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ABSTRACT

The first step in establishing a group theoretical framework in robotics research
is to formulate the precise basic vocabulary for describing surfaces of solids and
their relationships. In a previous paper surface features of a solid are treated as
sets in Euclidean space with no orientations taken into consideration. In this paper
we show the problems caused by treating surfaces as such sets, then we formally
characterize the oriented surfaces of a solid. The surface contacts between solids
are always associated with a set of symmetries of the contacting surfaces. These
symmetries form a group, called the symmetry group of the surface. When the
orientation of a surface is taken into account the symmetries of a surface need to be
redefined. In this paper we formalize the following important concepts:

Primitive and compound oriented features of a solid;

A complete topological characterization of these features, in particular, in-
troduction of the concept of complementary relationship between a pair of
features;

The symmetry groups of oriented primitive features and compound features.

The central result of this paper is to prove:

the given characterization of oriented features is complete and mutually ex-
clusive;

the symmetry groups of complementary features are conjugations of each
other;

when a compound feature of a solid is composed of a set of distinct, 1-congruent
or 2-congruent primitive oriented features, its symmetry group can be ex-
pressed in terms of the intersection of the symmetry groups of its primitive
features.



These results lay out a realistic and precise group theoretic framework for charac-
terizing surfaces of solids and capture the very nature of surface contact — the state
of being complementary. Under this formalization surface contac¢t can be treated
conceptually effectively and computationally efficiently.



1 Introduction

In robotics and mechanical design, contacts among solids are of particular interest.
These contacts add to the otherwise free-standing (free-flying) individual part a set
of constraints which are often referred to as kinematic constraints. Since contacts
among solids happen via the contacts of the surfaces of the solids, the representation
and characterization of each surface constitutes the foundation of any formalization
for solid contacts. In [6] a group theoretic framework was proposed with surfaces of
a solid treated as sets in Euclidean space. A set-feature of a solid is defined in [6]
as:

Definition 1.0.1 A primitive feature F of a solid M is a connected, irreducible

and non-trivial algebraic surface that partially or completely coincides with one or
more finite bounded faces of M.

We maintain that symmetries of a surface play a crucial role in characterizing
the solid which the surface bounds and determining the relative motions/positions
of the solid with respect to other solids in contact. A symmetry is an isometry
(a distance preserving mapping) in Euclidean space. When one considers with only
those transformations which are physically realizable (excluding reflections), i.e. the
proper symmetries, a symmetry is defined as [6]:

Definition 1.0.2 A proper isometry g is a proper symmetry of a set S if and
only if g(S) = S.

All the symmetries of a set-feature form a group mathematically, the concept of
the symmetry group of a feature is thus defined in [6] as:

Definition 1.0.3 When S is a feature, its symmetry group G is called the sym-
metry group of the feature S.

It is argued that “the treatment of primitive features as sets (planar surfaces
being the only special case) is sufficient as far as their symmetries are concerned
[6]. It is true that in general whether a primitive feature has orientations or not, or
which orientation it has, does not make a difference in regards to the symmetries
of the feature!. A spherical surface, treated as a set or with orientation vectors
pointing inward, has the same symmetries as the spherical surface with orientation
vectors pointing outward. However, in practice it is rare that a primitive feature is
considered in isolation. In a mechanical assembly, it is often the case that several
primitive features of one solid are in contact with several primitive features of other
solids. This is a situation where features treated as simple sets could run into
problems. For example, Figure 1 shows two adjacent planar surfaces 53,5 of a

1The only exception is the planar surface: when it is treated as a set there are flipping symme-
tries which do not exist for oriented planes. In applications this can be easily treated as the only
special case.
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Figure 1: Two adjacent planes on a cube

block. If the two features are treated as sets the symmetries of the two planes (a
compound feature) include a 90° rotation about the line of the intersection of the
two planes which is not a symmetry in reality, if one takes into consideration the
fact that one side of the plane is the material of the solid and the other is the air.
Another example of such non-existing symmetries is illustrated in Figure 2. If the
two cylindrical surfaces Sy, S, are treated as sets then one cannot distinguish the
two cases (2) and (b). In case (b) the cylindrical hole S; and the cylinder S,, though
they have the same radius, are not interchangeable if one takes their orientations
into consideration. .

