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Abstract

Figural completion, in its most common form, is the preattentive inference of the shape
and location of the occluded parts of visible surfaces. Yet it also underlies illusory con-
tour phenomena, which are associated with completion of occluding, rather than occluded
surfaces. Phenomenological accounts, such as Kanizsa’s[5], though insightful, lack the
precision necessary to formulate a computational theory. The mathematics relevant to
understanding the problem is the topology of surfaces. Accordingly, the topology of sur-
faces is reviewed with the aim of more precisely characterizing the computational goal
underlying figural completion. A contour labeling scheme incorporating a minimum set of
necessary constraints on the appearance of boundaries in flat scenes is then defined. These
constraints, when enforced at points of contour intersection, are subsequently shown to
be both necessary and sufficient, in the sense that sets of contours satisfying the labeling
scheme can always be interpolated to form topologically valid surfaces.
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1 Introduction

The input to the human visual system is a set of simple pointwise measurements of the image
brightness function. Among human vision theorists, one opinion holds that the huge difference
in level of organization between the visual system’s input, and the abstract inferences about
the world we derive from it, necessitates the existence of more highly structured intermediate
representations. The proponents of this theory, which is often associated with Marr[8], maintain

that computing these intermediate representations is the goal of human early visual processing.

The cornerstone of Marr’s theory is an intermediate representation called the 2%-D sketch.
The 2%—D sketch is a representation of depth and surface orientation (and discontinuities in
these quantities) at every image point. The word “sketch” denotes the fact that the repre-
sentation is spatially indexed. In formulating the 2%—D sketch, Marr was clearly influenced by
Horn’s pioneering work on shape-from-shading[4]. Horn demonstrated that under certain cir-
cumstances, surface orientation can be recovered directly from image brightnesses. Barrow and
Tenenbaum|[1] proposed that techniques similiar to Horn’s could, in principle, recover each of
the physical parameters underlying the image brightness function, including depth, surface ori-
entation, reflectance and illumination at every image point. Unfortunately, shape-from-shading

has proved to be a poor first example in this respect.

Shape-from-shading is relatively unique among “shape-from” methods since image bright-
ness constrains surface orientation everywhere, simplifying the computation of a dense array
of depth values. Yet partly because of this, and partly because Marr emphasized random dot
stereograms and other densely textured smooth surfaces in his computational study of human
stereopsis, the field has been saddled with a too simple view of the 2%—D sketch, a view plainly
in conflict with phenomena which suggest a representation with richer topological structure.
Principal among these is figural completion.

Figural completion, in its most common form, is the preattentive inference of the shape
and location of the occluded parts of visible surfaces. Yet it also underlies illusory contour
phenomena, which are associated with completion of occluding, rather than occluded surfaces.

The need to complete occluding surfaces derives from the fact that under certain conditions,
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Figure 1: The Kanizsa triangle.



parts of surfaces which are in plain view are effectively invisible. Consider a planar surface
which partially occludes a second planar surface of similiar orientation and reflectance. Under
these circumstances, there will be little or no change in image brightness associated with the
change in depth. Figure 1 is the well known Kanizsa triangle[5]. In Kanizsa’s figure, an illusory
triangle appears to partially occlude three black discs and a second triangle rendered in outline.
Of course none of these elements is objectively present. All are the products of the figural

completion process.

Confronted with evidence of figural completion like Kanizsa’s triangle, let us assume that
the computational goal of early visual processing is to build as complete a representation of
visible surfaces as is possible, and not simply to build a representation of the visible portions of
visible surfaces. What particular ability, or “competence,” does the human visual system exhibit
when it manufactures the illusory triangle in Kanizsa’s figure? Does possession of this ability
contradict the standard view of the 2%—D sketch as simply a dense array of depth values? If
the answer is yes, and I believe that this is self-evident, then what are the minimum topological
requirements of a representation sufficient to explain this competence? To begin to answer these

questions, it will be necessary to first consider more precisely what is meant by “surface.”

2 Computational Goal

In mathematics, surfaces are classified as belonging to different families based upon a relatively
small number of properties. Since these properties determine the ways in which a surface can
be embedded in physical space, they ultimately limit its range of appearances in an image.
Yet, despite this variety, a model of any surface can be constructed by “gluing” together some
combination of the edges of one or more “paper” panels. Panels are the elementary building
blocks from which more complex surfaces are constructed. For the purposes of this discussion, a
panel can be envisioned as a surface cutout of a single piece of paper with a boundary consisting
of a cycle of edges. A surface is completely determined by a set of panels, together with a set of
identifications, which prescribe the gluing operations to be performed among the panels’ edges.

These elements together define a paneling. Although every surface can be constructed in this



fashion, not every paneling represents a surface.

