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1 Introduction

Traditionally, a moving robot monitors its position in an environment by
using a 3D model of the scene and a 2D view (image) of the scene from the
current position of the robot. Though several techniques have been devel-
oped that determine the robot’s position (or ezterior orientation [11], camera
location determination [15] [16]) these techniques require either fairly accu-
rate 3D scene models or noisy 3D models with a reliable estimate of the
model noise. Since it has not been possible either to automatically obtain

accurate 3D models or to reliably estimate the error in noisy models, the 3D
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models have been constructed manually in previous work. In this paper we
propose automating the model generation step by using a robust reconstruc-
tion algorithm developed by Thomas and Oliensis [27] [19] [26]. Apart from
automatically obtaining fairly accurate 3D scene models, their technique also
provides the error in the model; this paper shows that the error estimate is
reliable enough for a position estimation algorithm, such as that of Kumar
[13]. The main contribution of this paper is a coupling of an automatic 3D
model acquisition algorithm with a position estimation algorithm, resulting
in an Automatic Position Estimation algorithm. The second important con-
tribution is an analysis of the current 3D model acquisition algorithms in
order to select the best algorithm to be coupled to the position estimation
algorithm.

The Automatic Position Estimation algorithm developed in this paper
consists of a bootstrapping stage for model acquisition followed by a stage for
the estimation of the robot position. Sections 2 and 3 discuss the two stages
of the algorithm and Section 4 shows empirically how well this algorithm

works.

2 Bootstrapping Stage

In the bootstrapping stage the robot is moved over a short distance, viewing
the scene from several positions in order to reconstruct the scene. Tradition-

ally, just two images have been used to reconstruct 3D scenes (two-frame



structure from motion). 3D points are reconstructed by triangulation, using
the 2D image measurements from the two images. However, due to inherent
problems with two~frame structure from motion the 3D reconstructions are
erroneous [5). As pointed out Thomas and Oliensis [25] the main problem
is that the computation of the scene structure from two image measure-
ments involves non-linear optimization, which is not robust when the image
measurements are noisy. A natural approach for refining two-frame recon-
structions is to use several frames. However, using multiple image frames

gives rise to a different set of problems as analysed in the following section.

2.1 Multi-frame Model Acquisition Algorithms

Multi-frame model acquisition algorithms can be divided into two categories
— batch methods and recursive methods. Batch methods attempt to recon-
struct the 3D scene assuming that all images from every robot position are
available before processing is begun. Unlike batch methods, recursive meth-
ods assumes that all past images are not available; rather, they assume that
only the current (best) reconstruction of the scene is available along with an

estimate of the error in this reconstruction.

2.1.1 Problems with Batch Methods

If the scene is reconstructed based on m + 1 pictures (from m robot moves)

and represented using n features (say, n 3D points), the the most general



batch method involves 6m — 1 + 3n variables !. The number of points, =,
determines the granularity of the scene reconstruction. If this granularity
is fixed (i.e., n is fixed), then the batch methods have to deal with 6m — 1
variables in the most general case. This is a very large number of variables
(59 for 10 movements) for any non-linear optimization technique.

Almost all batch algorithms have reduced the number of variables repre-
senting the robot motion by réstricting the kinds of allowable motion, hoping
that any deviations from these constrained motions in realistic situations can
somehow be dealt with as noise in the system. Problems arise because the
restrictions on allowable motions are arbitrary, and/or because the nature of
deviation in the actual robot motion is systematic and cannot be accounted
for simply as noise. In the following we analyse the batch methods reported
in the literature based on the number of parameters used to capture the un-
derlying motion. Table 1 (at the end) provides the number of parameters for
each algorithm.

In the simplest case, Sawhney, Oliensis and Hanson [21] restrict the robot
camera motion to rotation about a fixed axis, which involves only 3 variables
to represent the camera motion. In the two reported experiments the cam-
era’s motion is made to adhere to the motion restriction; the average accuracy
of the reconstruction is 2.4% (using 25 frames) in one experiment and is 0.9%

(using 20 frames) in the other. It is clear from the nature of the formulation

1Each robot motion involves 6 variables (3 for translation and 3 for rotation) and each
3D point involves 3 variables (x,y,z). The scale ambiguity [30] decreases the total number

of unknown variables by 1.



that this technique cannot be generalized to arbitrary robot motion.

