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Abstract

In robot navigation a model of the environment needs to be reconstructed for various
applications, including path planning, obstacle avoidance and determining where the robot
is located. Traditionally, the model was acquired using two images (two—frame Structure
from Motion) but the acquired models were unreliable and inaccurate. Recently, research
has shifted to using several frames (multi-frame Structure from Motion) instead of just
two frames. However, almost none of the reported multi-frame algorithms have produced
accurate and stable reconstructions for general robot motion. The main reason seems to
be that the primary source of error in the reconstruction - the error in the underlying
motion — has been mostly ignored. Intuitively, if a reconstruction of the scene is made
up of points, this motion error affects each reconstructed point in a systematic way.
For example, if the translation of the robot is erroneous in a certain direction, all the
reconstructed points would be shifted along the same direction. The contributions of this
paper include mathematically isolating the effect of the motion error (as correlations in the
structure error) and showing theoretically that these correlations can drastically improve
existing multi-frame Structure from Motion techniques. Finally it is shown that new
experimental results and previously reported work confirm the theoretical predictions.

Key words: Structure from Motion (SFM), Multi-frame SFM, Modeling Motion Error,
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1 Introduction

It is crucial in robot navigation that the robot has an internal model of its environment.
The model of the environment can be used in several ways, including path planning, obstacle
avoidance, and determining where the robot is located. In order to reconstruct the environment
using a camera, at least two different views are required. One attempt to obtain the two
views has been to use a stereo camera pair. However, an inherent problem with stereo is the
limited distance between the cameras mounted on a robot; the smaller the distance between
the cameras, the less accurate the reconstruction of the environment. The problem of the
fixed, short distance between the cameras can be solved if instead of a fixed arrangement, one
camera is moved from one point to another. This is the case of eztended stereo, or Structure
From Motion (SFM). ! Apart from the fact that almost any pair of views of the scene can be
obtained ~ in effect by manipulating the distance between the cameras — SFM and stereo are
logically equivalent. Due to its advantages we have chosen the SFM paradigm to reconstruct
the environment and argue that the best way to implement such a paradigm crucially involves
accounting for the motion error in a recursive multi-frame algorithm.

Once Gibson [13] had noted that observer motion and distance to objects correlates with
retinal image changes (also called image flow or optical flow), several researchers attempted to
discover whether given the change in the retinal image it is possible to recover the observer
motion and location of objects. Initially, most of the research concentrated around recovering
motion and object location based on the image flow obtained from just two retinal images
(two—frame SFM) - the equivalent of stereo in motion (Tsai and Huang [38], Longuet-Higgins
and Prazdny [19], Bruss and Horn [5], Prazdny [23], Adiv [1] among others).

Two—frame SFM has failed to produce accurate reconstructions because of various problems.

The first problem is due to inherent ambiguity in determining the motion, even in the absence

1 Structure stands for scene reconstruction which consists of a representation of the scene with e.g. 3D points.



of image noise. For example, Fa.ugefas and Maybank [10] have shown that when motion is
computed from 5 points, there are as many as 10 possible solutions for the motion. Horn [17]
points out that ambiguities are especially prevalent when image points lie on a hyperboloid of
one sheet or its degeneracies. Adiv [2] claims that there is a large number of incorrect motion
solutions that induce flow fields similar to the correct one. As explained by Spetsakis and
Aloimonas [29], another inherent ambiguity seems to be the preference for movement straight
ahead over any other directions.

The problem of ambiguity is compounded by the presence of noise in the image, low image
digitization, point mismatching, feature mismatching, and/or erroneous camera calibration.
Adiv [2] provides a list of factors that contribute to error in recovering motion and structure
such as a small field of vision, faraway objects, a small absolute translation step, low image
resolution, high pixel noise level and sparse flow field.

Furthermore, it appears that the limits of the two—frame approach have been reached. Weng,
Huang and Ahuja [42] claim (based on simulations) that the performance of their two—frame
motion algorithm has reached the theoretically possible Cramer-Rao [7] [24] lower bounds of
optimal estimation of the motion parameters. On the other hand, Dutta and Snyder [9] argue
that even small rotation errors (which all two—frame motion algorithms suffer from, including
the near optimal performance algorithms) cause a large error in structure. Assuming a realistic ‘
situation ? they show that most points in the image can only be reconstructed to within an
error of 10 to 20%. This means that even algorithms that are shown to be optimal in estimating
motion cannot produce a useful model of the environment.