The definition of identification given in the previous paragraph is incomplete. In particular,
it does not take into account the fact that two edges of equal length may be glued, one to
another, in two different ways. The ambiguity can be removed by first orienting each edge so
that it matches the direction of a clockwise traversal of the panel boundary. The sense of the
identification then depends on whether two edges are glued such that their orientations are the

same or opposed.

For example, a surface can be constructed by identifying two opposite edges of a rectan-
gularly shaped panel and leaving the other two non-identified (See Figure 2). If the edges are
identified such that their orientations are opposed, then an annulus is created. However, if their
orientations are the same, then the surface which results is a Moebius strip. These two surfaces
are qualitatively very different: The annulus has two sides and a boundary consisting of two
components while the Moebius strip has a single side and a boundary consisting of a single
component. A surface with a single side is said to be non-orientable. Orientability affects the
way in which a surface can be embedded in space. In particular, a non-orientable surface can
not be flattened; any attempt to flatten a Moebius strip will result in the creation of a crease
or twist. In the Kanizsa triangle figure, the subjective experience is of flat surfaces, overlapping
one another in depth. Since all of these surfaces are two-sided, further consideration of non-
orientable surfaces would seem to offer little insight into the problem at hand. Henceforward,
we will assume that the orientations of all pairs of identified edges are opposed, and that the

surfaces are, consequently, orientable.

Apart from orientability, surfaces can also be classified by the number of components in their
boundary. A surface possesses a boundary if and only if at least one edge of some panel from
which it is assembled remains non-identified. Within the paneling, non-identified edges form
boundary edges and pairs of identified edges form interior edges. Each boundary component
consists of a distinct cycle of boundary edges. For example, the panelings of the annulus and
Moebius strip both contain a single interior edge (i.e. a) and two boundary edges (i.e. b and ¢).

But the boundary edges in the paneling of the annulus form two boundary components while



Figure 2: A surface can be constructed by identifying two opposite edges of a rectangularly
shaped panel and leaving the other two non-identified. Depending on the sense of the identifi-
cation, the surface which results is either an annulus or a Moebius strip.



Figure 3: The torus is constructed by identifying the opposite edges of a rectangular panel as
illustrated.



those of the Moebius strip form just one.

The torus is constructed by identifying the opposite edges of a rectangular panel as illus-
trated in Figure 3. Although the torus has no boundary, it still generates contours in the
image. These are occluding contours, and are the projection onto the image plane of the set
of points on the surface tangent to the lines of sight. Since its construction is effected without
forming a Moebius strip, the torus, besides having no boundary, is also orientable. An orientable
surface without boundary divides space into two disjoint sets. These sets consist, respectively,
of interior points and exterior points. Orientable surfaces without boundary are important in
geometric and solid modeling since the set of interior points can be interpreted as a manifold
solid. Of course, Kanizsa’s figure is experienced as a set of flat, overlapping surfaces, not as a set
of smooth, occluding solids. The contours are interpreted as boundaries, not occluding contours.
This is not to imply that a complete theory of human vision can ignore the representation and
appearance of solids. Quite to the contrary. It is only saying that the perception of Kanizsa’s
triangle seems to specifically involve either the assumption or inference of flatness. It is therefore
likely, that to understand human competence in this instance, surfaces without boundary, like

non-orientable surfaces, can safely be ignored.

In the Kanizsa triangle figure, many different factors contribute to the appearance of flatness.
Since the figure is printed on a flat page, stereo disparity suggests that all of the contours
lie at constant depth. Monocular cues, such as the uniform brightness of the figure’s regions,
reinforce this percept. Also telling is the appearance of the completed surface boundaries, which
are punctuated by sharp discontinuities in orientation but lack the cusps and terminations
characteristic of occluding contours (see Koenderink[7]). Finally, it may be that flatness is
inseparably connected with perception of the illusory surface itself, since it provides the necessary
explanation for the triangle’s lack of contrast against its uniformly bright background. But if
flatness is part of the vocabulary of early vision (perhaps serving as a default assumption), then

how exactly is it defined?

Planar embeddings of surfaces topologically equivalent to discs with zero or more holes can

be represented in a straightforward fashion as the intersection of domains defined by sets of closed
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Figure 4: Compare the illusory surface in the top and bottom displays. Since there is no way
to embed both the illusory surface and the diamond shaped outline in planes of constant depth,
the human representation must be more general.



