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1 Introduction

Real-time database systems has been an active research area in recent times. In spite of this,
their applicability to specific applications has not been well studied. We attempt to rectify this
shortcoming by studying two applications: 1) cooperative distributed navigation systems and
2) network services database systems. The former is a hard real-time system and the latter
a soft/firm real-time system. Cooperative distributed navigation systems appear in several
complex applications such as road following and robot navigation. These systems usually consist
of multiple sensor-based agents which work in a distributed and cooperative fashion towards a
common goal. These agents are guided by a high level controller which facilitates coordination
and cooperation among the agents. Network services databases provide support for the service-
providing intelligent network (IN). IN provides services like dialed number services (800 service),
personal mobility service, virtual business group service and televoting service. The data and
the service logic in this system is distributed.

These applications are of particular interest, because, a lot of concepts have been devel-
oped by assuming certain characteristics of an application for real-time database systems. For
example, it is assumed that transactions have timing constraints, but how those constraints
are derived from the application needs is not properly studied. Similarly various other data
and transaction characteristics are assumed. In this paper we will study two real-time active
database applications in detail. We will discuss their data and transaction characteristics in
detail and see if the protocols and features developed in the research have applicability in these
applications.

In section 2, we will consider the motivations for using a real-time active database for these
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missing ingredient in much of today’s real-time research, i.e., we must take into account real needs of applications

in developing appropriate solutions. This paper addresses this issue with respect to real-time databases.



complex applications. In section 3, we will discuss in detail the cooperative distributed naviga-
tion application and in section 4, we will study the network services database application. Then

finally in section 5, we will give some concluding remarks.

2 Why a Real-time Active Database (RTADB)

Real-time databases combine the principles developed in traditional databases and real-time
systems. They present several new issues that need to be addressed such as transaction pre-
dictability, temporal data consistency notions and real-time recovery. Most of the problems
arise because traditionally databases have been designed to maximize throughput while main-
taining the desired data consistency 3, whereas in real-time systems the ability to meet the time
constraints is of paramount importance. Real-time databases try to meet timing constraints
while maintaining desired data consistency and permanence. Hence, all the protocols including
concurrency control and CPU scheduling protocols must be designed to be time cognizant.

Real-time databases have close connection with active databases. In active databases, not
only is the data stored, but so is the control knowledge. This control knowledge specifies the
requisite actions to be taken when specified conditions hold and specified events occur [5]. This
paradigm is highly suitable to implement real-time database systems as usually these systems
control real-world processes. Event driven control is easily specified using the event-condition-
action (ECA) construct provided by active databases. The semantics of an ECA rule is that
if the specified event (E) occurs and if the condition (C) is true then execute the specified
action (A). An active database that explicitly takes time constraints into consideration provides
a convenient abstraction to implement complex real-time systems.

There is a basic question as to whether there is a need for a real-time database system in the
cooperative distributed navigation systems and network services database systems. For some
small applications a simple file system may suffice. However when a lot of data sharing occurs
and the data need to be maintained consistently (in spite of concurrent updates) and efficient
and convenient access to that data is required, then a simple file system fails to support the
needs. In this paper we will motivate the need for using a real-time database system as the
main structuring component for these applications.

Distributed RTADB combines the features of traditional distributed databases, real-time
systems and active databases. The need for a distributed RTADB arises when the application
needs a distributed database and the data manipulated has temporal properties. Usually in such

applications the environment is dynamic and needs constant monitoring. There is a need for a

3The most commonly used data consistency criterion in database systems is that of serializability. This notion
is very strong and can be relaxed for real-time databases.



distributed database when the application requires efficient distribution, storage and retrieval
of data on a large scale and transaction support, where the transactions have all or a subset of
ACID (atomicity, consistency, isolation, durability) properties that ensures desired correctness
and data integrity under concurrent accesses. The cooperative distributed navigation systems
need access to large scale maps for calculating their position. Various indexing structures like
quad trees are needed for this purpose. In addition database systems allow interactive queries
by manual operators and facilitate debugging. Network services have been using databases in
some form or the other. It is obvious that IN will use databases in future because of the volume
and distribution of data (service logic, customer records, traffic management data, network
configuration data) and concurrent accesses to it.

