
Quantitative Modeling of Complex Computational
Task Environments

Keith Decker and Victor Lesser

May 10, 1993

Department of Computer Science
University of Massachusetts
Amherst, MA 01003

Email: DECKER@CS.UMASS.EDU
Phone: 413–545–3444
Fax: 413–545–1249

Technical Report 93-21

Abstract

There are many formal approaches to specifying how the mental state of an agent
entails that it perform particular actions. These approaches put the agent at the center
of analysis. For some questions and purposes, it is more realistic and convenient
for the center of analysis to be the task environment, domain, or society of which
agents will be a part. This paper presents such a task environment-oriented modeling
framework that can work hand-in-hand with more agent-centered approaches. Our
approach features careful attention to the quantitative computational interrelationships
between tasks, to what information is available (and when) to update an agent’s mental
state, and to the general structure of the task environment rather than single-instance
examples. A task environment model can be used for both analysis and simulation, it
avoids themethodological problems of relying solely on single-instance examples, and
provides concrete, meaningful characterizations with which to state general theories.
This paper is organized around an example model of cooperative problem solving in
a distributed sensor network.

This work was supported by DARPA contract N00014-92-J-1698, Office of Naval Research contract
N00014-92-J-1450, and NSF contract CDA 8922572. The content of the information does not necessarily
reflect the position or the policy of the Government and no official endorsement should be inferred.

1 Introduction
This paper presents a framework, TÆMS (Task Analysis, Environment Modeling, and Sim-
ulation), with which to model complex computational task environments that is compatible
with both formal agent-centered approaches and experimental approaches. The framework
allows us to both analyze and quantitatively simulate the behavior of single or multi-agent
systems with respect to interesting characteristics of the computational task environments
of which they are part. We believe that it provides the correct level of abstraction for mean-
ingfully evaluating centralized, parallel, and distributed control algorithms, negotiation
strategies, and organizational designs. No previous characterization formally captures the
range of features, processes, and especially interrelationships that occur in computationally
intensive task environments.

We use the term computational task environment to refer to a problem domain in which
the primary resources to be scheduled or planned for are the computational processing re-
sources of an agent or agents, as opposed to physical resources such as materials, machines,
or men. Examples of such environments are distributed sensor networks, distributed de-
sign problems, complex distributed simulations, and the control processes for almost any
distributed or parallel AI application. A job-shop scheduling application is not a compu-
tational task environment. However, the control1 of multiple distributed or large-grain
parallel processors that are jointly responsible for solving a job shop scheduling problem
is a computational task environment. Distributed sensor networks use resources (such
as sensors), but these resources are typically not the primary scheduling consideration.
Computational task environments are the problem domain for control algorithms like many
real-time and parallel local scheduling algorithms [1, 17, 23] and distributed coordination
algorithms [9, 14].

The reason we have created the TÆMS framework is rooted in the desire to produce
general theories in AI [5]. Consider the difficulties facing an experimenter asking under
what environmental conditions a particular local scheduler produces acceptable results, or
when the overhead associated with a certain coordination algorithm is acceptable given
the frequency of particular subtask interrelationships. At the very least, our framework
provides a characterization of environmental features and a concrete, meaningful language
with which to state correlations, causal explanations, and other forms of theories. The
careful specification of the computational task environment also allows the use of very
strong analytic or experimental methodologies, including paired-response studies, ablation
experiments, and parameter optimization. TÆMS exists as both a language for stating general
hypotheses or theories and as a system for simulation. The simulator supports the graphical
display of generated subjective and objective task structures, agent actions, and statistical
data collection in CLOS on the TI Explorer.

The basic form of the computational task environment framework—the execution of
interrelated computational tasks—is taken from several domain environment simulators
[3, 4, 14]. If this were the only impetus, the result might have been a simulator like
Tileworld [22]. However, formal research into multi-agent problem solving has been
productive in specifying formal properties, and sometimes algorithms, for the control

1Planning and/or scheduling of computation.

