On-Line Processor Scheduling
for a Class of IRIS (Increasing
Reward with Increasing Service)
Real-Time Tasks

J. K. Dey, James Kurose, Don Towsley

CMPSCI Technical Report 93-09
January 27, 1993

On-Line Processor Scheduling for a Class of IRIS (Increasing
Reward with Increasing Service) Real-Time Tasks*

Jayanta K. Dey James Kurose Don Towsley
Computer Networks and Performance Evaluation Laboratory
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

January 27, 1993

Abstract

In this work, we introduce a real-time task model, where tasks receive a “reward” that depends on
the amount of service received. In this model, tasks have associated deadlines at which they must depart
from the system. The task computations are such that the longer they are able to execute before their
deadline, the greater the value of their computations, i.e., the tasks have the property that they receive
increasing reward with increasing service (IRIS). We focus on the problem of scheduling IRIS tasks in
a system in which tasks arrive randomly over time, with the goal of maximizing the average reward
accrued per task and per unit time. We describe and evaluate a two-level policy for this system. A
top-level algorithm executes each time a task arrives and determines the amount of service to allocate
to each task in the absence of future arrivals. A lower-level algorithm, an earliest deadline first (EDF)
policy in our case, is responsible for the actual selection of tasks to execute. This two-level policy is
evaluated through a combination of analysis and simulation. We observe that it provides nearly optimal
performance when the variance in the interarrival times and/or laxities is low and that the performance
is more sensitive to changes in the arrival process than the deadline distribution.

Keywords: real-time, on-line, scheduling, reward functions.

“The work reported in this paper was supported by ONR grant N00014-87-K-0796 and by NSF grant CCR-9119922. The
authors can be contacted at [dey, kurose, towsleyl@cs.umass.edu.

1

1 Introduction

Classical hard real-time systems view areal-time task as acomputation which must meet its timing constraint,
specified as its deadline. Failure of the system to complete a task and provide its results by its deadline
leads to a timing-fault and the entire computation is discarded. The underlying assumption of the hard-real
time model is that the entire computation is wasted unless completed by its deadline. Of course, scheduling
in a hard-real time task so that every task meets its deadline is difficult, given that processing times of tasks
may vary as well as the task computations may dynamically vary depending upon their inputs.

The IRIS (Increasing-Reward-with-Increasing-Service) model [S] takes another approach to real-time
computations. The assumption in this model is that there is a large class of computations which compute
results whose quality increases as the computations get more CPU time. When these computations are
performed by real-time tasks, approximate answers can be returned by the tasks at its deadline, and, in doing
$0, the wastage resulting from discarded computations in the hard real-time model can be minimized. In
real-time image processing and tracking, for example, tasks can return fuzzy images and rough location
estimates at its deadline. Other examples of tasks exhibiting IRIS behavior have been referred to in the
literature as “anytime algorithms” [1, 3], “real-time approximate processing algorithms” [4], or “segmented
algorithms” [12]. Examples include tasks that receive, enhance. and transmit audio data or video-image
frames, tasks for tracking and control, e.g., autonomous vehicle navigation planning [6], tasks for heuristic
search [9], tasks for database query processing [7, 17], and tasks computing traditional iterative-refinement
numerical algorithms. ‘

Rather than classify real-time tasks using a binary successful/failed criterion, IRIS real-time tasks are
characterized by the fact that the longer they are able to compute (before their deadline), the higher is the
quality of their computation. Thus the IRIS real-time system is modeled as a single-server system to which
tasks arrive and remain until their deadlines, accruing whatever service they can. Given this new model of
real-time computation, a new metric is required to evaluate the quality of computation for a task. This metric
is in the form of a reward function f(-) associated with every task. This function specifies the value of the
computation as a function of the amount of time it has been able to execute before its deadline. The reward
functions help the system to distinguish between the “more important” tasks and the “less important” tasks.
Thus tasks in the IRIS model should be assigned reward functions so as to reflect their relative importance.

Note that in this model there is no explicit notion of “processing time” for a task’s computation. The
processing time of a task can be easily “encoded” into its reward function by making the reward function
flat or marginally-increasing after the “duration” of the task, indicating that the resulting quality of the task
does not improve any further. Also it is very difficult to explicitly characterize the length of a computation

a priori, since it depends on various parameters and is often a function of its inputs. But this model does

2

not preclude designing the reward function of a task so that it depends on its inputs, thus implicitly making
the amount of time a task needs to be executed before it produces a certain reward rate depend upon on its
inputs.
As in [1, 3], we assume that the reward function of a task is an arbitrary nondecreasing concave
Junction of its execution time, reflecting the decreasing marginalreward as a task receives more service. That
is, while every task has increasing reward with increasing service IRIS characteristics, the i:icremental reward
for an incremental aﬁnount of computation tends to decrease as a task’s accrued service time increases. For
example, in many iteratively-refined numerical algorithms, e.g., in the Newton-Raphson’s method for finding
solutions to equations, the approximate results exhibit a geometric convergence to the solution. Concave
reward functions for IRIS real-time tasks thus model geometric convergence of Newton-Raphson’s method
and other fixed point solution methods. '

A significant amount of work has been done using the imprecise computation technique, a very
similar model [13, 16, 15]. In this model, tasks have a mandatory phase with a certain known processing
time!which has to be completed before the task is of any “value”, and an optional phase with a known
processing time which can be left unfinished. Each task incurs an error equal to the amount of unfinished
optional subtask. This model thus corresponds to a special case of the IRIS model in which the tasks have
identical and linear reward functions. The scheduling mechanism discussed in this paper can easily be
adapted to handle mandatory subtasks, as shown in Section 3.2.6. The IRIS task model is a continuous-time
model, whereas the imprecise computation technique model is partly discrete-time (in dividing the task
into two subtasks) and partly continuous-time (in allowing any amount of optional subtask to be executed).
As pointed out before, the IRIS model does not require explicit processing time of a task, whereas in the

imprecise computation technique, tasks have known processing times.

