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ABSTRACT

We consider the problem of routing jobs to one of K parallel queues. Arrivals are independent of
the state of the system but otherwise arbitrary. Assuming that queues have infinite capacities
and the service times form a sequence of i.i.d. random variables with Increasing Likelihood
Rate (ILR) distribution, we prove that the Shortest Queue (SQ) policy minimizes the vectors
of queue lengths in the sense of weak Schur-convex ordering. We give a counterexample which
shows that this result is not generally true when the service times have Increasing Hazard Rate
(THR) but are not increasing in the likelihood rate sense. Finally, we show that when capacities
are finite, the SQ policy stochastically maximizes the departure process and minimizes the loss
counting process.
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1 Introduction

A classical problem in the literature of control of queues is the determination of the optimal
routing policy for customers that arrive in front of a set of K parallel homogeneous service
stations with infinite or finite buffer capacities. The assumption of homogeneity refers to the
fact that all of the customers’ service times are independent and identically distributed (i.i.d.)
random variables. Arrivals are independent of the state of the system, but otherwise arbitrary,
and the service discipline is FIFO. When the service times are exponential, it has been shown
that the Shortest Queue (SQ) policy minimizes queue length vectors in the sense of weak Schur-
convez ordering. (e.g., Winston [13] and Ephremides et. al. [1]). When the capacities at the
stations are finite, the optimality of the SQ policy extends to the minimization of the number
of losses that occur by any time ¢, again provided that the service times form i.i.d. sequences of
exponential random variables (see Hordijk and Koole [2], Menich and Serfozo [5], and Towsley
et. al. [9]). When service times are not exponential, Whitt [12] shows that it is not always
optimal to join the shortest queue.

In this paper, we show that the SQ policy is, in fact, optimal for a much broader class of
service time distributions; namely, distributions with Increasing Likelthood Ratio (ILR) (e.g.
(3]). Our results cover both infinite and finite capacity systems. Specifically, we prove that SQ
minimizes the number of customers in the system in the sense of a weak Schur-convex ordering.
Moreover, SQ stochastically maximizes the departure counting process and also, when there
are finite buffers, it minimizes the loss counting process. We give a simple counterexample (the
main idea drawn from Righter and Shanthikumar [6]) which shows that when service times have
Increasing Hazard Rate (THR), but are not increasing in the likelihood rate sense, SQ need not
be optimal. This contradicts a result by Weber [10] stating that SQ stochastically maximizes
the departure process when service times have IHR.

Our arguments involve the construction of auxiliary policies that allow for idling and/or delib-
erate rejection of customers, and that are compared against an arbitrary policy = on a sample
path. The main idea is to show that, given 7, one can construct a sequence of policies (start-
ing from 7), such that each policy reverses the routing decision when the previous one in the
sequence violates the SQ rule for the first time, resulting in a monotonically decreasing se-
quence of quene length vectors in the sense of majorization. The construction is described in
section 3 which treats systems with infinite capacities, following some preliminary results on
stochastic orderings that are given in section 2. Section 4 contains the counterexample for IHR
distributions. Finally, the extension to finite-buffer systems is given in section 5.

2 Preliminaries

Let N, M, be two K-dimensional real-valued vectors. We introduce the notation N} to denote
the k-th largest element in vector N and define the following ordering (see [4]).



Definition 1 Vector N is said to majorize vector M (written M < N) if
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The definition of majorization describes the fact that the elements of M are ‘less spread-out’
than the elements of N; equivalently, M is ‘more balanced’ than N. A weaker ordering can
be defined by replacing the equality in (1) by an inequality. This implies, Y%, N; > Tk M;,
k=1,---,K. In this case, vector N is said to weakly submajorize vector M (or, weakly majorize
M from below) written M <,, N. Functions related to majorization are defined as follows.

Definition 2 A function ¢ : INX — IR is said to be Schur-convez iff

M <N = ¢(M)< ¢(N), YM,N € INK.

If ¢ is increasing and Schur-convex then M <, N = ¢(M) < ¢(N). Marshall and Olkin [4]
define the following stochastic ordering between random vectors.