The aforementioned problems call for a more precise characterization of surface
features of a solid, i.e. taking the orientations of a feature into consideration. This
addition to a set-feature will require that the symmetries of the feature keep both
the points on the surface and the orientations of the surface, respectively, setwise
invariant.

It is the objective of this paper to improve the group theoretic framework for
describing surface contact by addressing the orientations of a surface explicitly.
Meanwhile we justify that the results on the symmetry groups of compound features
proved in [6] hold for oriented compound features as well, with fewer restrictions.

2 Oriented Features and Symmetry Groups

In this section we provide the basic vocabulary for describing surface contacts among
solids. We formally define oriented (primitive and compound) features of a solid and
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Figure 2: S; and S; are 2-congruent if they are treated as sets.



the symmetries of a feature. We show that these symmetries form a group, called the
symmetry group of the feature. A complete and mutually exclusive characterization
of relationships among primitive features is given. Furthermore wé prove that when
several primitive features on a solid are being considered collectively (often the case
in an assembly), the symmetry group of the compound feature can be expressed in
terms of the intersection of the symmetry group of each primitive feature involved.
The format of such an expression may differ depending on the relationship of the
relevant primitive features.

2.1 Primitive Features and Their Symmetry Groups

In our discussion of features [6] we have ignored one aspect of the faces of real world
solids, namely that faces are boundaries between solid matter and air. The surfaces
which we have treated mathematically as subsets of ®2 have no intrinsic inside and
outside. To remedy this we introduce the concept of oriented features by defining a
set of outward-pointing normal vectors for each surface point of a solid. Let 52 be
the unit sphere at the origin, each point of which corresponds to a unit vector in

R3.

Definition 2.1.1 A solid M is a connected, rigid, three dimensional subset of Eu-
clidean space R3.

Definition 2.1.2 An oriented primitive feature F = (S5,p) of a solid M is an
oriented surface where

1) S C R® is a connected, irreducible? and continuous algebraic surface which
partially or completely coincides with one or more finite oriented faces of M;

2) p C S x &% is a continuous relation. For each s € S if s is a non-singular
point of surface S (p.78 [3]) then v € §? is one of the normals of the tangent
plane at point s such that (s,v) € p; if s is a singular point of S (e.g. at the
apez of a cone) then, for all v where v € §? is the limit of the orientations of
its neighborhood, (s,v) € p.

8) For all s € M,(s,v) € p,v points away from M.

Intuitively speaking, a feature is composed of both “skin”, S, and “hair”, the set
of normal vectors which correspond to the points on S2. Each element of relation p
is a correspondence between a point on S and a vector on S2. Note, there may be
more than one ‘normal vector’ at one point of a surface, e.g. at the apex of a conic
shaped surface.

See Table 1 for definitions of some important subgroups of the Euclidean group
_defined with respect to an arbitrary Cartesian coordinate system in Euclidean space,
where 1, J, k are orthogonal unit vectors along axes X, Y and Z, trans(z,y,z) is a

2Here irreducible implies that a primitive feature cannot be composed of any other more basic
surfaces.



Table 1: Some Canonical Subgroups of £+

Canonical Definition of
Groups Group Members
Gid {1}
T? {trans(z,y, z)|z,y, 2z € R}
S0(3) {rot(i, #)rot(j, oc)rot(k, $)|4, 0, ¢ € R}
£* {trans(z, y, z)rot(i, f)rot(j, o)rot(k, $)|z,y, 2,6, 0, ¢ € R}

translation and rot(a,b) is a rotation about axis a for angle b. Let £t be the proper
Euclidean group which contains all the rotations and translations in %2, and T2 be
the maximum translation subgroup of £*. We now define how an isometry acts on
the relation p:

Definition 2.1.3 Any isometry g = tr of £¥,t € T3,r € SO(3) acts on p in such
a way that (s,v) € p & (gs,™v) € g *p.

Next we prove the associativity of isometries when they act on the relation p.
Lemma 2.1.4 For all g1,9; € £¥,(9192) * p = 91 * (92 * p).

