[¥od

AN INTEGRATED REAL-TIME
DATA MANAGEMENT ARCHITECTURE
FOR INDUSTRIAL CONTROL SYSTEMS

Jiandong Huang and John A. Stankovic

CMPSCI Technical Report 93-08
January 1993

Submitted to the IEEE Workshop on Parallel
and Distributed Real-Time Systems 1993

An Integrated Real-Time Data Management Architecture
for Industrial Control Systems*

Jiandong Huang John A. Stankovic
Honeywell, Inc. University of Massachusetts
Sensor & System Development Center Department of Computer Science
3660 Technology Drive Amherst, MA 01003

Minneapolis, MN 55418

Abstract

Next generation control systems will be more complex, dynamic, and yet flexible,
in terms of functionality, distribution, and timeliness. In such systems, data
management becomes more critical than ever before. It must not only provide the
system with sophisticated data manipulation services, but also be able to complete
the required services in a timely manner. In this paper, we present an integrated
real-time data management architecture for managing plant-wide data under timing
constraints. Based on the analysis of data properties, we take a functional
partitioning approach to the design of the data management system. In particular,
we define three types of database subsystems - hard real-time database, soft real-
time database, and conventional database - with each providing support for
management of different types of data. We specify the functionalities of each
subsystem and further discuss the integration of these subsystems to form a plant-
wide data management architecture. As far as we know, the proposed architecture is
the first of its kind for industrial control systems. In this paper, we also discuss the
design aspects and related research issues involved in developing such an integrated
real-time data management system.

* This work was supported in part by the National Science Foundation under Grant IRI-9114197.

1 Introduction

Data processing and management has always been an important part in industrial control systems.
For example, a control system needs to collect sensor data for on-line execution of control
algorithms or provide history data for off-line analysis. The system also needs to manage a large
set of parameters for describing and supporting system configuration, control process settings, etc.
Today, as control applications become more sophisticated in terms of functionality, distribution,
and timeliness, sophisticated data management must be supported. This is exemplified by the
following requirements:

¢ Time-constrained data management—Timing constraints are often imposed on data
management. These constraints may originate from either real-rime data or real-time
processes. Real-time data refer to data that need to be processed within a certain
period of time. For example, input data from sensors must be stored in time,
otherwise they will be lost. Real-time processes, on the other hand, are the ones
that need to be completed by a certain time. The process for an alarm event is such
an example, where the alarm status is required to be displayed on a control console,
say in 2 seconds. Timing constraints are further categorized in two classes: hard
and soft. The former requires guarantee on meeting the timing requirement, while
the latter requires the best efforts in meeting the timing constraints. Examples for
hard and soft timing constraints are execution of periodic control algorithms for
discrete process control and display of certain trend data, respectively. Thus, a
control system should be capable of providing data management services under
both hard and soft timing constraints.

» Distributed data management—In a distributed control system, data are processed,
stored, and used at various subsystems, such as process controllers, control
stations, and plant management systems. In addition, data are accessed in a
distributed fashion, from one subsystem to another across networks. For example,
a control station which runs advanced control algorithms may access process data
stored in a controller. Another example is the direct access of a plant information
management system, such as a relational database, from plant floor devices for
activities like on-line production scheduling. Clearly, the control system should
provide support for distributed data management services.

The distribution and timing requirements have been challenging system designers in developing a
unified, predictable data management system for next generation control systems.

Recently, substantial effort has been made in researching real-time database systems for time-
constrained data management [JRTS92][Rama92]. Researchers have proposed and evaluated many
real-time oriented data management schemes, especially for real-time transaction processing. The
results are promising, indicating that real-time databases significantly improve performance, in
terms of meeting data processing timing constraints, as compared to traditional databases.
However, the research work is insufficient, by in large, to meet the application requirements
discussed above. First, most of the work has focused on centralized real-time data management
environments. Second, only soft real-time database systems were considered. Third, the previous

research almost had no application contexts, making the results not directly usable in practice.