1

process by which the mental state of agents (termed variously: beliefs, desires, goals,
intentions, etc.) causes the agents to perform particular actions [6, 25, 26]. This research
has helped to circumscribe the behaviors or actions that agents can produce based on their
knowledge or beliefs. The final influence on TÆMS was the desire to avoid the individualistic
agent-centered approaches that characterize most AI (which may be fine) and DAI (which
may not be so fine). The concept of agency in TÆMS is based on simple notions of execution,
communication, and information gathering. An agent is a locus of belief (state) and action.
By separating the notion of agency from the model of task environments, we do not have
to subscribe to particular agent architectures (which one would assume will be adapted to
the task environment at hand), and we may ask questions about the inherent social nature
of the task environment at hand (allowing that the concept of society may arise before the
concept of individual agents).

Section 2 will discuss the general nature of the three modeling framework layers.
Sections 3 through 5 discuss the details of the three levels, and are organized around a
model built with this framework for the study of organizational design and coordination
strategies in a multi-agent distributed sensor network environment.

2 General Framework
The principle purpose of a TÆMS model is to analyze, explain, or predict the performance
of a system or some component. While TÆMS does not establish a particular performance
criteria, it focuses on providing two kinds of performance information: the temporal
intervals of task executions, and the quality of the execution or its result. Quality is an
intentionally vaguely-defined term that must be instantiated for a particular environment
and performance criteria. Examples of quality measures include the precision, belief, or
completeness of a task result. We will assume that quality is a single numeric term with an
absolute scale, although the algebra can be extended to vector terms. In a computationally
intensive AI system, several quantities—the quality produced by executing a task, the time
taken to perform that task, the time when a task can be started, its deadline, and whether the
task is necessary at all—are affected by the execution of other tasks. In real-time problem
solving, alternate task execution methods may be available that trade-off time for quality.
Agents do not have unlimited access to the environment; what an agent believes and what
is really there may be different.

The model of environmental and task characteristics proposed has three levels: ob-
jective, subjective, and generative. The objective level describes the essential, ‘real’ task
structure of a particular problem-solving situation or instance over time. It is roughly equiv-
alent to a formal description of a single problem-solving situation such as those presented
in [15], without the information about particular agents. The subjective level describes how
agents view and interact with the problem-solving situation over time (e.g., howmuch does
an agent know about what is really going on, and howmuch does it cost to find out—where
the uncertainties are from the agent’s point of view). The subjective level is essential for
evaluating control algorithms, because while individual behavior and system performance
can bemeasured objectively, agents must make decisions with only subjective information.2

2In organizational theoretic terms, subjective perception can be used to predict agent actions or outputs,

2

Finally, the generative level describes the statistical characteristics required to generate the
objective and subjective situations in a domain.

3 Objective Level
The objective level describes the essential structure of a particular problem-solving situation
or instanceover time. It focuses onhow task interrelationships dynamically affect thequality
and duration of each task. The basic model is that task groups appear in the environment at
some frequency, and induce tasks to be executed by the agents under study. Task groups
are independent of one another, but tasks within a single task group have interrelationships.
Task groups or tasks may have deadlines . The quality of the execution or result of
each task influences the quality of the task group result in a precise way (Section 3.1).
These quantities can be used to evaluate the performance of a system.

An individual task that has no subtasks is called a method and is the smallest
schedulable chunk of work (though some scheduling algorithms will allow some methods
to be preempted, and some schedulers will schedule at multiple levels of abstraction).
There may be more than one method to accomplish a task, and each method will take some
amount of time and produce a result of some quality. Quality of an agent’s performance on
an individual task is a function of the timing and choice of agent actions (‘local effects’), and
possibly previous task executions (‘non-local effects’).3 The basic purpose of the objective
model is to formally specify how the execution and timing of tasks affect this measure of
quality.

3.1 Local Effects: The Subtask Relationship
Task or task group quality () is based on the subtask relationship. This quality function
is constructed recursively—each task group consists of tasks, each of which consists of
subtasks, etc.—until individual executable tasks (methods) are reached. Formally, the
subtask relationship is defined as subtask , where is the set of all direct subtasks
of and is a quality function : tasks times quality that returns the quality
associated with at time . In a valid model, the directed graph induced by this relationship
is acyclic (no task has itself for a direct or indirect subtask).