Figure 5: Although interpretations as surfaces embedded in planes at constant depth are plau-
sible, they are not perceived. As Kanizsa points out, the slender “tail” of each surface seems to
pass under the “head.” The surfaces, nevertheless, remain flat.



non-intersecting plane curves, or Jordan curves. This observation leads naturally to the following
question: Can a representation consisting of sets of Jordan curves at constant depth account
for human competence in the Kanizsa triangle figure? This is the representation proposed by
Nitzberg and Mumford[9]. Unfortunately, although sufficient for the Kanizsa triangle figure,
the representation is not adequate for simple variations, such as Figure 4. In this display, a
rectangularly shaped illusory surface seems to pass over and under a diamond shaped outline.
Since there is no way to embed both the illusory surface and the diamond shaped outline in
planes of constant depth, the human representation must be more general. Further evidence
is provided by Figure 5, also designed by Kanizsa[5]. The striking thing about this figure is
that even though an interpretation as two surfaces embedded in planes at constant depth is
absolutely plausible, given the image evidence, it is not perceived. Nor is the interpretation as
a single surface embedded in a plane at constant depth perceived, although this too, is entirely
plausible. Instead, as Kanizsa points out, the slender “tail” of each surface seems to pass under

the “head.” The surfaces, nevertheless, remain flat.

Strictly speaking, flatness requires that the vectors normal to a surface be perpendicular
to the plane of projection. However, if the definition of flatness is relaxed, so that the surface
normals are required to be simply close to perpendicular to the plane of projection, then a much
broader class of scenes is possible. These include non-planar embeddings of surfaces which are

still, for all intents and purposes, flat:

Definition flat scene - A set of surfaces with boundary embedded in three space such that

the surface normals everywhere are nearly perpendicular to the plane of projection.

Orientability and number of boundary components are useful for classification of surfaces
because they are invariants of homeomorphism. A homeomorphism is a continuous one-to-one
mapping (with continuous inverse mapping) of one topological space to another. Just as eu-
clidean geometry is the branch of mathematics concerned with properties of space which are
invariant under rigid motion, topology is the branch of mathematics concerned with properties
of space invariant under homeomorphism. Apart from orientability and number of boundary

components, the only other topological invariant is genus. We will see that although the bound-



aries of surfaces in flat scenes form a more general class of curves than Jordan curves in the
plane, they are still Jordan curves...Jordan curves embedded in orientable surfaces of arbitrary

genus.

The orientable surface without boundary of lowest genus is the sphere (genus zero) while
the next lowest is the torus (genus one). As part of an inductive definition of genus, it will be
useful to introduce a technique for building surfaces of higher genus from surfaces of lower genus.
To begin, a disc is subtracted from two surfaces, creating a hole in each. A “tube” is then used
to connect the hole in the first surface to the hole in the second surface. The resulting surface is
termed the connected sum, and its genus is the sum of those of the two original surfaces. If this
operation is performed on a single surface, it is called adding a handle, and increases the genus
by one. The genus of an orientable surface with boundary is the number of handles which must
be added to a sphere to form a topologically equivalent surface. Since the genus of the torus is

one, it is equivalent to a sphere with one handle.

Every orientable surface with boundary can be created by subtracting one or more discs from
a sphere with zero or more handles. Since this operation partitions the sphere with handles into
disjoint regions, the boundaries of the resulting surfaces are Jordan curves. Genus zero surfaces
with boundary are a degenerate case. They are created by subtracting one or more discs from
a sphere with zero handles. Members of this subset can be embedded in a plane, where their
boundaries remain Jordan curves. However, all orientable surfaces with boundary, even those
which can not be embedded in a plane, can still be “flattened.” For example, an orientable
surface with boundary of genus one is created when a disc is subtracted from a torus. This
surface, known as a punctured torus, is constructed by gluing the edges of a paper panel as
illustrated in Figure 6. Yet it can be readily verified that the flat surface depicted in Figure
7 is also a punctured torus. First, it should be clear that prior to gluing along edges a and b,
the surface consists of a single rather oddly shaped panel. Note that this panel is topologically
equivalent to the rectangular panel from which the punctured torus was constructed in Figure
7; when the boundary of each panel is traversed in the same direction, the edges are encountered
in the same order: acbfaebd. It is also clear that the identifications of edges a and b indicated in

Figure 7 correspond exactly with the identifications of edges a and b in Figure 6. Furthermore,



Figure 6: The punctured torus, an orientable surface with boundary, can be constructed from a
single panel.



Figure 7: Although the punctured torus can not be embedded in a plane, it can still be flattened.



the cycle of free edges, cfed, forms the boundary of both surfaces. From a topological standpoint,
the two surfaces are equivalent, even though the appearance of the boundary is very different

in the respective figures.

