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Abstract

This paper attacks the problem of automatic location of a mobile robot in an
indoor environment. This may be used for calibration to locate the robot accurately
before it starts to navigate, or it can be used in visual servoing as feed back to the
controller which is maintaining the robot on a course. In this paper, we examine the
problem in a special case, where the ground plane is assumed to be horizontal and there
are two locally parallel side-lines available. This assumption holds in many indoor
environments, such as hallways, where the system’s success has been demonstrated.
The algorithm uses geometric features such as vanishing points and line orientations.
Both theoretical analysis and experimental results show that this algorithm works very

robustly and accurately.
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1. INTRODUCTION

Robot navigation has been the focus of attention of many researchers in recent years.
Some of the systems need to be very accurately calibrated in order to perform navigation
successfully[5, 3]. Calibration is the process of determining the relationship of sensor output
to the actual value of the input. In the system described in [3], it was necessary to position
the robot/camera system by hand to within 0.1 inches and 0.1° of a known position in a world
coordinate system. This problem falls under the category of eztrinsic camera calibration [10].
There are at least two reasons why automatic calibration is needed. First of all, calibration
by hand is usually tedious and time-consuming. Secondly, owing to the fact that accuracy
requirements may be high, a procedure which relies on human judgement and motor skills
may have a bigger error than one which is done by machine automatically. In other words,
automatic calibration can achieve greater accuracy than manual.

This automatic calibration problem can be related to the general one of robot pose
estimation|7, 8]; however, many standard pose estimation algorithms are not necessarily
suitable for calibration. Kumar and Hanson[7] presented a pose estimation and refinement
algorithm for computing the transform matrix between the world coordinates and image
coordinates. The algorithm works very robustly in the sense that it can handle a large
percentage of outliers. However, it requires the correspondence between frames to be done
before the algorithm can be applied. Lee and Deng|8] also presented an algorithm to estimate
the pose information and camera parameters in a hallway environment. Like ours, their
algorithm also assumes that the ground plane is flat?, and that there are some vertical
landmarks available. Their algorithm requires three images, in general, to give the pose
information each time. Our algorithm uses only one image, but it assumes that the target
pose information is given in advance. Krotkov[6] attacked the pose determination problem
based on the same assumption of flat ground plane as we did here. However, he also assumed
that there was always an environment map with the landmarks marked on it available. This
assumption is valid for calibration, but it may not be valid for other applications such as

navigation where there might be no local map available at all. Lowe[9] used viewpoint

2An analysis of the sensitivity of our algorithm to deviations from this assumption is presented in Sec-
tion 4.. In addition, the algorithm can be extended to situations in which the camera axis is not parallel to

the ground plane.



consistency constraint to match a set of characteristic features against models and achieved
relatively good results, although he did not report error measures.

For calibration, accuracy is usually the most important criterion, while other applications
may have less stringent requirements for accuracy. For example, pose estimation can be
used to determine if a goal in a plan has been satisfied, or a precondition for another part
of the plan has been met. In general, these applications may have other requirements that
distinguish them from the calibration task. For example, some applications may require
pose estimation to be performed at arbitrary times and for arbitrary environments, while
the calibration task may only need this to be performed at prespecified times e.g. when
starting the robot, and in structured environments, e.g. special features can be guaranteed
to be present. Thus, the requirements for a general purpose pose estimation algorithm are
not the same as those for an automatic calibration algorithm.

The technique used here for applying the pose algorithms is perceptual servoing [3]. In
the calibration phase, the pose computed by the algorithm is used by the controller to move
the robot to a prespecified world location. In the susequent motion phase, the pose is used
by the controller to maintain the robot on a straight course over long distances in a hallway.
The coordinate system for the hallway is illustrated in Fig. 1, and calibration is formulated
as a homing problem: Given an unknown starting pose of the robot, we are required to move
the robot to the target position accurately and align the camera orientation with the axis
determined by the two locally parallel side-lines on the ground plane.

In the literature of robot navigation and calibration, many researchers have used vanish-
ing points as an efficient tool to estimate orientation. Tsuji et al[11] developed an algorithm
to estimate and compensate for the camera pitch and roll during the dynamic navigation
process. This was based on the motion of the vanishing point of the vertical lines on a
Gaussian sphere. Katanani[4] used vanishing points for intrinsic camera calibration. Neither
methods involved the estimation of position as well as orientation.