The objective of our work is to explore real-time data management in the context of industrial
control systems. In particular, we consider a distributed environment where data reside in different
components with different properties and different processing requirements. The goals of this
paper are two-fold:

. We develop an architectural framework for supporting a unified, and yet flexible,
data management system that meets different data access timing and consistency
constraints.

» We study the design aspects and identify related research issues for developing
such a data management system.

The paper is organized as follows. We first establish a control system model in Section 2. Then,
in Section 3, we analyze and characterize various types of data in a control system with respect to
their permanency, timing constraints, and consistency requirements. Based on the control system
model and data characterization, we present a distributed, hierarchical real-time data management
system in Section 4. In Section 5, the design and research issues regarding the proposed system
architecture are discussed. Finally, we present some concluding remarks in Section 6.

2 Control System Model

In this section we introduce a control system model to establish a framework for this study. Figure
lfstl_lows a system model based on the Honeywell TDC 3000 control system. The system consists
of four levels: .

Plant Management
/ ‘\ LAN
Supervisory Control Supervisory Control
------ - e e o ---------/--xj:-----w-.
Controller Controller Controller Controller
S S SR S
|- ---lvo wl] ... o
Figure 1. A Control System Model

e Physical I/0 level—Sensors and actuators are the main processing components at
this level. They provide real-time, raw data for monitoring and controlling.

* Controller level—Distributed controllers provide real-time, on-line direction for
each automated production function. Controllers issue commmands based on sensor
input and fixed, configured or programmed logic. They also aggregate input data
for decision making in the upper levels.

* Supervisory control level—Supervisory control centers communicate downward
with distributed controllers to help department and work cell supervisors better
manage their operation. These supervisory centers also communicate upward,
linking the process or the factory floor to the plant-wide information system.

o Plant management level—Plant management systems are linked to the process
and/or factory control system in real-time. Information to plant managers is always
current, for sound decision making.

There are three types of communication networks which connect the multi-level system. The local
area network (LAN) carries out communication between different sites of plant management and
between the plant management and its underlying supervisory control systems. Similarly, the local
control network (LCN) links the supervisory control and its underlying control systems. Further,
the I/O link network (I/O Link) connects various controllers and physical I/O devices.

The model represents typical distributed control systems, and thus will be used throughout this
study.

3 Data Characterization

As can be seen above, data reside at all levels in a distributed control system. These data need to be
analyzed before appropriate data management schemes are developed. In this section we analyze
some representative data through examples and characterize them from the view point of real-time
data management.

We analyze data using the properties: permanency, timing, and consistency. Permanency refers to
the duration of data validity. The timing property specifies the timing constraints imposed on data
management. The consistency property specifies the requirement on data integrity. Figure 2
illustrates the residency of some data typically found in a control environment. Let us examine
these data based on the three properties.

Plant Management Level record data
...................... LAN
supervision data
Supervisory Control Level history data
_______________ trend data e = = === LCN
Controller Level parameter data
_______________ control data | o _.VOLink
sensor data
O Level
alarm data

Figure 2. Data Residency

* Record data—can be found in plant management level, where product information
is stored, as records, in a conventional database. Usually, these data are not
frequently updated. In other words, they have the nature of "life-time" permanency,
and thus are not real-time data. Also, the processes that access the data are not real-
time oriented. Therefore, there is no need to manage these data under timing
constraints. However, since the data are commonly shared among multiple users,
maintaining strict consistency is required.

 Supervision data—reside at the supervisory control level. The data include load
images for controllers, control algorithm data, system configuration files, and
source codes. The data permanency last as long as the characteristics of the control
algorithm or system settings. However, processes that access the data may have
soft timing constraints. For example, an image loading process needs to be
"quickly" done so that a controller can be restored in time. Due to data sharing, the
data consistency is required.

* History data—are the collection of control process information over a specified time
period. They are typically used for supervisory control or for plant management.
The data permanency is “life-time” long, if the data need to be kept for permanent
records. The collection operation may be invoked “statically” with a fixed time
interval or “dynamically” at any time instant. Since the collection operation deals
with the past data, the timing constraints are likely to be soft. For the same reason,
the data consistency constraints may be relaxed. :

o Trend data—are similar to history data, except that the data permanency is relatively
short, since the data are collected for temporary use, such as trend display.