For time-dependent path planning [3], Dean and Boddy consider a similar model where the processiﬁg
times of tasks are multiples of a fixed time slice. This is a discrete-time version of the IRIS task model. The
complexity of their scheduling algorithm is inversely proportional to the size of the time slice, and hence its
running time increases with the fineness of the time slice.

In a different model of imprecise systems, tasks do not have deadlines, but each provide several
versions, a primary version, which produces a precise result but requires maximum service time of a task,
and several alternate versions, which provide poorer quality results within a short time. The scheduling
policy switches from primary versions of tasks to alternate versions when the total number of tasks in the
system exceeds a threshold. Kim and Towsley [8] study this model in the context of real-time message
transmissions, while [2] and [18] analyze two-version scheduling disciplines for this model in uniprocessor

'Here known processing time of a task implies that when the task arrives to the system, its processing time is known.

and multiprocessor systems respectively.

The primary contribution of this paper is the development and evaluation of a two-level scheduling
policy for tasks exhibiting IRIS characteristics, in a system with random task arrivals. At any point in
time the scheduler does not know the future arrival times or deadlines of future tasks. At the top level, the
scheduler solves a static optimization problem each time that a task arrives in order to determine how much
service to provide each task in the system. The lower-level algorithm is concerned with the actual task
scheduling, given the service-time allocations of the top-level policy. Here we use the earliest deadline first
(EDF) policy.

The appropriate performance metric of any scheduling mechanism in the IRIS framework is the
average reward per unit time that it can accrue by executing tasks according to its scheduling policy. This is

analogous to the performance metric of minimizing error in the imprecise computation model [13, 16, 15].

The evaluation of our proposed scheduling policy is performed through simulation. In addition,
analytic upper bounds on the performance of any scheduling algorithm in an IRIS framework are presented.
In the course of the evaluation, we study the sensitivity of system performance to changes in the arrival
process and laxity distribution. We observe that performance is more sensitive to changes in the arrival
process than to changes in the deadline distribution. Finally, the static optimization problem considered at
the top-level and its associated solutions may be of independent interest as it generalizes earlier work in this

area [13, 16, 15] by allowing nonlinear reward functions.

The remainder of this paper is organized as follows: Section 2 describes the task model, and presents
upper bounds on performance. Section 3 describes the proposed scheduling algorithm in detail including a
description of a static version of the problem and optimal algorithms for maximizing total rewards of task
sets in this static version. Section 4 describes some of the numerical results obtained through simulation.

Section 5 concludes the paper with a discussion of possible future research.

2 System Model and Upper Bounds

We consider a single server system. Tasks arrive to the system at arbitrary times a; < @» < ... according
to a renewal process with rate A. Here a; is the arrival time of the i*" task. Associated with task i is a laxity
T, ¢ = 1,2,.... Task i is required to leave after its laxity expires, at time a; + 7;, which we refer to as
the task’s deadline. We assume that {7;}:2, is a sequence of independent and identically distributed (i.i.d.)
random variables (r.v.’s) with mean E[7]. Also associated with each task is a reward function f; : R — R
which is assumed to be nondecreasing and concave. Here fj(z) is the reward accrued by task 7 when it

receives a total of z units of service. While task ¢ resides in the system, it may receive service according to

some policy 7. The service time accrued by task ¢ under = is denoted as AT and the associated reward is
RT = f;(AT) with means E[A™] and E[R™] respectively. The only assumptions made regarding = is that it
is non-anticipative, i.e., it does not know future arrival times or the deadlines associated with future tasks.
Otherwise, it is permitted to take any action including preempting tasks that are in service. A

We only consider policies such that R™ = lim;_,, R exists. We are interested in the average reward
per task, E[R™], and the average accrued reward per unit time, v = AE[R"). We now derive two upper
bounds on the reward rate for any such policy. The first bound requires only that the reward function be
independent of the task, i.e., that all tasks be homogeneous: f;(z) = f(z), whereas the second bound
requires that task arrivals be described by a Poisson process. We have,

E[R"] = E[f(47)],
< f(E[AT)). 1)

where we use Jensen’s inequality[14]. In general,
E[A™] < min(1/A, E[7]).

Since . f is nondecreasing, this yields the following bound

r < M(E[r]), E[r]<1/A,
7 <{)\f(l/j\-), otherwise. @

If the arrival process is Poisson, we can derive an exact expression for E[A"). First, observe that
the system can be modeled as an M /G /oo queue because tasks remain in the system until their deadlines,
irrespective of the number of other tasks in the system. Thus the number of tasks in the system, N, is a
Poisson r.v. with Pr[N = n] = p"e~?/nl, n = 0,1,... where p = AE[r]. Let B denote the length of
an M /G /oo busy period and let N}, denote the number of tasks served in a busy period. We can express
E[A) = E[B]/E[Ns). Now E[B] is related to Pr[N = 0] by the following expression,

1/

O B

or
E[B] = (¢” — 1)/A.

The mean number of tasks served in a busy period is given by

E[N) = ME[B]+1/),

= e°.

Hence we obtain E[A™] = (1 — e~?)/\ which yields the bound
YT < A(1 - e?)/A). ®3)

Observe that E[A™] does not depend on 7 and, consequently, cannot distinguish between the perfor-
mances of two policies.