3 Topological Requirements

Let us assume that the definition of flat scene is sufficiently general, and that the reconstruc-
tion of a flat scene adequately describes the competence exhibited in perception of the Kanizsa
triangle figure. The associated completion problem can be divided into two interelated subprob-
lems: 1) The problem of completing the set of surface boundary points; and 2) The problem
of completing the set of surface interior points. To what extent does a solution to one of these
problems determine the solution to the other? If only planar embeddings are allowed, the an-
swer is very simple, since the shape of an embedded surface is uniquely determined by the shape
of its boundaries. In this special case there is no “interpolation” problem, only the problem of
identifying which boundary fragments match which. Of course this matching problem is strongly
constrained by the requirement that boundaries must form sets of closed, oriented Jordan curves
in planes at constant depth. Yet we have already seen that this requirement, while ensuring the
topological validity of the completed surfaces, is somewhat artificial. It uneccessarily restricts
the class of admissible scenes. Which leads to the following two questions: What topological
requirements, at a minimum, are satisfied by the boundaries of a flat scene? How can a set of
boundaries satisfying these less restrictive requirements be interpolated to build a representation

of complete surfaces?

Because any surface’s boundary is formed from cycles of non-identified edges in some pan-
eling, each boundary component is topologically equivalent to a circle. An embedding of a
topological circle in three space is called a knot. The abstract depiction of the projection of
a knot onto a plane is called a knot diagram. A knot diagram is a closed plane curve which
intersects itself at a finite number of points called crossings. Each of the closed plane curves
which together comprise the projection of the boundary onto the image plane can be assigned

a single orientation which everywhere indicates which side of the curve the image of the surface



lies. In this paper, we adopt the convention that the surface lies to the right as the boundary is
traversed in the direction of its orientation. Additionally, each boundary point can be assigned
an integer value equal to the number of surfaces lying between the point and its projected image.
This number will be referred as the boundary depth. If the view of the flat scene is generic,
then crossings will be the only points of multiplicity two in the projection of the boundary
onto the plane. Furthermore, boundary depth can change only at crossing points. In a knot
diagram, crossings are drawn in a manner which explicitly indicates the relative depth of the
two overlapping strands. The depth of the farther boundary changes by one as it is occluded
by the surface defined by the nearer boundary. The depth of the nearer boundary, of course,

remains unchanged.

The above observations constitute a set of necessary constraints on the appearance of surface
boundaries in flat scenes. These constraints have been incorporated into the labeling scheme
illustrated in Figure 8. The writhe of a crossing in a knot diagram is the sign of the cross
product of the orientations of the upper and lower strands. Every crossing in a knot diagram is
equivalent (after rotation) to a crossing with writhe equal to either +1 or —1. Crossings with
opposite writhe are mirror images. For our purposes, the upper and lower strands represent the
nearer and farther boundaries and the two different crossing labelings correspond to the two
possible values for writhe. It can be easily verified that the depth labels of the different edges
in the labeling scheme faithfully reproduce the effect of occlusion of the farther boundary as
described in the previous paragraph. The labeling scheme can therefore be considered necessary
in the sense that the image of the boundary of any flat scene satisfies the constraints. But
does a set of closed contours satisfying the labeling scheme always represent a flat scene? Is the

labeling scheme necessary and sufficient?

We now prove that a set of closed contours satisfying the labeling scheme illustrated in
Figure 8 always defines a flat scene. First, constraints on the number of interior surface points
which project to a single image point are identified. We then demonstrate that given an oriented
knot diagram, values satisfying these constraints can always be found. This is the precondition
of a procedure for constructing a paneling from a knot diagram satisfying the labeling scheme.

Finally, we show that every paneling constructed with this procedure represents a flat scene



which projects generically as the labeled knot diagram.

Theorem 1. Every knot diagram satisfying the labeling scheme illustrated below represents

a generic view of a flat scene.

< < < <
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Figure 8: A labeling scheme incorporating a set of necessary constraints on the appearance of
surface boundaries in flat scenes.

Proof Observe that a knot diagram partitions the plane into a set of disjoint planar regions.
The boundary of each planar region is a cycle of oriented edges separated by crossing vertices.
Every edge forms the side of exactly two planar regions, one lying to its right, the other to its
left (where right and left are with respect to the edge’s orientation). Note that if an edge is
the projection of part of the boundary of a flat scene, then the multiplicity of the projection of
interior surface points to image points is one greater on the right side of the edge than on the
left. Furthermore, the multiplicity of the projection of interior surface points to image points
will be constant within a planar region. Quite obviously, this is only true of flat embeddings;
Folding a surface will result in changes in the multiplicity of the projection of interior surface

points at image contours other than region boundaries.

