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Abstract

The main problem considered in this paper is the construction of numerical
methods and proofs of their convergence for the problem of “shape from shad-
ing.” In the first part of the paper it is assumed that the height function
that describes the surface to be reconstructed is known at all local min-
ima (or maxima). These points are a subset of the singular points, which
are the brightest points in the image. A pair of optimal control problems
are defined that provide representations for the height function. Numerical
schemes based on these representations are then constructed. While both
schemes lead to the same approximation, the pair are developed simultane-
ously because one leads to more efficient algorithms, while the other is more
convenient in the convergence analysis. The proof of convergence is based
on a representation of the approximation to the height as a functional of a
controlled Markov chain. In the second part of the paper the assumption
that the height must be known at all local minima (or maxima) is dropped.
An extension of the algorithm is described that is capable of reconstruction
without this information. Numerical experiments for both algorithms on
synthetic and real data are included.
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1 Introduction

Shape from shading has been a central problem in computer vision for the entire history
of the field. Initial work dates back to the 1960s with the mapping of the lunar surface
from visual images [25]. In the early 1970s, Horn’s work on this problem [8) pioneered
the new quantitative focus on low level, precognitive vision, which has since dominated
vision research. The problem has continued to be of interest over the years, and recently
has seen dramatic progress {1, 4, 10, 19, 20, 21, 22, 27, 28, 29, 30].

The problem of shape from shading is to reconstruct the three dimensional shape of
a surface from the brightness or intensity variation in a black-and-white photographic
image of the surface. If the illumination is mainly unidirectional, and the surface is
uniform and untextured, then the brightness at an image point provides information
about the surface orientation imaged at that point. However, in general it does not fully
specify the surface orientation, even if the illumination and surface reflectance properties
are completely known, but only constrains it. Consequently, the task of reconstructing the
surface is difficult. It is for this reason that, for much of its history, shape from shading
was believed to be an ill-posed problem. However, it has been argued more recently,
and is reillustrated here, that the problem is actually well posed under a wide range of
conditions [19, 20].

Shape from shading is something that humans do well [17]. It is clearly an essential
ingredient in visual interpretation for the many contexts where other cues for shape re-
construction are lacking, e.g. for still photographs, or for distant objects where stereo or
motion parallax are not effective. It is an important aid in reconstructing shape corre-
sponding to regions of smoothly varying intensity in images, where the absence of distin-
guishable features makes stereo or motion reconstruction difficult. Finally, the problem
in its idealized form is precise and well-defined mathematically: it amounts to finding the
“proper” solution to a particular nonlinear first order partial differential equation.

We consider here the idealized problem. Thus we make the standard assumptions that
the surface is matte, rather than mirror-like, and reflects light evenly in all directions
(“Lambertian” reflectance); that the illuminating light is from a single known direction;
and the surface is distant from the camera (“orthographic” projection). Moreover, we
make the standard but stronger assumptions that the surface is uniform and untextured;
that there are no cast shadows; and, finally, that all portions of the surface are visible (no
“occlusion”). Although there has been some work on the problem relaxing one or another
of these assumptions, [2, 7, 10, 16, 18, 23, 28], most work has focused on the problem in
this form. Understanding this idealized problem is a prerequisite for attacking the larger
problem of how shading, in combination with other information, e.g., from stereo, can be
used for image understanding.

Under the assumptions stated above, the intensity I(-) registered on the image plane
at coordinates z = (z;, z2) is given by :

I(z) = {v,7(z)), (1.1)

where v = (71,72,73) is the fixed direction from which the light is coming, and #(-)
is the surface normal at the corresponding surface point (z;,z2,2). Such an equation
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relating I(-) to the corresponding surface orientation is known as the image irradiance
equation [12). We will always assume here that the surface height z(z,,z;) is continuously
differentiable (though this is not essential). Then the surface normal is given in terms of

z(-) by

(—Z,,(:B), 1)
(14 llz=(2)]12)*/?
and the image irradiance equation is a first order nonlinear partial differential equation.
In general this equation can have multiple classical sense solutions. The problem of shape
from shading is to reconstruct z(-) from the given data I(-).

We briefly summarize previous work on this problem. Most of this work is based on
the assumption that the reconstruction problem is not well posed in any reasonable sense.
In the early work of Horn [8], the characteristic strip method was used to give a numerical
scheme for shape reconstruction. Horn later formulated the problem in the idealized form
considered in most subsequent work [9]. So—called variational methods were introduced
and studied in, e.g., [2, 10, 11, 13, 31]. Let the image irradiance equation be written
in the form H(z,z.(z)) = 0, and V(-) be an approximation for the height function. In
the variational approach, a functional of this approximation F(V) = f, H*(z, V,(z))dz
is defined, where D is the domain of definition of the intensity function. Since z(+)
obeys H(z,z;(z)) = 0 it minimizes this functional. In practice, V(-) is approximated
by a function V*(-) defined on a discrete grid D*, and the functional by F#(V*) =
on H(z,V}(z)), where V}* is a discrete approximation of the derivative V,. It is assumed
that 2"(-), defined to minimize F*, is a good approximation to z(-).

The variational approach attempts to locate z*(-) by letting an initial estimate VE()
evolve in the steepest descent direction —8F*(V*)/8V*. This procedure guarantees con-
vergence to a local minimum of F*. In practice, however, this often produces a spurious
local minimum rather than the desired approximation z"(). To ameliorate this problem,
a “regularization” term proportional to f; Tijeqay V2 ;4% is included in F(V'), and dis-
cretely approximated in F* as before. Because it penalizes those functions V(-) with high
curvature, this term destabilizes some of the spurious local minima of F h which tend to
have multiple regions of high “curvature.” Unfortunately, this term also has the effect
of perturbing the global minimum of F* away from the best approximation to 2(-). A
potential solution to this problem was discussed in [10].

In a second approach [6, 16, 23], the surface is reconstructed separately in small image
patches based on restrictive assumptions about the surface shape there—for instance,
that the surface is spherical in each patch. The partial reconstructions are then patched
together to give an overall reconstruction.

More recently, Pentland [24] has presented an algorithm that replaces the shape from
shading problem with a linearized approximation, which can then be solved by direct
integration. However, boundary conditions are required to make the approximating lin-
earized reconstruction unambiguous. In general, proofs of convergence are lacking in all
of these approaches. :

Finally, in [3, 19, 20, 29, 30], the uniqueness of the solution for z(+) was discussed, under
the assumption that 2(-) was at least C2. Reference [19] also considered the constraint
on z(-) provided by a visible “occluding boundary,” i.e., the set of points on the surface

i(z) = (1.2)
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where the derivative of the map from the surface to the image plane is singular.

In this paper we view the problem of shape-from-shading in an entirely different way.
The cornerstone to our approach is a representation for the height function 2(-) as the
infimal cost for a deterministic optimal control problem [21]. Convergent numerical meth-
ods can then be constructed on the basis of this representation. Work by other authors
that is closest to ours is [27, 28], which also makes use of the connection to an optimal
control problem in order to derive a numerical scheme. The main mathematical tool used
in these papers is the theory of viscosity solutions of first order nonlinear PDE. However,
the types of assumptions made here on the data available for reconstruction differ from
those in [27, 28], as do the particular results, algorithms and methods of analysis.

We conclude this introduction by loosely summarizing the main results of the paper.
In the idealized framework mentioned above, the “brightest” points in the image have
value I(z) = 1. Furthermore, these brightest points include all local maxima, minima,
and saddle points of the height z(-) (in the case of oblique light this is with respect to a
coordinate system in which the “vertical” direction is the direction from which the light
arrives). It turns out that specification of the height function on either the set of local
maxima or minima allows, via an optimal control formulation, a representation for z(+)
in a region around these points. A more precise statment is as follows. Let an isolated
local minimum point z of the surface be given, and define the “domain of attraction”
of this point to be a set of points y such that any steepest descent trajectory (with
respect to z(-)) that starts at y terminates at z. One can then construct an optimal
control problem such that the infimal cost for this control problem has z(:) as its value
for all points in the domain of attraction. Knowledge of z(-) at a number of local minima
allows reconstruction in the union of their domains of attraction. This indicates in a
precise way what information is needed to reconstruct a given part of the surface. The
optimal control problem itself is easily (formally) derived from the irradiance equation via
a dynamic programming equation and convex duality. In fact, different ways of rewriting
the irradiance equation give rise to different optimal control representations, and two that
are particularly convenient to work with (Control Problem 1 and Control Problem 2) are
discussed in Section 2. The proof that the representation is valid for Control Problem 2
is given in Section 3.

In general, the data available for shape reconstruction is not the complete intensity
function I(-), but rather a restriction I*(-) of I(-) to a regular grid of points D*, where h is
the spacing between points. Our schemes for computing approximations to z(-) are based
on replacing the original optimal control problems by control problems defined on D". It
is clearly desirable to preserve as far as possible the characteristics of the original control
problems. Thus we leave the cost structure essentially unchanged. However, we must
approximate the original deterministic dynamical model by one whose state space is the
grid D”. 1t turns out that the best model to use is a controlled Markov chain. The reason
for this is discussed in Section 2. Thus the approximating control problem takes the form
of a stochastic optimal control problem whose state space is the grid D*. By applying the
principle of dynamic programming to this stochastic control problem, we obtain a nonlin-
ear iteration that defines a monotonically nonincreasing sequence of functions defined on
D*. The approximation to z(+) is defined as the limit of these functions, which is a fixed



point of the iteration. This approximation scheme is an example of a widely applicable
method of approximation known as the Markov chain approximation method [14]. The
basis for the proof of convergence is a representation of the approximation as a functional
of a controlled Markov chain.

In Section 2, the numerical schemes associated to both Control Problem 1 and Control
Problem 2 are defined and shown to yield equivalent approximations. Because Control
Problem 1 has quadratic costs, it gives rise to an efficient algorithm that is simple to
construct and implement. However, it is a more difficult problem to work with as far
as the representation of the height function and the proof of convergence of the scheme
are concerned. This is the reason for the introduction of Control Problem 2. Although
the algorithm obtained from Control Problem 2 is not as attractive as that of Control
Problem 1, proofs of the representation and convergence theorems are much easier. Thus
the equivalence of the approximations is a key observation. The proof of convergence
of the approximations to z(-) is given in Section 4. There are a number of nonstandard
features associated to these control problems and numerical schemes that make the proof
much more difficult that usual. For example, the nonlinear iterations that define the
approximations will in general have multiple fixed points, and we must be careful to pick
out the “correct” fixed point.

In Subsection 5.1 we present some experimental results and further discussion of the
algorithms described in the first part of the paper. For these algorithms it is assumed
that the values of z(-) are given on either the set of local maxima or minima in order to
obtain an approximation. In Subsection 5.2 we describe a method which eliminates the
need for such data. Suppose that the extreme points of z(-) are isolated. As noted above,
the optimal control representation tells us that the correct specification of the height at
either a local maximum or minimum identifies the height at all points in the domain of
attraction, and by continuity in the closure of this domain as well. Suppose that the only
data available besides the intensity function is the location of one local minimum point.
Under conditions stated in Section 5, there is always at least one local maximum on the
boundary of the domain of attraction. An application of the algorithm of Section 2 yields
an approximation to z(-), which on the basis of the results of Sections 3 and 4 should
be good in the closure of the domain of attraction. Given this approximation, a method
is described for identifying from among all the remaining “brightest” points one that is
a local maximum on the boundary of the domain of attraction. Since an approximation
to the height at this maximum point has already been generated, the algorithm can
be applied again (although this time we would use the algorithm that is appropriate
when data is given at the local maxima) to obtain an even larger region on which the
reconstruction can be expected to be good. The procedure is then repeated until all
possible extrema have been identified and their heights approximated. A scheme is also
discussed for identifying a starting local minimum or maximum. Thus approximations can
be constructed that are based only on the image intensity function. Besides a description
of this method, we present experimental results obtained using it.
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2 Optimal Control Representations and Numerical Procedures

In this section we give two optimal control representations for the unknown height function
in the shape from shading problem. Numerical procedures will then be constructed that
are based on these control problems.

In the first representation for the height function, the control space is unbounded, the
dynamics are very simple, and the running cost is quadratic in the control. In fact, the
problem is actually a calculus of variations problem. It turns out in the case of “oblique
light” (described below) that there are certain regions in which this control problem must
be extended to the form of a differential game. As noted in the introduction, the reason
we consider two control problems is that each representation gives rise to a different
numerical procedure, and each scheme has some attractive features.

All the schemes we consider will take the following form. For a scalar & and set A,
let hA = {ha : @ € A}. Given h € (0,00) let D* = hZ? N D, where D is some open
bounded subset of JR?. Assume that we are given as data for the reconstruction problem
the restriction I*(-) of the intensity function I(-) to D*. Then our goal is to produce an
approximation V* to the restriction of z(-) to D*, that is based on I*. The schemes for
V* will always be iterative: given an initial condition V¢ (to be described below), we
define in a recursive fashion

Vn’ii-l = Fh(Vrf"Ih)a

and then set V* = lim,_,., Vh. In all cases, the iterates V:* will be monotonically non-
increasing and bounded from below. This implies V* will always exist and be a fixed
point of the iteration V* — FA(V4 I*). It will often be the case that the iteration itself
has multiple fixed points. However, if the initial condition V¢ is chosen sufficiently large,
then the iteration will be shown to converge to the “correct” fixed point V*, which gives
the desired approximation to z(-). Also, though various forms of F* will be suggested by
the different control representations, it will be shown below that the limit V* will be the
same for any of the schemes we define.

Our reason for introducing the first control problem is that, due to its simple dynamics
and cost structure, it results in an algorithm that is easy to construct and iterate. On
the other hand, besides computational efficiency, we are also interested in demonstrating
the convergence of the approximation V*(z) — z(z). This turns out to be simpler using
the second control problem, which, as stated above, also yields the same approximation
V*(z). Our proof of convergence will be based on interpreting V*(zx) as the minimal (or
maximal, depending on the case) cost for a stochastic control problem whose dynamics
“mimic” those of the second control problem. One reason that this is simpler is that the
second control problem, unlike the first, does not need to be extended to a differential
game in the oblique light case. Furthermore, because the control space is bounded for the
second problem a basic compactness property of any sequence of controls indexed by k
turns out to be automatic.