Due to the problems in two-frame SFM, the obvious solution has been to use more than
two frames to reconstruct the environment. Although it is theoretically conceivable that using

enough different views should make it possible to achieve any required accuracy, stable and

The camera is assumed to move directly ahead. The movement is 1 /10th the distance to the point being
reconstructed. The pixel error in the image coordinates is 1 pixel in an image of size 256 x 256.



reliable 3D reconstructions have not been reported in previous multi-frame SFM (MFSFM)
work [14] [15] [28] [3] [31] [8]. Based on an algorithm presented by Thomas and Oliensis [35)],
we show that in order to obtain a stable and reliable reconstruction of the environment (for
general motion), the effect of the interframe motion error has to be taken into account; we
argue that ignoring this component has resulted in the failure of previous MFSFM algorithms.
The theoretical and experimental evidence for the crucial role of motion error (in MFSFM) is

the main contribution of this paper.

2 Problems in MFSFM

Although it is reasonable to move from a two~frame to a multi-frame paradigm, using multiple
images introduces a different set of problems. The problems vary depending on whether the
algorithms are baich methods or recursive methods. Batch methods attempt to reconstruct the
3D scene assuming that all images from every camera position are available before processing
is begun ([26] [4] [18] [11] [32], [37]). Recursive methods, on the other hand, assume that all
past images are not available; rather, they assume that only the most recent reconstruction of
the scene is available along with an estimate of the error in this reconstruction [14] [15] [28] [3]
31] 8]

Since batch methods use all the available information in one shot they should potentially
produce the best results. However, the main problem with batch methods is that there is a large
number of variables (especially for all the interframe camera motions) when a robot movesin a
general environment. If the scene is reconst;ucted based on m + 1 pictures (from m arbitrary
robot moves) and represented using n features (say, n 3D points), then the most general batch

method involves 6m — 1 + 3n variables 3. The number of points, n, determines the granularity

of the scene reconstruction. If this granularity is fixed (i.e., n is fixed), then the batch methods

3Each robot motion involves 6 variables (3 for translation and 3 for rotation) and each 3D point involves 3
.variables (x,y,z). The scale ambiguity [38] decreases the total number of unknown variables by 1.



have to deal with 6m — 1 variables in the most general case. This is a very large number of
variables (59 for 10 movements) with a complicated non-linear error function.

In an attempt to make the problem manageable, batch methods have restricted general
camera motion to simplified motion ([26] [4] [18] [11] [32]), under the assumption that any
deviation from the assumed motion could be dealt with as system noise. However, the problem
with such a restriction is that it becomes useless in a realistic situation and deviations from
the assumed simplistic motion models cannot be usually dealt with as noise. The only batch
algorithm reported for unrestricted motion is that of Tomasi [37]. However, in order to restrict
the complexity of the search space of motion variables, Tomasi had to make the assumption that
the camera model is an orthographic projection, i.e. the light rays striking the camera image are
parallel. This assumption restricts the usability of the method to situations involving objects
reasonably far away from the camera, such as objects viewed from an airplane; its applicability
to obstacle avoidence is yet to be studied. The accuracy of Tomasi’s reconstruction of shape
(2.4%) is compa,rat;le to the accuracy of the reconstructions reported in this paper (cf. Section
4).

Unlike batch methods, recursive MFSFM algorithms need not impose such restraints on the
interframe camera motion or the camera model (although early research on recursive MFSFM
typically was constrained; cf. discussion in Section 4). MFSFM algorithms are also more
practical for robot navigation applications since neither time nor storage is lost waiting until
enough frames have been acquired. However, in order to recursively refine the 3D structure,
a reliable estimate of the error in the 3D structure is required. If the estimate of the error
is unreliable, this results in random behaviour or possibly systematically erroneous behaviour.

