How to Integrate Precedence Constraints
and Shared Resources in Real-Time
Scheduling*

Marco Spuril
Scuola Superiore “S.Anna”
via Carducci, 40 - 56100 Pisa (Italy)

E-mail: spuri@sssupl.sssup.it

John A. Stankovict
Department of Computer Science
University of Massachusetts
Amherst, MA 01003

E-mail: stankovic@sssup2.sssup.it

Abstract

Formal results for precedence constrained, real-time scheduling of
unit time tasks are extended to arbitrary timed tasks with preemp-
tion. An exact characterisation of the EDF-like schedulers that can be
used to transparently enforce precedence constraints among tasks is
shown. These extended results are then integrated with a well-known
protocol that handles real-time scheduling of tasks with shared re-
sources, but does not consider precedence constraints. This results in
schedulability formulas for task sets which allow preemption, shared

*This paper has been submitted as a concise paper.

tThis work has been supported, in part, by the IRI of Italy under a research grant.

!This work has been written while this author was visiting and supported by the Scuola
Superiore “S.Anna” of Pisa, and also supported, in part, by NSF under grants IRI 9208920
and CDA 8922572, and by ONR under grant N00014-92-J-1048.

resources, and precedence constraints, and a practical algorithm for
many real-time uniprocessor systems.

1 Introduction

In many hard real-time systems, due to the strict deadlines that must be
met, communications among tasks are implemented in a completely deter-
ministic manner. The usual approach followed to achieve this, is to model
communication requirements as precedence constraints among tasks, that is,
if a task 7; has to communicate the result of its computation to another task
T;, we introduce the pair (7}, 7}) in a partial order <, and we schedule the
tasks in such a way that if T; < T the execution of T} precedes the execution
of Tj.

Good examples of this modeling can be found in the MARS operating
system [8, 9], in which the basic concept of a real-time transactionis described
exactly in this way, and in Mok’s kernelized monitor [12], in which a rendez-
vous construct is used to handle similar situations. In both cases, shared
resources among tasks are also considered. However, in the former work
the whole schedule is statically generated, that is, is produced in advance
before the system can run. The schedule is then stored in a table that, at
run-time, is consulted by a dispatcher to actually schedule the tasks without
any other computational effort. In the latter, instead, even if generated a
bit more dynamically, the schedule is basically nonpreemptive, or at least we
can say the preemption points are chosen very carefully, since the processor
is assigned in quantums of time of fixed length equal to the size of the largest
critical section.

Because preemptive systems are generally much more efficient than non-
preemptive ones, our goal is to present a simple technique with a formal basis
for integrating precedence constraints and shared resources in the task model
of dynamic uniprocessor systems, in which preemption is allowed.

Few protocols that handle shared resources have appeared so far [13, 3,
1, 14]. Both the Priority Ceiling Protocol [13, 3] and the Stack Resource
Policy [1] will be considered in this paper. They are both well studied and
characterised with respect to sufficient conditions for the schedulability of a
set of tasks. However, they have been described using a simple independent
task model, while we believe a more complex model including precedence

constraints would be valuable.

Vice versa, several papers dealing with precedence constraints, but not
with shared resources have appeared. Blazewicz [2] shows the optimality
of a preemptive earliest deadline first (EDF) scheduler assuming the release
times and the deadlines are modified according to the partial order among the
tasks. The same technique is used by Garey et al. [6] to optimally schedule
unit-time tasks. In [4], Chetto et al. show sufficient conditions for the EDF
schedulability of a set of tasks, assuming the release times and the deadlines
are modified as above.

Our main contributions are: an exact characterisation of EDF-like sched-
ulers that can be used to correctly schedule precedence constrained tasks,
and showing how preemptive algorithms, even those that deal with shared
resources, can be easily extended to deal with precedence constraints, too.
We do this by inventing the notion of quasi—normality, which is an extension
to [6]. Furthermore, while the formal results are general, we also present
a straightforward application of these results to the Priority Ceiling Proto-
col (PCP) and the Stack Resource Policy (SRP), developing schedulability
formulas that are valid when the SRP is extended to handle both shared
resources and precedence constraints.

The paper is organized as follows. In section 2, a brief description of the
PCP and the SRP protocols is given. In section 3, the general results on
precedence constrained tasks scheduling are presented. In section 4, as an
example, we apply the general results to the PCP and the SRP. Finally, in
section 5, we conclude with a brief summary.