3 Proposed Scheduling Policy

The primary design problem is to identify policies that provide high reward rates. As the problem of
identifying the optimal policy appears to be extremely difficult, we propose a heuristic policy which
provides demonstrably good performance. Specifically, we propose a two-level scheduling policy with
which to schedule IRIS tasks. The top-level algorithm is executed at the time of a task arrival and is used
to determine the amount of service to allocate to tasks until the next task arrival. The lower-level algorithm

is concerned with the actual selection of tasks to execute.

In our particular design, the service time allocations are chosen at each arrival time with the objective
of solving the following static nonlinear optimization problem: given a set of tasks resident in the system
with known deadlines and reward functions, determine the amount of service to allocate to each of them
$0 as to maximize the total accrued reward. In our implementation, the algorithm that solves this problem
executes assuming that there will be no future arrivals. As previously discussed, the service time allocations
output by the algorithm are used by the lower-level scheduler to determine when to switch from one task to

another.

The lower-level policy actually schedules the tasks into service and attempts to provide them with the
allocations obtained from the top-level scheduler. Note that the target service allocation may change at each
arrival. We have chosen the EDF algorithm as the lower-level policy in our implementation. Numerous
alternatives were considered in a previous study[10, 11]. However, the reward rate was demonstrated to be

relatively insensitive to the actual choice of the lower-level policy.

3.1 Formulation of the Static Version of the Problem

In this subsection, we develop a static version .of the problem where all tasks arrive at the same time, and
derive the properties to be satisfied by any algorithm which computes optimal service time allocations for a
task set . While such a simultaneous-arrival assumption is restrictive in itself, it can be used as the top-level
computation of the two-level scheduling approach described above. '

— Interval number
3.1../ M-1 M

| | i | | |
L3) M- ™M-1 TM

|
a=T

Figure 1: A time interval showing task deadlines and interval numbers

Consider a finite set of M tasks with arrival times a; = a; = ... = apsand deadlines 7, < ... < 7.
For notational convenience, define 7o = @ = a; = ... = aps. The interval (a, 7] is divided into at most
M intervals (a,], (11, 72, - - - ,.(TM_l,TM]. As shown in Figure 1, interval number j refers to the interval
(Tj-1,75]). When the i*? task departs, if it has received z units of service, it receives a reward of fi(z), with
its derivative defined to be g;(z) = dfi(z)/dz. We will find it convenient to define g;"!(z) to be the inverse
function of g;(z),i = 1, ..., M. The reward functions are assumed to be continuous and g~! is assumed to
be a function in the rest of this paper.

A schedule determines the amount of service to be given to each task during each interval. We
assume that the CPU is work-conserving. A schedulable interval of a task is an interval in which the task
can be scheduled, i.e., it is an interval between the task’s arrival time and its deadline. Thus the schedulable
intervals of task ¢ are intervals 1 through i. The set of schedulable tasks in a subinterval j is the set of all
tasks {7,7 + 1, ..., M} which have 7 as a schedulable interval.

Let z; ; denote the amount of service given to task 2 (: = 1,..., M) during interval j = 1,...,14.
Observe that ¢;; = 0 whenever j > i. The total amount of service received by task ¢ is defined by
2 = Z§-=l z; ;.

Given a set of tasks, we are interested in finding an assignment of service times to tasks which

maximizes the sum of the rewards of all the tasks while satisfying the above constraints. Thus our problem,
P,is:

)

i=1 j=1
subject to
M
Yoz = ti-Ti-n, i=1,...,M, _)
i=3j

zi;j 2 0, 1<j<i<M. &)

The first constraint equates the length of the j** interval to the amount of service given to all of the
schedulable tasks in that interval, and reflects the non-idling policy of the processor. The second constraint

simply states that a task receives a non-negative amount of service in each of its schedulable intervals.

Thus the problem is a nonlinear optimization problem of a concave objective function with M equality
constraints and M (M — 1)/2 inequality constraints.

Before describing the algorithm to produce an optimal solution to problem P above, we introduce an
auxiliary optimization problem P, 1 < k < M. P is a subproblem of P with tasks k,k + 1,...,M
all having the same arrival time of 7.—;. Problem P, is equivalent to problem P. The solution algorithm
for P sequentially solves problems P;, i=M,...,1.

e £4(50)

i=k i=k
subject to
M .
zﬁi,j = Ti—Ti-1, J=k..., M, ©6)
i=j
zij 2 0, k<j<i<M ™

Appendix A derives several properties satisfied by any optimal solution to P. The following theorem
describes the property satisfied by any optimal solution to problem P;. The top-level algorithms described
in the next subsection, utilizes this property to guarantee an optimal solution to problem P.

Define z;(i) as the service time for task j in the optimal solution for problem P;. Similarly, pg-i)
denotes the Langrange multiplier for task j in P;.

Theorem 1 Let the optimal solution to problem P;.\ allocate service time :e;('."") totask j. Let K be the
set of tasks which receive non-zero allocation in the interval (7;_,7;] in the optimal solution to P;, i.e.,
K= {Iclz,:(i“) < :c,:(i) }. Then the optimal solution to P; satisfies:

> g (b)) = > 3;;(‘“) + T — Tioy
k€K keK

where p() = pg) = the value of the Langrange multiplier for all tasks k € K in P;.