Definition 3 If N and M are random vectors, we have

M< B! N if E[¢(M)] < E[¢(N)], V¢ increasing and Schur-convez.

This is also called the weak Schur-convex ordering. Recall that the definition of common
stochastic ordering among two random variables is, X <, Y if Ef(X) < Ef(Y") for all increas-
ing f. Furthermore, a process {X(t);t > 0} is said to be stochastically smaller than another
process {Y'(t);t > 0} if

(X(t1), ..., X(tn)) <ot (Y(t1), ..., Y(tn)),

for all n,t,,...,t,. Similarly, {N(t);¢ > 0} SEI {M(t);t > 0} if

(N(t1),...,N(tn)) SE: (M(t4), ..., M(tn))

for all n,ty,...,t,. For counting processes, a stronger sample path stochastic ordering can be
defined as follows (e.g., [11]).

Definition 4 If {X(t);t > 0}, {Y(t);t > 0} are counting processes then {X(t);t > 0} 2
{Y(t);t > 0} iff there ezist on a common probability space two counting processes {X(t);t > 0}
and {V (t);t > 0} that are equal in law to {X(t);t >0} and {Y (t); t > 0} respectively, such that
for all time intervals [a, b] the jump epochs of {Y (t);t > 0} are a subset of those of {X(t);t > 0}



Clearly, {X(t);t > 0} 2 {Y(¢);t > 0} = {X(t);t > 0} >, {Y(t);¢t > 0}. Finally, we recall
the definitions of non-negative random variables that have increasing hazard rate (IHR) and
increasing likelihood rate (ILR) distributions. Let X be a random variable with density f and
distribution function F. We say that X has increasing hazard rate if f(t)/(1— F(t)) is increasing
int. On the other hand, we say that X is increasing in likelihood ratio if f(t; + a)/f(tz + a) is
increasing in a for all ¢; < ¢5. It is well known that ILR distributions include truncated normal,

uniform, exponential, Poisson and geometric distributions. Furthermore, it is true that if X is
ILR, then it is IHR.

3 Optimality of the SQ policy

In this section, we establish the optimality of the SQ policy when the service times have ILR
distributions and the service stations have infinite capacities. Let £ denote the class of policies
that have instantaneous information regarding the queue lengths and the elapsed service times
of the customers in service. Let N[(t) denote the number of customers at queue i at time ¢,
given a policy 7 in X, and N™(¢) = (NJ(t),..., NE(t)). For the customer that occupies the
server at the ith station, let z7(t) be its elapsed service time and s7(t) be its remaining service
time. Finally, let D™(t) denote the number of departures by time ¢ under .

Throughout the paper, we say that queue i is longer than queue j at time ¢ if this is true in the
sense of Weber [10], i.e., N7(t) > N7(t), or, NF(t) = N7(t) and z7(t) < z}(t). Equivalently,
we say that j is shorter than i. Let SQ be the policy that always routes to the shortest queue.
Let X; denote the remaining lifetime of a random variable X from time ¢ on, given that it
exceeds ¢. In order to prove the optimality of the SQ policy, we need the following result that
is shown as part of a construction in (3].

Lemmal Let X,Y € IRt be two continuous random variables that have the same densitly
flinct.ion f and are increasing in likelihood ratio. Then for all s < ¢, (Y,, i) is equal in law to
(Y,,Y:) that is defined as follows.

(Y’u}-’t) = I(Xa < JYt)(Xt)Xa) +
+1(X, > Xo)[U(X,, Xe)(Xey X,) + (1 = U(Xy, Xe)) (X0, Xe)], (2)
where U(X,,X,) is a Bernoulli r.v. that is equal to 0 with probability p(X,, X:), equal to 1
otherwise, p(X,, X¢) = [f(t + X.)f(s + Xo))/[f(t + Xe) f(s + X,)).

Note that for s < t and X, > X, it follows that p(X,, X;) < 1 due to the assumption of an ILR
distribution. We now have the following result.