The need for real-time support comes when timely response of the system is a must. This
requirement translates into transactions having to meet real-time constraints and be predictable.
In cooperative navigation systems, there are a lot of actions which have strict time constraints.
For example, if an obstacle is detected in an agent’s path, a remedial action has to be taken
within a certain time depending on the situation and the deadline is hard. Similarly in the IN the
queries that go from the switches to the central database have stringent timing requirements. In
the IN there is real-time data such as the traffic management data and the network configuration
data that requires to be logically and temporally consistent. This also facilitates the need for
real-time database support because the data needs to be consistent in the face of concurrent
accesses. In real-time systems since timeliness is very important it might be possible to relax the
strong notion of serializability (ACID properties). We can relax atomicity in certain contexts to
get a timely response (monotonic queries) and isolation if the desired response can be inconsistent
within certain limits (epsilon serializability [8]). In the next section we will see in detail about
the consistency and permanence requirements of the data in IN databases.

In a complex real-time system there are a number of significant events like the timer events,
real-time events in the environment, apart from the transaction generated events. ECA construct
provided by active databases is a powerful mechanism to model the transactions that are to be
triggered on such events. The cooperative navigation systems require many event driven actions.
For example, if two agents come within collision distance, then the controller has to take a
preventive action. If an obstacle is detected in the planned path, a new path may have to be
computed. Similarly, in the network services database there are numerous such events. Incoming
call, the traffic crossing a threshold, timeout after a query, and the answer for a service query
are examples of events found in our application. One of the features that is lacking in current
active databases is the explicit specification of time. Once we have that the ECA paradigm is

a convenient one to model the events in a real-time system.



3 Cooperative Distributed Navigation Systems

Cooperative navigation systems usually consist of multiple semi-autonomous sensor based agents,
which are coordinated by a high level controller to cooperatively and distributedly achieve a par-
ticular goal. The agents sense the environment (capturing images through a camera) and relay
the data back to the high level controller if necessary. Each of the agents has an onboard frontend
system which filters data before sending it to the high level controller. Also a limited amount
of control knowledge is incorporated in the frontend system in order to perform some reflexive
actions. The frontends may prefetch maps of their current position from the controller. Each
of the agents perform some local matching in parallel to verify their position and pose (angle
of placement). The high level controller is primarily to handle events which the frontend can’t
handle with its limited capabilities and to preserve them correctly in stable storage for future
perusal. The events of different agents can be handled in parallel by the controller. The high
level controller also performs as a coordinator of the multiple agents. The high level controller
may be an RTADB, with control knowledge incorporated into it. The high level controller also
maintains a map database and associated data such as the positional information of the agents,
the path-plans of the various agents, destination information, archival data for future processing,
various index structures which support efficient access, etc. The control knowledge consists of
the various actions that need to be taken upon the occurrence of some pre-specified events.
The system executes the following control loop. As the agents travel in the real-world they
sense and produce image data. The frontend system compares this data with cached image
data and takes immediate actions when necessary. If the matching is unsuccessful then the
frontend relays the information to the high level controller. The controller then performs a
more sophisticated matching and identifies possible threats/obstacles which may not have been
expected (like a car parked haphazardly in the path of an agent). The controller can do the
matching of the images from different agents at the same time in parallel. The controller
then relays the appropriate commands back to the agent. The entire control loop has timing
constraints which depend on the position, direction and velocity of motion of the agent. Also the
operator can query and intervene in the proceedings by issuing queries/commands to the high

level controller. This is needed for emergency situations and manual overruling by an operator.

3.1 Application characteristics

In this section we will study the characteristics of data and transactions present in the navigation
application. We will also discuss how the transactions derive their deadlines and also how the

ECA paradigm of active databases helps in encoding the control knowledge in the system.
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3.1.1 An example control flow

In this section we discuss how the common case control loop looks in the navigation application
and the triggered flow of transactions which might occur if we implement it using the ECA
paradigm of active databases. The flow diagram is shown in Figure 2. An instance of the loop
is initiated when the sensors write the image data into the system. This usually occurs at the
frontends and can be implemented with periodic write-only transactions. Once the image data
is available, it is processed and compared with the expected scene constructed using the map
data and considering the present position and direction. This matching can also be done at the
frontend system. If the matching is completely successful then there is no need for the agent
to contact the high level controller. The position is updated and, if necessary, the map data is
prefetched from the high level controller. The transaction control flow can be coded using the
ECA rules very conveniently.

