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Abstract

We study the most general communication paradigm on a multiprocessor, wherein each
processor has a distinct message (of possibly distinct lengths) for each other processor.
We study this paradigm, which we call chatting, on multiprocessors that do not allow
messages once dispatched ever to be delayed on their routes. By insisting on oblivious
routes for messages, we convert the communication problem to a pure scheduling problem.
We introduce the notion of a virtual chatting schedule, and we show how efficient chatting
schedules can often be produced from efficient virtual chatting schedules. We present a
number of strategies for producing efficient virtual chatting schedules on a variety of
network topologies.
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1 Introduction

Efficient interprocessor communication is recognized as one of the most challenging as-
pects of parallel computing. In this paper, we study the most general modality of in-
terprocessor communication within a network of processors:! all-to-all personalized com-
munication, or, for short, chatting. This modality is characterized by the network’s PEs
passing among themselves arbitrary patterns of messages of arbitrary lengths. In partic-
ular, each PE is allowed to send possibly distinct messages of possibly distinct lengths
to any subset of the other PEs. This modality of communication is computationally
more demanding than its more commonly studied relatives, which typically restrict the
number of messages a PE can send or receive in a single operation and/or the variability
of the contents or lengths of messages.

This paper i1s devoted to studying how to schedule the transmission of messages in a
chatting operation in a way that minimizes the total time for the operation, within the
context of the following conventions.

e Communication in rounds. Our processor networks operate in alternating
phases of local (or, intra-PE) computation and global (or, inter-PE) communi-
cation.

This regimen, which is consistent with the philosophy underlying the bulk-synchronous
computation model [14], somewhat simplifies the design of programs for a processor
network, in a manner that is expounded on at length in that source.

e Message integrity. Each message in a chatting operation travels through the
network as a contiguous stream of flits.?

This convention, which minimizes the amount of addressing information that must travel
throughout the network along with the messages, is also a characteristic of wormhole
routing [3, 5, 10].

e Oblivious Routing. Each message in a chatting operation travels through the
network along a fixed path which is determined solely by the source and destination
PEs of the message.

1A processor network (or, processor array) is a parallel architecture comprising a set of identical
processing elements (PEs) that communicate across an interconnection network.

2A flit is the largest unit of information that can be transmitted along a PE-to-PE link in one
communication step.



This convention, which contrasts with typical studies of packet routing (see, e.g., [13]) and
wormhole routing, reduces our message routing problems to pure scheduling problems.
The many respects in which our computing model differs from that of [2] renders the
conclusions in that paper about the inevitable inefficiency of oblivious routing irrelevant
for our study.

e Bufferless communication. The PEs of our networks have neither buffers nor
queues to store messages being relayed through them; hence messages, once dis-
patched, are never delayed en route.

Our demand for unbuffered communication converts the chatting problem to a pure
scheduling problem. This demand is shared with the regimen of hot potato (or, de-
flection) routing [4, 9]; it appears also in the study of scattering and gathering general
messages in general networks, in [1]. One might be able to rationalize this demand in
terms of resource conservation: buffering requires both additional memory (each PE must
be prepared to store the longest message in the system) and time (e.g., for the process-
ing of addresses). However, our overriding motivation in this study was to understand
communication in networks better, by determining the cost of this strict assumption in
terms of the complexity of the problem of chatting.

The confluence of all of these conventions — in particular, our focus on communication
in rounds, on oblivious routing of messages, and on general patterns of passing arbitrarily
many messages of arbitrary lengths — makes the object of our study rather different from
other studies of communication in processor networks. One major difference should be
stressed here. We assume that the one (generic) communication phase we concentrate on
is characterized by a set of messages that the PEs want to exchange with one another;
new messages are not introduced into the system during the phase. Our goal is to
devise (scheduling) algorithms that will route the messages efficiently to their designated
destinations without any buffering.

A Roadmap. The remainder of the paper is organized as follows.

Section 2 introduces the formal setting for our study. We develop there the notions of
a chatting schedule for a set of messages in a network of processors and of the duration
of a chatting schedule — the quantity we strive to minimize.

In Section 3, we introduce the notion of a virtual chatting schedule for a set of
messages in a network of processors and of the duration of a virtual chatting schedule.
We show that, for the class of “forward-leveled” networks, one can convert an efficient
virtual chatting schedule (which are often easier to develop than are efficient chatting
schedules) into an almost equally efficient chatting schedule.



The remaining sections build on the transformation technique of Section 3. They
focus on designing efficient virtual chatting schedules which will later be converted to
efficient “ordinary” chatting schedules.

Section 4 is devoted to showing how to use known solutions to the so-called rectangle
compaction problem to create virtual chatting schedules for linear array networks, that
are within a small constant factor of optimal. The techniques of Section 3 can then
be used to convert these efficient virtual chatting schedules into almost equally efficient
chatting schedules.

In Section 5, we study how to devise efficient virtual chatting schedules that are based
on the set of lengths of the messages to be transmitted. We present a scheduling strategy
that reduces the problem of routing messages of arbitrary length to the problem of
routing unit-length messages. We apply this strategy in Section 5.2 to chatting problems
on two-dimensional mesh networks.

Section 6 explores an approach to message scheduling that is based on decomposing
the host network by suitable cuts. This approach is then shown to yield efficient chatting
schedules for tree networks.

2 The Problem Formalized

2.1 Processor Networks

As is customary, we identify a processor network with a directed graph G = (V, E) whose
nodes V represent the network’s PEs and whose arcs E represent its communication links.
The source of an arc is an output port of the incident PE; the destination of an arc is an
wnput port of the incident PE. In a less customary way, we associate with each processor
network G an atlas that designates a path p(u,v) from every node u € V to every node
v € V that is accessible from u; any message from node u to node v is routed along path
p(u,v). (This means that all message passing is oblivious in the sense that the route of
a message is determined entirely by the message’s source and destination nodes.)

Our processor networks operate in a pulsed fashion: a network alternates computation
phases, in which (in parallel) each PE performs some computation, and communication
phases, in which messages flow among the PEs. The networks operate synchronously, at
least during the communication phases. More specifically, during each step of a commu-
nication phase, all PEs (in parallel) perform the following actions:

e send at most one flit along each outgoing arc,



e receive at most one flit along each incoming arc,

e compute whether and where to send flits during the next step.

The PEs in a processor network G = (V, E) do not have message buffers. In particular,
this means that if, at time ¢, a PE u € V receives a flit that is not destined for it, then
u sends that flit out toward its destination at time £ + 1.

2.2 The Chatting Problem

A message is a sequence M = (mg, my,...,my_1) of flits; we call £ the length of message
M. An addressed message in processor network G = (V, E) is a message M, together
with a designated source PE u € V and a designated destination PE v € V (hence with
a designated path p(u,v) in G).

A chatting problem for processor network G = (V, E) is a set of addressed messages
in G.® This paper is devoted to studying algorithms that “solve” a chatting problem by
scheduling the transmission of all messages so that they get from their designated sources
to their designated destinations without ever encountering contention for either a PE or
a communication link, i.e, so that they honor the oblivious, bufferless communication
regimen we are studying. In addition to these restrictions on our chatting algorithms,
we insist that messages travel as indivisible unitls, i.e., that at any moment, all flits
of an addressed message that do not currently reside in either the message’s source or
destination node occupy a contiguous path of arcs in GG, with one message-flit per path-
arc.

2.3 Chatting Schedules

A chatting schedule for a chatting problem M on a processor network G is a function
T that associates an integer (time) with each flit m of an addressed message M € M
and each arc e on the designated path from the source to the destination of M. The
interpretation is that flit m traverses arc e at step 7(m, e) of the communication phase.