Theorem 1 In a symmetric routing system with ILR service stations SQ will minimize the
vector of queue lengths in the sense of ElT ordering, i.e.,

{NS2(e);t 2 0} <pr {N"(t);¢ 2 0}, Vr € 3,

provided that NS2(0) =,, N™(0).
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Figure 1: Arrivals and routing decisions under 7 and p; ¢, is a synchronization point.

Proof. It suffices to prove the theorem for K = 2. We condition on arrival times and initial
queue lengths. We will construct a policy p, that allows for idling such that the following is
true on any sample path:

N?(t) < N™(t), vt > 0. (3)
We say that the two systems (i.e., the one under p and the one under ) are synchronized at
any time ¢ if (N?(t), N2(t)) = (N7 (t), NI (t)), and the customer in service at the quene with
the larger (smaller) queue length (in the sense of Weber) under p has the same elapsed or the
same remaining time as the one at the queue with the larger (resp. smaller) queue length under

7. The proof is by forward induction on event times, i.e., arrival and departure times, starting
at t = 0 at which (3) holds trivially by assumption.

Initially, p copies m until the first time, say ¢,, that 7 violates the SQ rule, at which time p
reverses the routing decision. Suppose without loss of generality that at time {; queue 1 is
larger than queue 2 (in the sense of Weber), in which case 7 routes to queue 1, whereas p routes
to queue 2. Between time ¢, and the time the two systems synchronize, we define p to route to
queue 1 whenever 7 routes to queue 1 and to idle queue 2 whenever N7 (t) = 0. The first time
7 routes to queue 2 (before we get synchronization) we define p to route to queue 1, in which
case we will prove that the two systems synchronize?. After synchronization occurs, p simply
copies 73, An example is shown in Figure 1.

By a straightforward coupling of the service times, we get N°(t) = N™(t), 0 < ¢t < ¢,. Our
proof starts by observing that the following relations are true at time ¢,.

(21 (to), 23 (t0)) = (27(t), 25(tv)), (4)
N7(t,) = N{(t.) + 1; N3 (t,) = N3(ts) - 1; Ny(t) > N3 (L), (5)
1[N7(t,) = N3 (ts) + 1] =1 = 27(t,) < zz(t0). (6)

Note in particular how (6) holds by assumption: 1[N (¢,) = N3 (t,)+ 1] = 1 implies N (t;) =
NI (t7) (since 7 routes to queue 1 at t,); thus , since = violates the SQ rule, z7(¢;) < z7(¢;).

2In this case our construction essentially reduces to an interchange argument.
3Possibly under relabeling of the two queues, since the definition of synchronization allows for a permutation
of the queues.



Our objective is to prove that equation (5) (which implies the majorization N7(t,) < N™(t,))
does, in fact, propagate along event times until the first synchronization point after time ¢,.

Clearly, equations (4)-(6) will remain true if an arrival occurs at queue 1 (under both p and
7 by our construction). If an arrival occurs at queue 2 under w, then p will route to queue
1, in which case it is straightforward to see that the two systems will synchronize. Finally, if
a service completion occurs, say at time ¢,, equations (4)-(6) will again remain true, provided
that NT(t;) > NF(t;7)+ 1. This last restriction will ensure that, if the service completion
is at queue 1, then N7(t,) > Nj(t,) (which is needed to ensure (5) at ¢,). Note that if
NT(t7) = N7(t;) + 2 then (6) will hold true at ¢, if the service completion is at queue 1, since
in that case zJ(¢,) = 0 < z3(¢,).

Let us now consider the only remaining case, i.e., the case in which (4)-(6) hold at time some
t;, with NT'(¢;) = N3 (t;) + 1 and ¢t, is a service completion event time. The situation at t;

is as follows. -
(=1(27),23(27)) = (=3(¢;), 25(¢; ), (7)
NI(67) = NR(& ) N(5) = NE(&5 ) NT(E) = NE(ED) + 1. (8)
21(t;) < z3(¢7). (9)

In this case, we cannot couple the queues in the two systems directly as above. For example, if
a service completion occurred at queue 1 under both 7 and p, then the majorization ordering
would be violated since then, NT(t,) = NI (t.), Ni(t,) = NI (t,) + 1, NP(t,) = N7(t,) - 1.
However, based on Lemma 1, we can cross-couple the remaining service times of the customers
at the two queues, so that at ¢, one of the following is true:

T1 The service completion is at queue 1 under p and queue 2 under 7 and s5(ts) = sT(¢,).
T2 The service completion is at queue 2 under both p and 7 and s1(ts) = sT(t,).