If the frontend system doesn’t detect a successful match then the data can be relayed to
the high level controller for more sophisticated analysis. Here the data is analyzed to identify
any new landmarks/features or any perceivable threats/obstacles. A landmark/feature is any
environmental feature of sufficient distinction to allow robust recognition from a large range
of viewpoints. The set of possible threats/obstacles an agent can come across in the envi-
ronment can be stored in the database. Similarly the map data is annotated with the set of
landmarks/features known to be present in the scene. If present, the threats/obstacles trigger a
hard real-time task which sends appropriate corrective/preventive commands to the actuators.

The deadline of the task depends upon the position, velocity and direction of movement of the



agent and the type of the threat. For example, a car coming in the opposite direction on the
same lane demands a tighter deadline than a stationary vehicle, since the relative velocity is
larger in the first case, and the value of the data itself affects the choice of transaction dead-
lines. One important point here is that the entire central control loop has to be executed with
a very high priority until it has identified as to whether any threat is present. This is because
it doesn’t know whether or not there is a crisis until the matching is completed. Once a threat
is identified the mode change can be done to execute in a crisis mode, if the threat demands
high priority. If there are multiple threats, then either they are processed in order of priority or
an action to counter all of them is taken. If there is no threat, then any new permanent land-
marks/features are consistently entered into the database using update transactions. These are
necessary for future use as well as to aid cooperation among the agents. In the case of multiple
threats/landmarks then there may be a requirement to identify as many of them as possible
in a short time. In this case there is no need to identify all of the threats/landmarks before
proceeding further. But the time available for doing the job may be constrained by the present
velocity of the vehicle and other physical parameters. This leads to soft real time transactions
with firm deadlines. It may be useful to borrow ideas from the theory of imprecise computation
if a threat cannot be completely identified. The system can roughly identify the characteristics
of the threat and assume a worst case threat possibility. An incomplete result may be useful
here.

In addition there will be time-triggered as well as periodic actions, which can also be conve-
niently specified using the ECA model. For example, periodically, the system verifies whether
proper progress is being made towards a goal and, if not, a new plan can be calculated and ac-
tuated. Similarly if we detect a moving object for the first time while it is a safe distance away
we keep track of its movements relative to the agent until it materializes as a threat or it exits
the sensor range. This can be done by triggering a periodic transaction as soon as we recognize
a potential threat which is quite far away. Archival data may be very useful here to monitor
the situation progressively. The characteristics of a moving threat including its velocity, can be
determined from the previous snapshots along with their temporal relationship. The high level
controller may need to maintain such archival data. Another example is the periodic reception
of information about the status of a traffic accident. The system analyzes it periodically and

may do alternate planning depending upon the extrapolated trend.

3.1.2 Data Characteristics

The navigation application has data of different characteristics with varying consistency criteria,
recovery criteria and access patterns and durability needs. Here we will discuss the different

data present in the application and their various characteristics.
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The data in a real-time database not only has to be consistent but also be temporally
correct, since the contents of the database have to reflect the current status of the outside
world. The notions of absolute and relative temporal consistencies [9, 2] guarantee that the
system is consistent with the outside world. Absolute consistency requirements on data specify
that the sampled data stored in the database must not lag behind the actual real world process
being sampled by more than a certain time. If a data item X has an absolute validity interval ax,
then the value of X at any given time T has to correspond to the real-world value of X at some
time in the interval [T — ax,T]. This ensures that the state of the real world environment and
its projection in the database are approximately consistent at all times. Relative consistency is
required when we want to derive new data using data which have to be contemporary to each
other in time. It specifies that the difference in timestamps of the data items being used to
derive new data has to be less than or equal to a certain bound. If a set of data items S has a
relative validity interval rs, then Vd, d' € S, | diimestamp — Gtimestamp |< TS, Where timestamp of a
data item denotes the real-time when the observation relating to that data item was made..

