level (3)

configiinfo =

confitem =

[conf_item]* system layout [confitem|* network topology [conf.item]*
[conf_item]* network_topology [conf.item]* system layout [conf.item]*
node_desc

process_desc

process_group_desc

resource_desc

shared_seg_desc

task_group_desc

Successor List (3.1)

succ list = succ_begin [succ_item]*
succ_begin = Begin: prec list;
succitem = name: preclist;

prec list = precitem

| preclist, prec.item

precitem = list_item

| (list_item delay_val)

list item = proc_group_name

| proc_name
| (proc_name task_name)
| task_name

delay val = INTNUM

| (Comm-_delay port_name list)
| (Comm_delay INTNUM port_name_list)
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Process Specification (3.1.1)

process_desc = Process(name) { [proc_attr]* } ;
proc_attr = exec_spec;

| timing_spec;

| sched_spec;
exec_spec = Code name

| Import name list;
| Sharing name list;
| Sync_ports port_list;

timing_spec = Non_periodic;
| Period INTNUM;
| Periodic;

| Separation INTNUM;

sched_spec RES Deadline dist_spec;
Deadline_type dln_type;
Importance INTNUM,;
Laxity dist_spec;

RT _type rt_type;

port_list n= port_item

| port.list, port_item
port_item = name

| (name use_type)
use_type = Receive

| Send
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Task Group Specification (3.1.2)

task_grp_desc Task_group(proc_name) { tg_def } ;

tg-def = group_def [task]™
group-def = Groupist { succlist } ;
task = Task(name) { [task_attr]* } ;
task_attr = M _time dist_spec;
| Non_Preemptive;
| Preemptive;
| Resources [ru_spec|t;
| sched_spec;
|  W_time dist_spec;
ru_spec S (name [use_attr]™)
use_attr = Start time_val;
| End time_val;
|  Exclusive;
| Sim_prob use_prob excl_prob;
| Shared;
use_prob = FLOATNUM
excl_prob = FLOATNUM

Process Group Specification (3.1.3)

proc_grp-desc = Process_group(name) { [pg-attr]* } ;
pg-attr = Fault_tolerance { ft_spec };

| Process_graph { succlist } ;

| sched_spec;

| timing_spec;

ft_spec n= alternative_spec
| copies_spec;
| pb-spec;
| voting_spec;
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Fault Tolerance Process Groups (3.1.4)

alternative_spec ::= Alternate proc_name list;
copies_spec = Copies proc_name (min_cp, max_cp);
| Copies proc.name INTNUM;
min_cp = INTNUM
max_cp = INTNUM
pb_spec RES primary_proc backup_proc
| backup_proc primary_proc
primary_proc = Primary proc_name;
backup_proc = Backup proc_name;
voting_spec = Voting { voters arbiter };
voters = Voters proc_name list;
arbiter n= Arbiters proc_name list;

Resource Description (3.2)

resource_desc = Resource(name) { [res_attr]* };
res_attr = Access access_type;

| Segment name;

| export_sym

| Instances INTNUM;

| Mode mode_type;

| Type res_type;

res_type = Read

| Write

| RW
access_type n= Both

| Exclusive

| Shared
export_sym = Export name list;

| Export export_type name list;
export_type = Direct

| Indirect
mode_type n= Appl

| Both

| Sys
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Shared Segment Description (3.3)

shd_seg_desc ::= Shared_seg(name) { [seg_attr]* };

seg-attr n= Code name;

node_desc
node_attr

processor_desc
processor_attr

mem _base
mem._size
processor_use

mem _board_desc
mem _board_attr
memory_area_spec
mem_board_use

| Logical_base HEXNUM;

| Matching;

| Memory_mapped;

| Mode mode_type;

| Physical base HEXNUM;
| Predefined;

| Resources name list;

|

Size HEXNUM;

Node Structure Grammar (3.4)

Node(name) { [node_attr]* };
processor_desc
mem _board_desc

Processor(name) { [processor_attr|* };
memory -area_spec

Use processor_use;

HEXNUM

HEXNUM

Appl;

10;

Sys;

Mem _board(name) { [mem_board_attr]* };
memory -area_spec
Memory_area(mem_board_use, mem_base, mem _size);
Data;

Memory _mapped;
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network_topology
node_connections

connection_list

connection_spec
connection_attr

system _layout
node_layout

node_layout_attr

processor_layout
proc_layout_item

mem _board_layout
mb_layout_item

proc_load_item

mb_load_item

Network Topology Grammar (3.5)

Network { [node_connections|* };
Node (name) { connection_list };

connection_spec

connection_list, connection_spec

Connection (node_name) { [connection_attr]* } ;
Latency INTNUM;

Speed INTNUM,;

System Layout Grammar (3.6)

Layout { [node layout]* };

Nodelayout(name) { [node_layout_attr]* };
processor_layout
mem _board_layout

Processor_layout(name) { [proclayout_item|* };
Applset { [procload_item]* };
System_set { [procload_item|* };

Mem _board_layout(name) { [mblayout_item|* };

Applset { [mbload_item|* };
System_set { [mbload_item|* };

Boot_proc name;
Process_set name list;
Resource_set name list;
Shared_seg_set name_list;

Resource_set name list;
Shared_seg_set name_list;
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Miscellaneous

dist_spec

dln_type

name_list
name

rt_type

time_val
INTNUM

HEXNUM
FLOATNUM

(C INTNUM)

(E FLOATNUM)

(E FLOATNUM)(INTNUM)
(G FLOATNUM FLOATNUM)
(G FLOATNUM FLOATNUM)(INTNUM)
(N FLOATNUM FLOATNUM)

(N FLOATNUM FLOATNUM)(INTNUM)
(

U INTNUM)

Hard
Soft

Non_realtime

name
name list ’,” name

[a—2zA—Z ]"[a—2zA— 20 —9_]

Critical
Essential
Non_essential

INTNUM

[0 —9]*

—[0—9)*

0z[0 — 9a — fA — F]*
[0— 9]*.[0 — 9]

[0 —9]*.[0 — 9]
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