T3 The service completion is at queue 2 under p and queue 1 under = and sh(t,) = s3(t,).
Let p; be the probability that T2 occurs, given that one of T2 or T3 occurs, and p3=1-p,.
Using the notation of Lemma 1, p, = [{°[1 - p(=§(¢; ) + s, z2(¢; ))]g.lzf(t;)(s)ds, where g,),(3) is

the conditional density function of the residual service time, given that the service time exceeds
a. After the service completion, i.e., at time ¢}, policy p acts as follows.

A1 If the service completion is at queue 1, then p assumes that the service completion occurred
at queue 2 under .

A2 If the service completion is at queue 2, then, with probability ps, p assumes that the service
completion is at queue 2 under =.

A3 If the service completion is at queue 2, then, with probability D3, p assumes that the service
completion is at queue 1 under =.



We couple A1-A3 with T1-T3 above. If T1 occurs, the two systems will synchronize since
NT(ty) = N(’;_I_])mod?(t,) and s5(t,) = s7(t,), z5(t,) = 2J(f,) = 0. The case for T3 is similar.
On the other hand, if T2 occurs, the situation at ¢, is as follows.

(s1(ts), 22(8)) = (s1(ta), 25(t4)), (10)
N{(ts) = N{(t:,) + 1; N7(t.,) = Nj(t,) = 1; N{(t,) > N3(t,) + 1. (11)

Note that (10), (11) are similar to (4) and (5) respectively (with (11) being, in fact, slightly
stronger than (5)). Clearly, the above two equations remain true if an arrival occurs at queue 1
(under both 7 and p), or if a departure occurs at queue 2. If an arrival occurs at queue 2 under
7, then p will route to queue 1 and the two systems will synchronize. Finally, if a departure
occurs at queue 1, the two systems will go back to a state described by equations (4)-(6).

Thus, since (5) (sometimes in the stronger form of (11)) does in fact hold until synchronization
occurs, (3) has been shown. Using a straightforward coupling of service times, it is easy to see
that, given p, there exists a policy p’ that routes exactly where p does, but does not allow for
idling, so that Ni"'(t) < Nf(t),i=1,2,for all t > 0. Thus,

N*'(t) < N?(t) < N7(t), t > 0.

Repeating this construction, it then follows that SQ minimizes queue lengths in the sense of
weak majorization, i.e., NS9(t) <, N™(t), V¢ > 0. Since

N <y M; on IR¥, N, <, M, on IRX = (N;,N,) <, (M;,M,) on IR?K,

it follows that (NSQ(tl),...,NSQ(tn)) <w (N™(t1), ..., N™(¢,,)) for all n,ty, ..., t,, which implies
the desired result. |

Remark. During the construction of p, we required that the density function of the service
times is known. This is needed, however, only after the first time 7 violates the SQ rule. Since
our arguments involve the construction of a sequence of policies that eventually reach the SQ
policy (that, of course, never violates the SQ rule), knowing the density function is ultimately
not necessary: SQ simply routes to the shortest queue, without taking into account the form
of the density function.

Note that in the sample path considered in the proof, it is true that D?(t) = D7(t), for all
t > 0, and, of course, D?(t) < D""(t) since under p’ customers do not delay due to idling. Thus,
we have the following result.

Corollary 1 In a symmetric routing system with ILR service stations SQ will stochastically
mazimize the departure process, i.e.,

{D%9(t);t > 0} >, {D™(t);t > 0} ¥r € %,

provided that N2(0) = N™(0).