PROOF: Since the scheduling policy does not allow idling of the CPU while jobs await service,

3 (:c,';(i) - z,:(i“)) =T — Tio

keK

or
Z z,:(i) = Z z,:(iﬂ) + 75— Tim1 8)
keK keK

From Lemma 1.i and 1.ii in Appendix A we know that all tasks k € K have the same value of g and p(9),
and that the rest of the tasks in P; may have lower g and () values. Therefore, equation (8) is rewritten as:

Yot = St inon,)
keEK keK

3.2 Top-Level Scheduling Algorithms

This subsection develops algorithms to compute optimal service time allocations for task sets having different
kinds of reward functions. The first two algorithms are for tasks having arbitrary reward functions. The next
two algorithms are more efficient versions for tasks having exponential reward functions and tasks having
identical reward functions respectively. The final algorithm is for scheduling tasks with piecewise-linear
reward functions. Piecewise-linear reward functions are important since arbitrary non-linear functions can
be approximated by piecewise-linear functions. Also, a task may have its reward function described by
multiple pieces to indicate different regions of operation: a critical portion described by a piece having a
high derivative, a concave portion to indicate a task region returning results of non-decreasing quality, and
a flat third piece indicating lack of quality improvement of the task result. Note that it is very simple to
modify the above algorithms to generate hybrid algorithms for tasks whose reward functions are a medley
of the ones described above. Finally, handling of tasks which have a constraint on the minimum amount of
service it must receive, is described. .

3.2.1 Algorithm for general reward functions, Version 1

The first algorithm, described in Figure 2, uses the results of Theorem 1 to determine the values of z; that
solve problem P. The algorithm solves P; in the j th jteration in step 2. In this 7th iteration, task j becomes
schedulable, and hence is added to a list £, in which the elements are ordered in decreasing values of their

derivatives. Then a binary search is performed on this list of schedulable tasks, computing how many of
9

1. initialize

L=10
z; =0,Vi
2. loop

for m = M downto 1 do
Insert g (0) into £. Order the tasks in £ in decreasing value of g;. Let 7 (2) denote the task
within £ with the i-th largest gi(z:).
Using a binary search, find [s.t.
S0 (941(2141)) = 2o(s)] > T = Tt 2 Ty [9735(91(22)) = 2a(s)]
Solve for p in
Eé:l g;(g)(#) = Z£'=l Tx(i) + Tm = Tm-1
To(i) = g;(li)(p), i=1,...,L

Figure 2: Algorithm for general reward functions, Version 1.

these tasks can actually be scheduled using the condition outlined in the previous theorem, i.e., we find a
number [, such that / tasks can be allocated in (7;j—1, ;] but [+ 1 tasks cannot be. The value of u is then

computed using equation (9) from which the values of the zgj)s are obtained. Note that this algorithm is

for the case of arbitrary non-decreasing concave continuous reward functions.

In this version, computing each sum during the binary search takes time O (M)and there are O (log M)
probes done in the binary search. Thus each iteration takes time O(M log M) and the running time of the
algorithm is O(M2log M).

322 Algorithm for general reward functions, Version 2

We can improve Algorithm 1 by using sets of tasks instead of individual tasks and maintaining
precomputed values of the sums used to find the value of ! in the binary search of version 1. The key idea
behind this improved version is the observation that equation (16) not only tells us that if two tasks receive
service allocations in interval j they have the same derivative in the optimal solution for P, but also that
if two tasks have equal derivatives of their reward functions in the optimal solution for problem P;, they
continue to have equal derivatives in solutions for problem P;_,, Pj_,..., P|. Hence their derivatives
change simultaneously, if at all, in problems P;_,, ..., Py, thereby allowing us to group them into a single
set. Formally, during step m, £ = {S),...,S,}, where Ul_,S; = {1,...,m}, S; N S; = 0, { # j and the
tasks within S € £ have z;’s such that g;(z;) = gs, Vi € S. Also, VS;,S; € L£,i > jiff g5, < gs;, i.e.,
the sets are ordered in £ according to decreasing values of gs. Define As; = Tiat Thes; 9% '(95;) and
Bs, = Tioi The s; Tk- The version 2 algorithm is described in Figure 3.

10

1. initialize
L=0
As; = Bs, =0,Vi
2. loop
for m = M downto 1 do
S = {m}
Insert S into £, merging with some other set if necessary. Assume the insertion position is
i,i€{1,...,|L[}.
if § is not merged with any set,
Compute As; = 3 5. 2kes; Ik '(gs)
for j =1it0|L|do
{Update As’s to reflect inclusion of task m}
AS,' = ASJ' + 9.;,-1(95;)
Using a binary search, find ! s.t.
ASH-I - Bs,.H > Tm — Tm—1 2 AS[- .le
Merge sets. S} = S1USU...US
As; = As;, Bsi = Bs, +Tm — Tm-1
forj=1+1to|L|do
Bs; = Bs; + Tm = Tm+1
3. compute z;’s
forall S € Ldo
Solve for pin ¥ ;cq 97! (p) = Bs
foralli € Sdo
z; = g7\ (n)

Figure 3: Algorithm for general reward functions, Version 2.

Since there are at most M sets, the number of set unions possible is at most M. The binary search
in each iteration takes O(log M) time, and the inner for loops are O(M). Hence the version 2 algorithm

takes time O(M?), which is an improvement over version 1.

3.2.3 Algorithm for exponential reward functions
If the reward function is f;(z) = 1 — e~%(2+4i), then this procedure can be simplified because
gi(z) = fie~dil=ed),

or

97V (a) = (105 - Ina)/6; — a;.

11

1. initialize
£L=0
2. loop
for m = M downto 1 do
§ = {m}; As = (In6n)/6m — am; Bs = 1/6m; X5 = 0; g5 = gm(0)
Insert S into £ such that the elements Sy, . . . S, are in decreasing order of gs,.
Update A. and B. of the set, if any, where S was inserted
j=0;5=0;As»=0; Bs» =0;z5: =0
doj=3j+1,58=5US; As = As + As;;
Bg' = Bgr + Bs;; 25 = g + T5;
until j =7
or
As + As;,, — (Bs' + Bs;,,)Ings;,, — s = T5;,, > Tm — Tm-1 2 As» — Bs'Ings; — 25
Z5r =25+ Tm — Tm—1
9s' = exp([As — zs']/ Bs');
3. calculate z;’s
forl=1tordo
fori e S;do
z; = (Inb; - Ings,)/b; — a;

Figure 4: Algorithm for exponential reward functions.