» Parameter data—are the values and set points used by control functions embedded
in control units. The permanency of such data can be short due to on-line process
control activities. These data may be frequently polled by a control console or other
control units. The access operation may become critical to discrete control
applications or in case of emergency. Thus, the timing constraints imposed on the
control data can be hard. Data consistency may or may not be required, depending
on the degree of data sharing among the controllers and supervisory control.

» Control data—are directly related to control operations and are subject to frequent
access and change. Examples of such data are On/Off and duration counters of
certain control devices. Access to these data can be time-critical. On the other hand,
data consistency is not strictly required.

» Sensorlactuator data—are directly received from or sent to physical control devices,
thus having “short” permanency. These data are usually periodic and critical in
time, especially for discrete control applications. In addition, since sensor/actuator
data are processed independently by dedicated tasks, there is no data sharing.
Therefore, there is no consistency requirements on the sensor/actuator data.

« Alarm data—describes the status of a controlled object or the status of a controller
itself. As soon as alarms are detected, the corresponding data must be reported and
“journaled” (recorded) immediately. Of course, processing of alarm data needs to
be guaranteed in time. Consistency is not required for this type of instant data.

To summarize, Table 1 lists the types of data and their corresponding properties found in today's
control systems. Clearly, the characteristics of those data vary in terms of permanency, timing
constraints and consistency requirements. Generally, data which reside at the top level of a
hierarchical control system have the property of long permanency. Management of these data is
less urgent, but requires a great care of data consistency. At the low level, on the other hand, data
has short lifetime. Data processing has less consistency requirements, but are subject to stringent
timing constraints. ‘

Table 1 Data Characterization

Data Type Permanency Timing Consistency
Record long none absolute
Supervision long none/soft absolute
History - long none/soft absolute/relax
Trend short soft absolute/relax
Parameter short soft absolute/relax
Control short soft/hard relax
Sensor/Actuator short/instant | hard relax
Alarm instant hard none

4 An Integrated System Architecture

Having established a control system model for industrial process control and examined various
types of data, we now consider data management from the system architecture stand point in this
section. '

As described in the previous section, process data reside at different levels of a control system and
they may have different characteristics. Particularly, they are different in the data management
requirements on timeliness and consistency. We envisage that different types of data need different
kinds of management systems. This can be supplied in various ways including: a separate
subsystem for each type with clean interfaces between the subsystems, or a single unified system
which supports a wide variety of properties. This paper focuses on the former approach. The need
for different types of data management support is due to the following considerations:

* Real-time scheduling—Data access processes need to be scheduled based on their
timing constraints. At one extreme, access to real-time data, such as sensor/actuator
data, needs the support of real-time operating systems which shall be able to
provide predictable access time. On the other extreme, access to non real-time data,
such as inventory records, can be carried out under conventional operating systems
which emphasizes scheduling fairness among concurrent users and balancing CPU
and I/O utilizations. Thus, different scheduling algorithms are needed for
processing different types of data.

* Consistency management—Different types of data are subject to different kinds of
management schemes. For example, record data at the plant management level
usually needs full support of transactions. However, at the controller level, not all
of the transaction ACID properties! are necessary. For instance, isolation and
durability may not be required for data with short permanency. Therefore, the
consistency management can be better optimized, in terms of functionality and

1 ACID stands for Atomicity, Consistency, Isolation, and Durability.

efficiency, for different types of data. In addition,. with different management
schemes, one can accordingly explore real-time scheduling mechanisms to increase
predictability of data management services. For example, a relaxed consistency
requirement (€.g., non-searializable read as opposed to serializable read and write
[Bern871) may lead to a non-blocking concurrency control protocol. The non-
bloceﬁlglhgnfeatum is particularly important in achieving predictability of real-time
scheduling.