The input to the system consists of sensor data obtained from cameras and other sensors.
This data has absolute temporal consistency requirements as they have to reflect the real world
closely. In addition, absolute validity intervals may vary depending upon the speed of the agent
as well as the mode it is in. A Crisis mode may demand a smaller validity interval as we need
to sample the world faster. Similarly when the agents are traveling at a high speed, there will
be tighter absolute consistency requirements. If absolute consistency is not satisfied and the
mode is normal, then extrapolation of archival data can be used to maintain consistency. The
concept of invoking contingency transactions for compensation has applicability here. If two
or more sensors from one or more agents are used to track a common target, then relative
consistency among the data from these sensors needs to be maintained in order to make correct
decisions. Again the relative consistency requirements may vary depending upon the mode of
the system. As to the conventional consistency requirements, the sensor data is written by only
one transaction type and no concurrency control is needed. Also, sensor data is strictly temporal
in nature and may not require conventional recovery. If a transaction which updates this data is
aborted then instead of doing a conventional rollback, the data can be declared invalid since the
data will be updated during the next sampling period. This simplifies the recovery protocols.

The control loop attempts to identify the changes in the observed scene from the expected
scene on a best effort basis. The system tries to identify as many of the threats/landmarks as
possible before the deadline. This data is derived from the sensor data. The absolute validity
deadlines may also have to be derived from the sensor data it uses. Also multiple firm real-time
transactions may be used to compare and analyze different sections of the image. The different

landmarks/threats may be identified by different transactions. This leads to relative consistency



requirements on the data, that all these transactions finish within a certain interval. Since there
is only one transaction type which updates this data, there is no need for any concurrency
control. The system archives the threats/landmarks identified in the present scene for future
perusal. This data may need the property of permanence.

The map data and the data of possible threats doesn’t have any temporal consistency re-
quirements. They require the conventional consistency criteria as both reads and writes are
possible by multiple transaction types. Recovery is required to maintain the durability of the
data. Also this data is the target of interactive queries and offline updates.

The path plans of various agents also do not have any temporal consistency requirements.
Since they can be updated by both the operator and the system, they require the conventional
consistency to be maintained. Conventional recovery may be needed to ensure atomicity and
durability.

The output data of the system consists of the actuator commands for steering and stopping
the agents. They have absolute consistency requirements since the data has to be updated once
every command interval. The requirements may vary according to the speed of the agent as well
as the mode of the system. The same recovery criteria applicable to the sensor data are valid

here too.

3.1.3 Transaction Characteristics

A wide variety of transactions are likely in this application. Transactions can be classified as
periodic/aperiodic, hard/soft/firm real-time [9, 6] and on the basis of their data access type
like write/read/update. Hard real time transactions are those which have to be completed
before their deadline or a huge negative value is imparted to the system. Usually all hard real-
time transactions are preanalyzed and guaranteed to complete. Firm real time transactions are
those which have to be completed by their deadline or their value becomes zero just after the
deadline expiry. Soft real-time transactions are those whose value decreases proportionate to
the amount of delay in completing them after the deadline expiration until it becomes zero at
a point called zero-value point. They have to be completed by their zero-value point or else
aborted. Here we will study the various transaction types present in the application along with
their characteristics.

Transactions updating sensor data are periodic hard real-time transactions with their periods
and deadlines dependent on the absolute consistency requirements of the sensor data. They are
just write-only transactions with known data requirements. They don’t face any data contention.

Similarly the image matching transactions and position update transactions are aperiodic
hard real-time transactions. They also don’t face any data contention, as their data requirements

are fixed and only they update the data. These transactions are triggered by the completion of
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the sensor update transactions. In essence they are triggered once every period of sensor value
update transactions.

The threat/landmark identification transactions are aperiodic transactions which are trig-
gered only when a successful match doesn’t occur. These are firm real-time transactions which
are capable of giving incomplete results which can be used to construct a worst case scenario. If
there are multiple threats, then a subset of them can be identified and returned by the deadline.
The measure of success is the percentage of landmarks in the scene that are identified by the
deadline. Deadlines depend on the type of the threat and the speed of the agents. Since the
type of the threat is unknown, a very high priority execution is appropriate. They don’t have
any data contention as they are append-only transactions.