Let A and B be neighboring regions in an oriented knot diagram and let A lie to the right of
B. If 4 and vp are the multiplicities of the projection of interior surface points within regions
A and B, then v4 —vp = 1. Observe that the set of difference constraints among all neighboring
planar regions form the node-edge incidence matrix of a network. Let the nodes of the network

corresponding to A and B be v4 and vp respectively. We adopt the convention that the edge



Figure 9: A labeled knot diagram partitions the plane into regions.



of the network joining v4 with vp is directed from vy to vp when region A lies to the right of
region B in the knot diagram so that the weight of an edge in the network is equal to one when

traversed in the direction of its orientation.

Example

Figure 10 illustrates a network constructed in this fashion for the planar partition depicted

in Figure 9. The linear system of difference equations represented by this network appear below:

"1 -1 0 0 0 0 0 0 0 01

10 -1 0 0 0 0 0 0 0

10 0 0 -10 0 0 0 0/|f[vm] 4
01 0 -1 0 0 0 0 0 0 |]|~vs .
01 0 0 0 -1 0 0 0 0 ||~ .
01 0 0 0 0 10 0 0 || .
000 1 -10 0 0 0 0 0/|¥w|_]|,
00 1 0 0 0 10 0 0 |]|~7r .
00 0 1 0 0 0 -1 0 0 ||~ 1
00 0 0 1 -1 0 0 0 0 || .
00 0 0 1 0 10 0 0 ||~ 1
00 0 0 0 1 0 0 0 —1|[y] *"°-
00 0 0 0 0 1 0 —1 0

o000 0 0 0 0 1 0 0 —1

Recall that a system of difference equations has a solution if and only if the sums of the
weights of every cycle in its corresponding network equal zero (where the weight of an edge is
interpreted as 1 or —1 depending on the direction of traversal). We demonstrate not only that
a solution to this system of difference constraints always exists but also that a solution exists
where the value of v for every planar region is greater than the largest depth label among all
edges bordering that region in the knot diagram. Fortunately, this second condition is easy to
satisfy, since it is always the case that if {z;, s, ..., 2.} is a solution to a system of difference
equations, then {z; + ¢,zy + ¢,...,z, + ¢} is also a solution for any constant c¢. Clearly, a
sufficiently large ¢ can always be found, so it is sufficient to prove that the sums of the weights

around every closed cycle in a network constructed as described equal zero.



Figure 10: A network representing difference constraints on the multiplicity of the projection of
interior surface points onto adjacent planar regions. The direction of the edges in the network
is chosen so that the network weights are one when traversed in the direction of the arrows.



We begin by proving the following lemma:

Lemma 1. Let J be an oriented Jordan curve in the plane and let C be an arbitrary,
oriented, closed plane curve. If J wntersects C' at m points, and zf]_; and ¢; are the vectors
tangent to J and C at these points, then 7" .sgn(j;- x &) =0.

Proof A Jordan curve divides the plane into two disjoint regions which we call the inside
and the outside. We adopt the convention that the inside lies to the right as the Jordan curve
is traversed in the direction of its orientation while the outside lies to the left. If in the course
of traversing oriented plane curve C, an ant crosses Jordan curve J at crossing z, then the ant
is conveyed either from the inside to the outside or from the outside to the inside. In the first
case, .sgn(j;- X ¢;) = 1 while in the second case .sgn(j;- x ¢;) = —1. Since successive crossings, %

and 7 4+ 1, must occur in opposite directions:

59”(3;' X Ez) + 59“(32’4—1 X 5;-|-1) =0

Since in the course of a complete circuit, C' must intersect J an even number of times,

m—1 m/2—1
Z Sgn(ji X 31') = Z Sgn(jZ'i X 521') + Sgn(j2i+1 X EZH—l) =00
2=0 2=0

We now proceed with the proof that the sums of the weights around every closed cycle in a
network constructed as described equal zero. Assign locations in the plane to the vertices in the
network, such that each vertex is located within its respective planar region. Since edges only
connect vertices located in adjacent planar regions, the network clearly has a planar embedding.
We further note that every edge in the network need only cross an edge in the knot diagram
once: At the boundary between adjacent regions. Furthermore, at these crossing points, the
signs of the cross products of vectors tangent to edges of the network and edges of the knot
diagram are everywhere equal to 1, which is the appropriate interpretation of the network edge
weights when traversed in the direction of their orientation. Conversely, if the edge is traversed
in the opposite direction, then the sign of the cross product is —1, which again corresponds to

the appropriate interpretation of the weight of the network edge. Now, since the network is



a planar graph, the traversal of every simple cycle (i.e. a cycle in which no vertex is visited
twice) traces a Jordan curve in the plane. Complex cycles, in turn, are the sums of one or more
simple cycles, each of which is a Jordan curve. By Lemma 1.0, the sum of the signs of the
cross products of vectors tangent to oriented Jordan and closed plane curves at their points of
intersection is zero. Clearly then, the sums of the weights around every cycle in the network

also equals zero, so that the system of difference equations always has a solution.