A. Admissible Chatting Schedules

In order to comply with all of our assumptions about bufferless transmission of in-
divisible messages, a chatting schedule 7 for a chatting problem M must satisfy the

3A purist might argue that a set of addressed messages in G is really an instance of the chatting
problem. We abuse terminology to simplify exposition.



following constraints:
o Conflict-free Arcs. At most one flit traverses any given arc at any given time:
[r(m,e) =71(m/,e)] = [m =m]. (2.1)
o Bufferless nodes. Once transmitted from its source PE, a flit m moves “forward”

one arc at every step: if (eq,ei,...,eq_1) is the designated path for the message
that m belongs to, then, for K =0,1,...,d — 1,

T(m,er) = 7(m,eo) + k. (2.2)

o Message integrity. Flits of the same message (mo,mq,...,my_1) traverse a given
arc e at consecutive times: for h =0,1,...,£ — 1,

T(mp, e) = 7(mo, e) + h. (2.3)

We call a chatting schedule that honors these restrictions admissible. Henceforth, we
consider only admissible chatting schedules.

Remark. Let 7 be a chatting schedule for the chatting problem M. The schedule that =
assigns to the addressed message M = (mg, mq,...,my_1) € M, along its designated path
p = {eo,€1,...,e4-1) is determined uniquely by the value 7(mq, e9) and the quantities d
and £; to wit, foral 0 < h < fand all 0 < k < d,

T(mp, ex) = T(mo,€0) + h + k. (2.4)

B. Efficient Chatting Schedules

The duration T(7) of a chatting schedule 7 for a chatting problem M is the amount of
time it takes to deliver all messages in M; formally:

T(7) = max{r(m,e)} — min{r(m,e)} + 1, (2.5)
where the minimization and maximization are over all flits m in the chatting problem

M and all arcs e that occur in the designated paths for the addressed messages in M.

The objective of our study is to devise techniques for constructing admissible chatting
schedules with (close to) minimum duration.



2.4 Two Significant Observations

A. Centralized vs. Distributed Schedules

One’s intuition might suggest that the only efficient chatting schedules are those that are
totally distributed, in the sense of not requiring the intervention of a central master PE.
Yet, if one is willing to suffer a modest amount of time for the scheduling — equal, say,
to a small multiple of the number of PEs in the underlying network G — then one can
design efficient “semi-distributed” efficient chatting schedules as follows.

1. Using standard techniques in the field of parallel algorithmics, one has the PEs in
the network elect a leader, call it Py.

2. Using the efficient (distributed) gathering schedules in [1], the PEs in G transmit
to PE Py a “summary” of chatting problem M. The summary represents each
addressed message M € M by the triple (source of M, destination of M, length of
M). Note that the summary comprises a fixed number of flits, irrespective of the

length of M.
3. PE P, uses the summary to compute, off-line, an efficient chatting schedule for M.

4. Using the optimally efficient scattering schedules in [1], PE P, scatters to each of
the other PEs a message transmission schedule. The amount of message traffic in
this scattering operation is minimized if the chatting schedule has each PE dispatch
all of its messages in a gap-free stream.

Although some of our algorithms for producing chatting schedules operate in a dis-
tributed manner, the preceding algorithmic strategy suggests that even centralized algo-
rithms are of interest, given the algorithms for optimal scattering and efficient distributed
gathering in [1].*

B. Two Simple Lower Bounds

Certain simple parameters of a chatting problem M yield straightforward, but useful,
lower bounds on the duration 7'(7) of any chatting schedule 7 for M.

Denote by £(M) the length (number of flits) of addressed message M € M; denote by
d(M) the distance (number of arcs) traversed by M along its designated path; denote by

“The strategy in this subsection must be evaluated in the light of the restriction in [1] to processor
networks that observe the single-port communication regimen, wherein, in a single step, each PE can
send at most one flit along at most one outgoing arc and receive at most one flit along at most one
incoming arc.



C(e) the number of message-flits from M whose designated path contains arc e. (C(e)
is called the arc congestion of the chatting problem.) Define:

L(M) = max{{(M) : M € M} maximum message length in M

D(M) = max{d(M) : M € M} maximum routing-path length for any M € M
Q(M) = max{l{(M)+d(M)—1: M € M} longest transit time for any M € M

C(M) =max{C(e): e € E} maximum arc congestion for problem M

We obtain the following lower bounds.

Proposition 2.1 For any chatting schedule T for a chatting problem M,
T(r) > max(C(M), (M),

Proof: Observing that transmitting a message M from its source to its destination takes
(M) + d(M) — 1 steps, we have T'(7) > Q(M). Observing that an admissible schedule
must keep arcs conflict free (condition (2.1)), we have T'(7) > C(M). O

2.5 Unidirectional Linear Arrays: A Running Example

To illustrate the various notions we have introduced and shall be studying, it is helpful
to refer repeatedly to a simple specific network. We introduce for this purpose the
unidirectional linear array (ULA), whose node set is V = {0,1,..., N — 1} and whose
arc set is £ = {(0,1),(1,2),...,(N —2,N — 1)}. The ULA is a convenient platform
for gaining intuition about our message-scheduling problem, both because of its inherent
simple structure and because every chatting schedule 7 for a ULA admits the following
convenient geometric representation, that originates in [1].

We consider the positive quadrant of the integer plane as the processor-time plane

for a ULA: abscissa ¢ corresponds to the ULA-arc 7, Lef (z,z + 1), while ordinate ¢

corresponds to discrete time-step £. Given a chatting schedule 7 for a chatting problem
M, we say that integer point (z,t) in the plane is marked if, for some flit m within M,
7(m,n,) = t; point (z,t) is unmarked otherwise. Because of Conditions (2.2) and (2.3)
on 7, the marked region corresponding to any single message M € M is a parallelogram
with two sides parallel to the vertical (time) axis and the other two parallel to the main
bisector (see Figure 1). The parallelogram mirrors in a natural way the transition of
the successive flits of message M along the PEs of the ULA. If we now consider the set
of parallelograms that describe the transit of all of the messages in M, condition (2.1)
guarantees — in fact, is equivalent to — the condition that parallelograms corresponding
to distinct messages do not overlap.



This geometric interpretation of message transmission in a ULA reduces the problem
of finding a minimum-duration chatting schedule for a chatting problem on a ULA to
the following geometric problem.

Parallelogram Compaction.

Given: A set of parallelograms in the integer plane (with sides as described above), each
having a fixed projection on the horizontal (ULA) axis but being free to slide up or down
in the vertical (time) direction,

Find: A pairwise nonoverlapping placement of the parallelograms that minimizes the
difference between the maximum and minimum ordinates of any of their points.

We shall return to this example repeatedly.

3 Virtual Chatting Schedules

In this section, we introduce wvirtual chatting schedules, and we study their relation with
“ordinary” chatting schedules. We show, by example, that devising an efficient virtual
chatting schedule for a problem is sometimes easier than devising an efficient chatting
schedule. Moreover, we specify a class of networks for which one can convert an efficient
virtual chatting schedule into an efficient chatting schedule.