One of the biggest problems in MFSFM is that it is difficult to represent the error in the

structure reliably.



One representation of the reconstruction error is a complete covaria,nc.e matrix.? That is,
if the scene is reconstructed by n 3D points, then the reconstruction error is represented by
a covariance matrix of size 9n?. This covariance matrix is difficult to compute, expensive to
store, and computationally complex to manipulate. Presumably for these reasons, almost all
of the work in recursive MFSFM has only used a portion of the covariance matrix, with poor
results. Thomas [36] claims that every entry of the covariance matrix is meaningful; neglecting
any entry amounts to a wrong approximation of the actual reconstruction error (for general
camera motion). A simplistic explanation is as follows. The main source of error in all structure
from motion algorithms is the error in the estimated camera motion. The motion error affects
all the 3D coordinates of the reconstruction in a systematic way; i.e., the errors in all the 3D
coordinates are correlated. For example, if the translation component of the camera motion
1s erroneous, each 3D coordinate would be displaced along the same direction. Since every
element of the covariance matrix represents the correlation of the error between pairs of 3D
points, neglecting non-zero elements in the covariance matrix may have dire consequences. The

following section is a theoretical analysis of the meaning and the role of cross-correlations in

recursive MFSFM algorithms.

3 Theoretical Motivation for Using Cross—correlations

I P is the entire reconstruction, made up of n 3D points (P;, 2 = 1...7n) then P can be written

as a 3n X 1 vector,
(1)

Since each P; is obtained from a two—frame algorithm effectively by triangulation, it has

4If the underlying error is Gaussian in nature, with zero mean, then the covariance is enough to capture the
entire nature of the error. Even when the error in the reconstruction is a non-linear function of a Gaussian
noise, it has been noticed experimentally that a Gaussian approximation is a reasonable assumption [33].
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two sources of error. The first source is the error in the interframe motion, or the‘ relative
orientation of the cameras. The second source of error is the noise in the image coordinates.
A reasonable approximation of the total error in P; is to express it (using first order terms) as
the sum of the error due to the interframe motion and the error due to the image coordinates;
the error in P; 1s

6PidW+ 6P;

P = =y 5V,

dv; (2)

where W represents the interframe motion and V; represents the image coordinates of the
point; dW and dV; represent the respective errors.

When the error in P is represented as a covariance matrix the elements of this matrix are
given by the following equation :

E(dP, dP,) E(dP,dP,) --- E(dP; dP,)

E(dP, dP,) E(dP,dP,) --- E(dP, dP,)

COV(dP dPT) = (3)

E(dP, dP;) E(dP,;.sz) .-+ E(dP, dP,)

where E(z) denotes the expected value of z.
In this theoretical analysis, in order to bring out the meaning and role of the cross—
correlation terms clearly, we will assume that we have a reconstruction consisting of just two

points.

3.1 The Meaning of Cross—correlations: The Two Point Case

In this case, the covariance matrix is reduced to

(4)

- E(dP, dPy) E(dP, dP
COV(dP dP") = ( EEsz dPI; EEsz dng )



This covariance matrix has four correlation terms, two of which are equivalent (E(dP, dP;)
and E(dP; dP,)). ® The other two (E(dP, dP,) and E(dP; dP;)) are the covariance of the
error in P; and P,; these are typically assumed to represent the complete error. However, here
we will concentrate on the cross-correlation term, E(dP, dP,).

Using Equation 2 the cross-correlation term can be expanded as in Equation 5:

6Py

E(dP, dP,) = E[(——dW+ —dV1) ( 5P2

+ gpedVa)] (5

Since it is realistic to assume that any two arbitrary image coordinates (of chosen points)

are corrupted by independent noise, © i.e.

E(dV1dV,) =0 (6)
one of the terms in the expansion of Equation 5 will vanish. The resultant expansion is given
in Equation 7:

6P,
§W

— E(dWdWT )% + %E( dvT)

5P2 5P1
6V, 6V

6P,

E(dP; dP;) = =

E'(d'VTdW)

Given Equation 7, the only way the cross—correlation term will end up being zero is when
the three terms fortuitously cancel; in all other cases the cross—correlation term has an effect
on the performance of the recursive MFSFM algorithm. Furthermore, the situations in which
the three terms cancel each other out are most likely rare.