In a more general type of allowable motion, the objects in the scene are
assumed to turn and move at a constant rate. 2 This reduces the number
of motion variables from 6m — 1 to 7. Broida & Chellappa (3] get a recon-
struction of the scene within 2.5% accuracy in a 12 image sequence when
the object in the scene moves and turns at a constant rate. However, in
a second sequence, in which the object does not turn and move at a con-
stant rate, the error is as high as 40.3% over 16 images. Kumar, Tirumalai
and Jain [14] also restrain their object motion to constant rate of rotation
and translation. They do not report quantitative results for real image se-
quences. Franzen (7] allows a slightly more general motion of objects in the
scene, called chronogenous motion, which allows constant acceleration of the
object. His approach requires only 14 variables to represent the motion. Rea-
sonably good reconstructions within an accuracy of about 7.4% is reported
for 8 images of the UMASS Rocket-Field Sequence (part of a standardized
database).

Instead of constraining the object motion, Taylor, Kriegman and Anan-
dan [24] require that the robot camera move on a plane. With this constraint
on the camera motion they cut down the number of motion variables from
6m — 1 motion variables to 3m — 1. No real image experiments are reported

yet.

2The sitnation in which the objects move rigidly and the robot is stationary is equivalent
to the situation in which the robot moves and the objects are stationary.



Of all the batch methods, the work by Tomasi [29] involves the most
unrestricted method, without any constraints on the robot camera motion.
However, the problem with this approach is that it assumes that the 2D
picture is an orthographic projection, i.e. the light rays striking the camera
image are parallel. This assumption restricts the usability of the method to
situations involving very far away objects, such as objects viewed from an
airplane. The reconstruction is as accurate as 2.4% in a 150 image sequence
that is reported [29].

To conclude, due to the large number of motion variables involved, which
result in high computational time and unrobust optimal solutions, batch
methods are useless for realistic, robotic applications where a model of the

3D scene has to be acquired in unmodeled, arbitrary environments.

2.1.2 Problems with Recursive Methods

Unlike batch MFSFM methods, recursive methods assume that all past im-
ages are not available; rather, they assume that only a reconstruction of the
scene 1s available along with an estimate of the error of this reconstruction.
Recursive methods try to refine the reconstruction by incorporating informa-
tion from the new image (or new pair of images) obtained from a new robot
position. However, this refinement is only possible if the estimate of the re-
construction error reflects the actual underlying error in the reconstruction.

One representation of the reconstruction error is a complete covariance

matrix. That is, if the scene is reconstructed by n 3D points, then the re-
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construction error is represented by a covariance matrix of size 9n2. This
covariance matrix is difficult to compute, expensive to store, and compu-
tationally complex to manipulate. However, it is argued by Thomas [28]
that every entry of the covariance matrix is meaningful; neglecting any entry
amounts to a wrong approximation of the actual reconstruction error (for
general robot motion). A simplistic explanation is as follows. The source of
error in all structure from motion algorithms is the error in the estimated
robot motion. The motion error affects all the 3D coordinates of the re-
construction in a systematic way i.e., the errors in all the 3D coordinates
are correlated. Since every element of the covariance matrix represents the
correlation of the error between pairs of 3D points, neglecting any non—zero
element in the covariance matrix has dire consequences.

In previously reported work, the 9n? elements of the covariance matrix are
approximated by much fewer than 9n? elements. Table 2 provides the number
of elements for the various algorithms. The simplest class of approximations
involve using only n elements to represent the reconstruction error. Each of
the n elements approximates the expected error of distance of one 3D point
from the robot camera. Matthies et. al. [18], [L7] use such an approximation
of the error, but constrain the camera to move exactly parallel to a fixed
line, and obtain a reconstruction of 0.5% error using 11 images. Heel [9] [10]
also approximates the error with n elements, and reports reasonably good

qualitative results for cases when the camera moves exactly in a straight



line. In these two cases the approximation of the covariance matrix by n
elements seems to be accurate enough to obtain reasonable reconstructions,
but this performance is most likely due the highly restrained motions. This
observation agrees with the case reported by Shigang, Tsuji, and Imai [22],
who also use only n terms to approximate their error, but consider more
general motions than Matthies et. al. and Heel. When they allow the
camera to move freely in a plane, their reconstruction error is 15% even with
as many as 40 images. Ando [1] also uses n elements but only simulation
experiments are reported.