3.1 The Notion of Virtual Schedule

A wvirtual chatting schedule for a chatting problem M on a processor network G is a
function o that associates an integer (time) with each flit m of an addressed message
M € M and each arc e on the designated path from the source to the destination of
M. In analogy with our concentration on admissible chatting schedules, we insist that
every virtual chatting schedule o satisfy certain constraints; in contrast to the notion of
admissibility, these constraints do not necessarily correspond to either architectural or
algorithmic features.

o Arc conflict-free. At most one flit traverses a given arc at any given time:

[o(m,e) = o(m/,e)] = [m =m/]. (3.1)
o Message “transmission” and integrity. Every flit of a message M = (mo, mq, ..., my_1)
“traverses” all the arcs in M’s designated path (eg,eq,...,eq_1) at the same time.

Formally, for all h=1,2,...,£—1and all k=1,2,...,d -1,
o(mp, ex) = o(mo, eo) + h. (3.2)



When we discuss virtual chatting schedules, it is often convenient to subdivide the mes-
sage “transmission” and integrity constraint (3.2) into its two logical constituents:

o [nstantaneous transmission
o(m,ex) = o(m,eo). (3.3)
o Virtual message integrity.

o(mp,e) = o(mo,e) + h. (3.4)

The “physical” interpretation of a virtual chatting schedule is less obvious than is
that of an “ordinary” chatting schedule. The easiest interpretation views a virtual chat-
ting schedule as a mechanism that reserves paths in G for contiguous blocks of time.
Specifically, a virtual schedule o reserves the entire designated path for each message
M € M for the entire block of time when message M is in transit from its source node
to its destination node. This interpretation is consistent with constraint (3.2).

Remark. Let o be a virtual chatting schedule for the chatting problem M. By dint
of constraint (3.2), the (virtual) schedule that o assigns to the addressed message M =
(mo,mq,...,my_1) € M, along its designated path p = (eg, e1,...,€4-1) is determined
uniquely by the value o(mo, o) and the quantities d and £.

3.2 The Duration of a Virtual Chatting Schedule

In analogy with the duration of a chatting schedule, one can define the duration of a
virtual chatting schedule.

The duration S(o) of a virtual chatting schedule o is the quantity
$(0) = max{o(m, )} — min{o(m, )} + 1, (3.5)

where the minimization and maximization are over all flits m in the chatting problem
M and all arcs e that occur in the designated paths for the addressed messages in M.

Also in analogy with chatting schedules, one can derive simple lower bounds on the
duration of virtual chatting schedule of the sort provided by Proposition 2.1.

Proposition 3.1 For any virtual chatting schedule o for a chatting problem M,
S(o) > max(C(M), L(M)).

Proof: Constraint (3.2) mandates that S(o) > L(M). The requirement that arcs be
conflict free (Constraint (3.1)) forces the inequality S(o) > C(M). O



3.3 Unidirectional Linear Arrays: A Running Example

A virtual chatting schedule for a ULA admits a geometric representation similar to the
one developed for a chatting schedule in Section 2.5. In the present, virtual scenario, the
marked region associated with a given message is an isothetic rectangle, i.e., a rectangle
with sides parallel to the coordinate axes (see Figure 2).

In analogy with the geometric reduction noted in Section 2.5, the geometric repre-
sentation of virtual chatting schedules reduces the problem of finding a virtual chatting
schedule of minimum duration to the following purely geometric problem.

Rectangle Compaction.

Given: A set of isothetic rectangles in the integer plane, each having a fixed projection
on the horizontal (ULA) axis but being free to slide up or down in the vertical (time)
direction,

Find: A pairwise nonoverlapping placement of the rectangles that minimizes the differ-
ence between the maximum and minimum ordinates of any of their points.

3.4 Comparing Ordinary and Virtual Chatting Schedules

For the class of forward-leveled networks, there is an intimate relationship between ordi-
nary and virtual chatting schedules.

A forward-leveled network (FL-network, for short) is one whose underlying directed
graph G = (V, E) is forward-leveled, in the following sense. The node-set V of G admits
a partition V = V5 4+ V4 + --- 4+ Vg in such a way that, for every arc e € E, there is an
1 such that e € V; x Vi41; in this case, we say that level(e) = 7. In the partition of V,
we call block V; the 2th level of G. Note that in an FL-network, for each chatting path
(€0, €1,...,€d-1), level(ex) = level(eg_1) + 1, for k=1,2,...,d— 1.

While FL-networks form a narrow class of networks, the results that we obtain for
this class can be applied to broader classes of networks in a variety of ways:

e One can emulate arbitrary directed acyclic networks using FL-networks.

e One can decompose (a spanning subnetwork of) one’s general network into FL-
networks.

An instance of the second transformation would be the decomposition of a bidirectional
linear array (in which every pair of adjacent nodes, say 7 and 7 4 1 are connected by two
opposing arcs, (2,7 + 1) and (z + 1,7)) into two ULAs. Such indirect use of a restricted
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class of networks to implement communication primitives in broader classes can be found
also in [1], where one implements general scattering and gathering operations in spanning
trees, in [8], where one implements broadcasting operations in spanning trees, and in [11],
where one distributes synchronization tokens in specially chosen spanning subgraphs.

We now expose some relations between ordinary and virtual chatting schedules on
FL-networks. Each relation builds on a method of transforming either a virtual chatting
schedule into an ordinary one, or vice versa; each carries with it a performance guarantee
on the derived schedule.

A. A Local Symmetric Transformation

We begin with a transformation that converts either of a virtual or ordinary chatting
schedule into the other. The duration of the derived schedule is bounded in a simple way
in terms of the duration of the original schedule. The transformation employs no global
information about the original schedule.

The LS Transformation.

Let M be a chatting problem on the FL-network G. Consider functions 7 and o,
each of which associates an integer with each flit m of an addressed message M € M
and each arc e on the designated path from the source to the destination of M. Call any
such function a pseudo-schedule for M. If 7 and o are related by the equations

(m,e) = o(m, e) + level(e) (3.6)

for all flits m and arcs e, then we say that they are LS-related.

Theorem 3.1 Let M be a chatting problem on the (H + 1)-level FL-network G; let T
and o be pseudo-schedules for M that are LS-related.
(a) The pseudo-schedule T is a chatting schedule for M if and only if the pseudo-schedule
o 1s a virtual chatting schedule for M.
(b) If 7 and o are, respectively, a chatting schedule and a virtual chatting schedule for
M, then

|T(r)— S(o)| < H - 1. (3.7)

Proof: (a) The functional relation (3.6) between 7 and o implies that, for all arcs e and
all flits m and m/, 7(m,e) = 7(m’,e) if and only if o(m,e) = o(m’,e). Therefore, 7
avoids conflicts on arcs (constraint (2.1)) if, and only if, o does (constraint (3.1)).

The bufferless-node constraint (2.2) on 7 combines with the functional relation (3.6)
to yield
o(m,eg) + level(er) = o(m, eo) + level(eo) + k.

11



Since level(ex) = level(eo)+k, this equation implies that o has instantaneous transmission
(constraint 3.3). By the same reasoning, if o satisfies constraint (3.3), then relation (3.6)
implies that 7 satisfies the bufferless-node constraint (2.2).

The message-integrity constraint (2.3) on 7 combines with the functional relation
(3.6) to verify that o has virtual message integrity (constraint 3.4). This constraint
combines with ¢’s instantaneous transmission (property (3.3)) to verify that o enjoys
property (3.2). By the same reasoning, if o enjoys property (3.2), then relation (3.6)
implies that 7 satisfies the message-integrity constraint (2.3).

In summation, we have shown that 7 satisfies the constraints of a chatting schedule
if, and only if, o satisfies the constraints of a virtual chatting schedule.

Figure 3 illustrates relation (3.6) between 7 and o on a ULA when both are schedules.
This should lend some intuition for part (b) of the proof.