Let us summarize the proof to this point. We began with the observation that a knot
diagram partitions the plane into regions. We then described a system of difference equations
which the multiplicities of the projection of interior surface points onto the different regions
must satisfy if the knot diagram is an image of a surface boundary. It was subsequently shown

that a solution to this system of difference equations can always be found.

The second part of the proof is a description of a procedure for constructing a paneling
given a knot diagram labeled according to the scheme illustrated in Figure 8 and a solution to
the system of difference equations. We then prove that the paneling actually does represent a
surface with boundary, by demonstrating that the neighborhood of every point is homeomorphic

to either a disc or half disc.

Since each region of the planar partition induced by the knot diagram is a topological disc,
flat panels of the same shape and size can be cutout from a sheet of paper. For each region,
R, create g copies of the paper panel, where g is the multiplicity of the projection of interior
surface points onto region R. Let the copies of region R be R(1), R(2), ..., R(yr) and let them
be arranged in a stack above region R in the plane such that R(1) is the uppermost region and
R(yr) is the lowermost region.

Let A and B be neighboring regions and let n be the boundary depth of the edge in the knot
diagram separating them. Note that if A lies to the right of B then v4 —yp = 1. Unless n equals
zero, identify the side (bordering B) of each panel (above region A) numbered 1 through n with
the adjacent side of the corresponding copy of region B (i.e. A(1) <> B(1),...,A(n) < B(n)).
Let the side of A(n + 1) adjacent to B remain non-identified. Now, unless y4 equals n + 1,
identify the side (bordering B) of each panel (above region A) numbered n + 2 through vy with
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Figure 11: Paper panels stacked above regions A and B in the plane. Following the identification
scheme, all copies of regions A and B but A(n + 1) are glued along their adjacent sides. The
free side of A(n 4 1) becomes part of the boundary of the surface.



Figure 12: The paneling resulting from the identification scheme. Bold edges remain free, and
form the boundary. Additional identifications are indicated by z and y.



the adjacent side of the copy of region B numbered n + 1 through v4 — 1 (i.e. A(n +2) «
B(n+1),...,A(va) > B(ya — 1)). We refer to this implicitly defined set of edge identifications
as the udentification scheme. The effect of the identification scheme is to create n interior edges
above and y4 — n — 1 interior edges beneath a single boundary edge in the paneling. The set
of identifications can be divided into three subranges, the first and last of which are potentially

empty:

(a) Unless n =0, A(1) <> B(1),..., A(n) <> B(n).
(b) A(n+1) — 0.

(c) Unless y4 <n+2, A(n+2) < B(n+1),...,A(v4) <> B(ya — 1).

As previously noted, by everywhere gluing along the edges specified by the identification
scheme, a paneling is created. However, we still must show that this paneling represents a flat
scene. This will be done by demonstrating that the neighborhood of every point of the paneling
has structure characteristic of either an interior surface point or a boundary point. Towards
this end, we observe that points of the paneling can be divided into the following categories: 1)
Points interior to a panel; 2) Points lying on an identified edge; 3) Points lying on a non-identified
edge; and 4) Vertex points. In each of these cases, we demonstrate that the neighborhood of

the point has structure characteristic of an interior surface point or a boundary point.

The first three cases are trivial. First, it is clear that a point interior to a panel forms
an interior point of the surface. Second, the nature of the identification scheme insures that
every panel edge is identified with at most one other. Pairs of identified panel edges therefore
form interior edges of the paneling. Third, it is also clear that non-identified panel edges form
boundary edges of the paneling. This leaves only the fourth case.

We therefore consider the neighborhood structure of vertex points. These are points of the
paneling where the corners of two or more panels are incident. They should not be confused
with crossings in the knot diagram. Specifically, it is important to understand that two or more
vertices in the paneling are created when the construction is applied to the edges incident at a

crossing in the knot diagram. We note that the result need only be demonstrated for crossings



with writhe equal to +1 since the case of crossings with writhe equal to —1 follows from mirror
symmetry.