» Data model—Data can be organized and presented to applications in various ways
depending on application needs. An object-oriented data model may be suitable for
describing control applications [Huang91a], while a relational model is desirable for
record data. Hence, different models may co-exist in a plant-wide data management
system. This is especially true when existing enterprise databases are integrated
with the control system. On the other hand, it is a research issue whether a single
data model (be it the relational, object-oriented or active database model) can
sufficiently support all types of data requirements.

 Data size and storage—Different types of data may have different sizes and require
different storages. For example, the amount of data managed at a control is
relatively small, say a few hundred bytes. In addition, to speed up data access and
provide better access predictability, a piece of main memory is usually required for
data storage. The situation is different at the supervisory level, where data volume
can be large, say millions of bytes, and a number of disks is needed for storage.

In order to apply different management schemes to different types of data and to accommodate the
data residency, we take a functional partitioning approach [Huang91a]. That is, rather than
managing all the data in one database system, we design different subsystems with each providing
support for management of different types of data.

Figure 3 illustrates a multi-level data management architecture that we propose based on the
functional partitioning approach. This system consists of three types of database subsystems:
conventional database (DBMS), soft real-time database (SRT-DBMS), and hard real-time database
(HRT-DBMS), residing at the plant management level, the supervisory level, and the controller
level, respectively. The interface at each subsystem enables interconnection between subsystems. It
provides access transparency in terms of system timing behavior as well as data residency and data
model mapping. We will further discuss the related design and research issues in Section 5.3.

Figure 4 shows a system-wide data management organization in a multi-level hierarchy. At the top,
a DBMS can be connected with multiple SRT-DBMS’. It may collect data from the SRT-DBMS’
or send information to them. Similarly, at the middle level, a SRT-DBMS may be connected with
multiple HRT-DBMS’. At the bottom, a HRT-DBMS may carry out data management for multiple
controllers and upload/download various process data to/from SRT-DBMS. DBMS may also
directly access HRT-DBMS through SRT-DBMS interface. Hence, the hierarchy is a distributed,
heterogeneous database system. On the other hand, horizontal access between the same type of
subsystems at each level is possible. Thus, horizontally, each level of the data management
hierarchy is a distributed, homogeneous database system.

‘o
' Q
DBMS : £| o 1 Plant Management
(disk) : £
________ i__________ a2 AN
SAT-DBMS; g
(disk, i |-e—=| Supervisory Control
memory) : &
. I. ________________ LON
HRT-DBMS; 3{-<a—m Controller
(memory) 5 5
¢ E

Figure 3. Real-Time Data Management Architecture

ong

DBMS])
.g
s P S GNP RSN F SN
2l s| g ¢
SRT-DBMS SRT-DBMS s| 2| 3| &
]) HHEE
LCN o o
' 3 i 1
HRT-DBMS HRT-DBMS HRT-DBMS HRT-DBMS 4

Figure 4. A Hierarchical System Organization

The three types of databases are different in their functionality and real-time processing capability.

e HRT-DBMS—is a database system that is capable of providing data management
services under hard timing constraints. In particular, it supports structured data
storage for parameter data, control data, trend data, and alarm data, and provides
data access services for control process running at the local controller(s) or at the
supervisory control station(s). The services are carried out by three types of
transactions:

- Command transaction—executes service requests issued from supervisory
control. For example, a supervisory control process may ask the HRT-DBMS
to query a group of controllers about their current states.

- Periodic transaction—collects data from controllers in a specified period of time
and insert them in the HRT-DBMS. The data is used for trend display at the
supervisory control level, history data collected by SRT-DBMS, or advanced
control algorithms running at the supervisory station.

- Event-triggered transaction—executes service requests from controllers. An
alarm event, for example, may enforce a controller to send its current status to
the HRT-DBMS. The transaction must respond to the event “quickly” and
intelligently. For instance, it may gather related data and prepare a report for the
supervisory control.

HRT-DBMS has the following characteristics:

- It is hard real-time in the sense that transaction execution is scheduled based on
the associated timing constraints and the execution time is predictable.

-- Itis memory-resident in order to facilitate the real-time guarantee effort.