To simplify the presentation we consider first the case of vertical light in Subsection
2.1. We then extend to oblique light in Subsection 2.2. In Subsection 2.3 we discuss
relationships between the algorithms derived in the previous two subsections.



2.1 THE CASE OF VERTICAL LIGHT.

Control Problem 1. Recall that D describes the subset of IR? on which the image data
is recorded and that z(-) is the height function to be recovered. We begin by describing
the control problem and numerical scheme for “vertical light.” In this situation, we will
assume that the surface S = {(zi, 22, z3) : =3 = 2(z;, z2)} is illuminated from the positive
z3 direction by a point light source that is infinitely far away in the positive z3 direction,
and that the reflected light is recorded in an imaging plane that is parallel to the plane
{(z1, z2,23) : z3 = 0}. Thus the “viewing direction” of the camera and the direction of the
incoming light are the same. We take the reflected light as being characterized in terms
of the deterministic intensity function I(z), where = identifies the (z,,z2) coordinates
of a point on the imaging plane. Under a number of additional assumptions, including
the assumption that the surface is “Lambertian” [12], the height function z(-) and the
intensity function I(-) are related by the equations (1.1) and (1.2). Eliminating # from
these equations and taking v = (0,0,1) yields the equation

Iz) = (14 Jlz.(a)|?) ™" (21)

in regions where z(-) is continuously differentiable. Thus, I(z) equals the absolute value of
the z3—component of a unit vector orthogonal to S at (z, z(z)). We also have I(z) € (0,1].
We will refer to the points in D where I(z) = 1, which obviously includes all local
maximum and minimum points of z(-) in D, as the singular points of I(-) (or 2(-)). Let
S denote the set of all singular points.

Terminology. In the development below we will want to precisely specify what data is
needed to reconstruct a given part of the surface. Because of this we need to introduce
some nonstandard terminology. We will usually assume that the set of singular points
consists of a finite collection of connected sets, and that the height function is constant on
each connected subset (recall z; = 0 at a singular point). We will refer to such a connected
subset S¢ as a set of local minima, and to all points in the subset as local minimum points,
if there exists € > 0 such that d(z,S¢) < € and z € D imply 2(z) 2 2(y) for y € Sc. An
analogous definition is used for local maxima. A connected subset that is neither a set of
local maxima or local minima is called a set of saddle points.

We next describe an optimal control representation for 2(-) that is based on knowing
I(z) for z € D and z(z) only on a subset of S. A result analogous to the one stated
below is possible when the set of local minima is replaced by the set of local maxima. To
give a precise statement, we need the following. We say that a set A C IR? is smoothly

connected if given any two points z and y in A there is an absolutely continuous path
¢ :[0,1] — A such that ¢(0) = z,4(1) = y.

A2.1 Assume that S consists of a finite collection of disjoint, compact, smoothly con-
nected sets, and that z,(-) is continuous on the closure of D. Let G C D be compact, and
assume G is of the form G = }zlgj,J < oo, where each G; has a continuously differ-
entiable boundary. Let M be the set of local minima of 2(-) inside G. Then we assume
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that the value of z(-) is known at all points in M. Define n;(z) to be the inward (with
respect to G) normal to 8G; at z. Then we also assume that (2z(z),n;(z)) < O for all
T €0GNaG;,j=1,..,J.

Assume we are given an upper bound B for {z(z) : £ € G}. Suppose that z(-) is
continuously differentiable on the closure of D, and define

oo ={ 5 e 22
and 1 1 1 1 1
L(z, ) = 31161 + 3 (F(—) - 1) = 31817 + 5 llz=(2)I” (2:3)

Note that L(z,8) > 0, and that L(z,B) =0if and only if z € S and f = 0. We can
now define the optimal control problem. As an admissible control we will consider any
integrable function u : [0,00) — IR?. Given such a control, the dynamics of the controlled
process are simply ¢(s) = u(s) (a.s. in s) and ¢(0) = z. Let

V() =inf [ [ L(8(s),u(s))ds + g(dlo A7) (24)

where 7 = inf{t : §(t) € 3D U M} and the infimum is over all p € [0,00) and admissible
controls. We will follow the convention of defining the integral to be oo if the integrand
is not integrable.

It turns out that within the set G the minimizing trajectories for the deterministic
control problem given above are essentially the two dimensional projections of the paths of
steepest descent on the surface represented by the height function. Thus, the assumptions
that are placed on G in A2.1 guarantee that any minimizing trajectory that starts in G
stays in G. Because of this it can be shown that V(z) = z(z) for all z € G, where G is any
set that satisfies A2.1. We will never actually use this fact, since the proof of convergence
will be based on the analogous theorem for Control Problem 2, which is stated and proved
in Section 3. We are mostly interested in Control Problem 1 because it can be used as a
basis for the construction of numerical algorithms.

A formal derivation of the equality V(z) = z(z) is as follows. The equation (2.1) can
be rewritten as

H(z,2z,(z)) =0 (2.5)
where 1 1
H(:C,Ot) = 5 []. + "0"2] - -ZIT(:B-)-
Note that H(z,«a) is convex in a. The function L(z, ) defined in (2.3) is the Legendre
transform of H(z,a) in a:

L(z,B) = sup, [—(a. 8) — H(z, )] (2.6)

(Note that our sign convention results in a slight deviation from the usual definition of
the Legendre transform.) Let u(-) be any admissible control, ¢(t) = z + f5 u(s)ds, and let
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p € [0,00). If g(¢(p A 7)) = B then V(z) > 2(z) is automatic. If g(¢(p A 7)) < B then
T < p and ¢(7) € M. Also, by (2.5) and (2.6),

L(¢(2),u(t)) 2 —(z=((2)), u(t)) — H(#(2), 2:(8(2))) = —(22((2)), u(t)),

and hence
[ L u@dt+ g8 2 [ ~(zulo(e)), Ot + 2(9(r)) = =(z).

Thus V(z) 2> 2(z). _

Next consider a solution ¢(t) to ¢ = —z,(4),4(0) = z. Equation (2.5) and the
definition of L(z, ) in (2.3) imply the supremum in (2.6) for L(¢(t), #(t)) is achieved at
o = zz(#(t)) for all t € [0, 7]. Note that A2.1 implies ¢(t) remains in G for all ¢t > 0. Since
z(¢(t)) is decreasing with time, this solution must tend to the set S as t — 7, where 7
may be infinite. Assume that ¢(t) actually tends to a point in M. If 7 < co then we can
take p > 7 and u(t) = —2;(é(t)) to achieve

Vo) < [ L(8(t),u(t))dt + g(4(r))
- /O (2a((2)), 2($(2)))dt + 2((r))
= [ (a9, )t + 2(9(r))

= z(z).

The first inequality is due to the definition of V(z) as an infimum. The following equality
is due to the fact that the supremum is achieved in (2.6) with the given definition of
u(-). If 7 = oo, then we can use the same u(-) to get ¢(-) into an arbitrarily small
neighborhood of the limit point in finite amount of time. Once we have reached a nearby
point we modify the control to move ¢(-) to the limit point in a finite time with small
running cost. Although this results in a control that incurs greater running cost than the
control that takes infinite time, it can be shown that the additional cost can be made
arbitrarily small.

Note that the main facts used in this formal derivation were that H (z,2:(z)) = 0
is equivalent to the basic equation (2.1), and that the running cost L(z,p) is related to
H(z,a) via the Legendre transform (2.6). Thus we expect that various ways of rewriting
(2.1) would give rise to various control representations for z(z), with the different running
costs defined via (2.6).

We next consider the construction of numerical schemes. It will be useful to give a
description of what we have in mind before actually constructing the scheme. There are
two basic ingredients in the control problem just described. The first is the dynamical
equation, which is simply ¢ = u. The second is the cost structure, which includes a
running cost and a stopping cost. Since the data in the reconstruction problem are really
only given on the discrete set D", the best we can hope for is to build an approximation
Vh(z) to V(z). To do this, we will pose another control problem that will be defined
in terms of the data actually available, which is I*. Of course there are many ways in
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which this could be done. Ideally, for the alternative control problem it should be easy to
solve for V*(z), but we also desire the convergence V*(z) — V(z) as h — 0 (and perhaps
even a fast rate of convergence). In our approach, we approximate the dynamics ¢ = u
by suitably choosing a controlled Markov chain whose state space is D*, while keeping
essentially the same cost structure as that of V(z). As will be seen below, the Markov
property allows one to easily solve for V#(z), while the “stochasticity” in the dynamics of
this new control problem is desirable if we want the approximation to the deterministic
dynamics to be of sufficient quality that V*(z) — V(z). In fact, for the general case of
oblique light this “stochasticity” is necessary for the convergence. Further remarks on
this point will be given below. However, we emphasize that V*(z) will not be random; it
will simply have a representation as a functional of a controlled Markov chain.

Dynamics. For each h > 0 and u € IR?, let p*(z, y|u) be a probability transition function
on hZ? and let At*(u) an interpolation interval, whose use will be made clear momen-

tarily. We assume that p*(z,ylu) and Ath(u) satisfy the following “local consistency”
condition: for each z € D",

> (¥ — z)p(z, ylu) = uAth(u), (2.7)

> [y - 2) - uath(w)] [(v - 2) — uAth(w)] P (z,4lu) = oflullAth(w).  (28)

In the proof of convergence for the numerical procedure we will define a continuous time
interpolation of this discrete time Markov chain, and the interpolation intervals used
will be At*(u). With such a scaling, equation (2.7) states that the average increment
obtained when control u is applied is essentially u, while (2.8) implies that the variance
about this mean tends to zero as h — 0. Hence the controlled Markov process is a natural
replacement for the deterministic controlled dynamics ¢ = u, given that state space of
the approximating process should be hZ> Note that with deterministic dynamics (i.e.,
p*(z,y(z, u)|w) = 1, some y(z,u) € D*) it is in general impossible to satisfy (2.7) for all
u € IR? because of the discrete nature of D*.

 Remark. If desired an “error” term of size o(||u||At*(u)) can be allowed in (2.7). How-

ever, due to the unbounded nature of the control space care must be taken regarding how
the “errors” in the local consistency equations depend on u. The precise meaning of the
statement that the error is of size of||ul|At*(u)) in such a case would be

( > (v = 2)pt (e, ylw) - uAt'*(u)) [ (lullat (w)) — 0

yEDh

uniformly for u € JR?. A similar remark applies to the error term in (2.8). We also need
to assume that At*(u) — 0 for each u € IR?, and that

limsup{lly 2l p*(z,ylu) > 0,2 € D,y € Dh,u € 7} =0,



Example 2.1. Let t* =tV 0 and t~ = —(t A0). An obvious choice for the transition
function is £5 bl i i
R _JuF/ T u| fy=zxhe
P(2,ylu) = { 0 otherwise
and Ath(u) = h(T; |u;|)~*. This definition actually makes sense only when u 3 0, and
we take care of the omitted case by setting

1 fy==2
h —
p'(z,yl0) = { 0 otherwise.

The sequence At*(0) > 0 is arbitrary [for the purposes of satisfying (2.7) and (2.8)] and
for simplicity we can take At*(0) =h. B

It seems likely that other possibilities, such as a less regular grid, may be important.
For example, it may be that the grid spacings in the coordinate directions differ. Such
variations are easily accommodated. However, to simplify the presentation, we will use
the transition probabilities of Example 2.1 for the rest of the paper.

We next consider algorithms for approximating V(-), and hence z(:). The key tool
we will use to produce recursive algorithms is the dynamic programming equation for
stochastic optimal control. This equation will be valid if we restrict ourselves to controls

under which the controlled process has a Markov property. The appropriate definitions
are as follows.

Admissible Control Schemes. Let (2, F, P) be the underlying probability space on
which the controlled Markov chain is defined and suppose that the controlled transition
probabilities p*(z, y|u) are to be used. In general, we could allow this space to depend on
h, the control scheme, etc. To simplify the notation this dependence will not be explicitly
indicated. A sequence {uf,i € Z*} is an admissible control scheme for the controlled
chain {¢},i € Z*} if the following Markov property holds:

P{ehy = yl(u,€0),5 = 0,16} = P{eh, = yl(ul, 1)} = s (€l ylu).

For example, if the control scheme is of the feedback form u? = f4(¢#, i), where f* is a
measurable mapping from hZ? x Z* to IR?, then it is admissible.

Admissible Stopping Times. A random time M* with values in Z* is said to be

admissible if it does not depend on the future in the sense that for any n, any m > n,
and any continuous function F,

E [F(€:+17£1,:+2a,gr’:-;)l(u?,é‘f)a] S n, MhI{M"Sn}] = E [F(Erl:+l7€11:+27"-a{r,;;)l(u:afrl:)J °

Thus, if we condition on having stopped the process by time n and all the values of
(ul,€M),i < n, then the future evolution of £} does not depend on whether or not we have
stopped the process by n, and depends on the values (u#,€%),i < n only through (uk,£h).
This means that M* cannot anticipate the future. Note that the definition implies M* is
finite with probability one.
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Because the “target set” M for the deterministic optimal control problem associated
to V(z) can possibly contain isolated points that may not be included in D*, we really
need to introduce a “discretized target set” M"* C D*, and redefine g(+) in the obvious
way. We would need that M* — M in the Hausdorff metric [i.e., d(z, M) < €" for all

z € M*, d(z,M"*) < e for all 2 € M, and &¢ — 0]. To simplify the notation we will
just assume M C Dk,

The Approximation V*(z). We now define our approximation VA(z). For a given
admissible control scheme {uf,i € Z*} let {¢*,i € Z*} denote the associated controlled
process. Define N* = inf{i: ¢# € D or £* € M}. We then set

h : (NhAMh)_l h _h h h
V*(z) = inf E, > L(ghub)Ath(ut) + IR (2.9)

1=0

where the infimum is over all admissible control sequences and stopping times and E,
denotes expectation conditioned on ¢ = z. It is shown in Theorem 4.1 below that
V*(z) — V(z) for € G, where G is any set that satisfies A2.1. This is at least intuitively
plausible, given the characteristics of the controlled chain {¢},i € Z*} described after
(2.7) and (2.8), and the resemblance of (2.9) to (2.4).