(b) Say that 7(mq,e1) = maxy, {7(m,e)} and that 7(ms, e2) = min,, .{7(m, e)}, where
the maximization and minimization are as in definition (2.5). Then, starting with that
definition,

T(r) = 7(mi,e1) —7(ma,en) +1
o(my,er) + level(ey) — o(ma, e3) —level(es) + 1

< |o(ma,er1) — o(ma, e3)| + |level(e;) — level(es)| + 1
< S(o)+H -1
By a symmetric argument, one shows that S(¢) < T(7)+ H — 1. O

Inequality (3.7) can be viewed as a performance guarantee on the chatting schedule
7, that is obtained from the virtual chatting schedule o via relation (3.6). In certain
cases, say when S(o) is considerably smaller than H, the bound on T(7,) inferred from
inequality (3.7) may be rather loose, even if ¢ is an optimal virtual chatting schedule. In
the next subsection, we present transformations between ordinary and virtual chatting
schedules that are guaranteed to preserve quality better than the LS transformation (3.6)
does.

B. Two Global Transformation

In this subsection, we present two transformations, one that produces an ordinary chat-
ting schedule from a given virtual one, the other that performs the converse transfor-
mation. Both of these transformations have better performance guarantees than that
given by inequality (3.7). As the subsection title suggests, the improved guarantees are
possible because the transformations utilize some global information about the original
schedule in defining the derived one; in both cases, the global information resides in the
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duration of the original schedule. For both transformations, we first verify that they do
indeed produce the desired type of schedule, with the advertised performance guarantee.
We then illustrate the transformation and the guarantee for the case of a ULA, where
the graphical representation affords a better intuitive grasp of the ideas.

The VO Transformation. Our first transformation produces (ordinary) chatting
schedules from virtual chatting schedules. The derived chatting schedules are “slower”
than their originating virtual chatting schedules by no more than the longest transit time
of any message in the chatting problem.

Say that we are given a virtual chatting schedule o, of duration S(¢), for the chatting
problem M on the FL-network G. Letting A(e) = level(e) — (level(e) mod S(o)) for each
arc e of G, define the VO-derived pseudo-schedule 7, as follows.®
7-(m, e) for a given flit m belonging to some message M € M and a given arc e of G,
one looks at the first flit, call it my, of message M and at the first arc, call it eg, of the
designated path of message M. One then assigns

In order to evaluate

o(m,e) + level(e) — A(eo) if o(mo, e0) < S(0) — (level(ep) mod S(o))

Ta(m7 6) d_Ef

o(m,e) + level(e) — A(eo) — S(o) otherwise.
(3.8)

Theorem 3.2 (VO-derived chatting schedules)

Let o be a virtual chatting schedule of duration S(c), for the chatting problem M on the
FL-network G; let T, be the pseudo-schedule that is VO-derwved from o. Then 7, is a
chatting schedule for M of duration

T(75) < 5(a) + QM). (3.9)

Proof: Assume, with no loss of generality, that o satisfies 1 < o(m,e) < S(o) for all
flits m belonging to problem M and all arcs e of G. (This is just a normalization of the
schedule.)

We verify first that 7, is a chatting schedule. Since o is a virtual chatting schedule,
one can invoke the message transmission and integrity property (3.2) to verify that 7,
enjoys both bufferless nodes (2.2) and message integrity (2.3). It remains only to show
that 7, does not allow arc conflicts. To this end, say that there exist flits m and m'
and an arc e such that 7,(m,e) = 7,(m’, e). Noting that flits m and m’ may come from
different addressed messages in M, so that the two occurrences of e may be associated
with distinct paths having distinct initial arcs, call them ey and ep, we find directly from

50Of course, 7, is a chatting schedule, not just a pseudo-schedule; but this must be verified before we
can legitimately assert it.
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definition (3.8) that
(o(m,e) — a(m',e)) + (Aeg) — A(eo)) = aS(),

for some a € {—1,0,1}. If we take each side of this equation modulo S(c), and we
observe that, for any arc e, A(e) mod S(o) = 0, then we find that

o(m,e) mod S(c) = a(m’,e) mod S(o).
Given that 1 < o(m,e),o(m/,e) < S(o), the latter equality implies that
o(m,e) = o(m/,e).

Since o is arc-conflict free (being a virtual chatting schedule), we must have m = m/. It
follows that 7, is arc-conflict free, hence, finally, is a chatting schedule.

Next, let us compare the durations 7T'(7,) and S(o). From definition (3.8) of 7, and
the definition of A: for any message M having initial flit mo and initial arc ey, we have
that 1 < 7,(mo, €0) < S(o). If we combine this range bound with equation (2.4), and we
recall the definition of the parameter Q(M), we readily obtain the range bound

1 <7,(m,e) < S(o)+ QM) -1

which yields the sought inequality (3.9) when combined with the definition of T'(7,). O

The VO-transformation and Theorem 3.2 admit an intuitively appealing geometric
interpretation on an n-node ULA, which is depicted schematically in Figure 4. Call the
region of the virtual schedule plane at or below time S = S(o) and extending rightward
n—1 units the problem region. We partition the problem region into disjoint base regions.
The ith base region, for each i > 0, is a parallelogram (slanting from southeast to
northwest) whose corners are the points with coordinates (S5%,1), (S(z+1)—1,1), (S(G —
1) +1,5) and (S7,S). (Note that the only relevant portion of the Oth base region is its
intersection with the positive quadrant). Each message M in the chatting problem is
assigned a home region, namely, that base region that contains the southwest corner of
the rectangle that represents M’s (virtual) journey through the ULA; this corner is the
point (z,0(mo,7,)), where 7, = e = (2,2 + 1). Superimposed on this structure, each
base region R is associated to the right with an eztended region that is the trapezoid of
corners (S(z4+1)—1,1), (5%, 5), (N —2,1), and (N —2,5). (Note that the :th extended

region is contained in all the previous  — 1 ones).

The chatting schedule 7 is obtained from the virtual chatting schedule o by applying
the transformation specified in (3.8). One can view this transformation as separate
applications of the LS transformation to each pair consisting of a base region and its
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associated extended region, with respect to suitably translated azes. More precisely, for
the 1th base region-extended region pair, if we set level(ng;i;) = j, for some j in the
range —(S—1) <j < §—1 (that is, if we put the origin of our new axes at point (5%, 0))
and then apply transformation (3.6) to all messages whose home region is the ith base
region, then we obtain exactly schedule (3.8).

Note that any message M originating in the first half of its home region has now
level(eo) < 0, hence will have an earlier departure time in the chatting schedule. Indeed,
note that in Figure 4(a), the base regions in the virtual schedule plane slant “downwards”
as we move along the positive direction of the z-axis, while their images in the chatting
schedule plane of Figure 4(b)) slant “upwards”.

Finally, it is interesting to observe that while all the extended regions in the virtual
plane overlap, their images in the chatting plane are mutually disjoint. As a consequence,
one might even consider an unfeasible virtual schedule & with rectangles overlapping only
when they belong to different home regions. Then, Theorem 3.2 would transform & into
a feasible chatting schedule.

The OV Transformation. The second transformation derives virtual chatting sched-
ules from ordinary ones. The derived virtual chatting schedules are “slower” than their
originating chatting schedules by no more than the length of the longest message in the
chatting problem. While the endeavor of converting an ordinary chatting schedule —
which is really what one wants — into a virtual chatting schedule seems somewhat unin-
tuitive, our motivation in pursuing this transformation is that it will yield, in conjunction
with Theorem 3.2, an important bound (3.14) on the quality of chatting schedules pro-
duced by the VO transformation.