For the sake of exposition let us assume that the coordinates of the two points have changed
considerably between the two images, resulting in large optical flow. Therefore, a small error
in the optical flow (which corresponds to a small error in V) has little effect on the error in the
motion, dW; i.e.

E(dWdVT)~0 i=1,2 (8)

5Both E(dP; dP3) and E(dP; dP)) represent the cross—correlation of the error in P; with the error in P
and hence are identical.

SIf pomts are tracked separately, tracking a.lgonthms will generally not introduce correlated errors between
any two image points.




For this particular case, the expansion of Equation 7 is :

E(dP, dP,) = %COV(dW dW)

i ()

Equation 9 shows that the cross-correlation is directly proportional to the motion error,
represented as the covariance of the error in the motion (dW). If Equation 8 does not hold the
situation is more complicated: the cross—correlation is influenced not only by the motion error
but also (indirectly) by the error in the image coordinates. In either case, the cross—correlation

term 1s closely related to the motion error.

3.2 The Effect of Cross—correlations in Kalman Filterihg

In this section the analysis is extended to study the effect of cross—correlations on refining
reconstructions using the Kalman filter.

The goal of the Kalman filter is to optimally fuse the reconstructions over time and obtain
the best reconstruction (by limiting the reconstruction error). If we assume that the noise in
every new reconstruction (P(¢) at time t) is Gaussian (cf. Section 3.1), then the optimal fused
reconstruction is the sum of the individual reconstructions weighted by the inverse of their
covariances; this mai(es intuitive sense since if a particular covariance is large - suggesting a

large error in the reconstruction - that reconstruction should be given less weight. Given this

the optimal fused reconstruction (P) at time ¢ is as follows (i.e. standard Kalman filtering [12])

P(t)=N Zt; COV(P(t))™* P(t) (10)

In order to determine the exact contribution of a single recomstruction (COV(P)™* P or

Weighted P) at any time (t) the covariance can be expanded using Equation 4 (and assuming

"N (in Equation 10) is a normalizing term which is irrelevant for this analysis.



Equation 8 is valid) in the following way:

COV(P) = ( 2 Lﬁ"’“ Szlfljl” ) (11)
where
5= %’_COV(.N.- JV;)% (12)
and
My = %COV(dW dW)% | (13)

S; represents the error in the 3D coordinates due to the error in the image coordinates (dV)
assuming that the motion is perfectly known; M;; represents the error in the 3D coordinates
due to the error in the interframe camera motion (dW) assuming that the image coordinates
are perfectly known.

Weighted P can now be written as

. _ 51+ My, M, - P,
Weighted P = ( My, Sy + My ) ( P, ) (14)

Equation 14 can be expanded (after Bar-Shalom and Fortmann [27]) to obtain:

Weighted P = ( (S11 + Mn — Mip(5z2 + M22)—1M1Tz)_1(P1 — Mi3(Sa2 + M32)™1P3) )

(S22 + Mgz — My (511 + M11) *ME) (P2 — May(S11 + M1y)™'Py)

(15)

Let us now concentrate on the effect of the cross—correlation on a single optimally fused 3D

coordinate (P;); all of the relevant information is contained in the first row of Equation 15.

The second term (in the first row) can be thought of as a Corrected P;:
Corrected P, = P, — Mlz(Szz + Mzz)_ng (16)

10



If there is no error in the motion - i.e. M, is zero — the Corrected P, is identical to P;.
However, since this is generally not true in practice, the value of P, has a corrective effect
on P;. The magnitude of the correcfion depends on the size of the cross-correlation M,.
Since we have shown that the cross—correlation captures the motion error (cf. Section 3.1), the
magnitude of the correction depends on the (shared) motion error that corrupts both P, and
P,.