This paper presents a calibration algorithm that makes use of the geometry of the hallway
environment, in particular, the two locally parallel lines that lie on the ground plane and the
distance between them. Three degrees of freedom (DOF) in terms of the hallway axis are

controlled in this algorithm, that is, orientation with respect to the axis, lateral distance from



the axis, and depth distance along the azis. These three DOFs are independently measured
by: wanishing point location, which is an efficient vehicle to estimate orientations [1, 4,
11]; orientation of side-lines, which can be used in a closed form solution for the lateral
distance; and looming, which is used to estimate depth information [12]. By combining
those techniques, we can accurately determine the pose of a robot in this environment.
Empirically, the experiments show that the automatic calibration is more accurate than
that done by hand. Theoretically, the error analyses of the closed form solution used in the
algorithm makes it possible to predict the accuracy of results. With a little modification,
this algorithm can also be applied as a pose estimation and perceptual servoing algorithm

to servo the robot onto the right track during navigation.

2. GEOMETRIC ANALYSIS

In this section, we present three independent geometric measurements, and thus, three
different techniques to infer the pose information of the robot during the calibration process.
The three measurements which are described in terms of the hallway axis are: orientation
with respect to the axis, lateral distance from the axis, and depth distance along the axis.
Based on these measurements, three techniques are developed. They are: using the vanishing
point position to estimate orientation [1, 4, 11]; using the directional azis to obtain a closed
form solution for the lateral distance; and using looming to estimate depth information [12].
In the following analysis, we assume that the center of the robot is the same as the focal
point of the camera, and that the intrinsic parameters are known. Moreover, we assume that
the environment contains locally parallel side-lines (in our experiments, we use the hallway
base-board lines) and a horizontal ground plane, so that an implicit directional axis parallel
to the side-lines is available. Under these assumptions, the robot works in three degrees of
freedom (two translational and one rotational). Although our environmental structure and
Denning Mobile Robot are not perfect, it can be seen through the theoretical analysis and

the experimental results that these assumptions hold to a close approximation.



2.1 Vanishing Point

The vanishing point is defined to be the intersection point of the images of the two parallel
side-lines in the environment, as shown in Fig. 2. Here side-lines are defined as two lines in
an environment that are parallel with each other, and the plane formed must be parallel to
the ground plane. Now, we have the following property about the vanishing point:

Property 1 The vanishing point is located at the principal point® of the image plane,
no matter where the robot is positioned, if and only if the camera’s axis is parallel to the
side-lines; Moreover, if the camera is not parallel to the side-lines, the locus of the vanishing
point must be in the horizon line of the image plane, and the horizon line passes through the
principal point of the image. The offset angle away from the side-line orientation (denoted

as 0) is determined as:

X, — X,
§ = arctan

S (1

where X, is the X coordinate of the vanishing point in the image, X, is the X coordinate
of the principal point of the image, and Sx 1s the scale factor of the focal length along the X
azis of the image plane.

In other words, this property states that the vanishing point in the image is only relevant
to the orientation of the camera, and irrelevant to the position of the robot.

It is easily seen that this property is true. As illustrated in Fig. 3(a), assuming the robot
is positioned at an arbitrary location, as long as the camera axis is aligned with the side-line
direction, the optical axis of the camera is parallel to the side-lines. Thus, it is actually
the intersection line of the projection planes of the two side-lines. If the image plane is
perpendicular to the optical axis and also perpendicular to the ground plane, the intersection
point of the optical axis of the camera and the image plane is exactly the intersection point of
the two side-lines in the image. Therefore, this point is always located at the principal point
of the image plane. Even if the camera is tilted forward or backward, the X-Coordinates

will be equal.

3There is exact one point, such that the ray through focal point is perpendicular to image plane. This is
called the principal point or center point of the image.



However, if the camera is oriented at an offset angle # away from the direction of the
side-lines, as illustrated in Fig. 3(b), this angle is exactly the angle between the intersection
line of the two projection planes of the two side-lines and the optical axis of the camera.
Since the plane formed by the intersection line of the two projection planes of the side-lines
and the optical axis (say, plane P) is parallel to the ground plane, and since the image plane
is perpendicular to the ground plane, the locus of the vanishing point is the intersection line
between plane P and the image plane. Thus it is the horizon bisector line of the image plane.
Since the optical axis of the camera is perpendicular to the image plane, from the obvious

trigonometric relationship, Eq. 1 is easily obtained.