Proof.

Let gy = t179, g2 = tors where ¢y, € T3, 71,72 € SO(3). Since g1g2 = £yt =
t,t'ry72 (T2 is a normal subgroup of £*), for all (s,v) € p, (91925, 7172v) € (9192) * p.
On the other hand, for all (s,v) € p,(gzs,72v) € g2%p and (91925, T172v) € g1%(g2%p).
Therefore, (g192) * p = g1 * (g2 * p)- m

For a feature defined in Definition 2.1.2, its symmetries are different from the
symmetries of a set (Definition 1.0.2):

Definition 2.1.5 An isometry g € £* is a proper symmetry of a feature F =
(S,p) if and only if g(S) =S and g*p = p.

There is, therefore, an extra demand on a symmetry for an oriented feature,
namely, it has to preserve the orientations of the feature as well. Since orientations
are points on S%, symmetries of an oriented feature have to keep two sets of points,

or one set of 5-tuple points, setwise invariant. Let us first prove that the symmetries
for a set form a group:

Proposition 2.1.6 The proper symmetries of a set S C R form a subgroup of £*.

Proof :

~ Let G denote the set of the symmetries of S C ®°. Obviously, 1(S) = S, so
1 € G. If g € G then g(S) = S, multiplying by g~! we have g~'g(S) = g7(5)
therefore g7(S) = S and so g € G. Finally, if 91,9, € G then (§:4:)(S) =



91(92(S)) = 91(S) = S therefore g1g, € G. By the definition of 3 subgroup G is a
subgroup of £*. A w

Now let us prove that the symmetries for an oriented surface:form a group as
well:

Proposition 2.1.7 The symmeiries of an oriented feature F = (S, p) form a sub-
group of £, called the symmetry group of feature F.

Proof : .

Let G denote the set of the symmetries of F. Since it has been shown in Propo-
sition 2.1.6 that it is true for set S, here we only state about p.

Obviously, 1 *xp = p,s0 1 € G. If g € G then (g * p) = p (By the definition
of symmetries). Multiplying by g~! we have g~?(g * p) = g~ ! * p. Using Lemma
2.1.4 we have g7 x p = p and so g~! € G. Finally, if g;,92 € G then (g:192) *xp =
g1 * (92 * p) = g1 *x p = p therefore g1g; € G. Hence G is a subgroup of £*. =

2.2 Compound Features and their Symmetry Groups

It is often the case in an assembly that several features of a solid are in contact with
one or more other solids. The possible motions of this solid under these contacts are
determined by the symmetry group of the contacting features considered together.
How do we obtain the symmetry group of several primitive features considered
collectively? First we need a denotation for such a collection of primitive features.

Definition 2.2.1 A compound feature F = (5,p) of primitive features F; =
(51,P1); s Fn = (Sn, pn), is defined to be

e S=5U..US,
[ ] p=p]U...Upﬂ

The advantage of using a relation p to denote the orientations of a feature (Def-
inition 2.1.2) becomes more obvious for compound features. When two primitive
features are combined, there often are multiple normal directions at the points where
the surfaces meet. For example Figure 3 shows a combination of a cylindrical feature
and a planar feature. There are two normals for each point at the intersection of
the two primitive features.

In order to determine the symmetry group of a compound feature systematically,
we start with the simplest case — a compound feature composed of only one pair
of primitive features. See Figure 3, 4 and Figure 5 for examples of these simple
compound features ( Note that only a finite face on the primitive feature is drawn).
Given a pair of primitive features, what kind of relationship holds between the two
-features and what is the effect of such a relationship in terms of their collective sym-
metries? The following definition gives such a characterization of the relationships
between a pair of primitive features:



F1=(51,51) F2=(525)

orientation vectors
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Figure 3: A pair of distinct features F, F
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Figure 4: Two conic features Fy, F5 which are 1-congruent to each other
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Figure 5: Two cylindrical features Fy, F; which are 2-congruent to each other
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F1 = (51,5) F2 = (5:.5)
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Figure 6: Two complementary features Fy, F
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Definition 2.2.2 Two oriented primitive features Fy = (S1,p1), F2 = (S, p2) are
said to be

e Distinct: if for any open subsets S! C S;,53 C Sz, no g = tr € £F exists
such that g(S!) C S, or g(S%) C S1. See Figure 3 for an example of a pair of
distinct features Fi, Fs.