2 Protocols Handling Shared Resources

In [13], Sha et al. introduce the Priority Ceiling Protocol(PCP), an allocation
policy for shared resources which works with a Rate Monotonic scheduler [11].
Chen and Lin [3] extend the utilization of the protocol to an EDF (earliest
deadline first) scheduler.

The main goal of these protocols, as other similar protocols, is to bound
the usually uncontrolled priority inversion, a situation in which a higher
priority task is blocked by lower priority tasks for an indefinite period of
time (a block can occur if a task tries to enter a critical section already
locked by some other task). Finding a bound to priority inversion allows

us to evaluate the worst case blocking times eventually experienced by the
tasks, so that they can be accounted for in the schedulability guaranteeing
formulas. In other words, this means we can evaluate the worst case loss of
performance due to blocking.

The key idea behind the PCP is to prevent multiple priority inversions
by means of early blocking of tasks that could cause priority inversion, and
to minimize as much as possible the length of the same priority inversion
by allowing a temporary rise of the priority of the blocking task. Following
the description given in [3], the PCP has two parts which define the priority
ceiling of a semaphore and the handling of lock requests:

“Ceiling Protocol. At any time, the priority ceiling of a semaphore S, ¢(5), is
equal to the original priority of the highest priority task that currently
locks or will lock the semaphore.

Locking Protocol. A task T requesting to lock a semaphore S can get the
lock only if pr; > ¢(Su), where pr; is the priority of T; and Sy is
the semaphore with the highest priority ceiling among the semaphores
currently locked by tasks other than 7. Otherwise, T; waits and the
task 7; which has the lock on Sy inherits the priority of 7} until it
unlocks Sg.”

Furthermore, assuming an EDF priority assignment, a task receives a higher
priority, the earlier is its deadline.

Note that a task can be blocked even if the critical section it requests is
free, when there are other critical sections already locked. This is necessary
to prevent a high priority task from being blocked two or more times if it
wants to enter several critical sections.

The protocol has been shown to have the following properties:

e A task can be blocked at most once before it enters its first critical
section.

e The PCP prevents the occurrence of deadlocks.

Of course, the former property is used to evaluate the worst case blocking
times of the tasks. In particular, the schedulability formula of Liu and Lay-

land [11] has been extended by Chen and Lin [3] to obtain the following
condition.

Theorem 2.1 A set of n periodic tasks can be scheduled by EDF using the
dynamic priority ceiling protocol if the following condition s satisfied:

?

¢+ b;
YA <
i=1 Pi
where ¢; 1s the worst case execution time, b; is the worst case blocking length
and p; s the period of the task T;. a

Baker [1] describes a similar protocol, the Stack Resource Policy (SRP),
that handles a more general situation in which multiunit resources, both
static and dynamic priority schemes, and sharing of runtime stacks are all
allowed. The protocol relies on the following two conditions:

(2.1) “To prevent deadlocks, a task should not be permitted to start until
the resources currently available are sufficient to meet its maximum
requirements.

(2.2) To prevent multiple priority inversion, a task should not be permitted
to start until the resources currently available are sufficient to meet the
maximum requirement of any single task that might preempt it.”

The key idea is that when a task needs a resource which is not available,
it is blocked at the time it attempts to preempt, rather than later, when it
actually may need the shared resource. The main advantages of this earlier
blocking are to save unnecessary context switches and the possibility of a
simple and efficient implementation of the SRP by means of a stack.

The SRP has been shown to have properties similar to those of the
PCP. Furthermore, assuming n tasks ordered by increasing relative dead-
lines, Baker [1] develops a tighter formula for a sufficient schedulability con-
dition (a task, periodic or sporadic, has a relative deadline d if whenever it is
released at time t it must be completed before time t + d; of course, it must

be d < p).

Theorem 2.2 A set of n tasks (periodic and sporadic) is schedulable by EDF
scheduling with SRP semaphore locking if

Foa) | b
) k

=1

In the rest of this paper we will assume an implementation of the SRP in
which priorities are assigned to tasks using an EDF rule.

3 Basis For Precedence Constraints — Quasi-
Normality

A nice analytical result concerning the integration of precedence constraints
and real-time scheduling can be found in [6]. In this paper, Garey et al.
describe a scheduling algorithm for unit-time tasks with arbitrary release
times and deadlines, and precedence constraints using the concept of nor-
mality. Here, we extend their idea to more general dynamic systems using
preemptive EDF schedulers without unit time constraints.