2.2 Directional Axis

The directional axis here is referred to as the line parallel to the side-lines where the
given robot target pose (or called home pose) is located, as shown in Fig. 1. Note that this
line does not explicitly exist in the environment, i.e. it does not have to be marked on the
floor. It is, however, implicitly existing once the starting target position is given, i.e., once
we know the distances from this line to the two sides, a, and b.

Now we have a dual property with respect to property 1:

property 2 The image of the directional axis is a vertical line in the tmage plane, no
matter what direction the camera 1s oriented, if and only if the robot is positioned on the
directional axis. Moreover, if the robot is not positioned on the implicit target directional

axis, the lateral distance from the directional axis can be calculated as:

B bcos(B + v)sin B

sin ~y

d=

(2)

where a and 3 are the directional angles of the two side-lines in the image plane, a and
b are the distances from the directional axis to the two sides, respectively, as illustrated in

Fig. 1 and Fig. 5, and v is determined by:

bsin Bsin(a + B)
asina — bsin B cos(a + )

v = arctan



In other words, this property states that the verticalness of the directional axis in the
image is only relevant to the position of the robot, and #rrelevant to the orientation of the
camera.

Here, the angle 8 + v indicates the orientation of the directional axis in the image. As
shown in Fig. 5, if 8++v < 7, d is negative, which means that the robot is on the right side of
the directional axis with —d lateral distance away from it; if 8+~ > 7, d is positive, which
means that the robot is on the left side of the directional axis with d lateral distance away
from it; if 8 +v = 3, d = 0, which means that the robot is exactly on the directional axis.

To see that Property 2 is true, look at Fig. 4. First we consider the case when there
is no offset angle involved. i.e., § = 0. In this case, the intersection line formed by the
two projection planes of the side-lines coincides with the optical axis of the camera, and
passes through the focal point, as shown in Fig. 4(a). Now, we term directional azis as the
implicit line on the ground plane parallel to the side-lines and where the robot is located.
Thus, the current directional axis in the image plane is formed by the intersection of the
projection plane of the current directional axis on the ground and the image plane. Since
both this projection plane and the image plane are perpendicular to the ground plane, their
intersection is also perpendicular to the ground plane. That is, the current directional axis
in the image is always the implicit vertical line passing through the vanishing point in the
image. Similarly, the target directional axis in the image is formed by the intersection of the
projection plane of the target directional axis on the ground and the image plane, which is
another line passing through the vanishing point in the image, but not necessarily vertical.
Therefore, we can determine if the robot is located at the target directional axis, in which
case the current directional axis coincides with the target one. Since the target directional
axis in the image can be determined from the 3D distance from the axis on the ground to
the two side-lines, we can figure out how far the current robot location is away from the
target directional axis by calculating the offset angle between the target directional axis and
the vertical line.

Now we go on further to see how to get the lateral distance information. Refer to Fig. 5,
where O denotes the vanishing point of the two side-lines, OA and OB are the side-lines

with directional angle a and 3, respectively. AB is an arbitrary horizontal line so that a



triangle OAB is formed.

Let OD be the implicit target directional axis in the image whose distance a and b from
the side-lines are known, and OF be the vertical line passing through the vanishing point O,
indicating the current position of the robot. Then the distance ||DE|| = d is what we want
to find.

Now, in AOAD, we have

joD| _ a
sin o LAOD

Since /AOD =7 — a— 3 — 7, we have

100 = Gt g
Similarly, in AODB, we have
oD] =522
Thus, we have
asin a _ bsinp

sin(a+ 8+ 7) o sin y

By solving this equation, we can get v in terms of Eq. 3.

Now, in AODE, since
vy
LDOE = ¥+ 6 — 5

we immediately have

d=1|OD| sin .DOE

By substituting ||OD|| and £DOE, we have Eq. 2.
Now we show that the orientation of the directional axis in an image is only relevant to

the position of the robot in the environment, and has nothing to do with the orientation



of the camera. To see that, let us assume that the robot now is located at an arbitrary
position, say d lateral distance away from the target directional axis, and with 8 offset
camera orientation angle, as shown in Fig. 4(b). Since in this case, both the projection
plane of the current directional axis and the image plane are still perpendicular to the
ground plane, their intersection is also perpendicular to the ground plane. In other words,
the current directional axis in the image is still always the vertical line passing through the
vanishing point in the image, except that in this case, the vanishing point is not at the center
of the image. Similarly, the target directional axis in the image is a line passing through the
vanishing point also. Thus, we have the same conclusion: if and only if the robot is located
at the target directional axis, will the target directional axis in the image be vertical.