Say that we are given a chatting schedule 7, of duration T'(7), for the chatting problem
M on the FL-network G. Define the OV-derived pseudo-schedule o, as follows.® In order
to evaluate o.(m,e) for a given flit m belonging to some message M € M and a given
arc e of G, one looks at the first flit, call it mo, of message M and at the first arc, call it
eo, of the designated path of message M. One then assigns

) et 7(m, eq) — (level(eo) mod T'(7)) if 7(mo, e0) > level(eg) mod T'(7)

o (m,e
T(m, e0) — (level(eo) mod T'(7)) + T'(7) otherwise.
(3.10)

Theorem 3.3 (OV-derived virtual chatting schedules)
Let T be a chatting schedule of duration T(7), for the chatting problem M on the FL-

80f course, o, is a virtual chatting schedule, not just a pseudo-schedule; but this must be verified
before we can legitimately assert it.
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network G; let o, be the pseudo-schedule that 1s OV-deriwved from 7. Then o, is a virtual
chatting schedule for M of duration

S(0,) < T(r) + L(M). (3.11)

Proof: With no loss of generality, assume that 1 < 7(m,e) < T(7), for all flits m
belonging to the chatting problem M and all arcs e on designated paths of the host
network G.

We must first establish that o, is a virtual chatting schedule for M. Since 7 is a
chatting schedule, hence enjoys both the bufferless-nodes and message-integrity proper-
ties ((2.2) and (2.3), respectively), one readily establishes the message transmission and
integrity properties (3.2) for o,. Let us, therefore, focus on verifying that o is free from
arc conflicts. Suppose, for contradiction, that there exist flits m and m' and an arc e for
which o.(m,e) = o.(m’,e). For the sake of generality, say that these two occurrences of
arc e are associated with distinct designated paths, having, respectively, initial arcs eg
and ej. From definition (3.10), then, we infer

(1(m, e0) — T(m', e5)) + ((level(ey) — level(eg)) mod T'(7)) = aT (1), (3.12)
where o € {—1,0,1}. Now, since 7 enjoys the bufferless-nodes property (2.2), we have
T(m, e0) = 7(m, e) + level(eg) — level(e),

and
T(m',e5) = 7(m’, e) + level(ep) — level(e).

Using these relations in relation (3.12) yields
(r(m,e) —(m',e)) + (6(e0) — 6(ep)) = aT'(7), (3.13)

where, for all arcs e, §(e”) Lef level(e”) — (level(e”) mod T'(7)). If we now reduce both
sides of equation (3.13) modulo T'(7) and observe that, for any arc €”, §(e") mod T'(7) =
0, we obtain the equation

7(m,e) mod T(7) = 7(m’, e) mod T(r).
Given our assumption that 1 < 7(m,e),7(m/,e) < T(7), this equation yields
7(m,e) = 7(m/, e),

whence, as 7 is arc-conflict free, m = m'. This verifies that o, is arc-conflict free, hence
is a virtual schedule.
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We turn now to bounding the duration of o,. By definition (3.10), for any message
M whose first flit is mo we have 1 < o, (mo, eg) < T(7). By the virtual message integrity
property (3.4), then, for all flits of M,

1<o,(m,e) <T(r)+ L(M)-1.

This range inequality yields the sought bound (3.11), when combined with the definition
of S(o). O

Considerations similar to those following Theorem 3.2 can be made to develop a
graphical view of the OV-transformation (3.10) on a ULA, as illustrated in Figure 5.

Theorems 3.2 and 3.3 yield the following relation between the duration Topi(M) of
the optimal ordinary chatting schedule 7., for a given chatting problem M and the
duration Tcspt )(./\/l) of the VO-derived chatting schedule 7, ,, that is derived from the
optimal virtual chatting schedule o,y for problem M. The reader should keep in mind
that all uses of the word “optimal” here are within the context of our computing model,
as spelled out in Section 2.

Corollary 3.1
TOO(M) < 2Top (M) + L(M) — 1. (3.14)

Proof: By Theorem 3.2, T(VO)(M) < S(0opt) + Q(M). By Theorem 3.3, S(oopt) <
) < -

opt
Topt(M) + L(M) — 1. By Proposition 2.1, Q(M Topt(M).

4 Virtual Schedules via Rectangle Compaction

We now develop a strategy for producing chatting schedules for ULAs. Our approach first
derives a virtual chatting schedule o for a given chatting problem M and then employs
the VO transformation (3.8) to obtain the desired chatting schedule. The virtual schedule
o is obtained by solving the rectangle compaction problem that corresponds to problem
M, as in Section 3.3. Using known results about a problem that is equivalent to rectangle
compaction, we obtain, in linear time, a virtual chatting schedule that is within a small
constant factor of optimal. The quality of the derived chatting schedule can then be
estimated via the bound (3.14).

4.1 Unit-Length Messages

Let us consider first the special class of chatting problems M wherein all messages in
M have unit length, so L(M) = 1. In the geometric representation of virtual chatting
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schedules for M (Section 3.3), any addressed message M € M that originates at PE u

of the host network and is destined for PE v corresponds to a horizontal segment sy

whose projection on the z-axis is the closed interval (sprlz) def [, Mo—1]. The rectangle

compaction problem, which characterizes the general virtual chatting scheduling problem,
thus reduces in this case to the problem of arranging the segments s3; on the minimum
number of tracks (that is, lines parallel to the z-axis at integer coordinates) so that no
two segments overlap. This problem admits an efficient optimal solution. To wit:

Theorem 4.4 The rectangle compaction problem that represents a chatting problem M
with L(M) = 1 can be solved in (low-degree) polynomial time. In the optimal solution,
the segments are allocated to precisely C(M) tracks.

Proof: We prove the theorem by reducing the compaction problem for line-segments to
the problem of node-coloring interval graphs.

Consider the undirected graph, call it I', whose nodes are the messages in the chatting
problem M and whose edges comprise all pairs of messages {M', M"} from M for which
the line-segments (spr]z) and (spr#]z) overlap. Note that T' is the interval graph [6] that
is induced by the set of line-segments {(splz) : M € M}. If two segments (sp|z) and
(sprlz) cannot be allocated to the same track, then the pair {M’, M"} is an edge of T'.
If we associate tracks with colors, then the compaction problem is equivalent to finding a
minimum coloring of the nodes of I' such that no two adjacent nodes are given the same
color. All segments that correspond to like-colored nodes will be allocated to the same
track.

The minimum node-coloring problem for interval graphs admits a simple (low-degree)
polynomial-time solution. One orders the nodes according to the left endpoints of their
corresponding intervals and then applies a first-fit on-line coloring strategy to the sorted
sequence [6]. The number of colors used is the maximum clique size of I which is clearly
equal, in our case, to the message congestion C'(M). O

By applying Theorem 3.2 to the virtual chatting schedule obtained by solving the
rectangle compaction problem in the proof of Theorem 4.4 we obtain:

Corollary 4.2 In (low-degree) polynomial time, one can find, for any chatting problem
M with unit-length messages, a chatting schedule T of duration T'(7) < C(M)+Q(M) <
2T opt(M).

The bound on the quality of 7 comes from Proposition 2.1.
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4.2 Arbitrary Length Messages

When a chatting problem has arbitrary message lengths, the reduction of optimal virtual
scheduling to optimal rectangle compaction still affords one an efficient avenue to efficient
chatting schedules, but not as easily as in the unit-length case.

The decision version of the general rectangle compaction problem can be easily shown
to be NP-complete, being equivalent to the following NP-complete decision problem (cf.