Suppose that instead of minimizing over a potentially unbounded time horizon (as
here), we consider the problem

(NAAMBAR) -1

V.'(z) = inf B, > L& ub)At(u}) +g(§?NhAMhM))} , (2.10)

i=0

where the infimum is over the same controls and stopping times. Then Vi (z) is clearly
nonincreasing in n and V*(z) | V*(z) as n — co. By the dynamic programming principle
of optimality [14], V*(z) and V. 1(z) are related by

Veu®) = min | inf (e al) + SoeatR®) @] )

for z € D*\M, while V*(z) = g(z) for all z ¢ D",z € M and all n € Z*+.

This recursive equation (as well as a number of variations) will serve as the basis for
the computation of V*(z). Starting with the initial condition Vi*(z) = g(z), we iterate
using (2.11). If Vg*(z) > g(z) then the iteration (2.11) extends to z € M, i.e., we can
use (2.11) to define the algorithm for all z € D*. It can be shown in the vertical light
case that (2.11) converges in no more than O(h~2) steps. Typically, for vertical or oblique
light, convergence is effectively achieved after O(h~!) steps. Further remarks on this point
appear in Section 5.

In numerical analysis parlance, (2.9) corresponds to what would be called a Jacobi
iteration, since the calculation of each V%, (z),z € D", is based only on the values

n

VA(z),z € D*. An alternative is to always use the most recently updated values Vn"_,_l(:r),
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if they are available, rather than V*(z). Such an algorithm will be referred to as a Gauss-
Seidel type algorithm. Let < denote an ordering of the states in D*. Then (2.9) is replaced
by

VAya(2) = min [,,ig,ﬁz (L(z,u)Ath(u) + 2 (@ 3V (9) + Zp"(z,ylu)":f‘(y)) ,g(m)J

y<z y2z
(2.12)
It is usually preferable to use a different ordering for each iteration. One can show that
the Gauss-Seidel procedure is never worse than the Jacobi. (In fact this is easily shown
by adapting the argument used to prove part 1 of Proposition 2.3 below.) We refer the
reader to [14] for further discussion and a description of the Markov chain interpretation
of the Gauss-Seidel procedure.
We next present the particular nonlinear iteration obtained when the Jacobi algorithm
is used with the transition probabilities of Example 2.1. The Gauss-Seidel version is an
obvious modification.

Example 2.1 (Continued). For z € D*, let v; and v; be the smallest values from the
sets

{Va'(=+ A(1,0)), V(= ~ h(1,0))} and {V;}(z + h(0,1)), V(= — h(0,1))},

respectively. Define m = (1/I%*(z))—1. If 0 < h?m < (v; —v;)?, then we use the recursion
V,fH(:z:) = min [g(m), (vy Awg) + hml/z] _

If A2m > (v; — v;)?, then we use

Vi 1(z) = min [g(z), % [(2h2m — (v - v2)2)1/2 + (v1 + '02)]] .

This completes our introduction to Control Problem 1 in the case of vertical light.
The algorithms derived above, and in particular the Gauss-Seidel iteration (2.12), are the
algorithms the authors have used for computations in the case of vertical light. We next
turn to Control Problem 2. On the basis of this control problem, we will derive a second
approximation scheme. This scheme will not be used for purposes of calculation, since
it is more cumbersome than the scheme obtained from Control Problem 1. However, as
we show below, the two schemes actually produce the same approximation V*(z). Our
interest in the scheme obtained from the second control problem is because it allows a

simpler proof of V*(z) — V(z).
Control Problem 2. Define g(-) as in Control Problem 1, and let

L(z,8) = { L= (P'(=) - NBIPY* it 1Bl < I(a)

+00 otherwise.
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Note that L(z,B) > 0, and that L(z,8) =0 if and only if z € S and B = 0. The function
L(z, B) is the Legendre transform of H(z,a) = I(z)[l + "0"2]1/2 — 1. It is easy to show
that H(z,z.(z)) = 0 is equivalent to (2.1).

The definition of V(z) here is the same as that for Control Problem 1. The dynamics
of the controlled process are again ¢(s) = u(s) (a.s. in s) and ¢(0) = z, and we set

Vie) = int [ [ L((s), u(s))ds + gldlo A7)

where 7 = inf{t : ¢(t) € 9D U M} and the infimum is over all p € [0, 00) and admissible
controls.

We show in Theorem 3.1 that V(z) = 2(z) under the same conditions as those stated
above for Control Problem 1. The derivation of an approximation procedure is the same
here as for the previous control problem. Given a transition function p"(z,y|u) and
interpolation interval At"(u) satisfying the local consistency conditions (2.7) and (2.8),
we define V*(z) by (2.9). Approximations V(z) can be defined via (2.10), which will
satisfy (2.11). The approximation V*(z) obtained here is the same as that obtained via

Control Problem 1. A precise statement of this fact in the general setting of oblique light
is in the next subsection.

2.2 'THE CASE OF OBLIQUE LIGHT.

We now turn to a generalization of the setup of the last subsection in which the light
originates from the direction v, where v = (7;,72,73) is some unit vector with 73 > 0.
We will consider only the case where 7; = 0. In practice, the case 7 # 0 is handled
by a coordinate transformation, i.e., by rotating and reinterpolating the data. It is also
possible to develop algorithms and a convergence theory that apply directly to this case.
However, it has been the authors’ experience that the resulting algorithms are somewhat
cumbersome, and that the change of coordinates method is preferable.

For this setup, the image irradiance equation obtained from (1.1) and (1.2) for the

intensity becomes
o ([ Czm(@)=m(2), 1)
i <”’ 0+ =@ > (2.13)

As for the case of vertical light, we define the set S of singular points by S = {zeD:
I(z) = 1}. Owing to the significance of the singular points, it is best to study this problem
in the new coordinate system defined by z} = T3, Ty = T3,y = T2 + Taya. Thus we
define a new height function f(z;,;) that measures height along the light (rather than
viewer) direction:

f(z1,22) = 2272 + 2(21, 22) 73

The function f(-) is the natural object of study, in that its extreme points are contained in
the singular points of I(-). Of course a reconstruction of f(-) will also give a reconstruction
of z(-). Substituting f(-) into (2.13) and a little algebra produces H(z, fz(z)) = 0, where

H(z,a) = 3 [P@)er + v(z)as? + 21 = P(@)per - (1= ()], (214)
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and v(z) = I*(z) — 2.

We first consider the subset of the image plane where v(z) > 0. Note that the interior
of this set includes §. In this region, the same heuristic argument as that used for the
case of vertical light suggests the following optimal control representation for f(-). Let B
be an upper bound for {f(z),z € D}, and define the terminal cost

o) ={ [ oo (2.15)
We also define the running cost
2 - 2
L(z,B) = %Ilf(l:lv) + %lﬂz + (lv(:;(x))%I + é—(l — I}(z)), (2.16)

(where by convention ¢/0 = oo if ¢ > 0, and ¢/0 = 0 if ¢ = 0). Note that when v(z) > 0
that L(z,B) = 0 if and only if £ € S and B = 0. The optimal control problem that is
appropriate for the region where v(z) > 0 is the same as that for the case of vertical light,
save that this new running cost is used. (If desired, the possibility of zeros appearing
in denominators in the running cost can be eliminated if one is willing to modify the
dynamics to accommodate the change. Such a modification would in fact give the control
problem we have previously used for oblique light [21]. However, the algorithms derived
will be exactly the same. The control problem chosen here allows a development that
more closely parallels that of the previous subsection.)

On the other hand, for regions where v(z) < 0 we observe a negative coefficient in
front of o2 in (2.14). This means that in order to obtain an analogous representation in
such a region we must work with a differential game. Specifically, the control u = (u1,ug)
splits into two opposing controls, one of which (u,) seeks to minimize the cost while the
other (u;) seeks to maximize. Since the role of the current optimization problem is only
to suggest a scheme, our description of this game will not be precise.

For such regions, the relationship between L and H is now an extension of the Legendre
transform in (2.6):

2 _ 72 2
inf sup [—alul — U, — L _ L+ (1 = I’(z))y] 1
uy

2 212(z) 2 v(z) 2(1 B Iz(z))]

= % [P(z)en® + v(z)es? + 2(1 = I*(2))yaa — (1 — P(z))] = H(z,0).

Note that for v(z) < 0 only one of the zeros of H(z,-) for a given a is actually a valid
solution of the image irradiance equation (2.1). The other zero corresponds to a surface
normal pointing away from the camera, which is impossible if f (z) is a function. This
spurious zero is due to taking a square in the course of rewriting the image irradiance
equation in the form (2.14). The valid zero is characterized by its being achieved at a
value u, such that

Uy, <0 (217)

14

S

3 -1

S

3 3 3 E|

S

1 1 3 3

3



Moreover, if H = 0, a simple computation shows that the supremum and infimum are
achieved at u obeying
2 2

Y Y
(5 t o) < 0.

Together, these facts imply the angular constraint on the control

u
ﬁ < —( = I(z)?)"2. (2.18)

The above suggests that the differential game should be defined with a restriction
on the control to pick out the valid zero of H(z, -). The restriction we will impose is
(2.17), since this is simple to implement in our numerical scheme, although the stronger
constraint on the maximizer sign(7;)u; < —|ui|(~v(z))/?/I(z) could be used instead.
These restrictions may be unnecessary to achieve a valid differential game representation,
but result in more efficient algorithms, and are needed to prove the equivalence of the
fixed points for the two algorithms. For further discussion see the Appendix.

As in the previous subsection the relationship between H and L suggests a numerical
scheme. Let p*(z,ylu) and At*(u) be as in Example 2.1. We can then define an analogue
of (2.9), in which the control problem becomes a discrete time discrete state stochastic
game in the region where v(z) < 0. Only the minimizer will be allowed to stop the game
and pay the stopping cost. A formal application of the principle of dynamic programming
suggests the following algorithm: Vj*(z) = g(z), and

V(@) = min [jg,%z (L(w,umt"(u) + ;p"(x,mu)vn"(y)) ,g(x)] if o(z) > 0

V(o) = min | sup | inf (£Ge, 00 + Dot e slVi0) oe)] i) <0
(2.19)

together with boundary conditions as in (2.11).

Example 2.1 (Continued). If we insert p*(z,y|u) and At*(u) from Example 2.1 into
the equation above we obtain the following recursive formulas. Fix z € D*. Define
m = (1 — I’(z))/v(z), generalizing from the case of vertical light. Also, define

_ | A7 min{V}(z + (0,1)) + mye, VA(z — h(0,1)) — my,} if v(z) >0
"= h~tv(z — sign(72)k(0,1)) — m|y,| if v(z) <0,
and
v = h—lmin{vnh(x + h(l,O)), ‘/nh(m - h(l,O))}, A=v;— V1,

5 - (Lellte”

\ 2|1/2
m‘)) (1) + v(z))fo(=) - 47"

For v(z) > 0, let

v + |m|?y, if A> |m[/?
V=h{ S+ Felutsleln if —|m|"?y3(I(z)/v'/*(z)) < A < |m|"/?y3

v2 + [m|M2y3(I(z) /v /?(z)) f A< —|m Y2y (I(z) /0 ?(2)).
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For v(z) < 0, we let

v ,,{ v — [m[Pys(I(2)/[o(2)[?) i A < [m[45(I(z)/|o(z)]/?)
= B(z)vy +v(z)ve .
S+ (=) +e(2) otherwise.
The recursions defined above are continuous in v(z), so that the recursions for v(z) =
0, —I(z)? are just given by the appropriate limits. We then set

V:—i—l (z)= min[f/',g(m)].

For z ¢ D* we set VA ,(z) = g(z)=B. N

If the constraint u;y; < 0 were not imposed for v(z) < 0, then the definition of v,
would be altered to:

V2 = h'lmax{\/;h(a: + £(0,1)) + m7a, Vnh(x — k(0,1)) — mv,}

for v(z) < 0, and the recursion would otherwise be unchanged.

As for the vertical light case, we define V*(z) = lim,.o, V*(z). The existence of such
a limit is proved in Proposition 2.3 below, and the convergence of V*(z) as b — 0 is
studied in Section 4. Without the constraint above on the maximizer for v(z) < 0, the
algorithm would probably converge to the same V* in most cases. However, computational
experience suggests the convergence may be slow over those regions of D* in which the
maximizer, for at least some number of iterations, can prevent the entry of the controlled
path into the domain where there is only a minimizer (i.e., v(z) 2 0). By this delay, the

maximizer attempts to win a large positive terminal cost by not allowing the controlled
path to terminate in the target set M.

The algorithm above can be implemented in a Gauss-Seidel version just as in the case
of vertical light. This is the algorithm actually used in the case of oblique light.
This completes our discussion of Control Problem 1 for the case of oblique light. We

next describe Control Problem 2. The equation (2.13) may be rewritten as H(z, fz(2)) =
0, where

1/2
H(z,a) = I(z) (1 + [lef® - 202')’2) + oy — 1.

This function is convex in @, and its Legendre transform in a is

L(z,8) = { B = 1B =1 (P(2) = 1B — 1B+ 1) i |B + |8 + mf < P(z)
’ o if |81 + |82 + 12| > IP(x).

Once again note that L(z,8) > 0, and that L(z,f) =0 if and only if z € S and 8 = 0.
Also, L(z,B) < oo implies the angular constraint on the control

Yeu2
= < —(m - I(z)?)*?,

flell —

which is almost the same as (2.18).
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The derivation of an approximation procedure is the same here as in the previous sub-
section. Given a transition function p*(z, y|u) and interpolation interval Ath(u) satisfying
the local consistency conditions (2.7) and (2.8), we define V#(z) by (2.9). Approximations
V}(z) are defined via (2.11). As in the case of vertical light we have the following result,

which relates the approximations obtained from the two control problems. The proof is
given in the Appendix.