To get the lateral distance information in this general case, we have a figure similar to
Fig. 5, as shown in Fig. 4(b), with here a, b, d replaced by a',¥',d’, as illustrated in Fig. 6.

Note we have
a=a'cosd

b="bcosb
d=d cosd

By substituting them into Eq. 3 and Eq. 2, we can see that we have the same formulae
for v and d! That is, no matter what the orientation of the camera is, the orientation of the
target directional axis in the image is only relevant to the current robot position. Thus, we

proved Property 2.

2.3 Looming Distance

The problem of finding the looming distance here refers to the determination of robot
position along the directional axis from the size of image features. This assumes that the
robot has been positioned on the directional axis with the correct orientation as shown in
Fig. 7(a).

There are many ways to calculate the looming distance. Here we use the “conventional”
approach. As illustrated in Fig. 7(b), assume there is a landmark in front of the robot camera,

with height A. The image heights of the landmark when the robot is at the given target pose



and when the robot is at the off-target pose are denoted as §Y; and §Y;, respectively. Let
[ be the looming distance, and let Sy be the focal scale factor along the Y axis. Then, by

simple triangular relationship, we have

1 1

Note that this approach requires the landmark should have a large enough height. Oth-
erwise, there would be a very large error. Sec. 4. shows this point. Fortunately, in the usual

environment, there are landmarks such as doors, as shown in the Sec. 5..

3. CALIBRATION ALGORITHM

3.1 Basic Algorithm

From Fig. 1 and the discussion of the previous Section, it is straightforward to find an

algorithm to solve the calibration problem in three steps:

e find the orientation offset angle and rotate that angle;
o find the offset distance to the target directional axis and move on to the target line;

o find the looming distance and move to the target pose;

However, using Property 1 and Property 2, i.e., that the vanishing point and the
directional axis are independent, we can combine the first two steps into one. This is much
more efficient than separate executions of the two steps. Thus, the actual implementation
of the algorithm takes only two loops:

Basic Algorithm

1. Loop 1 take an image; calculate the orientation angle and the lateral distance with
respect to the directional axis; reduce these quantities by rotating and/or moving the
robot; repeat until these two quantities are both within their tolerated error thresholds,

respectively;



2. Loop 2 take an image; calculate the looming distance; repeat until the distance with
respect to the given target pose is within an tolerated threshold; move toward the

target pose by perceptual servoing;

Note that in the second loop, we use the perceptual servoing facility of our navigation
system [2, 3]. This guarantees that the robot will not move off the target directional axis
during its moving toward the target pose.

Since the quantities of camera orientation angle, lateral distance with respect to the
target directional axis, and looming distance along the axis are calculated in closed-form
solutions, the computation is very straightforward and takes little time. The basic operation
that takes time is the base-board line pixel grouping for an image. Hence, if this algorithm
takes n loops in the first step, and m loops in the second step, the convergence rate is in

O(n + m).

3.2 More Efficient Algorithm

By Property 1 and Property 2, we know that given an arbitrary image, we can
compute the orientation angle and the lateral distance with respect to the target directional
axis simultaneously. That is the basis of the algorithm presented in the previous subsection.
We can, however, go further to simplify the algorithm by noticing some more geometric
constraints implied in the environment and our system. Specifically, we can compute the
three geometric quantities: orientation angle, lateral distance, and looming distance from a
single image!

As shown in Fig. 8(a), given an arbitrary pose of the robot, we have an image which is
illustrated as the solid-lined plane in Fig. 8(a). The landmark, which has height h, projects
in the image plane to a line with length §Y;. Assume that the orientation angle of the camera
is 6, which can be calculated by Eq. 1. If we rotate the robot by —8 so that there would be
no offset for the orientation angle as shown as the dashed image plane in Fig. 8(a), we could
have a new image of the projected landmark denoted as §Y;. If we know 4Y;, by applying
Eq. 4, we can compute the looming distance [ immediately.