The semantics of a particular environment are modeled by the appropriate choice of
the quality function (e.g., minimum, maximum, summation, or the arithmetic mean).
For example, if subtask 1 min , then 1 min 1 min . In
this case the quality that is associated with task 1 is the minimum quality associated with
any of its subtasks. This is sometimes referred to as an AND because the quality of the
parent remains at a minimum until every subtask has been completed. Other functions may
be used for modeling particular environments.4 Functions like sum and average indicate

but unperceived, objective environmental characteristics can still affect performance (or outcomes) [24].
3When local or non-local effects exist between tasks that are known by more than one agent, we call them

coordination relationships[9]
4The set of possible aggregation operators include three basic classes: conjunctions, disjunctions, and

trade-offs. Dubois and Prade have shown that the Triangular norms (including min), averaging operators

3

the possibility that not all tasks in the environment need to be carried out. We have now
described how quality is modeled at tasks that have subtasks, and now turn our attention to
methods.

3.2 Local Effects: Method Quality
Each method at a time will potentially produce (if executed by an agent, see Sec-
tion 4.3) some maximum quality after some amount of elapsed time (we
will defer any further definition of the functions and until we discuss non-local effects
in Section 3.3). The execution of methods is interruptible, and if multiple methods for a
single task are available, the agent may switch between them (typically, alternative methods
tradeoff time and quality).5

Let be the current amount of progress on the execution of . If were not
interruptible and and were the execution start time and finish time, respectively,
of , then:

0

We typicallymodel the quality produced by amethod using a linear growth function
lin:

lin

P
d q P d
q P d

Othermodels (besides linear quality functions) have been proposed and are used, such as
concave quality functions (must execute most of a task before quality begins to accumulate),
convex quality functions (most quality is achieved early on in a method, and only small
increases occur later), and ‘mandatory and optional parts’ quality functions [21]. The
desired can be easily defined for any of these.

As an example of the power of this representation, we consider the two main schools
of thought on quality accumulation: the anytime algorithm camp [1] and the design-to-
time (approximate processing) camp[12, 17]. We can represent their ideas succinctly; in
the anytime algorithm model partial results are always available,6 as in the definition of
lin above, while in the design-to-time model results are not available (quality does

not accrue) until the task is complete, as in the definition of DTT :7

DTT
0 P d
q P d

(including mean), and Triangular conorms (including max and summation) are the most general families of
binary functions that respectively satisfy the semantic requirements of the three basic classes of aggregation
operators [2, 13].

5We model the effect of interruptions, if any, and the reuse of partial results as non-local effects (see
Section 3.3).

6In Boddy’s paper, the assumption is made that has monotonically decreasing gain.
7Another difference between design-to-time (DTT) and other approaches will show up in our generative

and subjective additions to this model—DTT does not assume that is fixed and known, but rather
that it is an estimator for the actual method response.

4

3.3 Non-local Effects
Any task containing amethod that starts executing before the execution of anothermethod
finishes may potentially affect ’s execution through a non-local effect . We write

this relation nle 1 2 , where the ’s are parameters specific to a class of
effects. There are precisely two possible outcomes of the application of a non-local effect
on under our model: duration effects where d (duration) is changed, and quality
effects where q (maximum quality) is changed. An effect class is thus a function

1 2 : task method time duration quality parameter 1
parameter 2 duration quality .

The amount and direction of an effect is dependent on the relative timing of the method
executions, the quality of the effect’s antecedent task, and whether information was com-
municated between the agents executing themethods (in multi-agentmodels). Some effects
are continuous, depending on the current quality of the effect’s antecedent . Some
effects are triggered by a rising edge of quality past a threshold; for these effects we define
the helper function that returns the earliest time when the quality surpasses the
threshold: min s.t. .

Communication. Some effects depend on the availability of information to an agent.
We indicate the communication of information at time about task to an agent with
a delay of by comm . There are many models of communication channels
that we could take for a communication submodel; since it is not our primary concern
we use a simple model with one parameter, the time delay .8 For defining effects that
depend on the availability of information, we define the helper function avail that
represents the quality of a task ‘available’ to agent at time . If was executed at ,
avail . If was executed (or is being executed) by another agent, then

the ‘available’ quality is calculated from the last communication about received at agent
prior to time .
Computing d and q . Each method has an initial maximum quality q0

and duration d0 so we define q 0 q0 and d 0 d0 . If there is only
onenon-local effectwith as a consequentnle 1 2 , then d q

d 1 q 1 1 2 . If there is more than one NLE, then the
effects are applied one after the other in an order specified in the model (the default is for
effects with antecedents closer in the task structure to to be applied first).