- It supports loose consistency in the sense that the notion of serializability
[Bern87] is relaxed (see discussion in Section 5).

e SRT-DBMS—is a database system that supports data management under soft
timing constraints. The system provides structured data storage for supervision
data, trend data, and history data, and access services for supervisory control and
plant management. It may support three types of transactions:

- Command transaction—executes service requests issued from supervisory
control or plant management. For example, a supervisory control process may
update system configuration parameters stored in the SRT-DBMS. Or, a plant
management process may query the SRT-DBMS for some history data.

- Periodic transaction—collects data from the underlying HRT-DBMS' in a
specified period of time and, for instance, insert them in the SRT-DBMS for
history display.

- Distributed transaction—carries out distributed data management services. For
example, a distributed transaction may collect data from multiple HRT-DBMS'.
There are two types of distributed transactions: one is coordinating transaction
which accepts the initial service request and distributes the request to other
SRT-DBMS sites or the underlying HRT_DBMS?; the other is sub-transaction
which carries out the request from a coordinating transaction at another SRT-

In summary, the data management system has a distributed, hierarchical architecture. The system
consists of three types of databases which are adapted to different service needs in terms of
permanency, timing constraints, consistency requirements, residency, and functionality. Overall,
towards the top level of the hierarchy, the system provides support for stringent consistency
requirements and richer data management functionality; towards the bottom, on the other hand, the
system provides support for stringent timing requirements with relaxed consistency requirements

DBMS or DBMS site.
SRT-DBMS has the following characteristics:

- It makes “best-effort” to schedule real-time transactions, but does not pfovide
absolute guarantee in terms of bounded execution time.

- It supports data consistency based on the notion of serializability, with relaxed
ACID properties (e.g., Isolation may not be required.).

- It is mainly disk-resident. Memory storage is also needed to support data
buffering, especially for staging hard real-time data from HRT-DBMS.

DBMS—is a conventional (distributed) database system for record-type information
management such as production scheduling, inventory control, material
requirements planning, labor reporting. The system enforces data consistency based
on the notion of serializability, but does not provide real-time-oriented data
management services.

and less functionality. The architecture offers three advantageous features:

5

We have proposed a strawman architecture for system-wide real-time data management. In this
section we discuss its key design aspects. We briefly examine the previous research work
applicable to the design of the proposed system. In addition, we point out related research issues

Modularity—Each subsystem is a self-contained functional unit with a well-defined
interface. A plant-wide data management system can then be configured using these
units. Depending on application needs, different types or number of subsystems
may be used. The modularity enables flexibility, scalability, and cost-effective
productization.

Transparency—Even though data management is carried out in different types of
subsystems, it functions as a uniform database. Applications at each level of the

- system hierarchy see a consistent view of the data management system in terms of

timing, consistency, data model, and data location. The transparency isolates
ap}ll)lications from different data types and their corresponding management
schemes.

Evolution—The functional partitioning approach can more easily support system
evolution compared to the unifying approach which employs a single database. A
current database supporting an Industrial process control application can simply
become the conventional database part of our model. This provides an evolutionary
path from today's systems which only support the highest level of the hierarchy to
the full model proposed here. The unifying approach may prove more efficient in
the long run, but it cannot easily be integrated with today's systems.

Design Aspects and Research Issues

that need to be further addressed for development of such a data management system.
5.1 Transaction Model

A transaction is a process that carries out data access operations. Transactions in the integrated real-
time data management system are different from those in traditional databases in several ways and
need to be well defined before transaction processing algorithms/protocols are designed. We
characterize the transactions as follows

o Timing constraints—are associated with transactions. Like real-time tasks,
transactions may have hard or soft deadlines, the former requiring guaranteed data
access within the specified deadline while the later requiring the best effort in
meeting the timing requirement. Similarly, transactions can be periodic or aperiodic.
Consider an example where a transaction updates a set of actuator data in a
controller every 200 ms. It is often required that the updating transaction must be
completed by the end of each period to activate each control operation in time. (This
is especially true for discrete control processes.) Then, such a transaction is a hard,
periodic real-time transaction. Previous research work (e.g., [JRTS92]) mainly
focused on aperiodic transactions with soft deadlines. Periodic transactions were
3:1hy considered in [Song92], where some data may have a time associated with its

idity.