Threat handling transactions are hard real-time transactions whose deadlines vary according
to the type of the threat and speed of the agent. They have to be completed by the deadline
in order to avoid a catastrophe. For example if the agent is moving at 55mph and a 0.5G
deceleration is possible then it takes 22.5m to come to a stop. The deadline must depend upon
the distance between the threat and the agent, and whether the threat is static or moving.

The map data prefetching transactions are aperiodic firm real-time transactions with dead-
lines based on the speed of the vehicle. The frequency of invocation depends on the speed as well
as the terrain type. If we are moving on a road full of curves then we may need to prefetch more
often than when traveling on a straight section of highway. They are read-only transactions.

The actuator output update transactions are periodic with period and deadlines derived from
the absolute consistency requirements of the output data. If the actuators have to be written
to every 10 sec, then the period will be appropriately defined. Since they are just update trans-
actions and don’t share data, there will be no data contention. These transactions depending
upon the result of the matching cycle and the map data give the appropriate commands for
moving the agent forward.

Apart from these there are operator interactive transactions such as plan overruling, set of
threats updating etc, which are aperiodic. The overruling transaction will be run at highest
priority for responsiveness and safety reasons. These face some potential data contention and

can be handled by a simple concurrency control mechanism.

4 Network Services Database

The telecommunication industry currently provides services such as the 800 number service and
personal mobility service. In the future they want to provide numerous additional such services.
Hence, they require a robust, evolvable Intelligent Network (IN) architecture which will be the

backbone of such services. The features they are looking for in the IN are service independent



architecture, flexible distribution of service logic and service supporting functions, user friendly,
flexible service creation functions, open architecture with a set of standard interfaces, compat-
ibility with existing networks, self-awareness, and self-adapting and self-provisioning capability
[1].

In this section we will discuss network services databases as an application for dealing with
real-time database issues. First we will briefly discuss the current implementation of the 800-
service and then explain why network services databases can be considered as real-time database
applications. We will look at the different aspects of the application such as the data character-
istics, appropriate consistency notions, and transaction characteristics. Though the application
may appear restrictive in a certain sense due to the strict standardization of telecommunica-
tion networks, it has all the needed ingredients to make it a challenging distributed real-time
database problem.

The 800 number service network consists of five major components. They are Service Switch-
ing Points (SSP), Signal Transfer Points (STP), Service Control Points (SCP), the Signal Engi-
neering and Administration System (SEAS), and the Service Management System (SMS) [11].
The SSPs are simple electronic switches and the STPs are highly reliable packet switches. The
SCPs are on-line, fault-tolerant, real-time databases containing 800 records. They handle in-
quiries from SSP and return data to the SSP for call processing. Supporting the STP in a
geographic area is the SEAS which the STP uses to route queries to the appropriate SCP. SEAS
also collects traffic data from STP that is used for network management and engineering. The
last architectural component is the SMS, an interactive operations support system that is used
to maintain the network services customer records. The underlying network connecting these
systems is the Common Channeling System (CCS) network that uses the Signaling System #7
(SS7) protocol. When an 800 number is dialed, the call is routed to a SSP. The switch launches
a query via the CCS network which routes it to the SCP. The query contains both the 800
number and the originating station number. The SCP which is connected to the SMS and acts

as the database that provides the answer for the query.

4.1 Application Characteristics

In this section we will look at the data and transaction characteristics of the network services
database application. We will first discuss a typical execution of the application and discuss
the kinds of data being accessed and the types of transactions that are executing. Most future
services in IN will to be very similar to the 800 service. The following steps show an abstract

view of a typical processing of a service.