e l-congruent: if there exists at least one g € £ such that g(5;) = S; and
g% p1 = p3, but for all such g,9(S2) # S1. For an example see Figure 4.
Another example is two parallel planar surfaces with normal vectors pointing
in the same direction.

e 2-congruent: if there exists g. € £ such that g(51) = S2,9.(52) = 51,9 *
pr = p2 and g. * p; = p;. For an example, consider two parallel cylindrical
surfaces having the same radius and normal vectors pointing away from their
center lines, as in Figure 5. Also, two parallel planar surfaces with normal
vectors pointing to the opposite directions serve as examples of a pair of 2-
congruent features.

¢ Complementary: if there exists g € £+ such that g(S;) = S2 and g*p; = —p>
where —p, = {(s, —v)|(s,v) € p2}; in other words, V(s,v) € g * p1,3(s,—v) €
p2, and Y(s,v) € pa, (s, —v) € g * p1. See Figure 6 for an example.

It is easy to verify that these relationships are symmetrical relations. Immedi-
ately we can prove that this characterization has exhaustively enumerated all the
possible cases between a pair of oriented primitive features. First, let us prove an
important lemma:

Lemma 2.2.3 Given two primitive features F; = (S1,p1), F2 = (S2,p2). If there
ezists an open set O such that O C S;NS; then S; = S5. In another words, if S, S,
are locally identical then they are identical globally.

Proof :
If one knows an open set in a surface, then one knows all of its derivatives at a
point in the open set. Therefore one can write down the equation(s) for the surface.

Therefore S; and S, are locally identical.

Furthermore, analytic functions have the property that if they are locally iden-
tical then they are globally identical [1]. In the definition of primitive features
(Definition 2.1.2), S, S, are defined by irreducible algebraic functions, which form
a subset of the analytic functions, and thus they inherit the property. Therefore if
S; and S, share an open set then S; = Ss. 0

Lemma 2.2.4 Given two primitive features Fy = (S1,p1), and Fp = (S2,p2). If
there ezists g € E* such that g(S51) = S, then either g x py = p; or g * p1 = —pa.

Prbof :
By Definition 2.1.2, any point s on a primitive feature has either
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°a uni;que tangent plane:
there are two possible antipodal normals for each plane, éa,y v,—v. By the
definition of a primitive feature either (s,v) = (s2,v2) € ps or (5,—v) =
(s2,v2) € p2. Since py, p; are continuous mappings and isometry g does not
change their continuity, for (s,v,) € p1,

~ if rv; = v, then g * p; = p,,

— if rvy = —vy thenrg % py = —pa; OF

e an infinite number of “tangent planes” (the set is isomorphic to the set of

reals):

thereis an infinite set of normals which are determined by the neighborhoods of
the singular point s. Each of such neighborhoods is composed of non-singular
points, Thus the above argument also applies.

a

Proposition 2.2.5 Distinct, 1-congruent, 2-congruent and complementary are the
only possible relationships between a pair of primitive features.

Proof :

Given two primitive features Fy = (S1,p1), F2 = (S2,p2). Lemma 2.2.3 suggests
that either there exists a g € £* such that g(S;) = S, or no such g exists. Now let
us check each case.

Note that any two planar surfaces are complementary of each other, and are
either 2-congruent (when the planes intersect or are parallel with their normals
pointing in the opposite directions), or 1-congruent (when the planes are parallel
with their normals pointing in the same direction). In the following discussion we
exclude the case of a pair of planar surfaces.

o If there exists at least one g € £* sﬁch that g(5;) = Sa:

— If g(S,) = S, also, then g(S;) = g(g(Sz)) = S; = g*> = 1. Now there are
two cases in terms of their orientations (Lemma 2.2.4):
(1) If g * p; = p; then g * p, = g * g * p1 = p;. This is the definition of
2-congruent.
(2) If g*p; = —p, then , this falls into the definition of complementary.
- If g(S;) # S1 then
(3) If g * py = p, this is the definition of 1-congruent.
(4) If g * py = —ps, this is the definition of complementary.

o If for any g € £%,9(5,) # S, (Lemma 2.2.3):
“This 1s the definition of distinct. '

14
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Corollary 2.2.6 Ezcept for a pair of planar surface primitive features, distinct,
1-congruent, 2-congruent and complementary relationships are mutually ezclusive
relations between a pair of primitive features.