Definition 3.1 Given a partial order < on the tasks, we say the release
times and the deadlines are consistent with the partial order if

T, <T; = mr<r; and d; <d;.

Note that the idea behind the consistency with a partial order is to enforce
a precedence constraint by using an earlier deadline.

The following definition formalizes the concept of a preemptive EDF
schedule.

Definition 3.2 Given any schedule of a task set, we say it is normal (with
respect to EDF) if for all portions §; and §; of two tasks T; and T;, respec-
tively,

s5; < 85, = dj<d; or r;> s,
where sg 1s the start time of the portion §.

What this definition says is that at any time among all those tasks eligible to
execute (a task 7; is eligible for execution only if the current time ¢ is greater
than or equal to the release time 7;), we always schedule the task with the
earliest deadline.

In [6] Garey et al. show that we can use the consistency of release times
and deadlines to integrate precedence constraints into our task model; just
use an algorithm that produces normal schedules. This result is proven only

I I
I I
I I
T | | i
S | []
- |
. Critical Section Priority Inversion

Figure 1: Example of a not normal schedule produced by PCP and SRP.

for unit-time tasks. We now extend their result to tasks of arbitrary length
and running on a preemptive system.

Lemma 3.1 If the release times and deadlines are consistent with a partial
order, then any normal schedule that satisfies the release times and deadlines
must also obey the partial order.

Proof. Consider any normal one-processor schedule and suppose that
T; < T; but that s; < f;, where f; is the completion time of 7;. The
last expression implies that there are two portions é; and é; of T; and T,
respectively, such that ss; < s5,. Since the schedule is normal, this means
that d; < d; or 7; > sg, (recall that for the feasibility assumption we have
ss; > sj > r;). However, by the consistency assumption, we have r; < r; and
d; < d;; hence, in both cases we have a contradiction. a

Now the question is whether we can extend this result in order to handle
the more general situation in which we have shared resources among tasks,
too. Unfortunately, a direct generalization to an EDF-like scheduling algo-
rithm, using some protocol like PCP or SRP, does not hold. In fact, in both
cases, the produced schedules are not necessarily normal (see Figure 1 for an
example).

The motivation is very simple: even if bounded, all these protocols allow
priority inversion; that is, during the evolution of the system, there may be
a lower priority task blocking another higher priority one. In this case, the
condition for the schedule to be normal is violated.

Hence, our conclusion is that as long as shared resources are used, the
normality must be weakened in some way. That is, we want a less restrict-
ing policy, with respect to scheduling decisions, but that still preserves the

property of normality shown in Lemma 3.1.

Definition 3.3 Given any schedule of a task set, we say it is quasi-normal
(with respect to EDF) if for all portions §; and é; of two tasks T; and Tj,
respectively,

r; <r; and s5; < s5; = d;j <d;.

In other words, the definition establishes that in a quasi-normal schedule the
decision of preempting a task is left to the scheduler (recall that in a normal
schedule whenever there is an eligible task with an earlier deadline you are
forced to preempt). However, if the scheduler chooses to preempt a task T;
and assigns the processor to a task T}, the deadline of T; must be earlier
than the deadline of T; (without loss of generality, we can assume that tasks
with equal deadlines are scheduled in FIFO order). So with quasi-normality,
we give more freedom to the scheduler (so that it can obey shared resource
requirements) and we obtain a bit weaker condition, as established by the
following lemma.

Lemma 3.2 If a feasible schedule is normal then it s also quasi-normal.

Proof. Consider two portions §; and §; of the tasks T; and T}, respectively,
with r; < r;. If 85, < s5;, for the normality of the schedule we have d; < d;
or r; > ss;. Since the schedule is feasible s5; > r;, hence, we cannot have
r; > ;. It follows that d; < d;, that is the schedule is quasi-normal. O

Note that the opposite is not true (see again figure 1 for an example of a
quasi-normal but not normal schedule).

At this point, we are able to generalize the result of Lemma 3.1.

Theorem 3.1 Given a set of tasks with release times and deadlines consis-
tent with a partial order <, any feasible schedule (i.e., that satisfies both the
release times and the deadlines) obeys the partial order < if and only if is
quasi—normal.