[6]):
DYNAMIC STORAGE ALLOCATION (DSA)

Instance: Set A of items to be stored, each a € A having an integer size s(a) and a
duration span [r(a),d(a)]; a storage size D.

Question: Is there an allocation schedule for A, that is, a function o : A — {1,2,..., D},
such that, for every a € A, the storage interval l(a) = [0(a), o(a) + s(a) — 1] is contained
in [1, D] and, for any a’,a” € A their storage intervals overlap only if their duration spans
are disjoint?

One can immediately discern a bijection between instances of the decision version of
the rectangle compaction problem and instances of the DSA problem: each item a € A
maps onto a rectangle of height s(a) and fixed projection [r(a), d(a)] on the z-axis. The
allocation schedule for A then corresponds to the desired final (compacted) placement
for the rectangles. Finally, the storage size D corresponds to the difference between the
maximum and minimum ordinate of any of the points of the rectangles.

Kierstead [7] proposes a polynomial approximation algorithm for the DSA problem
that yields an allocation schedule which is within a factor of 6 of optimal. Described
in terms of the rectangle compaction problem, Kierstead’s approximation algorithm per-
forms the following steps.

1. It increases the height of each rectangle to a power of two.

2. Tt orders the rectangles in nonincreasing order of height. It then replaces each
rectangle of height h and projection [a, b] on the z-axis by h copies of the interval
[a,b] in the resulting list.

3. It node-colors the interval graph induced by the above list of intervals, using a
particular on-line strategy.

It is shown in [7] that, if consecutive tracks are associated with consecutive colors (repre-
senting both track numbers and colors by integers), then the h intervals generated by a
rectangle of height h are allocated to a set of h consecutive tracks; hence, the algorithm
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yields a feasible placement. The analysis of the competitive ratio of the on-line strategy
proves that the obtained solution employs at most 6 times the number of tracks required
by the optimal solution. We summarize the above discussion in the following theorem.

Theorem 4.5 ([7]) (a) The rectangle compaction problem for a chatting problem with
arbitrary-length messages is NP-hard.

(b) Given a chatting problem M, there ezists a polynomial-time approzimation algorithm
which yields a placement of the rectangles on at most 6C (M) tracks.

By applying Theorem 3.2 to the virtual chatting schedule obtained by solving the
rectangle compaction problem with the approximation algorithm given above, we obtain:

Corollary 4.3 In (low-degree) polynomial time, one can find, for any chatting problem
M, a chatting schedule T of duration T(7) < 6C(M) + Q(M) < TTop(M).

Once again, the bound on the quality of the chatting schedule 7 derives from Propo-
sition 2.1.

5 Virtual Schedules via Problem Decomposition

This section is devoted to a technique for deriving moderately efficient virtual chat-
ting schedules for chatting problems by decomposing each problem M into (roughly)
log L(M) problems on the basis of message length. The strategy produces a virtual
chatting schedule for a given chatting problem M that is within a factor of O(log L(M))
of optimal. The observation that enables this strategy is that, when one is presented with
a chatting problem M all of whose messages have the same length, one can derive an
optimal virtual chatting schedule for M without knowing the specific (common) length
of its messages. We then apply this strategy to two-dimensional mesh networks. Of
course, in order to obtain the real chatting schedules that one ultimately seeks, one must
apply the VO-transformation (3.8) to the derived virtual chatting schedule.

5.1 Decomposing Problems by Message Length

We develop our strategy in two steps. First, we show that the problem of finding an
optimal virtual chatting schedule for messages of any common length is computationally
equivalent to the problem of finding an optimal virtual chatting schedule for messages of
unit length. We then parlay this observation into a strategy for converting an efficient
virtual chatting schedule for unit-length messages into a virtual chatting schedule for an
arbitrary chatting problem M, that is at worst a factor of O(log L(M)) less efficient.
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In order to formalize our strategy, let us focus on an FL-network G and an indexed
family M = {M,}scn of related, uniform chatting problems for G. These problems are
uniform in the sense that each problem in M consists of like-length addressed messages;
specifically, say that, for £ = 1,2,..., the £th problem M, € M is a set of addressed
messages of length £. The problems in M are related in the sense that, for all pairs of
nodes u,v of G, there is a message from u to v in one of the problems M, € M 1f,
and only if, there is a message from u to v in each of the problems in M. The following
theorem shows that finding a virtual chatting schedule for any one M, € M is essentially
equivalent to finding a virtual schedule for every problem in M.

Theorem 5.1 Given the family Ml = {M,}en of related, uniform chatting problems on
the FL-network G:

(a) One can transform any virtual chatting schedule oy for the problem M into a virtual
chatting schedule oy for the problem M, of duration S(oy) = £5(01).

(b) One can transform any virtual chatting schedule oy for the problem M, into a virtual
chatting schedule oy for the problem M, of duration S(o1) = |S(04)/4].

(¢) The durations Sopi(M1) and Sepi(My) of the optimal virtual chatting schedules for
problems My and M,, respectively, stand in the relation

SOPt(Ml) = ESOPt(Ml)-

Proof: (a) Say, for clerical simplicity, that the virtual chatting schedule oy for the problem
M is normalized so that 1 < oy(m,e) < S(oy) for all appropriate m and e. Define the
function oy as follows. Let M = (mo) and M’ = (my,...,m;_;) be addressed messages
in problems M; and My, respectively, that share a source and destination. Then, for all
flits mj, of M’ and all arcs e along the designated path from the source to the destination

of M’ (hence, also, of M):
oy(my,e) = £(o1(mo,e) — 1)+ 1+ h.

It is a straightforward exercise to verify that o, is a virtual chatting schedule for M,

with duration S(oy) = £5(01).

(b) Using the same notation as in part (a), let o4 be normalized so that 1 < gy(m,e) <

S(oy) for all appropriate m and e. Observe that the virtual message integrity property

(3.4) guarantees that, for message M’, the sequence of time steps (g4(my, €), o4(my, €),. .., 00(m)_,€))
is a sequence of consecutive integers in the set {1,2,...,S5(0y)}. Since message M’

has length £, there must, therefore, be a unique index 0 < j; < S(oy) — 1 such that

oy(mj,e) mod £ = 0. It follows that the mapping

0'1(m0; e) = Zo'l(mju e)
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is a function. In fact, one verifies easily that o is a virtual chatting schedule for M; of

duration S(o1) = |S(04)/4].

(¢) From Part (a), we have Sopi s < £Sopt,1. From Part (b), we have Sopi1 < | Sopt.e/£].
If either of these relations were not an equality, it would follow that Sopi s < £|Sopte/4],
which is absurd. a

We now build on the single-message-length strategy implicit in Theorem 5.1(a) to
devise a strategy for arbitrary chatting problems. Roughly speaking, this general strategy
partitions an arbitrary problem into a sequence of single-message-length problems which
are then solved sequentially. Although the virtual chatting schedules produced by the
general strategy cannot deviate from optimality by more than a factor of log L( M), these
schedules probably do deviate by that much in general.

In the sequel, denote by S,pt(M ) the duration of the optimal virtual chatting schedule
for the chatting problem M.