Proposition 2.2 Consider the transition probability p"(z,y|u) and interpolation interval
Ath(u) of Ezample 2.1, as well as the recursive equation (2.19) for Control Problem 1
and (2.11) for Control Problem 2. Then w(z) is a fized point of (2.19) if and only if it is
also a fized point for (2.11).

2.3 CHARACTERIZATION AND PROPERTIES OF FIXED POINTS OF THE ALGORITHMS.

In the previous subsections we have shown that the fixed points of Jacobi type algorithms
algorithms obtained from various formally derived control representations were all actually
the same. It was also noted that the fixed points of the Gauss-Seidel type procedures [e.g.
(2.12)] (under any ordering of the states) and those of the Jacobi procedures [e.g. (2.11)]
are also identical for either of the control problems. One of the more subtle points in the
analysis of these algorithms has to do with the fact that the iterations we have described
may have multiple fixed points. The existence of this nonuniqueness is tied to the fact that
the running costs L{)(z, u) are not bounded from below away from zero (which is itself
due to the presence of singular points in the region over which the reconstruction is to be
done). However, the nonuniqueness also turns out to be quite illuminating, since, as we
will see below, its proper resolution leads naturally to algorithms that are quite efficient.
The following result will be essential in relating the various algorithms and dealing with

the nonuniqueness. Recall that B is an upper bound for f(-) on G, and that g(-) is defined
in (2.15).

Proposition 2.3 Consider any of the recursive algorithms derived in either Subsection
2.1 or Subsection 2.2. Let an initial condition Vy' be given and define the sequence {V}*,i €
IN} according to either the Jacobi iteration [e.g. (2.11)] or the Gauss-Seidel iteration [e.g.
(2.12)], where for the Gauss-Seidel procedure we allow a possibly different ordering to be

used for each iteration. Assume that V}(z) > g(z) for all z € D*. Then the following
conclusions hold.

1. For each z € D", V(z) is nonincreasing in i and bounded from below. Define
VA(z) = limjooo V(). Then the function V*(-) is a fized point of (2.11) (or (2.19)
if appropriate).

2. The function V*(-) can be uniquely characterized as the largest fized point of (2.11)
(or (2.19) if appropriate) that satisfies VP(z) < Vi (z) for all z € D*. Thus,
whenever the initial condition is sufficiently large, the limits for all the various
procedures (Control Problem 1 or Control Problem 2, Jacobi or Gauss-Seidel) are
identical.
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Remark. In the actual use of the algorithm g(z) is always taken as the initial condition,
and thus this assumption in the proposition is automatically satisfied.

Proof. For each fixed z € D" and ¢ € IN, any of the Jacobi and Gauss-Seidel iterations
we have defined may be written in one of the following forms:

Via(e) = min i (o) + DA Gbauls)) o], )

or

Vii(e) = min up igf (o) + Srteutew) o@)] . @21

Here c*(z,u) denotes the running cost, and w(-) is a function that depends on the par-
ticular type of iteration used as well as (in the Gauss-Seidel case) the ordering of the
states. Note that for both (2.20) and (2.21) the right hand sides are monotonically non-
decreasing in w(-) if we use the partial ordering of real valued functions on D* defined by
wi(-) € wa(-) whenever w;(z) < wy(z) for all z € D-.

First consider the Jacobi iteration. The monotonicity property just described implies
that V2, < V;* whenever V* < V. Since the initial condition satisfies V* > g, and
since V}* < g, we conclude VX, < V}* for all i € IV by induction.

Next consider the Gauss-Seidel procedure, with a possibly different ordering for each
iteration. Regardless of the ordering used on the first iteration, the fact that V > ¢
implies V* < Vi*. We will again complete the proof via an induction argument. Suppose
that V* < V2., Let <; denote the ordering that is used on the sth iteration. Let z;, z,, ...
denote the states of D*, ordered according to <;.1. The values V*(y),y € D" are used to
define V4, (z1), while the values V*(y),y <; 1 and V}*,(y),2; <; y were used to define
Vt(z1). Since V} < Vb, Vit (z1) < V*(z1). We now proceed by induction according
to <i41. Fix j, and assume V3, (zi) < V*(z) for k < j. The values VE,(y),y <it1 z;
and V(y),z; <iy1 y are used to define VA (z;), while the values V/*(y),y <; z; and
V2, (y), z; <i y were used to define V*(z;). In all cases the values used to define V%, (z;)
are no larger than those used to define V*(z;). Thus VA,(z;) < V#(z;). By induction
on <;4; we conclude Vi, < V* and by induction on the usual ordering on IN we obtain
the monotonicity described in part 1 of the proposition.

Since for Control Problem 2 the running costs are non-negative, the monotonicity
proved above establishes the existence of V*(z) = lim;_, Vi*(z) for both the Jacobi and
Gauss-Seidel procedures. This is also the case for Control Problem 1 in vertical light, or
for v(z) > 0 for oblique light. When v(z) < 0 in Control Problem 1, we first consider the
case w(y) = 0 in (2.21). A simple calculation shows that

sup inf (L(l)(x,u)) > 0,

u7<0 ¥
and therefore
sup inf (L(l)(x,u)Ath(u)) > 0.

uz <0 W
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Since the probabilities are nonnegative, and ¥, P"(z,ylu) = 1, this implies

sup inf (L(l)(z,u)At" + Eph(m,y|u)w(y)) > Wmin,
y

u212<0 ¥

where Wmin = min, w(y). Thus for Control Problem 1 and v(z) < 0, V* is bounded from
below by min_ Vi*(z). This gives part 1 of the proposition.

We next turn to part 2. Let V* be any fixed point of (2.11) or (2.19) that satisfies
VA(z) < Vik(z) for all z € D*. An argument very similar to the one used to prove part 1
shows that

Viz) < Vi (z) = VH(2) < Vi (2).

Therefore by induction V#(z) < V#(z) for all z € D*. B

3 The Representation Theorem

The main purpose of this section is to prove the representation theorem that connects
the shape to be reconstructed and a deterministic optimal control problem. In the course
of the proof we will construct certain paths that will also be needed in the next section.
The properties of these paths are summarized in a lemma that follows the proof of the
representation theorem.

We will consider the general case of oblique light. Recall that « describes the direction
from which the incoming light originates, and that the image intensity function I(-) is
defined on some open bounded subset D of IR?. Without loss of generality, we assume as
before that 73 = 0, 43 > 0, and 4 is a unit vector.

In Section 2 we formally related a pair of deterministic optimal control problems to
the function f(-) measuring the height along the 4 direction:

f(z1,72) = 2372 + 2(21, T2)73,

where z(-) is the vertical height. We need consider here only Control Problem 2 of
Subsection 2, since it is the basis for the convergence proof in the next section. This
problem was formally derived by rewriting (2.13) as H(z, f-(z)) = 0, where

1/2
H(z,a) = I(z) (1+[lel® — 2007%2) " + 272 — 1.
The running cost was defined to be .

L(:L‘,,B) = sup, ["(av ﬂ) - H(zaa)]
= 22 =B — 1 (I(z)? = |Bf? = |B2 + 12I?)"?

if |B1]? + 182 + 12|* < I*(z) and oo if |B1|* + |Bz + %2|* > I*(z).
Define

(3.1)

U(z) = {(u1,u2) : [a? + |z + mf? < I(2)} .
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Thus U(z) is the domain on which L(z,-) is finite. It is easy to check that H(z,-) and
L(z,-) are strictly convex on JR? and U(z), respectively. Hence

H(z,a) = sup [—(e,B)~ L(=,B)], (3:2)
BeU(x)

and for each a € IR? there exists a unique vector u(z, @) such that
H(z,a) = —{a,u(z,a)) — L(z, u(z, ).
Define @(z) for z € D by

0= H(z, fo(2)) = —{fz(2), 4(z)) — L(z, i(z)). (3.3)
From (3.1), @(z) is given by

4(z) = = VoH(z,a)| 1,

If (as we assume) fz(z) is continuous, then the continuity of V,H(z,c) implies a(z) is
continuous on D. As in the case of vertical light, an explicit calculation shows that ()
is proportional to the projection in the (zy,z;) plane of the a steepest descent direction
on the surface. Now, however, “steepest descent” is defined with respect to the light
direction +, rather than the vertical direction (0,0,1).

We consider subsets G of D that satisfy the following extension of A2.1 to the case of
oblique light.

A3.1 Assume that S consists of a finite collection of disjoint, compact, smoothly con-
nected sets, and that f.(-) is continuous on the closure of D. Let G C D be a compact set,
and assume G is of the form G = nj=lg,-,J < 0o, where each G; has a continvously dif-
ferentiable boundary. Let M be the set of local minima of f(:) tnside G. Then we assume
that the value of f(-) is known at all points in M. Let @ denote the “steepest descent”
direction given by (8.3) above. Define nj(z) to be the inward (with respect to G) normal
to 8G; at z. Then we also assume that (&(z),n;(z)) > 0 for all z € 0GNaG;,j=1,....,J

As noted above the minimizing trajectories for the control problems we consider are
essentially the two dimensional projections of the paths of steepest descent on the surface
represented by the height function. Thus, the conditions that are placed on G in this
assumption guarantee that any minimizing trajectory that starts in G stays in G. If we
consider an initial point £ € D such that the minimizing trajectory exits D, then we
cannot construct f(-) at = as the infimal cost in the control representation 2.4, since
this requires I(z) for values of z outside D. However, as remarked previously, if we
assume that the height function is specified at the local maximum points, then f(-) may
be constructible at z using an analogous control problem with a maximization. This is
possible if there is a maximizing trajectory, corresponding to a path of steepest ascent on
the surface, that stays in D. Thus one should consider this part of A3.1 as a means of
determining which parts of the surface can be reconstructed from the given data.
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Theorem 3.1 Assume A3.1 and that B is an upper bound for f(-) on G. Define L(-,-)

by (3.1), g(-) by (2.15), and V(z) as in Section 2 by (2.4). Then V(z) = f(z) for all
z€QG.

Remarks. Because of (3.3) we have @(z) = 0 if and only if f,(z) = 0. Let y be an
isolated local minimum of f(-) and let O be the domain of attraction of y with respect
to u(-), i.e., if ¢ = @(¢),4(0) = z and z € O then ¢(t) — y as ¢ — co. Assume that
O C D. Further suppose that f(-) is C?, so that @(-) is C'. In this case O is open and
one can find an increasing sequence of sets G; such that each G; satisfies A3.1 and GgiT0
as ¢ — oo. Hence the conclusion of Theorem 3.1 will hold with G replaced by O. If V(z)
is continuous on the closure of O (which is usually easy to verify and holds automatically
if the closure of O is contained in a domain that satisfies A3.1), then the conclusion of
Theorem 3.1 will hold with G replaced by the closure of O. Similar remarks will apply to
the conclusion of Theorem 4.1 of the next section. These remarks will find application in
the scheme described in Section 5 for eliminating the assumption that the height function
must be known at all local minima (or local maxima).

Proof. We first show that V(z) > f(z). Let u(-) be any admissible control and define
t
)=z + / u(s)ds, 7 = inf{t : ¢(t) € 3D N M}. (3.4)
0

Since L is the Legendre transform of H and since H(z, f,(z)) = 0 for z € D,
02 —(fz(2),8) — L(z, B)
for all B € IR?, and in particular
—(F=(6(2)), u(t)) < L(4(t), u(t))
for t € [0, p A 7] (recall that p is the controlled stopping time). This implies that

AT

~H(@o A +f(=) = - [7 (o) ueNdt < [77 Lo(0), u(t)s,

and thus for any admissible control and any p € [0, 00)

/ow L(4(2),u(t))dt + f($(p A 7)) 2 f(z).
Since g(¢(p A 7)) 2 f(¢(p A 7)), we obtain V(z) > f(z).

Next we show V(z) < f(z). In order to do so we will verify that for each £ > 0 there
exists a control u(-) such that for ¢ and 7 defined by (3.4) we have 7 < o0, and

/OT L(4(t),u(t))dt + g(¢(7)) < f(z) + €. (3.5)

Recall that U(z) = {(us,us) : Jw1|®> + Juz + 72|> < 1} and L(z,0) = 0 for = € S.
Let S¢ be a maximal smoothly connected component of S. We first show that any two
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points near Sc can be connected by a piecewise continuous control with low cost. For
any two points z, y in Sg, there exists a control u(¢) and a time t* < oo such that if
¢(t) = z + f;u(s)ds, then §(t) € S¢ for t € [0,#*] and y = 4(t). Define a new control
ua(t) = Au(t)), where A > 0, and let ¢,(t) = ¢(tA) be the corresponding path. Since

L(z,u)
[l

for z such that I(z) = 1, we can choose ) such that

L b = [ HEOX), €

—0as|ul|—0

Since L(-,) is continuous on an open neighborhood of S¢ x {0}, we can also assume u,
is continuous. Further, since |y,| < 1, there exists a > 0 such that for any component S¢
as above, and z such that d(z,S¢) < a, we have the following. Let y be the point in S¢
closest to z. Then there exists a time ¢, € [0, 00), a constant control u(t) = (y—z)/ta, and
corresponding path ¢(t) = z+ J; u(s)ds, such that ¢(t,) = y and fi L(é(t),u(t))dt < e/3.
Finally, this shows that for any S¢, and z, y such that d(z,8¢) < a and d(y,S¢) < a,
there exists a piecewise continuous control #,(t) and time o4, € [0, oo) such that for the
corresponding path ¢,,(t) we have

¢:cy(0) =z, ¢zy(axy) =Y,
and

,/oaxy L(¢’-‘y(t))ﬁzy(t))dt S E.

Since f is constant on S¢ we can assume (by choosing a > 0 smaller if need be) that
() - ) <.