Proof. “If”. Consider any quasi-normal schedule and suppose that T; < T},
but s; < f;, where s; is the start time of 7T;. By the consistency assumption
we have r; < r; and d; < d;. Being that the schedule is quasi-normal, we
have also d; < d;, a contradiction.

“Only if”. Suppose now that the schedule obeys the partial order < and
that there are two portions §; and §; of the tasks 7; and 7T}, respectively,
with r; < 7;, whose start times are s5; < s5,. If the condition of quasi-
normality 1s violated, we have d; > d;. This means that the release times
and the deadlines of T; and T} are consistent with a partial order in which
T; precedes T;. Hence, even if < does not contain the relation T; < T, we
can force it without changing the problem. But this is a contradiction to the
fact that a portion of T} precedes a portion of T; in the given schedule. O

4 Integration of Shared Resources and
Precedence

In this section we show how the PCP and the SRP can be used with an
extended task model, in which precedence constraints between tasks can
be specified, as well as shared resources. We start by showing that quasi-
normality is the essential property of a certain EDF schedulers class. This,
together with the results shown in the previous section, gives us an analytical
basis for our extended protocol.

Theorem 4.1 Any schedule produced by a policy or protocol that uses an
EDF priority assignment s quasi—normal if and only if at any time t the
executing task is in the set

S ={T;: r; <t and pr; > pr; VT; with r; < r;},
where pr; is the priority of task T;.

Proof. “If”. Consider two tasks T; and T}, with r; < r; and s5; < s5,. At
time ¢ = s5;, by assumption pr; > pr;, i.e., d; < d;. Hence, the schedule is
quasi—normal.

“Only i1f”. At any time ¢ consider the executing task 7;. Let R; be the set
of all tasks with release time less than or equal to r;, i.e., for any task T; € R,
we have r; < r;. Being T; still present in the system, at least a portion §;
will be executed later than the portion 8; of T; currently executing, that is,

ss; < 85;. For the quasi-normality of the schedule we have d; < d;. Hence,
T; 1s in ;. O

Note that in case of priority inversion, the condition for the schedule to be

quasi—normal is not violated since the blocking task, even if it does not have
the highest priority in the system, is in S;. Furthermore, whenever a task
has entered S, it does not leave the set until it completes its execution. This
lets us to prove the condition of Theorem 4.1 only testing it at the beginning
of each task execution.

Theorem 4.1 states a general result that together with Theorem 3.1 lets
us always model precedence constraints among tasks by just enforcing con-
sistency with respect to Definition 3.1, even in complex systems with shared
resources. In what follows, we show how these considerations can be applied
to a couple of well-known protocols, like the PCP and the SRP (note that
the results will not change even considering a simpler protocol as the Priority
Inheritance Protocol [13]).

Corollary 4.1 Any schedule produced by the PCP, used with an EDF pri-
ority assignment, s quasi—normal.

Proof. It is sufficient to prove that at any time the executing task is in S;
and then applying Theorem 4.1 we have the result. The condition is always
true whenever a task begins its execution because, at this time, the task has
the highest priority in the system (each task executes at a priority different
from its original one only if it is blocking a higher priority task, but this
cannot occur at the beginning of its execution). From that instant on, the
task will always be in &;, until it completes its execution. O

Note that some form of priority inheritance, by lower priority tasks blocking
higher priority ones, is necessary. Otherwise, we could have a situation like
that shown in Figure 2, in which quasi-normality and a precedence constraint
are violated because the medium priority task, which is not in S, is allowed
to start when the higher blocks. So, by deadline modification and some form
of inheritance, we can obtain the integration of precedence constraints and
shared resources.

Corollary 4.2 Any schedule produced by the SRP, used with an EDF prior-
ity assignment, 1s quasi—normal.

Proof. Again, it is sufficient to prove that at any time the executing task is
in 5; and then applying Theorem 4.1, we have the result. For the definition
of the SRP, each task execution request is blocked from starting execution
until it is the oldest highest priority pending request, and both the conditions

10

needs CS isses deadline

®
o) W
®

]
T prec. constr. violated J/

. Critical Section

Figure 2: A situation in which an EDF scheduler without priority inheritance
violates quasi-—normality and precedence constraints.

2.1 and 2.2 are verified. Hence, the condition above is always true whenever
a task begins its execution. The same task will leave the set S; only at the
end of its computation. a

Note that even in this case, we have a form of priority inheritance; that is,
“an executing task holding a resource resists preemption as though it inherits
the priority of any task that might need that resource” [1].