1. Sense the incoming call
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2. Activate the appropriate trigger in the trigger table
3. Query the appropriate database for service logic
4. Transfer the service processing to a different
node, if necessary
5. Query the appropriate database for data

6. Do the accounting

We are not concerned with steps 1 and 2. These will be usually performed in the switching ele-
ment. Trigger checkpoints may be set in the call states where call processing can be interrupted
and required actions taken. Triggers can be set on a per-line, per-group or per-office basis. Off-
hook trigger, dialing-plan trigger and automatic-route selection trigger are some of the trigger
types. However it is interesting to note that trigger activation in step 2 can be modeled using
the ECA mechanism used in Active databases to trigger transactions. The query in step 3 will
be a read query that gets the service logic. We need a flexible distribution of service logic and
the network has to be self-adapting and fault-tolerant. With these requirements in mind, step

3 can be translated into the three steps as follows

3.1. Query the appropriate database for traffic data
3.2. Query the appropriate database for configuration data
3.3. Get service logic from the NEAREST node

Since there is a necessity for intelligence in the network, and to meet stringent timing require-
ments, we have to constantly monitor the environment to improve the performance. Since
transferring should be done in an intelligent manner, Step 4 will be similar to step 3. This step
can spawn off a whole new service processing procedure. Step 5 can be similarly broken down
except that the query can be read/write. Step 6 is again similar to step 3 and will mostly consist
of updates.

We have described the application from the view of a call processing node. There are
nodes that do the operations support and administration (SMS) and nodes responsible for
network traffic management and engineering (SEAS). We are not going to explain The details
of interaction between these nodes are not explained as the discussion on 800 service system

gives a sufficient picture of the interactions.

4.1.1 Data Characteristics

The different logical data entities that are in the IN are service logic, trigger tables for the
service logic, customer service records, account records, operations support data and Network

Traffic Management (NTM) data. All these data are distributed and are subject to concurrent
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accesses. There is data that is mostly read-only and subject to infrequent updates like the
service logic and trigger tables. There is read/write data like the customer record base and
account information base. The most dynamic of all this data is the NTM data which gives the
ability for real-time monitoring of the network making it self-adapting and fault-tolerant. In
the future, most services require automatic call distribution capabilities. The NTM data can be
gathered over a period of time that will provide us load statistics which can be used for optimal
configuration of distribution of data and service. This data is not as dynamic as that used for
real-time monitoring.

NTM data has to be temporally consistent, i.e., there is a need to maintain consistency
between the actual state of the network and the NTM data. The notions of absolute consistency
and relative consistency are applicable to NTM data. The sampled data of the real world (NTM
data) should not lag behind the actual data of the real world (network traffic) by more than
a specified time. This specified time is the absolute validity interval (avi). The NTM data
used to derive other data should not differ from each other by more than the relative validity
interval (rvi). The NTM data for any node i can be the status of the node ST; (idle or busy),
length of the queue of calls to be serviced SQ; and length of the queue of calls to be transferred
TQ;. We can assume a hierarchical network structure where the network can be divided into
regions and regions divided into subregions and so on. A data item d can be represented by the
triple (value, avi, timestamp), where dyq1y. is the current value of the data item, dayi 1s the time
interval following dgimestamp during which d is absolutely valid. ST;, SQ;, and T'Q; can be used
to derive some information about the load on that node (load;) and they can form a relative
consistency set. The loads of nodes in a subregion can be used to calculate the load in that
subregion (load,ub;) and they can form a relative consistency set. The load of the nodes in a
subregion and the configuration of the subregion can be used to compute the routing table for
the subregion. These NTM data can form a relative consistency set. An rvi can be associated
with any such set R denoted by R,,;. Any data item d is in a correct state if and only if it is
logically consistent and temporally consistent (absolutely and relatively).

The dynamic data that is used for real-time monitoring is temporal. Failure of a transaction
that updates such data may not require conventional rollback and recovery protocol because the
next transaction that updates this data will restore it to a consistent value. The best way to
recover would be to just trigger a transaction to sense the value again. This can be done only
if the relative consistency holds (rvi of the of relative consistency set R to which the data item
belongs is greater than difference between the current time and the timestamp of each data item
in R).

The non-dynamic data like the service logic, customer records, and accounts information

do not have temporal consistency requirements. A conventional database will suffice for this
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purpose. There will be a necessity for conventional concurrency control mechanisms. It is
possible in the case of account information to relax the concurrency control (isolation property
of the accessing transactions - epsilon serializability) to give an approximate account information.
The NTM data that is gathered over a period for engineering purposes can be treated in a similar

fashion.