4 Counterexample for THR stations

In this section we show that if the stations have IHR service time distributions, then it is not
necessarily true that DS?(t) >, D™(t) for all t > 0. Our counterexample uses a distribution
that was first used by Righter and Shanthikumar [6] to show a limitation of IHR distributions
in proving the throughput optimality of FIFO over the class of preemptive policies in open
queueing networks.

We consider a system consisting of two parallel stations, each having one customer in the queue
initially. We assume that time is discrete and that the service distribution is geometric with
parameter 1/2, truncated at 3. That is, a customer requires 1, 2, or 3 units of times of service
with probability 1/2, 1/4 and 1/4, respectively. This is an THR, but not an ILR, distribution.
We further assume that, at time zero, the customer at queue 1, say Cy, has already received
one unit of service, and the customer at queue 2, say C, has received no service. Suppose now
that at time 0 a new customer, say Cj, arrives. SQ routes C3 to queue 1, whereas another
policy 7 routes C3 to queue 2. We assume that no more arrivals occur in the system.

It is easy to see that the probability of having exactly three departures by the end of the second
time unit is greater under 7 than SQ. More specifically, the probability of DSQ(2) being equal
to 3 is equal to the product of the probabilities that each of C; and Cj finish in one time unit
(each equal to 1/2), and the probability that C, requires no more than 2 time units (equal
to 3/4). On the other hand, the probability of D™(2) being equal to 3 is only 1/4, equal to
the product of the probabilities that each of C; and Cj finish in exactly one time slot (by
assumption C; requires no more than two time units). It is well known that X <,, Y if and
only if Pr[X > a] < Pr[Y > a for all a (e.g. [7]). This is an equivalent definition to the one
given in section 2. Since no more than three departures are possible by the end of the second
time unit, Pr[D59(2) = 3] < Pr(D"(2) = 3] implies D59(t) ¥,, D™(¢).

The intuition behind the counterexample is simple. Since both C; and C, are equally likely to
finish in exactly one time slot, it is useful to route C3 to queue 2, since, as C; needs no more
than two time units of service, one effectively requires that only C; and C, finish in exactly one
time slot in order to have three customers departed by the end of the second time slot.

5 Extension to finite buffers

In this section we consider systems in which customers have ILR service time distributions and
service stations have finite capacities. Let X7 be the class the policies that have information
regarding the queue lengths and the elapsed service times of the customers in service, and are
required to route a customer to a queue that has available space, if one exists. Let L™(t) denote
the number of customers that are rejected and lost due to insufficient buffer space by time ¢
under a policy 7 in ;. We have the following result.



Theorem 2 In a symmetric routing system with ILR finite-capacity service stations, SQ will
stochastically mazimize the departure process and minimize the loss process, i.e.,

{(D%2(2), =L%9(t));t > 0} 2,0 {(D™(t), ~L™(¢));t > 0} Vr € Xy,
provided that N°9(0) =,, N™(0).

Proof. Following the same construction as in Theorem 1, it is seen that {(D7(t), - L7(t)); t > 0}
=a{(D7(t),~L™(t));t > 0}. Thus, following the arguments in the proof of Theorem 1, it
remains to show that there exists a policy p’ such that

{(D?'(t), - L7 (t));t > 0} >,¢ {(D(t), ~L(¢)); ¢ > O}. (12)

Let us first define p’ as in Theorem 1, where now, in addition, we require that p’ deliberately
rejects a customer, even if there exists available space, when p does. Thus, p g X;. Clearly,
N*'(t) <w N°(t) for all t > 0, from which follows that p' results in the same number of losses
as p and a larger number of departures than p on the sample path. Therefore, we have shown
(12). To complete the proof, we must relax the assumption that p’ may deliberately reject a
customer.

Let p" be the policy that routes exactly where p' does but without allowing for deliberate re-
jections. Thus, p"” € Ey. Let {A];t > 0} denote the arrival counting process at queue i, under
¥ = p,p". Clearly, {Af";t >0} 2 {A:-";t > 0}, i = 1,2. Using Lemma 1 from [8] it follows
that {(D?"(t), = L*"(t));t > 0} >, {(D”(t),~L*(t));t > 0}, which finally yields the desired
result. [ ]
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