Hence the partial sum ¥ ;5 ¢~!(a) can be expressed as

Zg;l(a) = As— Bsha,

i€S
where S C {1,...,M}and As = 3 ;c5(In6;/8; — a;), Bs = ¥ ;5671

The algorithm for this case is shown in Figure 4. Here during step m, £ = {S),...,S,} where
Ui, Si ={1,...,m}, 5N S; = 0, i # j and the tasks within S € £ have z;’s such that g;(z;) = gs,

Vi € S. Last, Xs = Y ;c5 ;. We recompute As and Bs on the fly whenever we update (add or remove
elements) from set S.

It is clear from this algorithm, that the complexity is now O(M log M) due to the fact that there are
M steps in the outer for loop and that the insertion of {m} into £ is O(log M).

32.4 Algorithm for identical reward functions

When all the tasks have identical reward functions, a linear-time service-time balancing algorithm
shown in Figure 5 suffices. The algorithm maintains sets of tasks such that elements of each set have
identical service time allocations, and no two sets have tasks with the same allocation. During step m of the

12

1. initialize
Initialize £ with a dummy set S having a single element 0 with zg = o0, Ag = o
2. loop
for m = M downto 1 do
remainder = Ty — T
S'={m},As =0
Attach S’ at front of £
while (remainder > 0) do
Take next set Sq € L; Let Sg be the set after S, € L.
allocreqgd = As, — As,
if (remainder > allocreqd)
{give elements of S equal service as elements of Sg}
remainder = remainder — allocreqd
Unify sets Sa and Sg to S”. Compute As. = Ssitid%l. 45,
else
{elements in S, get all of remainder}
As, = As, + remainder
remainder = (Q
3. calculate z;’s .
foreach S € Ldo
for each i € S do
z; = Ag/|S|

Figure 5: Algorithm for identical reward functions.

algorithm, £ = {S,...,5,} where Ul_, S; = {1,...,m},S;N S; = 0, i # j and the tasks within § € £
have z;’s such that z; = z g, where 2 is the service time allocated to all tasks in set S. The list £ is ordered
as follows: if S, precedes Sg in £, then 5, < zs5,. We define As = ¥ ;52 = | 5] - |zs].

The maximum possible number of sets in £ is M. Thus, at most M set unifications are possible in
one execution of the algorithm, which corresponds to the if part inside the while loop. The else part within
the while loop can therefore be executed at most M times in the entire execution of the algorithm. Thus
this algorithm’s running time is linear.

However, when we use this algorithm as the top-level algorithm in the two-level scheduling approach,
its running time is O(M log M). This results from the fact that when the algorithm is executed at an arrival
instance, there can be other tasks in the system which have earlier arrival times and may have received some
service prior to the execution of this algorithm. Hence we cannot always attach a task to the front of list £

| as is done in the static version. A binary search has to be performed on £ to find the appropriate insertion
place; this raises the complexity to O(M log M).
We argue that this latter algorithm provides the same solution as that given by the general algorithm

13

1. initialize
L =02 loop
for m = M downto 1 do-
remainder = Ty, — Tm—1
S' = {m}
Insert S’ into £ such that the above described order is maintained
while (remainder > 0) do
Takenextset S € L; As = Y pes(righty — i)
if (remainder > Ag)
remainder = remainder — Ag
for each job k € S do
z) = righty
Using g of next tuple, insert k into £ at appropriate position
else
remainder =0
for each job k € S do
2 = z + remainder/|S|
if (zx == righty), using gx of next tuple, insert k into £ at
appropriate position

Figure 6: Algorithm for piecewise-linear reward functions

when the reward functions are identical. The sets are ordered in increasing values of z, which is the same
as ordering them in decreasing order of reward function derivatives g, as in the general algorithm. In the
general algorithm, a binary search is used to find the sets which need to be merged to indicate that they have
the same value of g after merging. In this latter algorithm, sets are merged to indicate that the tasks in the
merged sets have the same value of z after merging. Hence the algorithm gives the optimal solution.

3.2.5 Algorithm for piecewise-linear reward functions

For tasks with piecewise-linear reward functions, we assume that each piece-wise linear function is
described as a sequence of two tuples, each tuple corresponding to a linear-segment. The tuple elements for
a function are the slope of a constituent segment and the right end point of the segment on the x—axis. Thus
each two tuple for job i is of the form (g;, right;), and each function is described as a sequence of these
tuples, ordered by increasing right; values. As in the previous algorithms, during stepm, £ = {S5},..., 5.}
where U, S; = {1,...,m}, 5;N S; = 0,7 # j and the jobs within S € £ have z;'s such that g;(z;) = gs.
Define As = } ;e s(right; — z;). Figure 6 describes the algorithm.

Let pr be the number of linear pieces for the reward function for job k. An insertion into £ takes

time O(log M), and there are at most 372, p; insertions into the list. A linear segment is accessed at

14

1. initialize
M =TM — MM
2. loop
for i= M — 1 downto 1 do
7 = min{r,, 7} - m;
3. initialize
total.m = my
4.loop
for i=2to M do
T = 7] — total_m
total.m = total_m + m;
5. loop
fori=1to M do

fi(2) = fi(z + mi)

Figure 7: Transforming tasks with mandatory portions into tasks without them

most M times. This occurs if the right-end of the segment of a reward function is never reached. Thus the

complexity of this algorithm is O(log M(M, pi + M)). When there are a bounded number of segments
describing a reward function, the algorithm is O(M log M).