e Criticality—is a value reflecting semantic importance of control applications. For
instance, an alarm reporting transaction can be more critical than a history-collecting
transaction, even though they may happen to have the same deadline. Thus, timing
constraints and criticality are considered as two orthogonal parameters in defining
the transaction model. Given timing constraints and criticality, a performance goal
is to maximize the number of transactions with higher criticality in meeting their
timing constraints. .

e ACID properties—are used to characterize the correctness of traditional
transactions. In real-time database systems (HRT-DBMS and SRT-DBMS),
however, these properties may not be appropriate. As discussed earlier,
transactions dealing with short data permanency do not need isolation and durability
properties. Previous work in real-time databases relied on all ACID properties,
including using serializability for defining and enforcing consistency. Now the
relaxation of these properties and its effect need to be addressed.

» Event triggering—is a mechanism to support event-based real-time transactions.
Different from the triggering mechanism often found in conventional databases
(e.g., see CODASYL, System R, Sybase or SQL3 Standard) which monitors data
update inside a database and enforcing data integrity constraints, the triggering
mechanism that we consider relates to both internal and external events such as
alarm signals and corresponding control actions. Thus, a model is needed to define
such types of transactions. An event-condition-action model was developed under
HiPAC project [HIPAC90]. The issue was also considered in [Korth90]. These
models will be considered for defining the event-based transactions employed in
our integrated real-time data management system.

* Distribution—refers to execution of a transaction in multiple subsystems. We
consider two types of distributed transactions: korizontal and vertical, the former is
similar to traditional distributed transactions running in the same type of
subsystems, while the later is similar to traditional multi-level transactions running

10

in the different type of subsystems across the hierarchical architecture. Here the
major difference is that the distributed transactions that we consider have timing
constraints such as deadlines. Little attention has been paid to the distributed real-
time transaction model in previous studies.

Clearly, more research effort is needed in defining the transaction model for the integrated real-time
data management system, especially for relaxing ACID properties and specifying event triggering
mechanisms.

5.2 Real-Time Transaction Processing

Given a transaction model, a key design aspect is to deal with transaction processing. The goal is
to meet the timing constraints of any type of transactions (periodic, aperiodic, or event-based)
under their specified properties. The major issues include transaction scheduling, handling of
event-based transactions, and handling of distributed transactions.

- Real-time transaction scheduling deals with many system components through which a transaction
is executed. These components include concurrency control, buffer management, disk I/O, CPU,
etc. Substantial efforts have been made in developing various real-time oriented algorithms for
individual components in soft real-time databases. For example, priority-based locking protocols
were initially developed in [Abbott88] [Stankovic88]; real-time optimistic concurrency control
schemes were studied in [Harisa90] [Huang91b]; real-time disk scheduling was investigated in
[Carey89][Abbott90][Chen91]. To design a real-time database system, however, it is necessary to
use an integrated approach which takes all the processing components into account. This is because
even a single component in the system which ignores timing issues may undermine the best efforts
of algorithms which do account for timing constraints. This integrated approach was investigated
and reported in [Huang89] and [Carey89], respectively. The previous work has laid down the
foundation for developing the SRT-DBMS subsystem. However, hard real-time transaction
processing remains to be addressed for HRT-DBMS. Specifically, we need to answer

 How does HRT-DBMS interact with the real-time kernel and other system
components?

» How to provide guarantee for hard real-time transactions?

Event-based transaction processing deals with event monitoring, condition checking, and action
execution. It is particularly needed in HRT-DBMS which interacts with external events directly. As
discussed above, active transaction models were explored in, e.g., [HIPAC90] [Korth90], and
architecture issues were studied in [HIPAC90]. However, more effort is needed in addressing the
real-time scheduling aspect for active transactions. The questions to be answered are

» How to incorporate real-time scheduling into the event-triggering paradigm?