The covariance of Corrected P, is
COV(Corrected P1) = E([P1 — M13(S2z + Ma3) ' P) [Py — My3(S22 + Ma) 7' P,)7) (17A)
Again, this can be simplified to obtain:
COV(Corrected Py) = S11 + My — May(Saz + May) ' MT, (18)

As stipulated by Kalman ﬁlteriné, any contribution (towards the fused optimal estimate) has
to be weighted by the inverse of its covariance. Thus we expect that Corrected P, (Equation
16) should be weighted by the inverse of its covariance. Since the right-hand side of Equation
18 turns out to be equal to the first term (in the first row) of Equation 15 above, this is ezactly
the case.

This analysis reveals that the cross—correlation terms are important. If the interframe
motion error is large, then the cross—correlation terms become significant and play a crucial role.
Since in SFM the motion error is typically large [9] we predict that without cross—correlations
the benefits of Kalman filtering are lost, i.e. the fused reconstruction would be neither stable

nor accurate. In the next section we present experimental evidence to this effect.

4 Experimental Data

The previously reported MFSFM algorithms conform to the prediction of the last section.

Heel [14] [15] approximates the entire covariance matrix by just the error terms relating to

11



one coordinate Z (i.e., when reconstructing n 3D points, his covariance matrix has n elements
rather than the full 9n? elements); only qualitative results are reported and the camera motion is
restricted to a straight line.® Shigang, Tsuji, and Imai [28] also use only n terms to approximate
their error, but consider more general motions than Heel. When they allow the camera to move
freely in a plane, their reconstruction error is 15% even with as many as 40 images. Ando 3]
also uses n elements (for general camera motion) but only simulation experiments are reported.

The next category of approximations involve using 9n elements to approximate the 9n?
covariance matrix. Stephens et al. [31] report reconstructions within 1% error for I point after
50 frames in the case of motion straight ahead. Cui, Weng and Cohen [8] also use 9n elements to
approximate the full covariance matrix and apply the algorithm for the case of general camera
motion. The reported accuracy of the reconstruction (from a real image sequence) fluctuates
randomly. Since no comparison with the ground truth is reported it is unclear as to how well
this algorithm really does.

The algorithm developed by Thomas and Oliensis [34] [22] [35] is the only recursive MFSFM
algorithm (for general motion) that uses the full covariance matrix with 9n? elements. Apart
from using cross—correlations, their algorithm is similar to previous recursive (Kalman filter)
MFSFM algorithms. Highly accurate reconstructions (as accurate as the ground truth) have
already been reported by Thomas and Oliensis [35] for image sequences with no constraints on
the robot camera motion. Here, their algorithm is used to test for the effect of cross—correlations
in real image sequences by comparing results from the same algorithm with and without cross-
correlations. Such a comparison has not been previously done; it will be presented in the

following section for two real image sequences. °

8Matthies et. al. [21], [20] also use only n elements to represent the reconstruction error; however, they
constrain the camera to move exactly parallel to a fixed line, and they assume that the ezact camera motion
is known. Since camera motion is known (an impractical assumption) the cross—correlations should not play a

role. Indeed Matthies et. al. obtain a reconstruction of 0.5% error using 11 images.
9Thanks to Harpreet Sawhney and Rakesh Kumar for these sequences and the ground truth measurements.
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4.1 Experiment I: Reconstruction of A Rotating Box
4.1.1 Description of the Input"

A sequence of images was taken of a box rotated by a robot arm; the camera was mounted on a
stationary tripod. The box was rotated by a robot arm. Each rotation of the box was approx-
imately 4 degrees around its vertical axis. The camera used to obtain the images was a Sony

black and white CCD camera. The parameters of this camera are given in Table 1. Figure 1

[focallength | fovX | fov Y | é-iﬁ |
[ 6cm  [23.4059° [ 22.387° ] 256 x 242 |

Table 1: Ca'mera Parameters. The camera parameters of the Sony black and white camera
used in the rotating box sequence.
shows the first and the last images of the nine image sequence. Ground truth measurements of
the 3D coordinates of the selected points on the box were done by Sawhney [25]. The measured
3D coordinates of the points at the final position of the box (in the camera coordinate system)
are shown in Table 2. The accuracy of these measurements is +1.5mm.1°

Since the algorithm used here is a point-based algorithm (i.e. it recovers 3AD coordinates
of points), the algorithm requires a set of 2D image points as inpu1;. In this experiment the
points that were reconstructed are the same 35 points that have been used in previous work by

Sawhney [25]. All 35 points were corners of the small black squares on the box. ! Tracking of

corners was done using the tracking algorithm of Williams and Hanson [43]. 2

105awhney (personal communication).