To better appreciate the need for an explicit proof of the proposition that neighborhoods
of vertex points produced by the construction are homeomorphic to discs or half discs, it will
be useful to study a negative example. The knot diagram shown in Figure 13 satisfies all
components of the labeling scheme but the boundary depth order requirement. More specifically,
although boundary depths are positive and depth change is consistent with the orientation of
the occluding strand, the boundary depth of the occluding strand is greater than the depth of
the occluded strand at the four crossings bordering region I. Nevertheless, the construction still
can be applied to this knot diagram. This results in the paneling shown in Figure 14. The
structure of the neighborhoods of each of the four crossings violating the depth order requirement
is fairly complex, and is best appreciated through a paper model, which is readily constructed
with scissors and tape. But even without building a model, one consequence of the unusual
neighborhood structure can be readily appreciated: Although the boundary set is connected,
the set of interior points is not! Since none of panel I(2)’s four sides is identified, each forms part
of the boundary. Consequently, there exists no unbroken path, wholly interior to the surface,
connecting an interior point of /(2) with an interior point of any other panel. It is precisely this
type of pathology that we wish to demonstrate is impossible in a knot diagram satisfying the

labeling scheme in all respects. Toward that end, we continue the proof.

Let the four regions incident at a crossing with writhe equal to +1 be A, B, C and D as
illustrated in Figure 15. Note that the depth of the edges dividing regions A and B is m, regions
C and D is m, regions A and C is n + 1, and regions B and D is n, with 0 < m < n < v¢
as guaranteed by the labeling scheme. Since region C lies to the right of both of the strands
formed by these edges, the multiplicity of region C is one greater than the multiplicity of regions
Aand D (i.e. ¢ =vp + 1 = 74 + 1) and two greater than the multiplicity of region B (i.e.
Yo = vB +2). We will show that, after gluing, exactly two of the y¢ copies of region C will form
boundary vertices (with neighborhoods homeomorphic to half discs) while the remainder will
form interior vertices (with neighborhoods homeomorphic to discs). In the process, all copies of

the other three regions will be accounted for.



Figure 13: The labeling of the four crossings on the boundary of region [ is in violation of the
depth order requirement.



Figure 14: The paneling which results when the construction is applied to the knot diagram in
the previous figure. Bold edges remain free, and form the boundary. Additional identifications
are required along edges labeled w, 2,y and z. Although the set of boundary points form a single
connected component, the set of interior points does not.
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Figure 15: Four regions incident at a crossing with writhe equal to +1.

We begin by enumerating the set of edge identifications prescribed by the identification
scheme for copies of regions A, B, C and D. These identifications are understood to apply to

the adjacent edges of the specified copies:

1. Identifications between copies of A and B.

(a) Unless m = 0, A(1) ¢ B(1), .., A(m) < B(m).

(b) A(m +1) — 0.

(c) Unless va < m +2, A(m +2) & B(m +1), ..., A(74) < B(ya — 1).
9. Tdentifications between copies of C and D.

(a) Unless m = 0, C(1) < D(1), ..., C(m) < D(m).

(b) C(m+1) = 0.

(c) Unless 7o < m +2, C(m+2) < D(m +1),..,C(70) < D(ve — 1),
3. Identifications between copies of A and C.

(a) C(1) & A(1),...,C(n+1) & A(n +1).

(b) C(n+2) — 0.

(c) Unless v¢ <n+3, C(n+3) < A(n+2),...,C(yc) & A(ve — 1).



4. Identifications between copies of B and D.
(a) Unless n =0, D(1) <» B(1),..., D(n) <> B(n).
(b) D(n+1) — 0.

(c) Unless yp <n+2, D(n+2) < B(n+1),..., D(vp) <> B(yp — 1).

The identifications can be grouped into five consecutive subranges instead of three by ex-

ploiting the fact that the labeling scheme guarantees that 0 < m < n < ~¢:

1. Identifications between copies of 4 and B.
(a) Unless m = 0, A(1) +» B(1), ..., A(m) <> B(m).
(b) A(m +1) — 0.
(c) Unless m+2<n+1, A(m+2) < B(m+1),...,A(n + 1) <> B(n).
(d) None.
(e) Unlessn+2 <vyc —1, A(n+2) <> B(n+1),..., A(v¢ — 1) +> B(ye — 2).
2. Identifications between copies of C' and D.
(a) Unless m =0, C(1) <+ D(1),...,C(m) +> D(m).
(b) C(m+1) = 0.
(c) Unless m+2<n+1,C(m+2) <« D(m+1),...,C(n+1) < D(n).
(d) C(n+2) « D(n +1).
(e) Unless n +3 < v¢, C(n+3) «+» D(n+1),...,C(y¢c) ¢ D(yc — 1).
3. Identifications between copies of A and C.
(a) Unless m =0, C(1) <+ A(1),...,C(m) +> A(m).
(b) C(m +1) +» A(m +1).

(c) Unless m+2<n+1,C(m+2) < Am+2),...,.C(n+1) < Aln +1).



(d) C(n+2)—0.