Proof : As has been shown in the proof of proposition 2.2.5. i

The definition for oriented features allows us to distinguish a feature from its
complement which we cannot do for features treated only as sets. In general the
relationship between two primitive features can be either distinct, 1-congruent, 2-
congruent or complementary, except for a pair of planar surfaces of solids which are
always complementary of each other and at the same time can be either 1-congruent
or 2-congruent. .

When two solids have a surface contact, it is the case that two features which are
complementary of each other are brought into coincidence. The following proposition
states how the symmetry groups of a pair of complementary features are related to
each other.

Proposition 2.2.7 If features Fy = (S1,p1), F2 = (S2,p2) are complementary of
each other, where a(S;) = S3,a € £, and G1, G, are the symmetry groups of F1, Fy
respectively, then the two symmetry groups are conjugate via a i.e. aGia™! = G,.
In particular, if S, = S, then G; = G, (the necessary condition for surface
contact). o

Proof :

For all g = agia™! € aG1a71,9(S;) = ag1a™(S2) = ag1(S1) = a(S51) = S..

For all (s,v) € p2 by definition of complementary features (s,—v) € a* p, =
(agra~'a) * py = g(a * p1), where g = aga™! = tr € aGya™'. Thus (g7's,r7'v) €
a* p. By the definition of complementary features (¢7's,r~'v) € p,. Then (s,v) €
g * p2. Therefore p, C g * p,.

On the other hand, V(gs,rv) € g * pa,(s,v) € p2. By the definition of comple-
mentary features (s,—v) € a * p;. Then (gs,—rv) € g(a * p1) = a * p1. By the
definition of complementary features again, (gs,v) € pz. So g * p2 C ps.

Therefore forall g € aGya™?,g* ps = po. That is aG — 1la~! is a symmetry group
for F,. Hence aG e C G,.

Now we need to prove: G, C aG1a7}, i.e. G; is a symmetry group of a(S51).

If g = tr € G, then first consider how it acts on the set g(a(S5:)) = g(S2) =
S, = a(8;). Now let us consider how g acts on the orientations. For all (s,v) €
a * py, (s, —v) € ps = g * py, then (g7's,77v) € po = (971s,—r"'v) Ea*p =
(s,v) € gla*p). So axp; C g(a*p). On the other hand, V(gs,rv) € g(a *
pl)’a(s)v) €a*xp = (sv"v) € p2 = (gs)—rv) €Egxp2=p2 = (gs,rv) € ax*p;.
So g(a*p,) C a*p;. One can conclude g(a * p,) = a * p;. Therefore G, C aGya™".

Hence G, = aG1a7!. In case e = 1,G; = Ga. o

The following lemma shows that for any non-planar primitive features, symme-
tries for the set-features are the symmetries for the oriented features. A
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Lemma 2.2.8 For any non-planar primitive feature F = (S, p), if there exists an
isometry g = tr such that g(S) = S then g* p = p.

Proof :

By lemma 2.2.4, gxp = p or g*p = —p. To prove by contradiction let us assume
that g * p = —p. By definition 2.2.2 F is complementary with itself.

Since in Euclidean space a rotation cannot inverse more than two independent
vectors simultaneously® (7, 4], an oriented surface F has to have less than or equal
to two normals in order for all of its normals to be inversed by a rotation. The
only such surface, or even a surface which has finite number of normals, is a planar
surface.

Thus F' is a planar surface, a contradiction. a

This lemma could be seen as a justification for treating oriented surfaces as sub-
sets of Euclidean space but unfortunately this result does not hold for compound
features. Consider the compound feature which is composed of two cylindrical sur-
faces in case (b) of Figure 2, any transformations which interchange the two surfaces
(symmetries of the compound feature) will reverse the orientations at each point of
the feature.