Finally, we show that consistency can be used with the PCP or the SRP
and an EDF priority assignment to enforce precedence constraints.

Corollary 4.3 ! If the release times and the deadlines are consistent with a
partial order, any schedule produced by both the PCP and the SRP, used with
an EDF priority assignment, obeys the partial order.

Proof. Follows directly from Corollary 4.1, Corollary 4.2 and from Theo-
rem 3.1. a

Corollary 4.3 allows us to extend our programming model with a partial order
among tasks, we only need to use a consistent assignment for release times
and deadlines.

We now assume that our system is a uniprocessor and allows preemption.
Priorities are assigned to tasks according to the EDF algorithm and accesses

!Note that there is a way of showing this result directly, using the properties of priority
inheritance and deadline modification, as pointed out by Chia Shen in an informal corre-
spondence with us, but here we obtain it as a simple consequence of the general results
shown above.

11

to shared resources are controlled by the SRP (the same extended model
with a slightly different analysis can be used with the PCP). The activities
of the system are modelled by means of processes. We define a process P;
(periodic or sporadic) as a 6-uple (7;,G;, P;, D;, C;, pi), where:

o 7;is a set of tasks that form the process,

o §; is a directed acyclic graph that models a partial order among tasks
in 7; (there is an arc from node j to node k if and only if 7; < T%),

e P, is the period of the process (if the process is sporadic, it is the
minimum interval of time between two successive execution requests of
the same process),

e D; is the relative deadline of the process,
o (; is its worst case computation time, that is, C; = Yg,c7; ¢j, and

e 4; 1s a function that represents the maximum shared resource require-
ments of each task in 7;.

Furthermore, we assume the processes arrive dynamically in the system and
are dynamically scheduled.

In order to make use of the previous results, we have to enforce the
consistency of the release times and the deadlines with the partial order.
We can use a technique similar to those which have already appeared in
several papers [2, 6, 12, 4]. Two different assignments of deadlines to tasks
are proposed in this paper. They both guarantee consistency with the given
partial order, but they have a different impact in terms of schedulability
analysis. In the first solution, we start by assigning off-line to each task of
the process P; a relative deadline equal to D;, that is,

dj(-D,L' VTJEZ

and then we modify the deadlines by processing the tasks in reverse topolog-
ical order:

dj — mm({dj} U {dk —C : Tj <g; Tk}),

where ¢ is the worst case computation time of the task 7. Note that this
can be done in O (X%, m; + n;), where m; is the number of arcs in G;, n; is
the number of tasks in 7; and n is the number of processes in the system.

12

Then at run-time, whenever a request of execution for the process P;
arrives at time ¢, we only have to assign

;Jw—t,glj-(—t—l—dj VTJ’E'E,

where (jj is the absolute deadline of task 7.

Now, considering that each task 7; can be blocked if it makes use of
shared resources, we have to estimate, as usual, the value b; of its worst case
blocking time. Hence, assuming we have ordered all the tasks in the system
by increasing relative deadlines, we can use the formula proposed by Baker
[1] to check the schedulability of the whole set:

k
Vk=1,...,N (Z%) +Z—’°§ 1,

j=1 % k
where N = -7 | | Z; |. Note that in this approach, the schedulability check is
performed on a task basis using the modified deadlines without considering
the process as a whole. If the schedulability test is positive, the formula
works correctly. However, if the test is negative, it is pessimistic because of
the following anomaly. When modifying deadlines of tasks on a per process
basis, it is possible that tasks from different processes are interleaved. This
means that a task from a process with a late deadline might execute before
tasks from a process with an earlier deadline, possibly causing unnecessary
missed deadlines.

We can get a tighter set of conditions using an alternative deadline as-
signment. We always start by assigning to each task of the process P; a
relative deadline equal to D;. We then modify these deadlines according to
the following argument: make the tasks within a process consistent with the
given partial order, and ensure that deadlines of tasks pertaining to different
processes are not interleaved. In effect, this approach uses EDF scheduling
for the process as a whole, and uses modified deadlines to ensure the partial
order among the tasks of the process itself. This can be easily implemented
as follows.