3.2.6 A Note on handling tasks with mandatory subtasks

The above algorithms can easily handle, with a slight modification, tasks having constraints on the
minimum amount of service each mustreceive. The algorithm described in Figure 7 describes the algorithm
which transforms the problem into one where the deadlines of the tasks have been reduced in a way to
account for the mandatory portions. In the algorithm, m; denotes the length of the mandatory subtask of
task 2.

3.3 The Lower-Level Policy

As indicated before, the purpose of the lower-level policy is to actually schedule tasks. We chose EDF as
the second level policy because, in addition to the reasons described earlier, in the case when there are no
arrivals, or in the case when deadlines of all the tasks in the system are before the time of the next arrival,
this policy gives the minimum number of context switches.

Each of the top-level algorithms could be modified to determine which task to schedule in each
‘subinterval. But the resultant schedule would have several more context switches, a significant overhead in
real-time systems. Also by using this two-level scheduling mechanism, we separate the issues of how much
service to allocate to each task versus which task to schedule at the next scheduling instance. By separating

15

035
03 =
g 025 -
e -
2 4
‘D- 02]
& 4
| B
& 0.15]
&% 019
ﬁ -
g <
< 4
0.1 N ¢— — = Upper Bound 1
- @ Upper Bound 2
- @nessessassane Fix“’ I-axity
N o — = - Erlang-2 Laxity
- o - - -~ Exponential Laxity
0.05 - ¢—-—— Hyperexponectial Laxity, c*=4

o
=
—

Figure 8: Reward per unit time for Poisson arrivals and different laxity distributions, § = 0.4

these concerns, algorithms at each level are kept simple, and it allows us to use independent algorithms at
either level.

4 Numerical Results

To evaluate the performance of our two-level scheduling approach, we simulated the algorithm for
tasks which have identical reward functions. The reward function is f(z) = 1 — e~52. We varied three
parameters: the interarrival distribution, the laxity distribution, and §. The simulations have been done for
arrival rates 0.05,0.1,0.2,...,1.5, with tasks having mean laxity 10, i.e. the system is modeled at both
high and low rates. We simulated 1 million tasks and the 95% confidence interval widths for all the results
were found to be between 4 — 5% of the point value.

Figure 8 shows the performance of the algorithm for § = 0.4 and a variety of laxity distributions,
when the task arrivals are Poisson. Upper Bound 1 in the figure is the looser upper bound derived in equation
16

(2), and Upper Bound 2 is the tighter upper bound for Poisson task arrivals, as derived in equation (3).
Hence equation (2) can be rewritten for the above reward function as A(1 — e(=%/%)), Similarly, equation (3)

§(1—e”P)

for the exponential reward function is A(1 — e =3). The two upper bounds asymptotically converge
to 4, and in the figure, the upper bound 1 converges with the upper bound 2 as A increases.

We note that the average reward per unit time comes closest to the upper bounds when the tasks
have a fixed laxity and is farthest when the laxity distribution is hyperexponential, i.e. as the variability
(coefficient of variation, c.v.) of the laxity increases, the average reward per unit time decreases. In the case
of hyperexponential laxities, the tasks with larger laxities get greater service on the average than the tasks
with smaller laxities, thus bringing down the reward per unit time, since the reward function is concave. It
is also interesting to note that the curves come close to the upper bounds for very low and high values of
the arrival rate, but for intermediate values, the difference from the optimum is noticeable. We conjecture
that this is explained by the fact that for any value of §, the reward curve can roughly be divided into three
regions. In the first region (the closest to the origin), the reward curve is linear; in the third region, the
curve flattens out as it reaches its asymptotic value and thus again is linear. In the middle region, the curve
is nonlinear and it is here that the decreasing marginal rewards become more significant. Hence it is in this
region that the difference in performance is greatest for different laxity distributions. Note that when the
arrival rate is very high, most of the tasks receive very little service, thus falling in the first region where
the reward is approximately linear. Hence the marginal reward per task differs little for different laxity
distributions. For low arrival rates, almost all tasks receive service equal to their laxity, since almost all
busy periods consist of only one task, resulting in the small differences in the curve,

Figure 9 plots the average reward rate for § = 0.8. We note that the behavior of the reward curve
for § = 0.8 is similar to that for § = 0.4, except that the elbow, i.e., the middle region, as well as the third
region where the reward curve flattens out, occurs at higher values of the arrival rate. Otherwise, the nature
of differences for different laxity distributions as well as the difference from the exact upper bound remain

the same,

Figures 10 and 11 contain performance results for tasks having identical laxity distributions, fixed
and hyperexponential respectively, and different interarrival distributions. From these figures, we note
that the average service is more sensitive to the interarrival process, than to the laxity distribution. The
differences in average reward per unit time between exponential interarrival times and Erlang-2 interarrival
times is small, indicating that for small coefficients of variation, the average rewards per unit time are
close to each other, and close to the upper bound. Notice that the average reward per unit time is lowest
for hyperexponential interarrival durations. This can be explained as follows. Intuitively, the mean busy
period of a G /G / oo shrinks as the coefficient of variation increases. When the system has hyperexponential

17

0.6

0.5 -

e
>
1

Average Reward Per Unit Time
&
1

02 —
A o——— Upper Bound 2
PO Fixed Laxity
o~ — — - Erlang-2 Laxity
0.1 < ¢ - --- Exponential Laxity
¢— — = Hyperexponential Laxity, c*=4

‘Figure 9: Reward per unit time for Poisson arrivals and different laxity distributions, § = 0.8

arrivals, a burst of arrivals occur within a short interval of time which is followed by a long idle period.
Thus the system behaves as though it experiences bulk arrivals followed by a large idle period, reducing the
average reward per unit time. A similar argument explains why the average reward per unit time for tasks
with hyperexponential laxity in Figure 11 is lower than for tasks with fixed laxity in Figure 10, for the same

interarrival distributions.