« How to integrate event-based transaction processing with the rest of the real-time
data management system?

Distributed transaction processing deals with multiple database access. Even though it is well
known in the traditional database world, it has not been addressed in the context of real-time
databases. Here we must develop an integrated suite of protocols for supporting both horizontally
and vertically distributed real-time transactions. Interesting research issues include

 Are the solutions developed for centralized soft real-time database systems suitable
for distributed systems? For example, should conflict resolution favor use of

1

blocking or aborts?

o How to schedule transactions across multiple subsystems? What is an appropriate
distributed commit protocol for real-time transaction processing? What global
information is required by the resource schedulers at each subsystem in order to
obtain good performance?

5.3 System Integration

According to our design philosophy, a plant-wide real-time data management system is built
through integration of the different types of data management subsystems. Here the key design
aspects include

» Subsystem interfacing under a unifying framework, and

» Provision of a system speciﬁcation‘ capability that allows application designers to
specify the characteristics of an entire plant-wide real-time data management system
_ at the system engineering time.
The interfacing provides data access transparency among different types of subsystems. This needs
to be achieved through

» A unifying framework—A common set of system definitions must be specified
with respect to priority assignment, transaction model, triggering mechanism, rules,
etc., by which all the subsystems understand and follow. For example, transaction
criticality shall be defined and interpreted consistently among the three types of
subsystems. Furthermore, a set of system interface protocols and associated
parameters must be defined to facilitate the inter-subsystem communication. An
example is the Remote Database Access protocol - a draft international standard
developed to support inter-database operations based on a client-server model
[ISO/IEC DIS 9579]. Here the key issues under the scope of integrated real-time
data management are how to incorporate timing, criticality and other semantic
information (such as transaction commit, abort, etc.) into protocols, how to
schedule the inter-subsystem communication based on this information, and how to
schedule real-time transactions across heterogeneous database systems. Overall, a
unifying framework will provide essential support for system interoperability and
data access transparency.

* Timing behavior mapping—Different types of subsystems have different timing
properties. For example, HRT-DBMS provides guaranteed access for hard real-
time transactions, while SRT-DBMS only makes “best effort” scheduling for soft
real-time transactions. When the two subsystems are connected, their timing
behavior shall be transparent to each other, i.e., access from HRT-DBMS to SRT-
DBMS appears the same as access to another HRT-DBMS or vice versa. This kind
of timing behavior mapping is new and needs substantial research effort.

* Transaction mapping—Besides the timing behavior aspect, different types of
subsystems may employ different transaction mechanisms for data management. As
discussed earlier, for example, a traditional database usually provides ACID
properties while real-time databases may only support, if not at all, a subset of the
properties. Another example is that a traditional database usually defines inter-data
consistency using the notion of serializability while a hard real-time database may
consider temporal consistency based on data validity [Song91]. Now consider data
access from a traditional database to a hard real-time database. Transactions running

12

across different subsystems need to be mapped in terms of correctness criteria,
mechanisms, and operations. Such an issue does not exist in traditional distributed
database systems and now must be addressed in the system integration.

» Data model mapping—Different types of subsystems may employ different data
models. For instance, a relational data model may be used in a DBMS subsystem
while an object-oriented data model may be employed in SRT-DBMS. Yet, even if
these subsystems use the same model, the degree of sophistication can be different.
Thus, the interfacing needs to take into account the data model mapping. Similar
issues and related design schemes can be found in heterogeneous information
management systems (e.g., [HN91]).

The system specification capability provides a means to define the characteristics of the entire real-
time data management facility. It includes descriptions of data and their timing and storage
requirements, of transactions, of knowledge based rules that might be applied to the system, and
various triggers as found in active database systems. These triggers can arise both internally based
on specified constraints on the data or externally due to environmental dynamics. Here the research
issues arise as to

» Definition of the specification space itself,
» Development of a systematic approach in specifying the system characteristics, and

» Translation of a system specification into the corresponding system realization.