Now, let us extract the drawing of the geometric relationship on the plane formed by the

landmark and the focal point, as illustrated in Fig. 8(b). It is clear to see that

10



3Y; Sy

v, S

cos 6

Hence, we have the following simple relation:

8Y; = 8Y/ cos 8 (5)

Therefore, by only one image, we can compute all the three geometric quantities. Thus,

we can combine the two steps of the basic algorithm into only one step.

3.3 Summary of the Algorithms

The simplified algorithm is obviously more efficient than the basic algorithm. However,
according to our experimental results, it produces more error than the basic one, although
the error is still within the tolerated limit. That makes sense because the simplified algorithm
uses less information (i.e., takes fewer images) than the basic algorithm, and most of the
parameters are calculated indirectly as opposed to direct measurement in the basic algorithm.
Since the image quantization error and the robot mechanical error can be accumulated during
a series of indirect calculations, it is not surprising that the simplified algorithm produces

more error than the basic one.

4. ERROR ANALYSIS

In this Section, we investigate the stability of the the closed-form solutions for the geo-
metric properties used in our algorithm, with respect to noise or measurement error. The
purpose of this is to show that the solutions obtained in this paper are reliable in the presence

of noise. This is also confirmed by the experimental results.

4.1 Orientation Angle with respect to the Directional Axis

Eq. 1 is obtained under the assumption that the ground plane is flat. Owing to the real

situation that the ground plane may be locally uneven, the vanishing point might not be
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on the horizontal scan line through the principal point. Taking that into account, the offset

orientation angle § is determined by:

VX — X2 + (Y, — V)2
f

(6)

§ = arctan

where (X,,Y,) and (X,,Y.) are the coordinates of the current vanishing point and the
principal point, respectively, and f is the focal length of the camera.

Now, we have

0o 06

where

60 _ f Xv_Xc
X, P+ (X~ X+ (Y~ Y JX, - X2+ (V. - Vo2

08 _ f Y, - Y,
Y, Pt (X —XP+ (%Yl (X, X (Y )

(9)

In our system, |X, — X.| ~ 10%,|Y, — Y.| ~ 1. Thus, |X, — X.| > |Y, — Y|, and
f~Sx =991.0 ~ 103

Thus, ﬁ ~ 1073, and aa}f ~ 1075. That implies that 30 - plays a dominant role in
determining the accuracy of the estimation of §. Thus, we can safely apply Eq.1 to estimate
the value of 6 even with the actual case of uneven ground plane. Moreover, with every

one pixel error of X, and Y,, i.e., AX, = 1, AY, = 1, the resulted error of the calculated

orientation angle /A# is still on the order of 1072 radians.

4.2 Lateral Distance from the Directional Axis

From Eq. 3 and Eq. 2, we know that the lateral distance d is determined by the two

variables a and (3. Therefore, we have

12



Ad==Na+ —=NAB (10)
a

where

0d  cosysin(y +B) cos(’y—l—ﬂ)—l—sin’ybsin Oy (11)
Oa

Oa sin? ysin®(y + 8)

Oy bsin Bcos2(a + B) — asin 8
Oa  [asina — bsin Bcos(a + B)]2 + b2 sin? Bsin?(a + ()

bsin 3 (12)

8d  sinBcosvysin(y + B) cos(y + ﬂ)g—g + sin B sin ’yg—g + sin Bsiny — sin~y cos B sin(y + B) cos(y + B)

o8 sin® y sin’(y + ) ;

(13)

Oy _ absin asin(a + 28) — b? sin Bsin(2a + 30)
OB  [asina — bsin B cos(a + B)]2 + b%sin? Bsin’(a + B)

(14)

For the typical data in our experiments, % and % are in the range of [1073 1]. If the

calculation of a and 8 have 1° error, respectively?, i.e. Aa and A are on the order of 1072
Radian, the resulted range of error of the lateral distance from the target directional axis
will be in the range of [107°,1072?] ft. In Sec. 5., we can see that the actual error of the

distance never exceeds 0.1 ft.

4.3 Looming Distance along the Directional Axis

From Eq. 4, we know that h, Sy, and §Y; are constants. Thus, the looming distance [ is

only the function of the variable §Y;. Since

di hSy

dy;  (8Y;)?