Theorem 5.2 Let us be given an FL-network G and a procedure P that produces, for
any uniform chatting problem M’ on G, a virtual chatting schedule oy whose duration s
within the factor o of Sopi(M'). One can transform procedure P into a procedure P’ that
produces, for any chatting problem M for G, a virtual chatting schedule oaq of duration

S(om) < 2a([log L(M)] + 1)Sept(M). (5.1)

Proof: We begin by partitioning a given chatting problem M into subproblems all of
whose messages have (roughly) the same length. Specifically, we partition M into the

subproblems:
[log L]
M= {J M,
=0
where each subproblem M; contains exactly those messages of M whose length £ lies in
the range 207! < £ < 2t

We turn now to the second step in our strategy. For each integer [, let M, ; be the set
of addressed messages obtained by replacing each addressed message of M; with an [-flit
message having the same source and destination. We obtain a virtual chatting schedule
for subproblem M; of M via the following 3-step procedure.

1. Use procedure P (as described in the statement of the Theorem) to derive a virtual
chatting schedule o;; for problem M, ;.

2. Use Theorem 5.1(a) to convert o;; to a virtual chatting schedule o; 5: for problem

Mi,zi.

22



3. Adapt o, to obtain a virtual chatting schedule o; for subproblem M; as follows.
A message of length £ in M; is scheduled by o; in just the way that o;,: would
schedule it, except that the last 2¢ — £ flits of the message are ignored.

Thus, we have:

S(o:) = S(049) by design
= 2"5(0'1-,1) by Theorem 5.1(a)
< a2 Sepi(M;1) by hypothesis
= aSopt(M; i) by Theorem 5.1(c)
< 2aSopt (M)

The last inequality follows from the fact that M, can be considered for scheduling
purposes as a subset of M where some messages have been increased in length by a
factor smaller than 2.

Finally, we obtain the desired virtual chatting schedule o for M by consecutively
scheduling the subproblems Moy, My, ..., Mg using the schedules 09,01, . .., 0017
Obviously, the duration of schedule o4 satisfies inequality (5.1). O

5.2 Applications to Two-Dimensional Meshes

The strategy of Theorem 5.2 can be applied only when one has access to the posited
Procedure P that produces efficient virtual chatting schedules for uniform chatting prob-
lems. By Theorem 5.1, it suffices to have a Procedure P that produces efficient virtual
chatting schedules for chatting problems that contain only unit-length messages.

As a simple illustration of the strategy of problem decomposition by message length,
consider chatting problems on ULAs. Theorem 4.4 supplies us with an efficient proce-
dure that constructs, for any one-flit-message chatting problem M on a ULA, a virtual
chatting schedule o with optimal duration S(¢) = C(M). Using this procedure as the
Procedure P in Theorem 5.2, we obtain, for an arbitrary chatting problem M’ on a
ULA, a virtual chatting schedule ¢’ of duration S(¢’) < 2([log L(M')] + 1) C(M'). We
should remark that, in this case, the strategy of Section 4 which simultaneously deals
with messages of all lengths, will generally yield a virtual chatting schedule with a smaller
duration.

As the preceding illustration suggests, finding an efficient schedule-generating pro-
cedure, even for one-flit-message chatting problems, seems to require network-specific
considerations. We have succeeded in finding such a procedure for mesh networks.

Since our overall strategy of deriving chatting schedules from virtual chatting sched-
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ules is predicated on chatting within a host FL-network (so that the derived schedule has
predictable efficiency), we concentrate here on a somewhat impoverished version of the
standard mesh network.

The N x N Fastward-Southward mesh network (ESM, for short) has node-set V =
{(3,7) : 0<14,j7 < N—1} and arcs connecting each node (%, 7) to node (+1, ) providing
that 2+ < N — 1, and to node (2,5 + 1), providing that j < N — 1. One verifies easily that
the N x N ESM is an FL-network: for £ =0,1,...,2N — 2, the fth level comprises the
set V, ={(z,7) : 1+ 7 =£}. In conformance with the metaphor implicit in the name of
ESMs, we say that the rows of an ESM run eastward, while the columns run southward.

Just as ULAs are useful intermediate structures for handling chatting problems on
linear arrays (Section 3.4), ESMs are useful for handling chatting problems on “full
meshes” — whose arc sets connect each node (z,7) to nodes (z + 1,7) and (z,5 + 1),
providing that the addition/subtraction keeps one within the node-set. Specifically, a
“full mesh” can be obtained by superposing four appropriately rotated ESMs.

Our study presumes the existence of designated paths within the host FL-network.
To this end, for each potential source-destination pair (z,7), (¢, 7') in an ESM (note that
1 <1 and j < j'), we designate the “one-turn” path that proceeds eastward along row
1 from node (7,7) to node (7',), then “turns the corner” to proceed thence southward
along column j to node (¢, 5').

We turn now to the task of finding efficient virtual chatting schedules for chatting
problems all of whose messages have unit length. Our scheduling algorithms has the
following overall structure. We start at node (N — 1,0), which is the southwest corner of
the ESM, and we scan its nodes along the diagonals given by

{(3,7) : 1 — j = constant};

along each diagonal, we scan nodes in increasing order of column index. We process each
message when we encounter the node where it “turns” from the row-traversing part of
its path to the column-traversing part; messages that share a corner node are ordered
arbitrarily. We assign each message the earliest virtual time slot that has not already
been assigned.

To flesh out the description of the algorithm, we need only specify how we identify the
earliest available virtual time slot. For this purpose, we maintain the following auxiliary
data structures. Let M be the chatting problem being scheduled. For each row-index ¢
and each column-index j, where 7,5 € {0,1,..., N — 1}, we maintain arrays row;[s] and
col;[s], each having 2C(M) entries. We initialize each entry of each row array to 0 and
each entry of each column array to N — 1. The purpose of these arrays is to maintain the
following information, which is updated in the course of the scanning process. Say that,
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in the course of scanning the ESM, we find ourselves at node (3, j), processing message
M, which “turns the corner” at that node. Then, for each virtual time s:

e row;[s|] = k just when node (7, k) is the eastmost “turning node” in row ¢ of any
message that has thus far been assigned virtual time slot s; this means that only
messages beginning at nodes (7, m), where m > k, can be scheduled along row 7 in
virtual time slot s.

e col;[s] = h just when node (h,j) is the northmost “turning node” in column j of
any message that has thus far been assigned virtual time slot s; this means that
only messages destined for nodes (m,j), where m < h, can be scheduled along
column j in virtual time slot s.

Now, say that the scheduling algorithm is scanning “turning node” (z,7) and is pro-
cessing some message — call it My — whose source is node (7, k) and whose destination
is node (h,j): perforce, h > 4, and k < j. (Of course, the algorithm could have to
process several messages at each “turning node”.) The algorithm seeks the smallest
available virtual time slot, by probing, in turn, for s = 1,2,...,2C(M), the pair of array
entries row;[s] and col;[s]. Virtual time slot so is available just when row;[so] < k and
col;[so] > h. When this compound condition holds, message M is assigned virtual time
slot sg, and the array entries are updated to reflect this: row;[so] is reset to j, and col;|[so]
1s reset to 1.

To validate this algorithm, we must argue that there is always an unassigned virtual
time slot available in the two arrays. Assume that this were not the case; in particular,
say that message M, of the preceding paragraph cannot be scheduled. It follows that at
each possible virtual time slot, either some message is using the arc ((z,k)(s,k + 1)) or
the arc ((h — 1,7),(h,7). But this means that at least one of these arcs is traversed to
this point by at least C(M) messages, in addition to message My. This is absurd, by
definition of arc-congestion. Building on this observation, it is easy to verify that our
algorithm produces a legitimate virtual chatting schedule for problem M. Thus, we have
established the following theorem.

Theorem 5.3 Let M be a chatting problem with single-flit messages on the N x N ESM.
In time O(|M|C(M)), one can produce a virtual chatting schedule o for M, of duration
S(o) <20(M).