5 Conclusion

We have developed a two-level scheduling policy for IRIS tasks. We have presented an optimization

algorithm for the static version of the problem and then used the algorithm as a heuristic for the general

problem. We evaluated our approach by comparing simulation results against the theoretical upper bounds

we developed for any scheduling policy of IRIS tasks and observed that our policy provides nearly optimal
18

Average Reward Per Unit Time
'l

4 d
0.1 - / #———— Upper Bound 1
- / &-eeeeene Erlang-2 interamrivals
: I, ¢ - = -~ Exponential interarrivals
_ - — — - Hyperexponeatial interarmivals, ¢*=4
0.05 —
o [}
4 4

Figure 10: Reward per unit time for different interarrival distributions and fixed laxity

performance when the variance in interarrival time and/or laxities is small. The performance is more
sensitive to changes in the arrival process than to the deadline process.

Extensions of this work include scheduling IRIS tasks with non-identical reward functions, and
investigating other lower-level policies for our two-level scheduling approach.

A Properties of any optimal solution to problem P

The optimal solution to P maximizes the reward rate for the set of tasks. Intuitively, to maximize the reward
rate for a set of tasks, in any subinterval we must start with the task with the highest marginal reward,
allocate it service till the marginal reward of the task equals that of the task with the second-highest marginal
reward, and then allocate both of them service till both their marginal rewards equal that of the task with the

third-highest marginal reward, and so on. This process must continue till all the time in the subinterval is

19

035
]
03
025
-
g]
S 02:
& i
'g .
; -
§01s-
[+] o, -
§° -
$ N
< -
0.1 - / [e——— UpperBound 1
- 7" & - - -~ Erlang-2 interarrivals
N J / —— < Exponential interarrivals
1 /3 & — — - Hyperexponential interarrivals, c’=4
0.05 - /
1 ¢
d ¢
O~—r——T1T—"TTT T T T T T T 1 TT T
0 02 04 06 08 1 12 14 16
Amival Rate

Figure 11: Reward per unit time for different interarrival distributions and H, laxity with ¢> = 4

scheduled. Thus the tasks which are not scheduled are those with equal or lower marginal rewards. The rest
of this section formally proves this intuition by establishing properties of any optimal solution to problem
P . '

The Langrangian of problem P is given by:

M i M M M i
L(x,p,v) = - Z fi (E zi,k) + Z B (Z Tik— Tk + ‘rk-l) + Z Z Vik * Tik,
k=1 k=1

i=1 i=k i=1 k=1
where py, v; i are the Langrange multipliers.
Any optimal solution to P satisfies the Kuhn-Tucker conditions,

oL 0fi (Shai=ia)

az.-,,- az;',-

+oitv;=0, 1<j<i<M, (10)

oL XM

O N mii—ti 4T =0, j=1,...M an
o T T T ’ |
z;; 20, ¥i; 2 =0, 9;<0, 1<j<i<M. 1%

Equation (10) can be rewritten as

0fi (= ..
- f(z)'i'lij‘i‘lli,j:o: 1<j<isM 3
Oz;
or
~-gi(z:)+pi+u;=0, 1<j<i<M (14)

From condition (12), we note that z; ; can either be zero or positive. We consider each case separately.
Case 1. z;; = 0. Task i receives no service in subinterval (71, 75].

It follows from equation (12) that »; ; < 0. Therefore from equation (14):
gi(z:) <pj, 1<j<i<M, 2;;=0 (15)

Case 2. z;; > 0. Task i receives service in subinterval (7;_y, 7;].

In this case, we have v; ; = 0. Therefore from equation (14):
gi(z:)=pj, 1<j<i<M, z;>0 (16)

Equation (16) indicates that tasks receiving a non-zero service allocation in an interval j have the
same value for the derivative of their reward functions, i.e., have the same marginal reward. Tasks which
do not receive service allocation in interval j may have a lower value of their reward function derivative as
shown in equation (15). Serving these might provide a lower marginal reward.

Let] be the amount of service given to task ¢ in any optimal solution. z;; is the service-time
allocation to task ¢ in interval j in any optimal solution. Define z* = [2] |, 2], - - ., Z}4 5] to be an optimal
solutionto P. Let be the set of all optimal solutions to P. '

Lemma 1 Any z™ € satisfies the relations,
i. if Jinterval k s.t. 7), > 0and 3, > 0, then gi(27) = gj(23), 1<k<i,j< M.
il. if 3 interval k s.t. z7), > 0and 2}, = 0, then gi(z]) 2 g;(25), 1<k<i,j< M.
ifi. ifz; = 0,then Vi € 1,2,...,(j — 1) st. 27 >0, gi(2}) 2 g5(=3).
iv. if Jrask k s.t. z3; > 0and z} ; > Othen pi = pj, 1<4,j<k< M.

21

PROOF. i. Obtained by applying equation (16) to tasks ¢ and j in interval k.

ii. Obtained by using equation (15) with task j in interval k, and using equation (16) with task ¢ in interval
k.

iii. Since z; > 0, 3 some interval k < ¢, s.t. z7, > 0. Since ¢ < j, k < j . Thus the proof follows from
part ii. of this lemma.

iv. This property is obtained by using equation (16) for intervals ¢ and j with task k. |

Lemma 2 For every z* €

i. The Lagrange multipliers p; form a monotonically non-increasing sequence, i.e., p; > pi+1, 1<i<
M,

ii. 2" can be constructively transformedintoz'™ € , such that for all of the tasks i that receive service inz™,
the corresponding g;'s in z " are monotonically non-increasing, i.e., g; 2 gj, 1<i1<j< M, =z},z;>
0.