We now construct the control that satisfies (3.5). If z € Sg, and S¢ C M, then we
simply take 7 = 0 and are done. There are then two remaining cases: (1) z is contained in
some S¢ with Sc N M =0, or (2) z ¢ S. If case (1) holds then S is either a set of local
maxima or saddle points, which implies the existence of a point y such that f(y) < f(z)
and d(y,S¢) < a. Since A3.1 implies § C G°, we can assume that ¥y € G. In this case we
will set u(t) = i, (t) for ¢ € [0,04,).

Next consider the definition of the control for ¢ > Ozy- For ¢ > 0 let b = inf{L(z,u):

z € G,d(z,S) > c,u € R*}. The continuity of I(-) and the fact that Iz)y<lforz g$S
implies b > 0. Consider any solution (there may be more than one) to

8(t) = a(4(2)), 4(0) = . (3.6)
According to (3.3), for any ¢ such that ¢(¢) € G\S and d(4(t),S) > ¢

(f=(6(2)), u(4(2)))

Z1(6(0)
—gﬂmMﬂm) (3.7

IA N
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A3.1 implies ¢(t) cannot exit §. Thus, since f(z) is bounded on G, (3.7) implies that ¢(t)
must enter the set {z : d(z,S) < c} in finite time, for any ¢ > 0. If #(t) € S for some
t < oo we define n, = inf{t : ¢(t) € S} and w = ¢(7,). Otherwise, let ¢; be any sequence
tending to 0o as i — oco. Since G is compact we can extract a subsequence (again labeled
by 2) such that ¢(¢;) — v for some v € S. Let i* be large enough that ||@(t:) — v|| < a.
Since f(4(t:)) | f(v), we have f(¢(t:r)) > f(v). For this case we define Ny = ti» and
w = ¢(ny).
Integrating (3.7) gives

fly) = f(w) = /0 " L(¢(2), a((t)))dt.

We then define the control u(t) to be used for ¢ € [0,y,0,, + 7,) to be ((t — 04y))-

We now consider the point w. We first examine the case in which the solution to (3.6)
does not enter § in finite time. Since ||w — v|| < a, @y, (t) gives a control such that the
application of this control moves ¢(-) from w to v with accumulated running cost less
than or equal to &. We define u(t) = fiyy(t — (7 + 02y)) for ¢ € [02y + Ny, 0y + 7y + Oun)-
If the solution to (3.6) reached S in finite time we define w = v and o,, = 0. Let
O =0zy+ Ny + Oup.

Let us summarize the results of this construction. Given any point z € S that is not a
local minimum we have constructed a piecewise continuous control u(:) and o < oo such

that if #(t) = z + [y u(s)ds, then
f(z) = £(4(0))

@) = 1) + £0) = £() + f(w) = (o)
L Kt uear

> %+ [ L((t), u(t))dt.

We have also shown that f(z) > f(v) = f(¢(0)), #(c) € S. Thus, either the component
Sc containing ¢(o) satisfies Sc N M # 0, and we are done, or we are back into case (1)
above and can repeat the procedure. Let K be the number of disjoint compact connected
sets that comprise S. Then the strict decrease f(z) > f($(c)) and the fact that f(-) is
constant on each S¢ imply the procedure can be repeated no more than K times before
reaching some S¢ contained in M. If case (2) holds we can use the same procedure, save

that the very first step is omitted. Thus, in general, we have exhibited a control u(-) such
that

v

| LG8, u(t))dt + (6() < f(z) + (2K +1)e.
Since € > 0 is arbitrary, the theorem is proved. B

The following lemma will be needed in the next section.

Lemma 3.2 Assume A3.1, and let L(z,B) and U(z) be defined as above. Assume that
I €(0,1] on G, let u be the piecewise continuous control constructed in the proof of the

Theorem 3.1 that gives the inequality in (3.5), and let ¢ and 7 be as defined as in (3.4).
Then the following conclusions hold.
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1. The function L(z,-) satisfies the following property: given B < oo there ezists § > 0
such that |V L(z,u)|| < B implies d(u,U(z)°) > b, where the superscript c denotes
complement.

2. The path ¢(t) remains in G for all t € [0,7), and there ezists § > 0 such that
d(u(t),U($())) = 6 for allt € [0,71].

The assumption I(z) > 0 implies that Z/(z) has a nonempty interior, and is clearly
needed for part 2 of the lemma. Although we must also assume this condition in the
convergence theorem of the next section, by working with a sequence of domains [see the
remark after the statement of Theorem 3.1], we can extend the convergence theorem of
Section 4 to cover the case I(z) € [0, 1].

Proof. If part 1 were not true, then there would exist a sequence u; — u € 9U(z) for
which ||V, L(z,w;)|| < B (i.e., L(z,-) would not be essentially smooth in the terminology
of Rockafellar [26]). This can be contradicted either via a direct calculation or the general
result given in [26, Theorem 26.3].

Since f;(-) is bounded on G, equations (3.2), (3.3) and part 1 of the lemma imply that
for each z € G there exists 6 > 0 such that d(@(z),U(z)°) > 6. Since #(z) and U(z) are
continuous on G, we can assume that § is independent of z for z € G.

It is also straightforward to show that we can take § > 0 small enough that d(i,,(t),
U(4(t))°) > S for all t € [0, 0,,] whenever both d(z,S¢) and d(y, S¢) are sufficiently small,
where @, and oy, are as defined in the proof of Theorem 3.1 and ¢ is the associated
controlled path. This implies part 2 of the lemma. W

4 The Convergence Theorem

In this section we prove the basic convergence theorem for the approximations V*(z)
defined in Section 2. The theorem is presented for the general case of oblique light.

According to Theorem 3.1 the minimal cost function V(-) agrees with f(-) on domains
that satisfy A3.1.

Theorem 4.1 Let G be any domain that satisfies A3.1, and let B be an upper bound
for f(:) on G. Define L(-,-) by (8.1), g(-) by (2.15), and define V(x) as in Section 2 by
(2.4). Let V*(.) be any of the approzimations to V(-) defined in Subsection 2.2 (which
are actually all the same according to Proposition 2.3). Then V*(z) — V(z) as h — 0
foradlzeg.

Remark. By combining the proof given below with an argument by contradiction, one
may show the convergence is in fact uniform on G.

Proof. The basis for the proof of the theorem will be the representation for V*(z) as the
minimal cost for a stochastic control problem, as given in Section 2. Thus we have

(NEAM®) -1
VMe)=infE, | Y L(€ul)At(ul) + g(Ehvmmrmy)| » (4.1)

1=0
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where the infimum is over all admissible control sequences and controlled stopping times
M", and N* is the first time of exit from D or entrance into M. The transition proba-
bilities and interpolation times are those of Example 2.1, and L(z,u) is the running cost
for Control Problem 2 as in (3.1). General references for terminology, basic results from
weak convergence theory and the properties of martingales that are used are [5, 14]. Let
{y",n € IN} and y be random variables that take values in some metric space S. We
follow the standard practice of saying that the random variables y™ converge weakly to
y (denoted y™ = y) if the measures induced by y" on S converge weakly to the measure
induced by y on S.

In order to study V*(z) we must first put the representation into a form suitable to
taking limits. Let ¢! and ul be the state of the controlled chain and the control applied
at time i, respectively. Define th = 37" At*(ul). Thus ¢ is the interpolated time up
until discrete time n. Define 7% = t?vh and ph = t;‘w., and also the piecewise constant
interpolations

€h(1) = £, uh(t) = ub for t € [th,h,,). (42)
We consider the processes £*(-) as taking values in D([0,00) : IR?), the metric space of
IR?—valued functions that are continuous from the right and have limits from the left.
(Our interest in the control actually stops when i = N* A M*. However, to simplify the
notation we may assume the control is defined for all ¢ € IN. Specifically, its value will
be defined as (0, —,) when ¢ > N* A M*, so that the running costs per unit time after
N* A M* are automatically bounded. For points = ¢ D" we can let L(z,B) be L(y, ),
where y is any point in S.) In order to take limits of the sequences of controls it will be
convenient to use an alternative representation for the control processes. For all ¢t > 0

and k > 0 define
mh(da) = 6,n(der) and m*(A x B) = /B mh(A)dt (4.3)

where 6,(da) is the probability measure that puts a unit mass at u. The m" are random
and take values in the space of measures on JR? x [0,00). We consider this space as
endowed with the following topology: a sequence I, of measures on IR? x [0, c0) converge
to Lif [p2xjo,00) S(t4: £)ln(du X dt) — [p2y0,00) (1, t)l(du X dt) for every s € C(IR? x [0, c0))
with compact support. The random measures {m*,h > 0} will be called tight if the
corresponding restrictions of the measures to JR? x [0,T] are tight in the usual sense
for each T < co. The representation m* for the control process u”(-) is known as the
relazed control representation. A measure [ on JR? x [0, c0) will be called a relaxed control
process if I(JR? x [0,t]) = ¢ for all ¢ € [0,00). For such a measure, it follows from the
existence of regular conditional probability measures that I(-) has a derivative in the
following sense: for each ¢ € [0,00) there exists a probability measure /(-) on IR? such
that I(A x B) = [gl,(A)dt for all Borel sets B C [0,00) and A C IR? (see [5, p. 502]).
With these definitions, we can write

Vh(z) = inf E, [ /0 (har) L(EM(t), u)mt(du x dt) + g(€*(o" A T*))] . (4.4)

In the next lemma we derive some properties of the controlled processes under an
arbitrary admissible control with bounded running cost. In the lemma’s statement, the
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expectation operator actually depends on the admissible control strategy that is used. In
order to simplify the notation this dependence is not denoted explicitly.

Lemma 4.2 Consider any sequence of initial conditions £ € D and admissible controls
for which

.
limsup Egy / L(€R(t), u)m(du x dt) < oo (4.5)
h—0 0

for all T < oo. Then the random measures {m*(-),h > 0} are tight. Suppose that a
subsequence (again indexed by k) is given such that m*(-) converges weakly to a limit
m(-) and that £ converges to zo. Then m(-) is a relazed control process (w.p.1), and
hence can be written m(du x dt) = my(du)dt. Furthermore, the sequence of processes
{€*(-),h > 0} converge weakly to a process z(-) that satisfies

z(t) —zo = /: ./R= um(du x ds) = /ot /R? um,(du)ds (4.6)
for allt € [0,00), w.p.1.

Proof. If (4.5) holds then the fact that L(z,u) = oo whenever |ju|| > 2 implies for all
h > 0 that the restrictions of m”(-) to JR? x [0,T] are supported on the compact set
{u: [Jull £2} x [0,T). Hence the tightness of {m",h > 0} is automatic. Assume that m*
converges weakly to m. Since m"(IR?x[0,¢]) = ¢ for all w and ¢ € [0, o), m(RR?x[0,%]) = ¢
for ¢t € [0,00) (w.p.1). Thus m(-) is a relaxed control process (w.p.1). Define the random
processes '

)= [ ' [ um*(du x ds) + € and a(t) = /0' [, umldu x ds) + z.

We view these processes as taking values in C([0, 00); IR?), the space of continuous func-
tions from [0,00) to JR?. This space is equipped with the metric inherited as a subset
of D([0, c0); IR?), under which convergence is equivalent to uniform convergence on each
compact subset of [0, 00). Then the fact that the second marginal of m is Lebesgue mea-
sure together with the uniform (in ¢, and w) boundedness of the supports of the m?
implies z* = z.

We next prove the weak convergence ¢* = z. If we use the fact that z* = z, then to
prove £* = z it suffices to show for each T' < oo that

sup_[[€%(¢) — s*(2)] — 0 (47)
te[0,T}
in probability as A — 0. Let N*(T) =inf{n : t > T}. By (2.7)

B[gh, — & - wbath)l(eh ut),j <] = 0.
This implies that
e
e - - [* [ umi(duxds) (4:8)
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is a martingale in . Using (2.8), we compute that
h h ther :
Egn [ho(T) -& —./0 ¢ ’/m um®(du x ds)l -0
as h — 0. Hence by the submartingale inequality [5, Chapter 2],

sup
0<i<NK(T)

-0

gh—gh — /;‘h [, (du x ds)

in probability as h — 0. This clearly implies (4.7), and completes the proof of the lemma.
||

Proof of the Upper Bound. We first prove limsup,_o V*(z) < V(z). We begin
by describing a “controllability” property of the chain {¢#,i € IN}. An elementary
calculation shows L(z,u) < 2 for all z € D and u € U(z). Let y be any point in M.
The running cost at such a point is 42 — you; — 13(1 — |wa|?> — |uz + 72[?)!/2 for all u such
that u;|? + |uz + 72/? < 1, and oo otherwise. Since |7, < 1, there exists ¢ > 0 such that
L(y,u) < 2 for all u satisfying ||u|| < c. Owing to the continuity of I(-) and the form of
L(z,u), we can in fact assume L(z,u) < 2 whenever ||z — y|| < c and Jju| < c.

Fix z such that ||z — y|| < ¢, and define j; = |z; — yi|/k,i = 1,2. Suppose the control
u = ([—sign(z1 — y1)]c, 0) is applied for exactly j, steps, and that after this the control
(0, [—sign(z2 — y2)c]) is applied for j, steps. It is easy to see that this control admissible.
The “deterministic” form of the transition probabilities under these controls guarantees
that the controlled chain arrives at y at discrete time j = j; + j;. Since for all steps
At*(u) = h/c, the running cost accumulated during this time will be bounded above by

h

2 [% (lz1 = | + |22 — yz|)] [z] = %(le ~ 5|+ |z2 — 32l) .- (4.9)

We now give the proof of the upper bound. Let G be any set that satisfies A3.1.
According to Lemma 3.2, for each = € G and &€ > 0 there exists § > 0,7 < oo and
piecewise continuous u : [0,7] — IR? such that if z(t) = z + J; u(s)ds, then

1.
| L), u(t))dt + g(a(r)) < V(o) +e,
2. z(1) e M,z(t) g Mfor all t € [0,7),
3. d(u(t),U(z(t))) 2 s for all t € [0,7] .
Since U(z) is continuous in z, we can assume § > 0 has been chosen small enough that
d(u(t),U(z)) = 6 for all z such that |z — z(¢)| < § and a.e. t € [0, 7]. (4.10)

Since G C D is compact and D is open, we can also assume d(z,D¢) > 6 for all z € G.
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Let y = z(7) € M. Fix ¢ > 0 so that the “controllability” property and the bound
(4.9) on the running cost will hold. We now define an admissible control scheme for the
Markov chain in terms of u(-). To apply u(-) to the chain {£},i < 0o} we recursively
define the control applied at discrete time i by u? = u(t?) and 2, = t* + At*(u}). This
defines a control until 7 such that ¢!, > 7. Let {¢},i < co} be the chain that starts at z
and uses this control.