In the following we shall proceed to prove that the symmetry group of a com-
pound feature is determined by the intersection of the symmetry groups of its prim-
itive features. The first case we consider is when a compound feature F' is composed
of n pairwise distinct features.

Proposition 2.2.9 Given a compound feature F = (S, p) of primitive features Fy =
(51,P1)s s Fo = (Sn,pn) where Fy,..., F, are pairwise distinct primitive features
with symmetry groups G, ...G, respectively. Then the symmetry group G of F is
G=Glﬂ...ﬂG’n.

Proof :

Let g € G, then g(S) = S. Thus g(5,U...US,)) = g(51)U...Ug(S,) = 51 U...US,.
Then g(S;) € 5 U...US,. :

From Lemma 2.2.3 and the definition of distinct features (Definition 2.2.2) we
know that Vg € G,g(S;) = Si,i = 1...n.

By Lemma 2.2.8 we have for all the non-planar primitive features gxp; = p;. Since
F\...F, are pairwise distinct there is at most one planar feature whose orientation
has to be mapped to itself.

Therefore g € G; fori=1,...,n. Thusg € G; N..NG, =G C G, N...NG,.

Forall g € G1N...NGp, g(S) = 9(5:U...US,) = g(5)U...Ug(S,) = 51U..US, = S
and gxp=g*(pU...Up,)=g*xpU..Ugxpp=pU..Up,=p=>g€CG=
Gin..NnG, CG.

Therefore G = Gy N ... N G,. a

The following definition and three theorems are from [2]. We shall use these in
our proofs. '

3If R is a rotation and 4, 7 are vectors in Euclidean space, then the vector cross product obeys:

R(%)X R(5) = R(iX7)
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Definition 2.2.10 Two sets H, K are separated if
AnK=HnK=0.

Theorem 2.2.11 A set M C X is connected if and only if M is not the union
of two nonempty separated sets.

Theorem 2.2.12 For sets, connectivity is preserved by surjective mappings.

Theorem 2.2.13 If H and K are separated, then every connected subset M of
H U K lies either in H or in K. -

Next we examine what happens when a compound feature F' is composed of a
pair of I-congruent features. What is the symmetry group of F'? Let us first prove
one useful lemma:

Lemma 2.2.14 For any pair of primitive features F1 = (S, p1), F2 = (S2, p2) where
Sy # S,, if there ezists a g € £ such that g(S; U S,) = S; U S, then g(51) =
51,9(S2) = 8> or g(51) = S3,9(52) = 1.

Proof
There are two possibilities for S; and S,:

L] 51052=0

Since g(S1 U S3) = g(51) U g(S2) = S1 US>, and g(Sy) is a connected subset
of S; U S, (Theorem 2.2.12), by Theorem 2.2.13 g(S5;) € S, or g(51) C S..
If g(5;) C 51 then, due to connectivity, g(Sz2) € S2. Since g is a bijection
9(51) = 51,9(Sz) = 5. Similarly, g(51) = 52,9(52) = 5.

o Sln527(-'0

If there exist open sets O; C g(5;1)NS; and O; C g(S1)N S,. Then by Lemma
2.2.3 g(5;) = S; and ¢g(S:) = S2. Thus §; = S», a contradiction. Thus
either g(5;) and S; share an open set such that g(S1) = 51,9(S2) = Sz or
9(51) = 52,9(S52) = 51.

Therefore 9(51) = 51,9(52) =S, or 9(51) = 52»9(52) = 5. o
The proposition for finding the symmetry group of a pair of 1-congruent features
follows:

Proposition 2.2.15 Let a compound feature F = (S, p) be composed of a pair of
primitive features Fy = (S1,p) and Fy = (Sa,p2) which are 1-congruent of each
other. If G1, G, are the symmetry groups of Fy, F, respectively, and G is the sym-
metry group of F then G = G; N G,.