(¢) Unless n + 3 < v, C(n+3) < A(n +2),...,C(ve) & A(ve — 1).
4. Tdentifications between copies of B and D.
(a) Unless m = 0, D(1) <> B(1), ..., D(m) < B(m).
(b

None.

D(n+1) — 0.

)

)

c) Unless m+1<mn, D(m+1) + B(m+1),..., D(n) <> B(n).

)

e) Unlessn+2<~vc—1,D(n+2) < B(n+1),...,D(y¢c — 1) + B(yc — 2).

(
(d
(

The effect of gluing the panels according to the prescribed identifications is best illustrated
by means of a diagram such as Figure 16. Pairs of identified edges are adjacent in the diagram.
This diagram illustrates, in the most general case, the vertices of the paneling which are produced
by the construction when applied at a single crossing. The fact that these and only these
vertices are created can be verified by noting that: 1) Every identification prescribed by the
identification scheme appears in the diagram; and 2) Every identification appearing in the

diagram is prescribed by the identification scheme.

Whether or not the conditional identifications appear depends on the depths of the two
strands overlapping at the crossing and the multiplicity of region C'. The effect of the un-
conditional identifications (i.e. 1-4 (b) and (d)) is to create two vertices with neighborhoods
homeomorphic to half discs in the paneling. These are boundary vertices. The effect of the
conditional identifications (i.e. 1-4 (a),(c) and (e)) is: 1) To create m interior vertices above the
uppermost boundary vertex; 2) To create n — m interior vertices between the uppermost and
lowermost boundary vertices; and 3) To create y¢ —n — 2 interior vertices beneath the lowermost
boundary vertex. Inspection of the diagram confirms that exactly four panels are incident at
each interior vertex, and that the neighborhood structure of each interior vertex resembles a

disc.

We now show that the image of the boundary of the flat scene produced by the construction

corresponds to the knot diagram in every respect. First, the definition of the construction



A(1), ..., A(m) B(1), ..., B(m) A(m +1)

C(1),...,C(m) D(1),...,D(m) C(im+1)
Alm+2),...,A(n+1) B(m +1),...,B(n)
C(m+2),..,C(n+1) D(m +1),...,D(n)

Aln+2),..,A(yc — 1) B(n+1),...,B(y¢ — 2)

C(n + 2) D(n+1) C(n+3),...,C(ve) D(n+2),...,D(y¢c —1)

Figure 16: Paneling vertices produced by the construction when applied to edges incident at a
crossing. Thick lines are boundary edges.



guarantees that each edge in the knot diagram produces exactly one non-identified edge in
the paneling. The multiplicity of the projection of boundary points is therefore equal to one
everywhere except at crossings. Furthermore, at crossings the multiplicity of the projection of
boundary points is two, since exactly two boundary vertices are produced in the paneling when
the construction is applied to the edges incident at a crossing. It follows that the image of the
boundary is generic. Second, the definition of the construction guarantees that the image of the
surface everywhere lies to the right of the image of its boundary, so that contour orientation is
respected. Finally, the definition of the construction also guarantees that the boundary depth
everywhere matches the depth attributes of the labeled knot diagram, since exactly n interior

panel edges are assembled above each boundary edge.O

4 Conclusion

This paper describes the theoretical basis for the working experimental system described in[10].
The experimental system employs a two stage process of completion hypothesis and combina-
torial optimization. The labeling scheme, incorporating necessary and sufficient constraints for
flat scenes, is enforced by a system of integer linear inequalities. The final organization is the
optimal feasible solution of an integer linear program. This paper extends that work in the

following ways:

1. The topological requirements implicit in the system of integer linear inequalities are ex-
plicitly identified and incorporated in a contour labeling scheme which is more easily

understood.

2. The labeling scheme is shown to be necessary and sufficient, in the sense that it implicitly
defines a domain of flat scenes more general than sets of surfaces embedded in planes at

constant depth.

3. In the course of the sufficiency proof, a procedure for interpolating a set of boundaries

satisfying the labeling scheme is described.









Figure 19: The completed cube, which in this case, is uniquely determined by topological
requirements.



4. As a consequence of interpolation, the subsets of boundary components which together

define individual surfaces are identified. This is a grouping problem in its own right.

Figure 17 depicts one of Kanizsa’a partially occluded cubes, a difficult completion prob-
lem which the experimental system is capable of solving. This example, though not flat, was
selected because it illustrates the disambiguating power afforded by topological requirements
alone. Potential boundary completions, represented by cubic bezier splines of least energy, are
shown in Figure 18. This subset of completions was selected solely on geometric criteria. In this
instance, the final organization (shown in Figure 19) is uniquely determined by the requirement
that the completed boundaries define a topologically valid flat scene. A detailed description of

an improved version of the experimental system is forthcoming.
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