We have

4Since we used Least Mean Square method to group the line pixels, usually, the errors of these directional
angles of the base-board lines are no more than 1°
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hSy

Al = (6Y,)?

A(8Y)) (15)

In our experiments, we used the hallway door as the reference landmark, (see Sec. 5.).
The height of the door is h = 8.05 ft. The camera focal scale factor along the Y axis is

Sy = 1209.658, in terms of the number of pixels. In the experiments, ¢Y; is usually around

dl

%y, is around 107!, For one pixel error in the

300 pixels. Thus, the typical value for

measurement of §Y;, i.e., A(8Y;) = 1, the resulted error of the looming distance could be up

to 107! ft.

4.4 Summary of the Error Analysis

From the analysis in the previous subsections, it can be seen that the calculation of the
orientation angle 6 has the highest error stability, whereas the calculation of the looming
distance [ has the lowest, with the calculation of the lateral distance d lying at the middle.
The experimental results show that the calculation of § and d are very accurate actually.
Only the estimation of [ has noticeable error, usually 0.1 ft. or so. But even so, the relative

deviation is still within 1% (see Sec. 5.).

5. EXPERIMENTAL RESULTS

The algorithms described above are implemented in LISP code on a Sun IV SPARC
workstation.

The automatic calibration system works as follows. Initially, we have to teach the robot
what the environment should look like. This step is absolutely necessary because there is
no other knowledge that can tell the robot what the correct calibration is. This is achieved
by moving the robot to a given pose in our navigation environment and calibrating it. This
very first calibration has to be done by hand. Then we let the robot take an image. The
robot is actually only required to remember the vanishing point coordinates, and the height
of a landmark (e.g. door in the hallway) of the “standard” image (We call it target image).
Thus, whenever we want to do an experiment, we just have to leave the robot at an arbitrary

pose in the environment. By running the algorithm presented in this paper, the robot is able
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to move to the target pose and calibrate itself accurately, as long as it is working in the same
environment as it was first taught.

At present, the automatic calibration has been tested in our hallway environment. Fig. 9
shows model image used in our tests. Note that the cross black/white sign at the door is not
used during the operation of the automatic calibration. It is used to check if the algorithm
has worked correctly after the robot has automatically been calibrated. In other words, if the
alogrithm works correctly, once the robot has been calibrated, the orientation angle should
be zero. Thus, the cross center of the sign should be on the center vertical line in the image.
Table 1 lists those geometric parameters used in our algorithm for this image, as well as the
thresholds used to terminate the algorithm. In all the experiments, we used an CCD camera
with intrinsic parameters Sy = 991.0 and Sy = 1209.7. The principal point was measured
at the very first manual calibration as (255.5,240.2) for an 512 by 480 image.

To implement the algorithm, we used some low-level processing tools to extract the two
base-board lines in the image and compute the vanishing point coordinates. There are
several algorithms available to compute vanishing points very robustly and accurately [1, 4].
However, since we want the real-time performance, we keep the low-level processing part
simple. Fortunately, the base-board lines in a hallway image have very strong contrasts.
Therefore, we applied simple Roberts’ operator to detect edge pixels, and then used Least-
Mean-Square method (i.e. Linear Regression) to fit a line to the edge pixels, and then to
get the vanishing point. We compared the vanishing point obtained by using this simple
method with that by using Collins et al[1]’s algorithms, and found that the differences were
always within half pixel. That means the simple method can work fine in this particular
environment.

Historically, we first implemented the basic version of the algorithm, which uses two
frames. Table 2 records a test run of this algorithm. The robot was left at a pose in the
hallway about 4° off the correct orientation, about 1.4 ft. lateral distance from the target
directional axis, and about 5 ft. away from the target pose along the target directional axis.
Fig. 10 shows the image taken at that moment. After the termination of the algorithm, the
robot’s camera is pointing exactly at the target (i.e. the bilevel cross sign on the door, which

is 41.1 ft. away from the camera location); the final actual lateral distance and the final
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actual looming distance were both within 0.05 ft. of the estimated values calculated by the
algorithm, as shown in Table 2.° The symbol “-” means those quantities are not calculated
yet at the current loop because they are irrelevant to the current action.

To show the efficiency of our simplified version of the algorithm, which uses one frame, we
put the robot to a similar pose to the previous experiment, and ran the simplified algorithm.
The operation process of the algorithm is recoreded in Table 3. The actual error is similar

to that of the previous one.