11This MFSFM algorithm is not limited to corner points; any tracked point can be reconstructed. However,
since tracking is robust when the point is a corner, choosing corners prevents confusion of tracking problems
with problems that arise due to the reconstruction algorithm.

2Due to the well known scale ambiguity in SFM [38], the algorithm needs some information concerning the
scale of the reconstruction. The information could be the true distance the camera moves between two frames,
the true distance between any two points, or the average distance from the center of the scene to each point.
In each case the information given to the algorithm involves a single number introduced at the beginning of the
process. For the experiments reported here we use used the third method - introducing the average distance to
points.

13



(a) First image

(b) Last (ninth) image

Figure 1: Rotating Box Image Sequence.
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Point Number X Y - Z
1 47.087 | 48.6205 | 610.082759
2 37.5461 | 41.2704 | 600.732575
3 -33.2854 | 26.938 | 592.202156
4 -45.4475 | 31.0323 | 600.916377
5 .56.2068 | 34.7835 | 609.540598
6 28.3388 | 34.579 | 591.382392
7 18.7286 | 27.4399 | 582.032208
8 -10.3954 | 19.573 | 575.043713
9 .22.43 | 23.1242 | 583.667934
10 -2.00129 | 41.6572 | 566.390325
11 0.4232 | 21.1895 | 572.682025
12 18.4164 | 106.617 | 666.338494
13 57.0223 | 42.159 | 627.382589
14 72.8858 | -0.394479 | 668.531358
15 36.883 | -28.2434 | 631.130623
16 26.5855 | -35.5439 | 621.780440
17 -25.9501 | -35.3044 | 632.040387
18 -27.3888 | -22.5297 | 624.090741
19 -30.6847 | -18.718 | 632.714962
20 -38.2377 | -31.5477 | 640.664608
21 76.1267 | -24.8034 | 684.430650
22 40.0046 | -52.9064 | 647.029916
23 30.0219 | -60.3532 | 637.679732
24 -23.2579 | -60.5819 | 647.939679
25 -35.3715 | -56.511 | 656.563901
26 -24.695 | -47.701 | 639.990033
27 86.5104 | -43.5601 | 709.680126
28 -4.56151 | 53.0589 | 584.364729
29 22.2511 | 85.194 | 630.389685
30 -2.40328 | -42.8458 | 614.791944
31 -49.7363 | 68.2467 | 618.861614
32 41.3018 | 87.6421 | 631.115647
33 -6.50797 | 63.7761 | 602.339134
34 -18.8661 | 78.8061 | 628.937760
35 69.6582 | 24.0633 | 652.632065 |

Table 2: Ground truth of tracked points at the final position of the box (in the
camera coordinate system).
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4.1.2 Results — With and Without Cross—Correlations

The performance of the algorithm with and without the cross-correlation terms is presented
here. For comparison we include the results from a standard two—frame approach: Horn’s
relative orientation algorithm [17]. 3

In order to determine the performance of each algorithm in reconstructing the shape of the
box, the reconstruction is rotated and translated (rigidly) to align with the ground truth. The
mismatch between the ah'gngd reconstruction and the ground truth is the error in the shape.
The alignment that minimizes the mismatch error can be determined exactly (in closed form)
by Horn’s absolute orientation algorithm [16].

The error in the shape after alignment is reported for each of the three motion algorithms.
If the 3D coordinate of a point after alignment is P; and the true 3D coordinate of the same
point is T, then,

mismatch error =|P; — T | (19)

The overall error of the entire reconstruction is reported as an average of the individual

mismatch errors over the set of reconstructed points.