The next category of approximations involve using 9n elements to approx-
imate the 9n? covariance matrix. Stephens et al. [23] report reconstructions
within 1% error for 1 point after 50 frames in the case of motion straight
ahead. Cui, Weng and Cohen [4] also use 9n elements to approximate the
full covariance matrix but allow for erroneous robot motion, unlike Stephens
et al. The reported accuracy of the reconstruction (from a real image se-
quence) fluctuates randomly.

The algorithm developed by Thomas and Oliensis [26] [19] [27] uses the
full covariance matrix. Highly accurate reconstructions (as accurate as the
ground truth in 7 frames) have already been reported by Thomas and Oliensis
[27] for image sequences without assuming any constraints on the robot cam-

era motion. In section 4 of the present paper, two experiments are reported

with errors of 1.8% and 2.1%.



In conclusion, of the two reported multi-frame structure from motion
algorithms for general robot motion [27] [4], the algorithm developed by
Thomas and Oliensis [27] produces the most accurate 3D scene reconstruc-
tions. Using this algorithm the output of the bootstrapping stage is a 3D
scene model and an estimate of the error in the model. The algorithm at-
tributes the error in the 3D model to the incorrect estimation of the camera
motion and captures this error as cross-correlation terms of a covariance

matrix.

3 Robot Position Estimation Phase

Once a stable 3D model has been obtained from the bootstrapping stage,
this 3D model is given as input to the position estimation stage. The algo-
rithm uses this 3D model together with the 2D image from the current robot
position in order to determine the robot’s position. The algorithm used in
this work is a robust position estimation algorithm developed by Kumar, [13]
which can handle noise in the image as well as in the 3D model. However,
this algorithm can effectively account for noise in the 3D model only if a
reliable estimate of the error in the 3D model is known (as provided by the
bootstrapping stage).

The position estimation algorithm determines the robot’s rotation and
translation that has moved it from the origin, (0,0,0), of the 3D model’s

coordinate system. In order to determine the robot motion, the 3D model



and the 2D image measurements are related through an unknown coordinate
transform (of rotation and translation) and a known perspective, projection
transform (of the camera). The problem of determining the robot motion is
then cast as an optimization problem in terms of the the 3D model coordi-
nates and the 2D image coordinates and solutions involving robust optimiza-
tion techniques. ® One such robust optimization technique is Maximum-
likelihood estimation [12] as applied to the position determination problem
by Haralick and Joo [8]. Another robust optimization method has been based
on minimizing Least Median Squares as used by Rosseuw and Leroy [20], Fis-
chler and Bolles [6] and Kumar [13]. However, the only reported work that
allows for error in the 3D model is that of Kumar [13]; this makes it the only
applicable algorithm for the position estimation phase for the Automatic

Position Estimation algorithm presented here.

4 Experiments

In the following, two experiments are reported to provide empirical evidence
for the plausibility of the Automatic Position Estimation algorithm. The first
experiment is a simulation and the second experiment involves real imagery
obtained from a moving robot. Building (or refining) the 3D model in the
bootstrapping stage is of time complexity O(n? if the model is made up of n

3D points. This translates to approximately 4 minutes (for each refinement)

3For details refer to a detailed review by Kumar [13].
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on a TI explorer for a model with 30 points.

4.1 Experiment 1: Simulated Robot Motion

The first experiment is a synthetic experiment that involves determining the
position of the robot outside the Computer Science building at UMASS. In
the bootstrapping stage of this experiment the robot is moved along the
perimeter of a circle, 4 ft in diameter, with the robot’s camera aimed ap-
proximately at the building over 130 ft away (Figure 1 shows the building).
The camera parameters were: 70° FOV, 512 x 512 image size, focal length
15.24 mm and an image noise o of 0.45 pixels (corresponding to a flow error
o of 0.64 pixels). Figure 4 shows the error in the 3D model acquired by the
bootstrapping stage over time; the 3D model improves and finally after 25
moves of the robot, the model is accurate on an average to within 1.85% (i.e.
3.95 ft for 30 points between 132 and 275 ft from the robot). Figure 2 shows
the 3D model acquired by the bootstrapping stage after 25 movements. The
3D model consists of the 3D coordinates of 30 points which are the corners of
the faces* shown in Figure 2. The 3D model and the error in this model were
used by the pose determination algorithm of Kumar [13]. The robot was
now moved 30 ft towards the building in steps of 3 ft along with rotations of
[—1.0°,1.0°] around the vertical axis. The robot’s position was estimated to

within an accuracy of 10.0 inches through all the robot’s movement. Figure

4The points have been manually connected into faces in order to display the accuracy
of the reconstruction.
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3 shows the actual robot path and the recovered robot path. After 30 feet of

motion the robot’s final position was estimated with an error of 5.4 inches.