We can avoid the mentioned interleaving, assuming that the original dead-
lines are expressed in terms of integer numbers. Then, it is quite simple to
find for each process P; a sufficiently small positive number é; < 1 such that,
modifying the deadlines by processing the tasks in reverse topological order
as follows

dj «— mm({dj} U {dk —8;: Tj <g; Tk}),

13

The smallest deadline of any task of this process is greater than D; — 1; and
even with equal deadlines between two or more processes, there will not be
interleaving between the deadlines of their tasks.

Now, during the estimation of the blocking times and the evaluation of
the schedulability of the system, we can consider each process as a whole.
That is, the blocking time of a process P; is at most

B; = maxb;,
T;eT;
and, assuming again that the processes are ordered by increasing relative
deadlines, the set of schedulability conditions becomes

k .
VeE=1,...,n (Z%)—l—%gl (1)
P k

=1

This formula is very similar to that proposed by Baker [1] in his schedulability
analysis of the SRP. However, this one is tighter and accounts for groups of
tasks with precedence constraints. Note that even though processes consist
of sets of tasks with precedence constraints, the internal details of a process
are kept hidden in the schedulability conditions (1).

5 Conclusions

Previous results such as the PCP and SRP protocols have been very useful for
real-time systems. However, their use has been limited to situations without
precedence constraints. Similarly, formal results existed for showing how to
modify deadlines in a consistent manner so that a run time algorithm, such as
earliest deadline scheduling, could be used without violating the precedence
constraints.

In this paper, we have extended these formal results to more general
dynamic systems, in which more freedom is left to the scheduler, allowing,
for instance, priority inversion. As an application of these results, we have
shown how to simply extend the task model used by the SRP protocol. This
produces valuable results in that analytical formulas for the schedulability of
task sets subject to preemption, shared resources and precedence constraints
are obtained, and an algorithm that can be applied in more real-time system
situations than previously is developed.

14

6

Acknowledgements

We would like to thank Krithi Ramamritham, Chia Shen, Fuxing Wang and

Marco Di Natale for their valuable comments on this paper.

References

1]

2]

T.P. Baker, “Stack-Based Scheduling of Realtime Processes,” Journal
of Real-Time Systems, 3, 1991.

J. Blazewicz, “Scheduling Dependent Tasks with Different Arrival Times
to Meet Deadlines,” in E. Gelembe, H. Beilner (eds), “Modelling and
Performance Evaluation of Computer Systems,” North-Holland, Ams-

terdam, 1976.

M. Chen and K. Lin, “Dynamic Priority Ceilings: A Concurrency Con-
trol Protocol for Real-Time Systems,” Journal of Real-Time Systems, 2,
1990.

H. Chetto, M. Silly and T. Bouchentouf, “Dynamic Scheduling of Real-
Time Tasks under Precedence Constraints,” Journal of Real-Time Sys-
tems, 2, 1990.

M.L. Dertouzos, “Control Robotics: the Procedural Control of Phys-
ical Processes,” Information Processing 74, North-Holland Publishing
Company, 1974.

M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, “Scheduling
Unit-Time Tasks with Arbitrary Release Times and Deadlines,” SIAM
Journal Comput., 10(2), May 1981.

J.R. Jackson, “Scheduling a Production Line to Minimize Maximum
Tardiness,” Research Report 43, Management Science Research Project,
University of California, Los Angeles, 1955.

H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft
and R. Zainlinger, “Distributed Fault-Tolerant Real-Time Systems: The
Mars Approach,” IEEE Micro, February 1989.

15

[9]

[10]

[11]

[12]

[13]

[14]

H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner and W.
Schiutz, “The Design of Real-Time Systems: From Specification to
Implementation and Verification,” Software Engineering Journal, May

1991.

E.L. Lawler, “Recent Results in the Theory of Machine Scheduling,”
Mathematical Programming: the State of the Art, A. Bachen et al.
(eds.), Springer-Verlag, New York, 1983.

C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” Journal of the ACM, 20(1),
1973.

A K. Mok, “Fundamental Design Problems of Distributed Systems for
the Hard-Real-Time Environment,” Ph.D. Thesis, Department of Elec-
trical Engineering and Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, May 1983.

L. Sha, R. Rajkumar and J.P. Lehoczky, “Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization,” IEEE Trans. on
Computers, 39(9), 1990.

W. Zhao, K. Ramamritham and J. Stankovic, “Preemptive Scheduling
Under Time and Resource Constraints,” IEEE Trans. on Computers,

Vol. C-36, No. 8, pp. 949-960, August 1987.

16