Define
St =inf{i: 1! > 7or&" € Mor ¢! ¢ Dor ||¢} — z(t?)] > 6},

and let ¢* = t%,. By construction the restriction of the measures m*(du x ds) to IR x [0, ]
converge weakly to the measure m(du x ds) = é,(5)(du)ds. Hence by Lemma 4.2, we have
SUPg<econ [1€"(t) — z(t)]] — 0 in probability, and for each 8 > 0 P.{||¢k, —z(7)[| > 6} — 0
as h — 0.

Assume 0 € (0,c¢). If ||é% — z(7)|| > 6, then we stop the process at discrete time S*
and pay the stopping cost g(£%) < B. On the set where 165 — z(7)|| < 6, we extend
the definition of the control sequence for discrete times larger than S* according to the
discussion at the beginning of the proof. The control applied after S* will drive £ to y
in fewer than 20/h steps with a running cost that is bounded above by 46/c.

The total cost for the control scheme and stopping time defined in this way is bounded
above by

E, /0 ’ /R L(EX(s),u)m*(du x ds) + 46/c
+ Po{ll€gn — z(7)|| 2 0} B + P{||¢hs — z(r)|| < 6} sup{g(2) : ||z — y]| < 6,z € M}.

According to the Skorokhod representation theorem [5, Theorem 3.1.8] we can assume that

the convergence (¢*(-), m*(-)) — (z(-),m()) is w.p.1 for the purposes of evaluating the
limits of the expectations above, and that z and m satisfy (4.6). Owing to the definition
of S* and (4.10), we can apply the dominated convergence theorem to obtain

limsup V*(z) < /0" /32 L(z(s), u)m(du x ds) + sup{g(2) : ||z — y|| < 8,z € M} +46/c

h—0
= /; L(z(s),u(s))ds + sup{g(z) : |z — y|| < 8,z € M} + 40/c.
Since € > 0 and 8 € (0, c) are arbitrary,

limsup V*(z) < V(z).

h—0

Proof of the Lower Bound. We now prove liminfs_o V*(z) > V(z). Fix z € ¢ — M

and € > 0. Owing to the definition of V*(z), there is a controlled Markov chain {€r,i <

oo} with admissible control sequence {u!,i < oo} that satisfies {§ = z, and a stopping
time M* such that :
(N AMP) -1

Vi) 2 E: 3 L(EHu})AMul) + Exg(Ehmamn) — €, (4.11)

i=0
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where N* is the time of first exit from D or entrance into the set M. Let €*(-) and uh(.)
be the continuous parameter interpolations of {¢h,i < 00} and {ul,i < oo} as defined by

(4.2), and define p* = t,, 7" = th,. We can then rewrite (4.11) as

V@) 2 B [ [ LEMs) wmt(du x ds) + Bug(€Mon Am)) —e,  (412)

where m”(-) is the relaxed control representation of the ordinary control u”(-).

Let Sg,q = 1,...,Q be disjoint compact connected sets such that S = U?=18q. The
existence of such a decomposition has been assumed in the statement of Theorem 4.1.
Now V(z) is constant on each S,, so there exists > 0 such that

TE S,y €No(S)) = |V(z)-V(y) <e (4.13)

and such that the sets Ny(S,) are separated by a distance greater than @ for distinct q.
Because the reflected light intensity I(-) is continuous on the closure of D, there is ¢ > 0
such that

L(z,u) > ¢ for all u € R,z € D — UL, Noj(S,)- (4.14)
For simplicity, we will consider the proof of the lower bound for the case when the

initial condition satisfies £ € Ny/»(S,e) for some ¢*. The general case follows easily using
the same arguments. We define a sequence of stopping times by

8 =0,
of = inf{t> 7} : £4(t) € UL.No(S))),
8 = inf{t > o, : €(t) € UL Nojo(S,) or £X(t) & D).

Consider the processes
Z) = (80, )s) s MA() = (mh(),mb(),...),

where £2(-) = €*(- + o}) and where m’(-) is the relaxed control representation of the
ordinary control ut(- + o). We consider (Z*(-), M*(-)) as taking values in the product
space endowed with the usual product space topology, i.e., a sequence converges if and
only if each finite subset of components converges.

Consider any subsequence along which V*(z) converges to a point in (—c0,00]. Then
it is enough to prove that the limit of this subsequence is no less than V(z). We can
eliminate the case where the limit is oo, since in this case the lower bound is automatic.
For the rest of the proof we shall assume that we are working with a subsequence (again
labeled by k) along which V*(z) converges to a bounded limit. Thus the sequence V*(z)
will be uniformly bounded from above.

Lemma 4.2 shows that given any subsequence of {(Z*(-), M*(-)), h > 0}, we can extract
a further subsequence that converges weakly, and that any limit point

(X(), M() = (o), 21(-)s ---), (mo(-), ma(-), -..))
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of such a convergent subsequence satisfies

2i(t) —25(0) = [ ' ., wmi(du x )

where each m;(-) is a relaxed control process. In addition, the definition of the stopping
times {c%} guarantees that zo(0) € Ny(S,+), and that for all j > 0 either z;(0) € Ny(S,)
for some g or z;(0) ¢ D.

Let J* = min{j : 7} > 7%}, where 7% has been defined to be the interpolated time at
which £*(-) first exited D or entered M. By construction, if £*(7*) € S, for some g (i.e.,
¢" enters M before it leaves D) then ¢#(7h,_.) € Nyj(S,) for the same g. It follows from
limp—o V*(z) < 0o and the uniform bound from below given in (4.14) that

limsup B, ) (v}, —o%) < co. (4.15)
h—0 0gj<JIh
Define s = 7, — o and S* = (sh,s%,...). It also follows from (4.14) that there exists
¢ > 0 such that for all ¢; and ¢,

inf{ /0 " L(6,8)ds : $(0) € ONW(S,,), &(T) € Nopa(Sq,), $(t) € D, t € [0,T),T > 0} >z,

v (4.16)
and & > 0 that is independent of  for all small § > 0 such that for all ¢, # ¢,,

inf { /0 " L4, d)ds : (0) € ON§(Sy1), #(T) € Nojo( S, ), 8(t) € Dot € [0,T), T > o} > &

(4.17)
We now prove the lower bound limy_.o V*(z) > V(z). Extract a subsequence along
which
({h(.), mh(')a Ph, L Eh(')a Mh(’)’ J*, Sh)
converges to a limit
(z(-),m(-),p, 7, E(-), M (), J, S).
Note that the bounds (4.15) and (4.16) imply that J and the s;,j € {0,...,J — 1} are
finite w.p.1. The p* and 7* are regarded as taking values in the compactified space [0, 0]
in order to guarantee tightness, and hence 7 and p may take the value co. We assume
via the Skorokhod representation [5] that the convergence is w.p.1, and consider any w
for which there is convergence. If p < 7, i.e., if we choose to stop before entering M or
leaving D, we have

liminf g(¢"(p* A ")) = B> V(=).

Next assume 7 < p. The non-negativity and lower semicontinuity of L(z, u) in (z,u) then
imply

B ATh .
llil‘_l-.lglf A ./R2 L(&"(s), u)ym"(du x ds)

2l 32 [} Jp e s (418)
> 3 7 [ Lizs(s),wymi(du x ds).

0<i<J
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Let jk,k =1,..., K index those values of j € {0,...,J — 1} such that z;(0) € Ny(S,) and
zi(s;) & Nosa(S,), i-e., the ji label those trajectories that actually leave the neighborhood
of one of the S; and either enter the neighborhood of some Syyq # q, or else end up at
0D. Assume that jy, < ji, whenever k; < k,.

For any j € {0,...,J —1} and s € [0,s;] define u;(s) = [g2 um;,(du), where m;,(-)
is the derivative of m;(-). Then z;(t) — z;(0) = f§ u;(s)ds for t € [0, s;], and by Jensen’s
inequality :

Sj 3,'
L7 [ Easto),uimidu x do) > [ Las(s),us(s))ds.
From the definition of V() and an elementary dynamic programming argument,
V(g (0) < [ Lizs(s),us(s))ds + V(z1(sy)).
Assembling these inequalities gives that for each j € {0,...,J — 1}
s;
L7 [, LGei(),uyms(du x ds) > V(z5(0)) = V(z5(s5)). (4.19)
According to the definitions of the f, of, and the indices jg, if z;,(s;,) € dNg2(S,)
then z;,,,(0) € No(S,) for all k € {1,..., K —1}. Thus [V(z;,(s;,)) — V(z;,,,(0))] < 2¢

for all such k. Together with the fact that z;,(0) € Np(S,+) (recall that z € S,.), the last
sentence together with (4.18) and (4.19) imply

. . phATh
hiri.lélf_/g /m L(£™(s), u)mP (du x ds)

2 X[ [ Heao)umdu x do

ke{1,...,

2 {Z 0 [V(zjk (0)) - V(zjk (s.ik))] (4.20)
ke{1,...,

> V() = V(j(si)) + k {E o V(2 (0)) = V(zjos (550))] — €

2 V(z) = V(zjx(six)) — (2K = 1)e

w.p.1.

Next consider liminf, o g(£*(p* AT*)). As noted above, liminf,_o g(¢*(p* AT*)) = B
if p < 7. If 7 < p, there are two possibilities. Recall that p* is the controlled stopping
time, and that 7" is the first time the process enters M or leaves D. If p* < 7% or p* > 7#
and £*(7*) € M, then g(€h(p* A T*)) = B. If p* > 7" and £*(7*) € S, C M, then as
observed previously £*(74._,) € Ny/o(S,) and therefore V(£*(7h_,)) < g(€*(p" ATH)) +e.
Now jk is the last index for which there is a transition between different Ny(S,). Thus,
in general,

liminf g(€* (" A7) 2 V(@iplsi)) =6 (4.21)

Combining (4.20) and (4.21) gives
lim Vh(z) > V(z) — 2¢E. K.
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Now by (4.17) we also have
’llin}] V*(z) > ¢E. K,

where ¢ > 0 is independent of ¢ > 0. Thus E_K has a bound that is independent of ¢ > 0.
Sending € — 0 gives the desired lower bound limy_.o V*(z) > V(z). B

Remark. P. Dupuis would like to acknowledge an error in the proof of the lower bound
as it appears in {14, Chapter 13]. That proof considered convergence in the special case
of vertical light only. In the proof the distinction between the paths which move between
neighborhoods of different S, and those that do not was omitted, making the assertion of

a uniform upper bound on J incorrect. The correct assertion is the uniform upper bound
on K, as noted above.

5 Experiments

In this section we present some experimental results obtained with the algorithms de-
scribed in Section 2. In all of the discussion so far, we have required that the surface
“height” z(-) be known at all points z € M, which are a subset of the singular points
in G. This is equivalent to knowing the value of f(-) at all of its local minima in G.
(Recall that we use a more restrictive definition of local minimum than is usual. See
the definition in Section 2.) In Subsection 5.2, this restriction is relaxed. An approach
is outlined in which the surface can be reconstructed with no boundary data, that is,
using only the intensity data I(z) in addition to A3.1. To do this, we must impose some
additional conditions, the most important of which is that f(-) is C2. A fuller discussion
of this approach is deferred to future work. Throughout this section we continue to use
the transition probabilities of Example 2.1.

In the discussion below we use the term “boundary data” to refer to data that are
specified on subsets of the set S of singular points. Of course we never specify data on

boundaries of sets such as D or G. Hopefully, this use of the term “boundary” will not
cause confusion.

5.1 DBOUNDARY DATA GIVEN ON M

Figure 1 displays a 32 by 32 parabolic surface which is assumed to be imaged from
above. The image has one singular point, corresponding to the local minimum of the
height 2(-). Assuming vertical light, the image intensity was first computed using the
forward/backward discretization of the derivative implicit in the algorithm of Example
2.1 (see also the proof of Proposition 2.2). Thus we are defining the data to correspond
to the discretized (rather than continuous) surface. With this choice, the original surface
is a fixed point of the algorithm and should be reconstructed exactly. Our purpose in
doing this is to assess the convergence time of the algorithm. Using Jacobi updates, the
algorithm converged to the correct solution to within, on average, one part in 107 after 63
iterations. In general, the convergence time is expected to be on the order of the maximum
length of an optimal path, i.e., a path of steepest descent. For the controlled transition
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probabilities that we use, the Markov chain £ jumps one lattice site per discrete time
step. Thus, when the number of iterations becomes greater than the maximum optimal
path length, all points = should have “learned” their heights from the singular points. For
the given surface, the maximal path length is on the order of 32, since paths starting at
the image corners must zigzag to the singular point at the center of the image.

Convergence using Gauss-Seidel updating was faster: it was obtained after just 4
iterations. Gauss-Seidel was performed using a row major pass over the image, changing
the direction of the pass after each iteration. In this case, the information from the
singular point is able to propagate outward to a portion of the boundary in just one
iteration, since the ordering of the states corresponds to the steepest ascent direction
throughout one quadrant of the image.

If we use for data the values that correspond to the true derivatives of the (continuous)
surface at the grid points, the average and maximal errors were .8 and 1.6 (the latter
obtained at the image boundary), compared with a range for the surface height of 25.