4.2 Experiment 2: Real Robot Motion

The second experiment involves a real image sequence of 10 images ob-
tained from a robot moving in the lobby of the Computer Science Depart-
ment at UMASS. The robot moved nine times straight ahead, about 1.4
ft/move (with small, yet problematic, rotations). The camera parameters
were: (29.3°,22.9°) FOV, 256 x 242 image size and focal length 16 mm. In
this experiment the 3D model was obtained by using the sequence in reverse
(frame 10 to 1) in the bootstrapping stage. In the second phase the 3D
model and the images from the same sequence (frames 1 to 10) were used to
determine the position of the robot at each step®. Figure 5 shows how the
3D model improves, with a final accuracy of 2.1% (i.e. 0.75 ft for 31 points
between 25 ft and 42 ft). Figure 6 shows the true reconstruction (obtained
by hand) and the reconstruction that was automatically acquired. The re-
construction consists of the 3D coordinates of 31 points. Finally, Figure 7
shows the actual and recovered robot positions. In the 12.8 ft path of the
robot, the error in each recovered robot position lies between 3.2 inches and

4.7 inches.

SDue to practical considerations, the same sequence was used for both stages of the
algorithm. However, whether the same or a different sequence is used does not affect the
performance of the algorithm, as shown by the results of the previous experiment.

12



5 Conclusion

The technique described here provides a feasible way of automating robot po-
sition estimation. The algorithm involves two stages : a bootstrapping stage
which provides a 3D model and a position estimation stage which determines
the motion of the robot. Of the existing algorithms for acquiring 3D models
the algorithm of Thomas and Oliensis [27] is the most accurate one for gen-
eral robot motion. Of the existing position estimation algorithms the only
one that can use automatically acquired (i.e. noisy) models is that of Ku-
mar [13]. The empirical results presented here show that coupling these two
algorithms results in a promising Automatic Position Estimation algorithm.

In all previous work accurate 3D models had to be built by hand before
the robot position estimation algorithm could be applied, severely restricting
the physical environment of the robot. The present work shows that this
restriction can be removed to allow for monitoring robot position even in

unmodeled environments - a step that is essential for autonomous navigation.
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ALGORITHM NUMBER OF RESULTS ON REAL IMAGE SEQUENCES
VARIABLES ACCURACY | COMMENTS
Sawhney et. al. [21] 3 0.9% (25 images) | Camera moves according to constraints
Broida et. al. [3] 8 2.5% (12 images) | Object moves according to constraints
40.3% (16 images) | Object moves violating constraints
Kumar et. al [14] 8 - Only qualitative results
Franzen (7] 14 > 7.4% (8 images) | From IEEE motion database
Taylor [24] Im-1 - Only synthetic results
Tomasi [29) 3m -1 2.4% (150 images) | Object far away

Table 1: Batch model acquisition algorithms showing the number of motion variables and accuracy.

ALGORITHM NUMBER OF RESULTS ON REAL IMAGE SEQUENCES
ELEMENTS ACCURACY | COMMENTS

Heel (9] - Only qualitative results
Matthies et. al [17] 0.5% (11 images) | Only pure translation
Ando [1] - Only simulations

Shigang et. al. [22] 15% (40 images) | Only planar motion

Stephens et. al. [23] 1% (50 images) | Results for only 1 point

Cui et. al. [4] random fluctuation | Ground truth unknown: no %s
Thomas et. al. [27] In? 0.25% (7 images) | Large rotations

5.8% (11 images) | From IEEE motion database

SMEIEIEIEIE

Table 2: Recursive model acquisition algorithms showing the number of elements used to model the reconstruc-
tion error.
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Figure 1. True 3D model of building

Figure 2. Automatically acquired model

Figure 3. Robot path: truth (gray) and recovered (black)
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Figure 5. Enror in the acquired 3D model of the CS department lobby



Figure 6. True (top) and automatically acquired models of 31 points

Figure 7. Robot path: truth (gray) and recovered (black)