PROOF. i. Assume the lemma is not true, i.e., g; < p;4+; for some . From Lemma 1.iv, we know that
there does not exist any task which is scheduled in both intervals ¢ and (z + 1). Therefore there must be
some task, m, in the optimal solution which is scheduled in interval (z + 1) but not in interval . Then from
equations (15) and (16), we get

Im(zm) < pi and gm(27) = pitr-

This implies p;+1 < p;, which is a contradiction.
ii. We construct z"~ from z~ by an iterative procedure which operates on every pair of tasks which have
received non-zero service in z”.
Take two tasks 7 and j, i < j, that have received non-zero service in z~. Let m = max{k|z;: > 0}, and
n = max{k|z;x > 0}. The construction is divided into three cases.

Case 1. m = n. Then from Lemma 1.i, we know that g;(z;) = gj(=}). Construct z;3, = z}, and
2 =25, VISkSM,

Case 2. m < n. Then we get g;(z]) > g;(z}) by using equation (16) and Lemma 2.i. Again construct
z;" and z;" as in Case 1.

Case 3. m > n. Since 7; > T;, we can construct z ™ that differ from z~ only in assignments to tasks ¢

and j in the m** and n* intervals as follows:

Tim = Tim— min(z}“ . z;'n), 17

Tim = z;,m + min(z:,m! z;,n)s (18)

22

zi,n = z:,n + min(z;,m7 z;,n)’ (19)

Zin Tin — min(zt,m! z;,n) . 20)

Now, if z:-:‘,,, > 0, max{klz:-j‘,, >0} = max{klz;’:k > 0} = m, and case 1 can now be applied. If
z:{'m =0, max{klz;"'k >0} < max{kla:_',-”‘,, > 0} = m, and case 2 can now be applied.
By repeatedly applying this construction procedure to all pairs of tasks that received non-zero service

in =, we obtain z =, in which case 1 or case 2 apply to all pairs. |
Thus Lemma 2 proves the informal intuition discussed at the beginning of this section.

References

[1] BopDY, M., AND DEAN, T. Solving time-dependent planning problems. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence (IJCAI-89) (Detroit, Mi, Aug. 1989), UCAI-
89, pp. 979-984.

{2] CHONG, E.K., AND ZHAO, W. Performance evaluation of scheduling algorithms for imprecise computer
systems. Journal of Systems and Software 15, 3 (July 1991), 261-277.

[3] DEAN, T., AND BODDY, M. An analysis of time-dependent planning. In Proceedings of the Seventh
National on Artificial Intelligence (AAAI-88) (Detroit, Mi, Aug. 1988), AAAI-88, pp. 49-54.

[4] DECKER, K., VR., L., AND R.C., W. Extending a blackboard architecture for approximate processing.
The Journal of Real-Time Systems 2 (1990), 47-79.

[5] DEy, J. K., KUROSE, J. F, TOWSLEY, D., KRISHNA, C. M., AND GIRKAR, M. Efficient on-line
processor scheduling for a class of IRIS (Increasing Reward with Increasing Service) real-time tasks.
In Proceedings of the ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems
(Santa Clara, California, May 1993), ACM.

[6] HAYES-ROTH, B. Architectural foundations for real-time performance in intelligent agents. The
Journal of Real-Time Systems 2 (1990), 99-125.

[7] Hou, W., OzsoYOGLU, G., AND BK., T. Processing aggregate relational queries with hard time
constraints. In Proceedings of the ACM SIGMOD International Conference on the Management of
Data (June 1989), ACM.

23

[8] KM, B., AND TOWSLEY, D. Dynamic flow control protocols for packet-switching multiplexers serving
real-time multipacket messages. IEEE Transactions on Communications, COM-34 4 (Apr. 1986),
348-356.

[9]1 KORF, R. E. Depth-limited search for real-time problem solving. The Journal of Real-Time Systems 2
(1990), 7-24.

[10] KUROSE, J., KRISHNA, C., AND GIRKAR, M. On scheduling real-time tasks with increased-value-with-
increased-execution-time characteristics. Unpublished Report, Oct. 1991.

[11] KUROSE, J., TOWSLEY, D., AND KRISHNA, C. Design and analysis of processor scheduling policies
for real-time systems. In Foundarions in Real-Time Computing, A. v. Tilborg, Ed. Kluwer Academic
Publishers, 1991, ch. 3, pp. 63-89.

[12] L, J. Timing constraints and algorithms. In Report on the Embedded Al Languages Workshop (Nov.
1988), University of Michigan, pp. 9-11.

[13] Ly, J. W,, LN, K.-J., SHH, W.K,, YU, A. C.-s., CHUNG, J.-Y. C., AND ZHAO, W. Algorithms for
scheduling imprecise computations. /[EEE Computer 24, 5 (May 1991), 58-68.

[14] Ross, S. Stochastic Processes. Wiley, New York, 1983,

[15] SHH, W. K., AND LU, J. On-line scheduling of imprecise computations to minimize error. In /[EEE
Real-Time Systems Symposium (Los Alamitos, CA, Dec. 1992), IEEE.

(16] SHH, W. K,, LIy, J., AND J.Y., C. Algorithms for scheduling imprecise computations with timing
constraints. SIAM Journal on Computing 20, 3 (June 1991), 537-552.

[17] SMITH, K., AND LIU, J. Monotonically improving approximate answers to relational algebra queries.
In Proceedings of Compsac (Sept. 1989).

[18] ZHAO, W., VRBSKY, S., AND LIU, J. Performance of scheduling algorithms for multi-server imprecise
systems. In Proceedings of the 5th International Conference on Parallel and Distributed Computing
and Systems (Oct. 1992).

24