For comparison, Figures 2 and 3 display the result of applying our implementation of
a more traditional algorithm [10] to a similar surface. The intensity was computed using
discrete forward derivatives such that the given surface is a fixed point of the algorithm.
Even after 3072 iterations, the algorithm has not converged to the correct fixed point
solution. We have also implemented other algorithms such as those of [15] and [32], and
applied them to this surface with similar results.

Figure 4 shows a more complicated 128 by 128 surface. Under vertical light, the
intensity was first computed as for Figure 1 so as make this surface a fixed point of the
algorithm. At the local minimum points M, the initial estimate V{*(z) and the terminal
cost g(z) were set to the known height values z(z), as discussed in Section 2. The
algorithm converged to a perfect reconstruction of the original surface in 100 iterations.
As expected, the convergence time is on the order of the longest optimal path. Using
Gauss-Seidel, convergence was achieved in 10 iterations. When the intensity was derived
analytically, the algorithm again converged in 10 iterations using Gauss-Seidel, with an
average error of 1.7 compared to a surface range of 51 (Figure 5). Because the surface
does not obey the condition in A3.1 that it be decreasing in from the boundary, the
reconstruction is incorrect (as it should be) in some regions near the boundary of D,
though it is good in the interior. This is clear in Figure 6, which displays the difference
between the reconstruction and the original surface. This surface was also reconstructed
assuming oblique light at an angle of 17.5° to the vertical. For an intensity dérived so that
the surface is a fixed point, convergence to within one part in 10~7 was obtained using
the Jacobi scheme in 120 iterations. Using Gauss-Seidel, convergence was obtained in 11
iterations. Reconstruction for the analytically-derived intensity function was obtained in -
14 iterations, with an average error of 2.2. As previously, the reconstruction was good in
the interior but incorrect along one boundary (Figure 7). Note that the domains which
satisfy A3.1 will in general vary with the direction of the incoming light.

Finally, our algorithm has been applied to the real 200 x 200 image shown in Figure
§. The data for this problem was kindly provided by the authors of [15]. The light is
from above at (0, .488,.873). This image is a photograph of a mannequin. The particular
object was chosen since its reflectance properties seem to be reasonably in line with the
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assumed Lambertian model. For this example, one of course specifies the height at the
local maxima, rather than minima. For the reconstruction, boundary conditions were
specified only at the point that corresponds to the nose of the mannequin, though M
actually contains several other points which correspond to shallow local maxima. Figure
9 shows the reconstruction obtained using Gauss-Seidel after 6 iterations, illuminated
from the same direction as the original. Convergence has essentially been achieved over
the face. Since a fixed point of the algorithm must correspond to the original intensity
data (modulo the effects of any neglected local maxima), this image essentially reproduces
Figure 8. However, errors due to incorrect modeling of the surface as Lambertian and
the neglect of the shallow local maxima show up as spurious lines in Figure 9. Their
occurrence suggests that the truly Lambertian surface corresponding to the intensity data
in Figure 8, and with the prescribed boundary conditions, is not everywhere C?, but has
at least line discontinuities in f,. Figure 10 shows the reconstruction illuminated from
below. Since this image is not guaranteed to correspond to the original intensity, it better
displays the errors due to incorrect modeling, neglect of local maxima, and discretization
effects (i.e., noninfinitesimal 4). Finally, Figure 11 shows the surface reconstruction. This
reconstruction took about 9 seconds of CPU time on a DEC 5000 workstation. Standard
variational algorithms typically require thousands of iterations [10].

For comparison, Figures 12 and 13 display the reconstruction obtained by the au-
thors of [15] using a more standard variational method, developed for the purpose of

including stereo information. Stereo information was used as an initial condition for this
reconstruction.

5.2 RECONSTRUCTION WITHOUT BOUNDARY DATA

We present a preliminary description of our approach, and some experimental results
employing it. For simplicity, our description will be for the case of vertical light, although
our method is also valid in the more general case of oblique light. Our experimental
results are presented for oblique light.

Reconstruction without boundary data is possible only if some additional assumptions
are placed on the surface, the most important of which is that z(-) is C2%. In addition,
we assume that the extremal points of z(-) are isolated, and that the surface has nonzero
curvature at these points. (These assumptions are not necessarily respected in our ex-

periments.) The above two conditions are implied by the following assumption on the
intensity data I(-):

A5.1 The set S consists of isolated singular points. At these points, the matriz of second
derivatives of I(-) has nonzero, unequal eigenvalues.

In addition, we assume as before that I(-) is defined over a region D and that we are
considering the reconstruction in a subset G that satisfies A3.1. Finally, we will assume
for simplicity that the set G is simply connected. The uniqueness of z(-) given I(-) under
these assumptions was investigated in [19, 20].

Suppose that a point z, is known to be an isolated, local minimum of the height z(-)
(the discussion is similar if zg is a local maximum). We define the domain of attraction

34

1

-3

31 3 _a3 r _3 _1

—3 3 _ 3 _3 _1 __3



of zo to be the set A, that consists of all points y € G such that the projected steepest
descent curve passing through y converges to zo. These curves are uniquely determined
since 2(-) is C*. Suppose that we set g(zo) = z(z,) and 9(z) = B for all = # x4, where B
is an upper bound for z(-) on G. The algorithm with g as its initial data will accurately
reconstruct the surface in the set A,, (although the reconstruction will generally be poor
elsewhere). This follows by considering an increasing sequence of domains G; C Az, with
Gi T Az, as i — oo and each G; satisfying A3.1, and by applying the convergence and
representation theorems on each of these domains.

Typically, there will be other singular points in dA,,. By continuity, the heights of
these points will be correctly approximated by the algorithm. From A5.1, these points
are either local maxima or saddle points of z(-). Suppose it is possible to identify one of
them (say z,) as a local maximum. The algorithm can then be applied again with the
approximate height provided as initial datum at the new singular point z, (as well as
any other points z, ...,z, on A, that are identified as local maxima), which extends the
computed approximation V*(-) over the region UL, B;, U A,, where B,, is the analogous
domain of attraction for the local maximum point z;. Again by continuity, the heights of
any local minima on the boundary of this region will be correctly approximated, and the
whole process can be repeated. It is argued in [19, 20] that every singular point in G is
connected to every other singular point by a collection of steepest descent curves. Thus,
iterating the above process should eventually identify all local minima and maxima, and
lead to a computed approximation to z(-) over the entire domain G.

For the above strategy to work, all that we need is a method for identifying as such
the local maxima or minima on 9A,,. This is nontrivial, since for the computed V*(.)
that is based on just one singular point, all other singular points will be reconstructed as
though they were inflection points.

We now sketch such a strategy. There are a number of possible variations, and it is
not clear that the approach we now outline is the best in any sense. Let z € M, and
assume Az, C G and 9GNJA;, = 0. From A5.1, SUJA,, consists of a finite set of points.
It can be shown that it contains at least two, and at least one local maximum. Since z(-)
is C?, the steepest ascent paths are uniquely determined, and fill out Az,. It is easy to
show that all but a finite number converge to local maximum points in S U d4,,. The
finite number of exceptions converge to saddle points in S U 9A,,, exactly one to each
saddle point.

The following discussion is purely formal, since our purpose here is simply to suggest
a numerical scheme. According to the discussion in the previous paragraph, if we start a
particle off from z, in a random direction selected according to the uniform distribution
and let it proceed along a steepest ascent path, then it has probability one of ending up at a
local maximum point. Suppose we could compute the probability distribution u(dy) on 8G
that describes the distribution of the particle in the limit t — oco. If z;,7 = 1,2, ...,n denote
the local maxima in 0A.,, then p({z,,...,z,}) = 1, and obviously p(8A4;,\{z1,...,2.}) =
0. In particular, for at least one 7 € {1,...,n} we must have yg({z;}) > 0. Thus, the
distribution y allows the identification of at least one local maximum point in dA4,.

A scheme for computing an approximation to z on G* can be developed that is similar
in spirit to our reconstruction algorithms. However, it is much simpler. Let V*(.) be
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the reconstruction obtained by the algorithm using only the value z(zq) as the initial
boundary datum. Let £} be a Markov chain defined on G* such that £ = zo. The
transition probabilities are defined so that the discrete time evolution of £* approximates
via V%(-) a steepest ascent curve on z(-). A simple choice for these probabilities is the
following. At zo, let p*(zo, 20 % h(1,0)) = p*(z0,z0 % k(0,1)) = 1/4, giving an equal
probability of emerging from z in any of the compass directions. We can also allow
diagonal transitions to give a better approximation to the uniform distribution. Now
consider y # zg, and define

sy = sign [V"(y + h(1,0)) — V*(y — (1, 0))] )

s2= sign [VA(y + h(0,1)) = V*(y — k(0,1))]
Also, let v; and v, be the largest values from the sets
{V*(y + h(1,0)), V*(y — ~(1,0))} and {V*(y + A(0,1)), V*(y — k(0,1))},
respectively, and
dz',‘ = max (0, h'ls.-(v,- - V"(y))) s

for ¢ = 1,2. The d.; are essentially forward or backward derivatives, depending on which
direction gives the steepest ascent. For d;; = d;2 = 0 define p*(y,y) = 1. Otherwise,
define

d

h _ z,1

Pyt a0 =i ey

ph(y-) y+ 32’7’(0’ 1)) = dz,2 )
dzy +dz2

with all other probabilities zero.
Let {¢!,i € IN} be the Markov chain that is defined by the construction outlined

above. For y € D" set
Piy) = P{¢&h =y},

The Markov property gives the recursion
Prn(y) = X p"(z,y) P (z) (5.1)

We would like to use lim, o P(y) as the approximation to . However, because the
reconstruction V*(-) is computed with g(y) < B only at y = zo, the infimal expected
cost V*(y) for y € G\A,, will approximately satisfy VE(y) > z(y) and also V*(y) >
infyeaa., V*(y'). Since the evolution of the chain approximates steepest ascent on V*(-),
and because of the discretization, it is likely that £* will evolve outside a neighborhood
of the set Ay, and that the support of P*(y) as defined above will eventually extend
beyond Az,. A direct use of this distribution therefore gives a poor approximation to 7
as n — 00, and may result in spurious concentrations of probability at singular points in
G\A.,, leading to the false identification of these points as local maxima.
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We avoid this problem by modifying the transition probabilities. Since the steepest
ascent paths converge on the local maxima points in 9A,,, £# should pass near a point
in the set {z,,...,2,} with probability that approaches 1 as b — 0. Let m > 0 be such
that m < (1/2)min{|ly — ¢/|| : y,’ € S}. We modify the probabilities so that the chain
is stopped as soon as it enters the set {y’ : ||y’ — y|| < m,y € S\zo}, i.e., all points z €
D*N{y : ly’ - yll < m,y € S\zo} are taken to be absorbing, so that p(z,z) = 1. With
this modification, the strength of P*(y) at singular points outside 34, should be sharply
reduced. Let P*(y) = lim,_.., P*(y). This limit should be well defined at all points, and is
obviously well defined because of monotenicity for z € D*N{y : ||y —y|| < m,y € S \zo}.
Since the structure of the recursion (5.1) is similar to that of the reconstruction algorithm
itself, the number of iterations required for convergence to P" is expected to be similar to
the number of iterations used in the convergence to V*. Once an approximation to Ph(y)
has been computed, those singular points near which this approximation has a large value
can be identified as local maxima.

In our actual experiments, a variation of this procedure was used. Rather than an
approximation to the probability distribution y, we consider the sum

Qn(v) = X PMy),
i=0
¢! is the same Markov chain as before, except that at y such that d,; = d,, = 0, we define
the transition probability to be p"(y,T) = 1, where T is a “fictitious” absorbing point
adjoined to D*. We also define p*(y,T) = 1 for y ¢ D". At points y € D'\ {zo}, @ (v)
satisfies the same recursion (5.1) as before, while Q% (zo) = 1 for all n. The advantage of
working with the summed distribution is that it is monotonically nondecreasing in n for
all y. Define Q*(y) = limu_o, @"(y). As before, this limit should exist at all points in D"
because of the altered definition of the chain and since, apart from the case dey=d;2=0,
transitions are uphill with respect to V%(-). Due to the monotonicity, Q*(y) can be
calculated using a Gauss-Seidel iteration similar to that of the reconstruction algorithm,
where the ordering of the states is changed after each iteration. As before, the number
of iterations necessary for convergence is expected to be the same as for the original

~ reconstruction of VA(-). Also, it is again necessary to modify the transition probabilities

so as to reduce the probability of the process exiting a neighborhood of the set A.,. In
this approach, local maxima in z(-) are identified by looking for a singular point near a
local maximum of P*(y). More precisely, parameters 6, > 0 and 6, > 0 are chosen and
we identify a singular point as a local maximum if there is a local maximum of Q*(y)
with value greater than 6, within 6, of the singular point.

The algorithm as outlined above still requires that at least one singular point be
identified as a local maximum or minimum point. Since the height z(-) is ambiguous up
to the addition of an overall constant, the height of this point is not needed to start the
procedure. However, for any singular point z,, it is often possible to determine a priori
whether it is a local maximum, minimum, or saddle point, as we now discuss.

Let I'(-) be an arbitrary function in some region around zo such that I’(zo) = 1 and
I'(y) € (0,1), y # zo. Suppose g(zo) = z(zo) and g(z) = B for all = # z¢, where B is an
upper bound for z(-) on G. The corresponding height function V(z), given by the control
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representation of (2.4), will in general not be C'. In the typical case, Vz(-) will have
“line” discontinuities, and the V%(-) reconstructed by our algorithm will approximately
reproduce these discontinuities. For I(-), our experiments show in general that if V()
is computed using a singular point zo under the incorrect assumption that it is a local
minimum (or maximum), then the discrete “derivatives”, e.g., AV (y) = V*(y+hk(0,1)) -
V*(y), will display abrupt changes that can be interpreted as “discontinuities®. These
can be easily detected. We have used the occurrence of these “discontinuities” both to
determine an initial local minimum point, and to check the assignments of singular points
as local minima, maxima, or saddle points, as determined by our iterative procedure
above.