Results from Two-frame Algorithm In the two—frame approach consecutive pairs of im-
ages are used to reconstruct the scene (e.g. the reconstruction associated with the 5th frame
involves using the 4th and 5th frames). From the graph (Figure 2) it can be observed that the
error in the two-frame reconstruction is fairly high (the average error is 8.8 mm; the dimensions
of the box are 133 mm x 157 mm x 70 mm and the distance between any two points ranges
from 15 mm to 207.19 mm). The random and high fluctuations (e.g. in frame 4 and frame 7)

make the two—frame reconstructions unreliable.

13Horn’s algorithm provides the input for Thomas and Oliensis’ MFSFM algorithm.
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Figure 2: Box reconstruction error for MFSFM algorithm with and without cross—
. correlations. The error in the two—frame algorithm is also plotted for comparison.
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Results from MSFSM Without Cross—correlations This algorithm is identical to the
one developed in [35] except that cross—correlations of the error covariance matrix are ignored.
From the graph (Figure 2) we can see that after an initial drop in error, the error fluctuates
around 11 mm, but has a very slow decrease. Notice also that in frames 4 and 7 the error
increases, showing that the algorithm is unable to ignore the erroneous individual two—frame

reconstructions.

Results from MFSFM With Cross—correlations The MFSFM algorithm with cross-
correlations yields the best stability and accuracy of the three approaches compared here.
Figure 2 shows that the average reconstruction error falls monotonically and remains as low as
the error in the ground truth (1.5 mm) for the last 4 frames. Note that the final reconstruction
(after 9 frames) of the MFSFM approach without cross-correlations is 6 times more erroneous

than the final reconstruction when cross—correlations are considered.

4.2 Experiment II: Reconstruction of the Computer Science Lobby

4.2.1 Description of the Input

A sequence of pictures were taken of the Computer Science (CS) lobby by a camera mounted on
a moving Denning mobile robot. Since the CS Lobby is more or less featureless, several posters
were placed on the walls and a few obstacles were placed along the path of the robot. The
robot was commanded to move straight ahead, but the actual movement contains a rotation
and a drift. The camera used to obtain the images was a Sony black and white CCD camera.
The parameters of this camera are given in Table 3.

Figure 3 depicts the first and the last images of the sequence. For this experiment 29 points
were selected from the first image, making sure that each point was visible in the rest of the

images. Of all the corners of posters or doors or other physical objects the 29 points were
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[T focal length | fov X | fov Y Size ||

[ 16 mm [20.27° | 22.865° | 256 x 242 |

Table 3: Camera Parameters. The camera parameters of the Sony AVC-D1 camera that is
mounted on the mobile robot.

randomly selected. Corﬁers were selected so that they could be tracked robustly — as in the
previous experiment (cf. Section 4.1) - using a version of the tracking algorithm proposed by
Williams and Hanson [43].

For 24 points, the ground truth measurements were made by hand using a tape measure
with an accuracy of about an inch (at distances of 25-40 feet). The 3D coordinates of the
remaining five points were approximated by using the measured distance to the wall, Z, and
the coordinates, (X,Y), which were obtained by an algorithm due to Collins [6]. Table 4 shows

the ground truth coordinates in the first robot position.

4.2.2 Results — With and Without Cross—correlations

Again, the MFSFM algorithm which uses the cross—correlations produces the best results.
Ignoring the cross—correlation introduces 50% more error in the reconstruction than in the case
when cross—correlations are taken into account.

The error in the reconstructed 3D coordinates is reported as a percentage of the distance
of the true 3D coordinates from the camera. If the 3D coordinate of a point is P; and the true
3D coordinate of the same point is T}, then,

| Py — T |
| T; |

percentage error =

x 100% (20)

The overall error of the entire reconstruction is reported as an average of the individual

percentage errors over the set of reconstructed points.
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(a) First image

(b) Final (tenth) image

Figure 3: Lobby Image Sequence.