4.1.2 Transaction Characteristics

Transactions can be broadly classified as aperiodic or periodic, hard, soft or firm real-time
depending on how critical they are, and on the basis of data access type i.e., read-only, read-
write and write-only. This application includes all types of transactions except hard real-time
transactions. Hard real-time transactions are usually found in hard real-time systems where the
failure to meet a certain deadline by some transactions will result in a catastrophe. Realistically,
the network database application can be viewed as a soft real-time system. But it is possible
that the telephone network may be used as a part of a hard real-time system in the future.

Examples of periodic transactions include those responsible for updating SCP database using
the data from SMS. Other periodic transactions include those responsible for obtaining the traffic
data, and those responsible for billing. Let us briefly look at the transaction that obtains the
NTM data for real-time surveillance. The avis of the NTM data require these transactions to be
executed with a periodicity equal to the avis. These transactions have soft deadlines, because
failure to do so will not be catastrophic and obtaining the traffic data after expiration of deadline
might be useful for later routing. There are other transactions such as the monthly billing and
accounting that are periodic and have soft deadlines.

The aperiodic transactions are the ones that are executed to process a service call. All the
transactions that are part of this larger call processing transaction will be aperiodic. The call
processing transactions have firm deadlines because they impart no value to the system once
their deadlines expire. The transaction that queries the database about the loads that is part
of a call processing transaction is monotonic in nature. It is good to know the load about as
many subregions as possible for optimal routing and with more time we have more (better)
results. In these kind of transactions we can relax the atomicity property. Partial completion of
such transaction is not totally undesirable. The transactions that are part of a call processing
transaction have soft deadlines. It might still be possible to complete a call after a miss in
deadline in one of the many queries that is processed as part of the call. It does not make sense
to give up and respond with a failure message to a caller just because a query to obtain the service
logic is delayed. There are other aperiodic transactions such as the ones executed to process
a call for information on accounts. In these transactions it is possible to relax the isolation

property (more concurrency), if the customers are satisfied with an approximate information.
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Notions of epsilon serializability is applicable to such transactions. Even in transactions that
query the traffic data (part of call processing) an approximate information might be sufficient
thus allowing to relax their isolation property.

There are all kinds of transactions with varying access patterns (read-only, read-write and
write-only). The transaction that reads the configuration (probably a subtransaction of the
call processing transaction) will be a read-only transaction. The transaction that looks for the
address translation is a read-only transaction. The report generating transactions are read-only.
There are other transactions like the SCP update transaction that is write-only. The transaction
that does accounting is an example of a read-write transaction.

It should be noted that the application is conducive to the usage of the ECA paradigm from
active databases. We can set triggers to update routing data when the traffic load reaches a
minimum or a maximum value. The physical address depends on the time of the day. We can
set triggers to update the address database when the time of the day is a certain value. We can
trigger transactions to do the billing when certain events occur. For instance at the end of the

month we can trigger transactions to calculate the bill.

5 Conclusion

Distributed cooperative navigation and network services database are rich and challenging ap-
plications for real-time active databases. The first one is a hard real-time system, whereas the
latter is a soft real-time system. They contain rich data and transaction semantics which can be
exploited to design better protocols for concurrency control, CPU scheduling and recovery, to
improve the performance of the system. Different data have different recovery and consistency
characteristics, which aids in the design of less expensive permanence maintenance protocols
and allows more concurrency respectively. There are many interesting issues which have to be
considered. These include the computational complexity of transactions, preanalysis of the rule
set to guarantee predictable response times, etc. For example, if the system’s integrity con-
straints are implemented using triggers, then how does one assign deadlines to the transactions?
Does the restoration of consistency, which takes several transactions, as a whole has a deadline
or each individual transaction has a deadline? Many similar questions arise whose answers may
require the preanalysis of rule sets. The control structure provided by active databases seems
to be highly suitable for the navigation application. As of now few studies have addressed the
problem of making the active databases actively consider time constraints in their design and
implementation. Many issues arise in this area as well. In conclusion we can say that RTADBs
simplify the design and maintenance of such distributed applications which need access to large

amounts of data and also desire data consistency.
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