6 Concluding Remarks

In this paper, we considered distributed, real-time data management for multi-level, hierarchical
control systems. The uniqueness of the problem lies in the fact that data reside at all levels of the
control hierarchy and exhibit a diversity of characteristics with respect to permanency, timing, and
consistency. We first analyzed some representative data according to their characteristics. Then,
based on the analysis and the consideration on real-time scheduling, consistency management, data
modeling, and data size and storage, we took a functional partitioning approach to the design of the
data management system. In particular, we defined three types of database subsystems, HRT-
DBMS, SRT-DBMS and DBMS, to accommodate and manage different types of data. We
developed a multi-level, hierarchical architecture by integrating the subsystems. We also discussed
the key design aspects in developing such an.integrated real-time data management system. We
briefly examined the previous research work applicable to the design of the proposed system,
especially for SRT-DBMS. Moreover, we identified a number of research issues relevant to
distributed real-time transaction modeling and processing and system integration. These issues
provide new and interesting research topics for distributed real-time systems studies.

Reference

[Abbott88] R. Abbott and H. Garcia-Molina, “Scheduling Real-Time Transactions,” ACM
SIGMOD Record, March 1988.

[Abbott90] Abbott, R. and H. Garcia-Molina, “Schéduling I/O Requests with Deadlines: A
Performance Evaluation,” Proc. of the 11th IEEE Real-Time Systems Symposium,
December 1990.

[Carey89] M.J. Carey, R. Jauhari and M. Livny, “Priority in DBMS Resource Scheduling,”

13

[Chen91]

[Harisa90]

[HIPAC90]

[HN91]

[Huang89]

(Huang91a]

[Huang91b]

Proc. of the 15th Conference on Very Large Data Bases, Aug. 1989. .

S. Chen, J. Stankovic, J. Kurose, and D. Towsley, “Performance Evaluation of
Two New Disk Scheduling Algorithms for Real-Time Systems,” Journal of Real-
Time Systems, Sep. 1991.

Haritsa, J.R., M.J. Carey and M. Livny, “On Being Optimistic about Real-Time
Constraints,” PODS, 1990.

“HIPAC: A Research Project in Active Time-Constrained Database Management,”
RADC-TR-90-60 Final Technical Report, prepared by Xerox Advanced
Information Technology, May, 1990.

Honeywell SSDC and Northern States Power Company, “Database Access
Integration Services - Design and Application, Version 1.0,” Technical Report
EPRI RP 2949-5, Electric Power Research Institute, December 1991.

J. Huang, J.A. Stankovic, D. Towsley, and K. Ramamritham, “Experimental
Evaluation of Real-Time Transaction Processing,” Proc. of the 10th IEEE Real-
Time Systems Symposium, December 1989.

J. Huang and A. Anderson, “A Study Toward Real-Time Data Management for
Industrial Control Systems,” Honeywell Technical Report C910640, Honeywell
Sensor and System Development Center, Minneapolis, Minnesota, July 1991.

J. Huang, J.A. Stankovic, D. Towsley, and K. Ramamritham, “Experimental
Evaluation of Real-Time Optimistic Concurrency Control Schemes,” Proceedings
claj; tghle 17th International Conference on Very Large Data Bases, Spain, September,

[ISO/IEC DIS 9579] “Remote Database Access: Part 1: Generic Model, Service and Protocol,”

[JRTS92]

[Rama92]

International Organization for Standardization, 1991.

Journal of Real-Time Systems, A special issue on real-time database systems,
Editor J.A. Stankovic, September 1992.

K. Ramamritham, “Real-Time Databases,” to appear in International Journal of
Distributed and Parallel Databases, Vol. 1, No. 2, 1993.

[Stankovic88] J.A. Stankovic and W. Zhao, “On Real-Time Transactions,” ACM SIGMOD

[Song92]

Record, March 1988.

X. Song and J. W.S. Liu, “How Well Can Data Temporal Consistency Be
g{alptamlegdgé” Proc. of the IEEE Symposium on Computer-Aided Control System
esign, .

14