20



Table 4: Ground truth of 29 tracked points with respect to the 1st robot position.
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“Point Number X Y Z Distance
VXEFYZ+ 22
ft ft ft ft
1 T 5.64405 | 3.90701 | 30.73 31.4873
2 4.94663 | 3.93331 | 31.93 32.5494
3 4.92497 | 1.5739 | 31.93 32.3450
4 5.64108 | 1.53307 | 30.73 31.2811
5 5.40205 | 3.26483 | 31.13 31.7635
6 5.1062 | 3.259069 | 31.53 32.1067
7 5.12760 | 2.31601 | 31.53 32.0281
8 5.40635 | 2.34123 | 31.13 31.6826
9 452312 | 3.6612 | 33.33 33.8342
10 3.92329 | 3.70723 | 35.13 35.5423
11 3.92005 | 1.34919 | 35.13 35.3739
12 450811 | 1.27218 | 33.33 33.6575
13 1.11749 | 5.66567 | 42.73 43.1185
14 2.57623 | -1.56078 | 25.68 25.856
15 -0.160206 | 1.26698 | 35.83 35.8528
16 -0.452535 | 0.592612 | 35.83 35.8378
17 -0.444421 | -0.137322 | 35.83 35.833
18 -0.707709 | -2.17432 | 35.83 35.9029
19 -0.710209 | -1.24783 | 35.83 35.8588
20 -1.39912 | -2.17932 | 35.83 35.9235
21 5.85031 | -0.862638 | 20.93 30.5086
22 1.42646 | -1.24638 | 25.68 25.7498
23 1.8694 | -1.48500 | 25.68 25.7907
24 3.50672 | 5.66567 | 42.6653 43.1825
25 2.93134 | 3.03516 | 43.4213 43.6977
26 1.35078 | 3.40882 | 42.8189 42.9828
27 -0.244807 | 4.34697 | 42.2107 42.4346
28 -0.255581 | 3.48176 | 42.2066 42.3507
20 -1.21691 | 3.39113 | 41.8402 41.995




Results from Two-frame Algorithm From the graph (Figure 4) it can be observed that
the error in the two—frame reconstructions is high and fluctuates randomly. Its behaviour is
consistent with the error predicted in a similar scenario by Dutta and Snyder [9], with an average
error of approximately 8%. The reconstruction errors are large making the reconstruction by

itself useless for any realistic application in robot navigation tasks.

Results from MFSFM algorithm without Cross—correlations From the graph (Fig-
ure 4) we can see that this approach leads to better accuracies than individual two-frame results.

However, the reconstruction error does not decrease monotonically; instead it fluctuates around

3.5 %.

Results of MFSFM algorithm with Cross—correlations Again, using Cross—correlations
yields the best accuracy of the three approaches compared here. Figure 4 shows that the average
reconstruction error falls almost monotonically, with a final error of 2.16% after ten frames.
The final reconstruction (after ten frames) of the same MFSFM algorithm which ignores cross-
correlations is 65% more erroneous than the final reconstruction which uses cross—correlations.

Figure 5 shows a complete covariance matrix of the two—frame reconstruction for frame
four. The cross—correlations (the off-diagonal terms) in this matrix are clearly significant in

this case.’

5 Conclusion

We have argued that the cross—correlation terms capture the interframe motion error and
account for it. Ignoring the cross—correlations has direct consequences on the accuracy and
usefulness of the reconstructed models of the environment.

Although the cross—correlations have presumably been ignored because of their computa-

tional complexity, we have shown that they are crucial enough to warrant an attempt to make
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Figure 4: Lobby reconstruction error for the MFSFM algorithm with and with-
out cross—correlations. The error in the two—frame algorithm is also shown for
comparison.
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Figure 5: The Covariance Matrix of the two—frame reconstruction at frame 4 (ob-
tained from using images 3 and 4). The covariance matrix is of size 87 x 87 since it

captures the error in 29 3D points. All terms of have been made positive for the
clarity of the display. Note that the cross—correlations are significant.
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using them computationally feasible. Since the bottleneck of including cross—correlations is the
time required to invert large matrices, one solution is a straightforward parallel implementation
of the algorithm on a SIMD parallel machine such as the Image Understanding Architecture
[39] [40] [41). Such a parallel algorithm should bring down the running time markedly (e.g.
from O(n3) down to O(n) for a reconstruction of # points). Future research will also be di-
rected towards discovering other ways of reducing computational time such as using smaller
(interesecting) subsets of points which are yet large enough to capture the underlying motion

€rror.
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