One can now invoke Theorems 5.2 and 3.2 to obtain the following result.

Corollary 5.1 Let M be a chatting problem on the N x N ESM. In time O(|M|C(M)),

one can produce a chatting schedule T for M, of duration

T(r) < 4([log L(M)] + 1) C(M) + L(M) + 2N.
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6 Virtual Schedules via Network Cuts

The scheduling strategies of Section 5 and (less obviously) of Section 4 make crucial use
of the lengths of the messages in a chatting problem. In contrast, the strategy of this
final section produces chatting schedules by decomposing the given chatting problem
with respect to a suitable set of cuts of the host FL-network G.

6.1 Chatting Schedules via Network Decomposition

A cutset of the network G is a set A of arcs whose removal partitions GG into subnetworks
GS) and Gg) that are disjoint in the following sense: every path in G that originates at
a node of GS) and terminates at a node of fo), or vice versa, crosses some arc in A.
One can derive a (virtual) chatting schedule for a chatting problem M for G, via the
following recursive strategy that successively decomposes G via cuts.

1. Determine a cutset A of network GG, and partition G into subnetworks GS) and

Gg) by removing the arcs of A.

2. Find a (virtual) chatting schedule for the chatting problem M, C M that com-
prises those addressed messages of M whose designated paths contain at least one

arc of A.

3. Let ij) C M\ My (resp., ./\/lff) C M\ M ,) be the set of addressed messages of M
whose designated paths are totally contained in network GS) (resp., network Gg)).
Derive (virtual) chatting schedules for problems ij) and ./\/lff) by recursively
applying this cutting procedure to networks GS) and fo), respectively.

The potential value of this strategy resides in the facts that (a) the three chatting prob-

lems My, MS), and ./\/lff) are no larger than M; (b) ij) and ./\/lff) can be scheduled

(1)
A

independently and simultaneously — that is, the messages in M,’ can share (virtual)

time slots with the messages in Mff). The potential detractors from this value are: (a)
any of these three chatting problems could actually comprise the entire problem M;
(b) even when problem (a) does not arise, the quality of the resulting chatting schedule
depends upon the recursion depth of one’s particular application of the strategy. Of
course, the depth of the recursion is guaranteed not to be large when, at each level, the
subnetworks GS) and fo) produced from the then-current G are roughly equal in size.

The potential drawbacks notwithstanding, the strategy is demonstrably useful for
certain networks that have small cuts into large subnetworks. We illustrate the strategy
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on two such networks.

6.2 Unidirectional Linear Arrays: A Running Example

For a ULA, any single arc is a cutset. It is, therefore, a straightforward matter to schedule
the chatting problem M4 efficiently. Moreover, if we choose the cut-arc at each phase
of the strategy judiciously, then we can decompose the current ULA into two (roughly)
half-size ULAs. This guarantees that our strategy will recurse for only logarithmically
many levels.

In more detail, we implement the strategy on an n-node ULA G by choosing the
cutset A = {fn/2/-1}. The resulting subnetworks GS) and fo) will, then, be ULAs, one
having |n/2| nodes and the other having [n/2] nodes. It follows that our strategy will
recurse to a depth of [logn]| levels.

Since no more than C(M) flits traverse any arc of the ULA G, the chatting prob-
lem M4 comprises at most C(M) addressed messages, hence can be scheduled to have
duration < C(M). Since the chatting problems ij) and ./\/lff) are scheduled during
the same level of recursion, they can in fact can be merged into a single chatting prob-
lem, of congestion < C(M), on the (disconnected) network GS) + fo). It follows that
they, too, admit a virtual chatting schedule of duration < C(M), because messages in
different problem have nonoverlapping designated paths. In fact, what we have just said
about problems ij) and ./\/lff) obtains for the subproblems that are processed at each
level of the recursion. Therefore, we can concatenate the chatting schedules for all of
the levels of the recursion, to obtain a virtual chatting schedule o for the entire prob-
lem M of duration S(o) < [logn|C(M). We can now apply Theorem 3.2 to transform
this virtual chatting schedule into an (ordinary) chatting schedule 7 for M, of duration

T(7) < [logn|]C(M)+ Q(M).

Of course, the techniques in Section 4 yield better schedules for chatting on ULAs.
We turn, therefore, to a more complex network, where network decomposition produces
the best schedules we know how to produce.

6.3 Bidirectional Trees

A bidirectional tree (BT, for short) is a complete tree wherein any two adjacent nodes u
and v are connected by two opposing arcs, (u,v) and (v,u). Given any pair of nodes
and y of a BT, we designate the (unique) shortest path from z to y as the path along
which all messages having source « and destination y are routed. Clearly, a BT is not an
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FL-network; however, any set of designated paths that traverse a given arc of the BT do
form an FL-subnetwork of the tree; hence, for such a subnetwork, one can use the VO
transformation of (3.8) to transform an efficient virtual chatting schedule to an efficient
ordinary chatting schedule. Limiting the utility of this observation is the fact that virtual
chatting schedules for different FL-subnetworks of a BT cannot be concatenated into a
single virtual chatting schedule for the entire tree, since they rely on different partitions
of the nodes into levels.

As noted in Section 6.1, the efficiency of chatting schedules produced by network
decomposition depends on keeping the depth of the decomposition recursion small, which,
in turn, depends on one’s ability to recursively cut the network into subnetworks of
roughly equal sizes. The following result indicates that this is always possible for the
FL-subnetworks of BTs.

Proposition 6.1 ([12]) Every n-node BT of mazimum node-degree § > 1 can be parti-
tioned, by removing at most two arcs, into two BTs, each having at least |n/§| nodes,
and neither having more than [(§ — 1)n/§| nodes.

Proposition 6.1 guarantees that there is always a way to recursively decompose an
n-node BT of maximum node-degree § > 1 using at most [§logn] levels of recursion.
Moreover, a simple inductive search allows one to find the separating arcs efficiently. This
fact leads to the following chatting strategy for BTs.

Let M be a chatting problem on a BT 7. We schedule problem M on tree 7 by
recursively decomposing 7 as in Proposition 6.1. At each level of the recursion, we remove
at most two arcs of 7. For each removed arc, we derive a virtual chatting schedule o of
duration S(o) < C(M). By applying Theorem 3.2 to this collection of virtual schedules,
we obtain a schedule for all the messages crossing the cut of duration < 2(C(M)+Q(M)).
Note that schedules corresponding to different cuts at the same level of recursion can be
merged into a single schedule, since messages in different sets have non overlapping paths.
Finally, concatenating the schedules for all levels of recursion yields a chatting schedule

7 for M of duration T'(7) < 2(C(M) + Q(M))[élogn]. In summary we have:

Theorem 6.1 Let M be a chatting problem for a BT of n nodes and mazimum node-
degree § > 1. One can efficiently produce a chatting schedule T for M, of duration

T(r) <2(C(M)+ Q(M))[blogn].
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Figure 1: Graphical representation of a chatting schedule 7 for one message.
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Figure 2: Graphical representation of a virtual chatting schedule o for one message.
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7

Figure 3: Graphical representation of transformation (3.6) for a ULA
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Figure 4: Graphical representation of transformation (3.8) for a ULA. Continuous, dashed
and thick lines denote, respectively, base regions, extended regions and messages in (a),
and their images in (b).
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(b)
Figure 5: Graphical representation of transformation (3.10) for a ULA. Continuous,

dashed and thick lines denote, respectively, base regions, extended regions and messages
in (a), and their images in (b).
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