6. CONCLUSION

In this paper, we presented an algorithm based on geometric properties for automatic
robot calibration. The whole system has been implemented on a Denning Mobile Robot.
Theoretical analysis also proves that those geometric properties used in the algorithm are
robust enough for calibration. Experimental results show that the automatic calibration
performed by this algorithm works more accurately than previous hand-based calibration.

The algorithm assumes that the environment contains two locally parallel side lines.
It was originally designed for automatic calibration. However, it can also be applied to
perceptual servoing during navigation on a road. Currently, the algorithm also assumes that
the two side-lines are locally parallel and the ground plane is flat. Those assumptions are not
necessary, and the algorithm can be extended to account for the angle between the ground
plane and the camera axis. Therefore, the algorithm could potentially be used for outside
road navigation. Future work will be to apply this algorithm in the upcoming UMass UGV
Project.
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Figure 1: The calibration problem addressed in this paper. The
dashed circle denotes the initial pose of the robot. The
solid one is the given target pose.
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Figure 2: Definition of the vanishing point

20



Figure 3: The figures used to prove Property 1. (a) when the camera
orientation angle is 0, i.e., the focal axis is coincided with
the interseciton line of the two projection planes of the
side-lines; (b) when the camera orientation angle is not 0;
Note the plane formed by the camera focal axis and the
intersection line of the projection planes is referred to as
plane P in the text.
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Figure 4: The figures used to prove Property 2. Note, to be visu-
ally concise, we do not draw the projection planes of the
implicit target directional axis and the implicit current di-
rectional axis, as well as those of the two side-lines. (a)
when the camera orientation angle is 0. (b) when the cam-
era orientation angle is not 0.
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Figure 5: The figure used to derive the formula to calculate the lat-
eral distance from the implicit target directional axis
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Figure 6: The figure used to derive the formula for the lateral dis-
tance from the implicit target directional axis in the gen-
eral case
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Figure 7: (a) The figure to address the looming problem, where the
dashed circle denotes the initial pose, and the solid circle
denotes the target pose. The dashed straight line is the
target directional axis which does not explicitly exist in the
environment, or in the image, either. (b) The figure used
to derive the formula to calculate the looming distance

25



Figure 8: The figure used to derive the simplified algorithm. (a)
The imaging system when given an arbitrary pose. The
dashed plane is the imaginary image plane after the robot
has rotated the angle §. (b) The relationship between the
landmark in the current arbitry image plane and that in
the imaginary image plane. Here Sy stands for the focal
length of the camera.
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Figure 9: The view from robot when calibrated
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Figure 10: A hallway view from robot in an experiment

Figure 11: Another hallway view from robot
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Table 1 — Parameters of Target Image and Thresholds

Parameters | X, Y, d Y
255.5 | 240.2 0.0 245.0
Thresholds 0 d l
0.02° 0.1 ft. 0.1 ft.

Table 2 — A Recording of an Experiment Using Basic Algorithm

loop # | X. 0 d l Action
1 187.7 | —3.92° - - Turn left 3.92°
2 256.4 0.05° -1.37 ft. - Turn right 0.05° and Move left 1.37 ft.
3 293.7 2.21° - - Turn right 2.21°
4 254.4 | —0.0686° 0.057 -5.01 ft. | Turn left 0.0686°, Move backward 5.01 ft.
5 249.6 | —0.343° - -0.163 ft. | Turn left 0.343°, Move backward 0.163 ft.
6 250.0 | —0.321° - - Turn left 0.321°
7 255.1 | —0.024° - - Turn left 0.024°
8 255.4 | —0.010° | 0.0418 ft. 0.0 Stop

Table 3 — A Recording of an Experiment Using the Efficient Algorithm

loop # | X. 0 d l Action
1 145.8 | —6.28° | -1.23 ft. | -5.50 ft. Turn left 6.28°, Move left 1.23 ft.,
and Move Backward 5.50 ft.
2 252.2 | —0.191° | 0.033 ft. | -0.163 ft. | Turn left 0.191° and Move Backward 0.163 ft.
3 253.8 | —0.102° | 0.042 ft. 0.0 Turn Left 0.102°
4 255.7 | 0.009° | 0.043 ft. 0.0 Stop
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