Proof :
Forall g € G,g(S) = g(51U S2) = g(51) U g(S:) and g+ p = g*(p1 Up2) =
g*p Ugx*p,. By Lemma 2.2.14,
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i 9(51)‘= S1,9(S2) = Sz e
If F,, F, are planar features, they have to be parallel planes W_ith their normals
pointing to the same direction, i.e. p=p; = po. Thus gxp=p=>g*p1 =p
and g*p, = pa. For non-planar features g*p; = py, g% p2 = p; (Lemma 2.2.8).

e 9(51) = S3,9(52) = 51
If g x py = p, then Fy, F; are 2-congruent; if g *x py = —p, then Fy, F; are
complementary; both contradict the fact that F}, F, are 1-congruent.

Then g € G; N G;. So we have G C G, NG,.

On the other hand, for all gc G1 N Gz, g(S) = 9(51 U Sz) = g(Sl) U g(Sz) =
S1US, =S;gxp=g*(prUpz) = g*+prUg*p; = prUp; = p. Therefore
g € G= G;NG; CG. Thus we conclude G = G, N G,. ]

Lastly we consider the symmetry group of a compound feature F' which is com-
posed of a pair of 2-congruent features.

Proposition 2.2.16 Let a compound feature F = (S, p) be composed of a pair of
primitive features Fy and F, which are 2-congruent of each other via g. (Definition
2.2.2). If Fi = (51,p1), F2 = (S2, p2) have symmetry groups G,, G2 respectively, and
G is the symmetry group of F then G =< g. > (G1 N G;) where < g. > denotes the
subgroup of £t generated by g..

Proof :
If g € G then by Lemma 2.2.14 either

L] g(S'l) = S1 and g(Sz) = Sz:

By Lemma 2.2.8, taking planar feature case into consideration also, g * p, =
P1,9*p2 =p2. Thus g€ Gy and g€ G, = g€ G1 NGy; or

e or g(5;) =S and g(S;) =5, = g¢*=1:

g can be written as ¢ = g.g-'g. Let go = g7'9. 90(S1) = 9719(S1) = 972(S2) =
St 90*p1=(9719) *p1 = 9. * p2 = ge * p2 = p1 (Lemma 2.2.4).

Therefore go € G,. Similarly we can prove go € Gz. Thus go € G; NG, =
g§€<g.>(GiNG2) =G C<g. > (GiNGy);

Therefore G C< g. > (G1 N G3).

On the other hand, if g €< g. > (G, NG,) then g = g’g;, where ¢’ €< g. > and
912 € G1 N G,. Then g(S) = g(51 U S;) = 9(51) U g(S2) = ¢'912(51) U ¢'¢12(S2) =
g'(51) U d'(Sz). By lemma 2.2.14, either g'(S;) U g'(S;) = S1U S, = S or ¢'(S5;) U
g'(S2) = S;U S, = S. For orientations g*xp = gx(p1Ups) = g'g12* p1UG'q12 * p2 =
g'*p1Ug' *p,. Since ¢’ €< g. >, by definition of 2-congruent (Definition 2.2.2)
either ¢’ x pyUg' xpp = pyUps = por g’ *pyUg *xps = ps Upy = p. Therefore
geG=<g.>(G,NG,) CG. A

Thus we conclude G =< g. > (G1 N G,). 0O
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The fact that this proposition implies that the product of two groups, < g. >
and G; N Gy, is a group is worthy of note — this is not in general to be expected of
the product of groups. With this proposition we end this section where propositions
are proved for the symmetry groups of all the possible pairs of the oriented primitive
features.

3 Conclusion

In this paper we have carefully examined the representation and computation aspects
of oriented surfaces. Special attention is given to the characterization of symmetry
groups for contacting surfaces among solids.

The next step is to further study those compound features with more complicated
inner structures. For example, one may define a concept of n-congruence on n
features F) ... F, as requiring that there exists g € £ such that g(F;) = Fimodn)+1;
this is a natural extension of 2-congruence. Such congruences will give rise to new
symmetries of the compound feature. However Proposition 2.2.16 is not trivially
generalized to cover this case.

Nevertheless, these results lay out a realistic and precise group theoretic frame-
work for characterizing surfaces of solids and capture the very nature of surface
contact — the state of being complementary. Under this formalization surface con-
tact can be treated conceptually effectively and computationally efficiently [5].
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