We have applied this procedure to the surface of Figure 4, under the oblique lighting
used previously. In order to reduce the effects of discretization, the surface was first scaled
by a factor .5, so that the height range was approximately 25 units compared to a range
for z; and z, of 128 units. Using no boundary data other than I(-), the surface shown
in Figure 14 was reconstructed by this procedure. The reconstruction took four cycles:
that is, a surface was first reconstructed using a single local minima, then again using the
recovered local maxima, again using local minima, and the result of reconstructing a final
time using the final recovered local maxima is displayed in the figure. The reconstruction
took less than 30 seconds of CPU time on a DEC 5000 workstation.

Figure 15 illustrates the reconstruction error, the magnitude of the difference between
the original surface height and that of the reconstruction. The reconstruction is good
except near the edges of the image. This is due in part to the fact that, as in the previous
subsection, the surface does not obey the condition A3.1 for the entire set D (or its
analog for reconstruction based on local maxima). The average reconstruction error in
the interior of the image with 20 < z, < 105 is 0.5 units, or about 2% of the height range.
Figures 16 and 17 show the surface and its reconstruction, respectively, over this region,
illustrating the accuracy of the reconstruction there.

A second surface (illuminated as before) and its reconstruction are displayed in Figure
18 and 19, respectively. The reconstruction error is shown in Figure 20. Only three cycles,
again starting from a local minimum singular point, were enough to give this reconstruc-
tion. The surface was also reconstructed starting from a different local minimum singular
‘point, with comparably good results. The average height error in the interior of the image
is 1 unit, in comparison to the overall height range for this surface of 44 units. As before,
the accuracy of reconstruction is on the order of 2%.

Figure 21 depicts the summed probability distribution Q" generated from Figure 18
after one cycle, together with the singular points in the image of this surface (shown as
dark isolated clusters). Larger magnitudes for Q* are indicated by increasing darkness.
Q" achieves its maximum at the central local minimum singular point used to generate
this distribution. The Figure clearly shows the dominant evolution of the chain towards
four other singular points which in fact correspond to local maxima of the height function.
There are local maxima of Q* near each of the four singular points, as indicated by the
shaded patches near these points. A fifth point has a shaded patch nearby, but is not
identified as a maximum since it does not satisfy the threshold rule.

We have also studied the effect of adding noise to the image of Figure 18. The noise
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added had a uniform distribution on the interval [—.1,.1], and was independent for differ-
ent lattice points. Since the maximum image intensity is only I = 1, this is a large noise
of £10%. The reconstruction based on the image with added noise is shown in Figure 22.
The surface shown was generated using the computed local minima, and required three
cycles. Although there are large errors in some parts of the image, the reconstruction is
still good over much of the image. The error in the height is displayed in Figure 23, where
saturated white represents a height error of 3. The error is less than 3 units over most of
the image. In the region of the image with 127 > z, , > 40, the mean height error is just
1.6. This represents a surprising immunity to the large image noise.

In Figure 24 the error is shown for a different reconstruction from the same noisy
image, with the same scale as before. In this case, the surface was generated from the
local maxima after just 2 cycles. As expected, near the boundary of the image, the region
of accurate reconstruction for the maxima-based method is complementary to that of the
minima-based one. Since the image boundary does not respect A3.1 (for either method),
the maximum-based method does better at those points near the boundary where the
steepest descent direction is outward, while the minima-based one does better where this
direction is inward. Together, the two methods give reconstruction with error less than
three units over most of the image.

6 Appendix

Proof of Proposition 2.2. It is sufficient to consider only the case 7, < 0. For
convenience we recall the various functions of interest. We have

2 _ 72 2
LW(z,B) = %}f(‘l) + % 1Bt (11,(;) @l %(1 — I*(z)), (6.1)
L@ = 73— Y2B2 — 13 (IP(z) — |Buf? — 1B + ’)’2|2)1/2 if |81 + B2 + 12|* < I*(z)
@A =1 if |8 + |2 + 1l > (z),
(6.2)
H(z,0) = suppepa [~(e B) = Lz, B)] 63)
= % [IZ(:z:)ozl2 + v(z)as® +2(1 — I*(z)) 200 — (1 — I2(a:))] . .
if v(z) =I*(z) — 2 >0,
H™(z,a) = infp, supy, [~(a,f) — LO(z, )] 64
- % [P@)en? + v(2)as? + 21 - P(2))maes — (1 - IX(2))] '
if v(z) < 0, and finally
H®(z,0) = suppeps |~(e,f) = L)z, B)] (6.5)

1/2
= I(z) (1 +|lef? - 20272) * +azm2— 1.
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We also recall that the functions H() and H® arise as two ways of rewriting the image
irradiance equation (2.13). The key to establishing the equivalence of the fixed points will
be to relate the discrete equations that characterize a fixed point back to these functions.
For points = where v(z) > 0, it is easy to see that the convexity of both H() and H® in

a imply
> >
HY(z,a) { = } 0 <= H(z,q) { = } 0. (6.6)

< <

For the points where v(z) < 0, the set {a : HV)(z, a) = 0} takes the form of a hyperbola
with two branches: one that opens in the positive o direction and one that opens in the
negative a; direction. For the case v, < 0 considered here, the image irradiance equation
must be satisfied with f;(z) taking a value in the branch of the hyperbola that opens in
the positive o direction. This is because a value in the branch that opens in the negative
a; direction corresponds to a surface normal that points away from the camera direction,
which is impossible if f(-) is a function. Even more to the point is that the positive branch
coincides precisely with the zeros of H(®)(z,-).

A consequence of the convex duality formula used in the demonstration of (6.15) below
is that

H(z,0) = infgz0 supg, [~(a,f) — LW(z, )]
= sup H(z,a + (0, as)). (6.7)
a3 >0

The function HM)(z, a) is automatically nonincreasing in a, for each fixed a;. Note that
the zeros of the function H(*)(z, ) correspond exactly to the branch of the hyperbola
that opens in the positive a; direction. It follows that

>

>
HW(z,q) { = } 0 <= H(z,q) { = } 0. (6.8)

< <

(It would indeed be possible to construct the algorithm of Control Problem 1 directly
from the equation #(1)(z, fz(z)) = 0, which by (6.8) is equivalent to the image irradiance
equation.) ‘ '

We now consider the equation for a fixed point of (2.19) with running cost L®)(z, 8),
and that for a fixed point of (2.11) with running cost L(®)(z, 8). By the statement “(2.19)
[or (2.11)] holds with w(-) at 2” we mean that (2.19) [or (2.11)] holds at z with Vh
and V%, replaced by w. It will be convenient to introduce some new notation. Define
={z:2120,2:20},Q2={z:2,<0,2,>0},Qs = {z: 23 < 0,2, <0} and Q4 =
{z:2120,2, <0}. We set wi(z) = (w(z + A(1,0)) — w(z),w(z + R(0,1)) — w(z)),
wy(z) = (w(z + h(-1,0)) — w(z),w(z + A(0,1)) — w(z)), and define ws(z) and wy(z)
analogously. :

First assume w(z) < g(z). If we insert the transition probabilities and interpolation
interval of Example 2.1, (2.11) implies

(ot Lo ) (0 =0 o
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Recall that L(?)(z,8) > 0, and that L®(z,B) = 0 if and only if (z,u) € S x {0}. Thus
for z € S we obtain

min Pt (u’wi(x))} >0, (6.10)

' inf
i=1,2,34 [ueQ.-\{O} Jaa] + |z

while for z € S we have

min L) (z,u) + (u,w;(z))] —0, (6.11)

. mn

Next consider the case w(z) = g(z). For this case we deduce that (6.10) must hold.
Consider any z € S. Then for each i = 1,2,3,4

L®(z,u) + (u, wi(z))
; 2 ) 3 (2) . > 0. .
we@A(0) |ua| + Juo| 20 = ue’q{-‘{{o} [L (= u) + (u,w,(z))] 20. (612)

Now consider any point z ¢ S. Owing to the strictly positive lower bound on LO(z, )
for such points, for each : = 1,2,3,4

LO(z,u) + (u, wi(c)) { >

: iof (L@ . >
w€Q0} Jug] + o] = }0 = o [£e ) + (o, uita)] { = }0'
(6.13)

It will be demonstrated below that (6.6), (6.8), and a convex duality formula imply

ueé?\f{o} [ Lz, u) + (u,w,.(z))] { : }0 — ueé‘}\f{o} [L(l)(:r, u) + (u, w;(x))] { : }0
(6.14)

for 2 =1,2,3,4 when v(z) > 0 and

ueiQI.-l\f{o} [L(z)(:r, u) + (u,wi(m))] { : }0 = 3:1)1::) (-1)'i+I-11fu,zo [L(l)(m,U) + (u,wi(x))] { Z }0
(6.15)

for 2 = 1,2 when v(z) < 0. Postponing temporarily the proofs of (6.14) and (6.15),
we now complete the proof of the equivalence of the fixed points. It will be convenient
to separate the cases 4, = {z : z € §}, A, = {z : z € S,w(z) < g(z),v(z) > 0},
Az ={z:z € S,w(z) < g(z),v(z) <0}, Ay = {z: z & S,w(z) = g(z),v(z) > 0} and
As={z:3 &8, w(z) = 9(2),(z) < 0}.

Assume (2.19) holds with w(-) at z. Note that (6.12) holds for L() as well as L®). For
z € A, it is always true that (6.10) holds, and by (6.12) with L( replaced by L() and
(6.14) equation (6.10) holds with L(® replaced by L(). Since L®)(z,0) = L()(z,0) = 0,
equation (2.19) is satisfied for z € A,. Next consider z € A,. In this case (6.11) holds.
Since L")(z, -) has a strictly positive lower bound for = € 4,, equation (6.13) holds with
L® replaced by L®). If we now use (6.13) with L replaced by L() and (6.14) we find
that (6.11) holds with L(® replaced by L(!). Since L®!)(z,0) > 0 for z € A,, (2.19) holds
for z € A,.
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Next consider z € Aj3. The analogue of (6.12) that is appropriate for L() is

wo  inp | P u) + (v wi(z) {>}

p m 1
u2>0 (=1)"*141 20 1| + [uel u2>0 (—1)+11; 20

(6.16)

for ¢ = 1,2. This equation is most easily verified by showing that strict positivity (respec-

tively strict negativity) of the left hand side implies strict positivity (respectively strict

negativity) of the right hand side, and conversely. For z € A3 we have (6.11) for i = 1,2,

which by (6.15) and (6.16) implies

- LM (z,u) + (v, wi(z))
uz)% (-1)i+ly; >0 IU]I + |U2|

for : = 1,2. Thus (2.19) holds for z € As.

The proofs for z € A4 and = € A; are very similar to those above and omitted. Thus
we have proved that any fixed point of (2.11) is also a fixed point of (2.19). The proof
of the reverse implication is essentially the same, and the sake of brevity we give details
only for the case z € As. For such points (2.19) implies (6.17) for i = 1,2. Tracing
back through (6.15) and (6.16) we see that (6.11) holds for ¢ = 1,2. Since for z € As
L®(z,u) = oo for u € Q3 U Qy, this implies (2.11) at the point z.

Thus all that remains are the proofs of (6.14) and (6.15). Consider first (6.14) and
the case ¢ = 1. All other cases of i may be treated similarly. Owing to continuity of the
bracketed quantity in the equation below,

0 (6.17)

et (29, w) + (wwi(@)] = inf [L9(2, ) + (u, wi(2))] (6.18)

for j = 1,2. Thus we can consider the infima over Q,. Define

10,(8) = { 3_00 f; 8;

We can then write
ot [L9(z,u) + (wwi(=))] = inf, [(29(2, ) + T, (w)) + (v, (=)
for j = 1,2. Define the Legendre transforms
(3) = (7)
LYV (z,0) = ulen1£2 [L Nz, u) + (u, a)] ,

Tau(e) = inf [To,(u) + (u, 0]

Note that the Legendre transform considered here differs by a sign convention from the
. one used previously. The relationship between the two transforms is simply

HO9)(z,0) = AL (6.19)
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for j = 1,2. One can easily calculate

- _ ) =m0 a3 <0ora; <0
I3,(e) = { 0 else.

For z such that v(:c) > 0, the domains of finiteness of LU)(z,-) and I, (-) have nonempty
intersection for j = 1,2. We can therefore apply the convex duality formula for the
Legendre transform of a sum [26, Theorem 16.4] to obtain

uiean! LY)(z,u) + (u,a)] = sup [L(j)"(:z, a—a")+ I, (a‘)]
= sup LO*(z,a-a%).
ay20,a3>0

The last equation, (6.6), (6.18) and (6.19) then imply (6.14).
The proof of (6.15) is very similar. We consider only i = 1, since i = 2 is treated in
the same way. An application of the same convex duality formula gives

inf [L® = ~HO(z,0 - o
A
= - mfoH( Nz, (a1 — o3, 1)),
ay2

where the last equality follows from the fact that H®)(z, ) is nonincreasing in a, for
each fixed o). A second application gives

(1) = — (1) -
iu);:)( 1)-141-11fu1 So [L (z,u) + (u, oz)] = sy};:) J,nzfoH (z, (a1 — o], 02 + 03))
= —;l.nzfo H(l)( z, (a1 - a;, C!g)).

Thus (6.15) follows from (6.8), which completes the proof. W
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Fig. 2 Horn’s algorithm: 128 iterations.
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Fig. 3 Horn’s algorithm: 3072 iterations.
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Fig. 6 Difference Surface.



-

-

—

- - &

o

Fig. 7 Difference Surface.



Fig. 8 Mannequin image.



Fig. 9 Reconstruction lighted from above.




Fig. 10 Reconstruction lighted from below.
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Fig. 12 Reconstruction lighted from above.



Fig. 13 Reconstruction lighted from below.



Figure 14 Reconstruction.
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Figure 15 Difference surface.
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Figure 17 Reconstructed surface section.



Figure 18 Second surface.
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Figure 19 Reconstructed second surface.
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Figure 20 Error surface.
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Figure 23. Reconstruction error with noise.
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24 . Reconstruction error with noise.