The maximum quality function q can also be defined for tasks or task groups. The
precise definition depends on the set of quality accrual functions in the model. Using the
four quality accrual functionswe have already discussed (minimum,maximum, summation,
mean) the definition of maximum quality for a non-method task q is as follows:

q

max T q if subtask T max
min T q if subtask T min

T q if subtask T
T q
T if subtask T mean

8Other parameters, such as channel reliability, are being considered. The description of an agent’s control
and coordination algorithmswill describewhen andwhere communication actually occurs (see communication
actions in Section 4.3, and the concept of agency in Section 4.1).

5

The current duration function d has no meaningful objective definition when applied
to non-method tasks. “Maximum duration” could be defined, but is generally a useless
concept. A more useful concept for scheduling—the minimum duration required for
achieving maximum quality at a task—is explored in [16]. The clear specification of such
concepts is one of the benefits of using our framework.

3.3.1 Non-local Effect Examples

Non-local effects are themost important part of the TÆMS framework, since they supplymost
of the characteristics that make one task environment unique and different from another.
Typically a model will define different classes of effects, such as causes, facilitates, cancels,
constrains, inhibits, and enables [10]. This section contains definitions for four common
classes of effects that have been useful in modeling different environments. When non-local
effects occur between methods associated with different agents, we call them coordination
relationships [9, 10].

Enables. If task enables method , then the maximum quality q 0 until
is completed and the result is available, when the maximum quality will change to the

initial maximum quality q q0 .

enables 0
d0 q0

1

Facilitates. Another effect, used by the PGP algorithm [15] but never formally defined, is
the facilitates effect. Intuitively, one task may provide results to another task that facilitate
the second task by decreasing the duration or increasing the quality of its partial result.
Therefore the facilitates effect has two parameters (called power parameters) 0 d 1
and 0 q 1, that indicate the effect on duration and quality respectively. The effect
varies not only through the power parameters, but also through the quality of the facilitating
task available when work on the facilitated task starts (the ratio).

avail
q

facilitates d q

1 d
1 q S
1 d S
1 q S S

(2)

So if is completed with maximal quality, and the result is received before is started,
then the duration d will be decreased by a percentage equal to the duration power d
of the facilitates effect. The second clause of the definition indicates that communication
after the start of processing has no effect. In other work [9] we explored the effects on
coordination of a facilitates effect with varying duration power d, and with q 0.

Hinders. The hinders effect is the opposite of facilitates, because it increases the
duration and decreases the maximum quality of the consequent. This can be used as a
high-level model of distraction.

Precedence. We define the precedence effect as a combination of enables and hinders.
If precedes , then has infinite duration and 0 maximum quality until some quality
is accrued at . Afterwards, the duration drops toward the initial value and the maximum

6

quality increases to the initial value according to the ratio of available and maximum quality
and the precedence effect’s power parameters (d 0 and q 0). The following formula
is more easily understood if one keeps in mind that, in general, the ratio of available quality
to maximum quality will go from 0 to 1 as methods are executed.

precedes d q

0 avail 0 S
avail S 0 S

d0 d

q0 q S
d0 S d

q0 S q S

(3)

3.4 Objective Modeling Example
Now that we have discussed the basic components of an objective model, let us turn to
an example in which we build a model using the TÆMS framework. This example grows
out of the set of single instance examples of distributed sensor network (DSN) problems
presented in [14]. The authors of that paper compared the performance of several different
coordination algorithms on these examples, and concluded that no one algorithm was
always the best. This is the classic type of result that the TÆMS framework was created to
address—we wish to explain this result, and better yet, to predict which algorithm will do
the best in each situation. The level of detail to which you build your model will depend
on the question you wish to answer—we wish to identify the characteristics of the DSN
environment, or the organization of the agents, that cause one algorithm to outperform
another.

In a DSN problem, the movements of several independent vehicles will be detected
over a period of time by one or more distinct sensors, where each sensor is associated
with an agent. The performance of agents in such an environment is based on how long
it takes them to create complete vehicle tracks, including the cost of communication. The
organizational structure of the agents will imply the portions of each vehicle track that are
sensed by each agent.

In our model of DSN problems, each vehicle track is modeled as a task group. The
simplest objective model is that each task group is associated with a track of length
and has the following objective structure, based on the DVMT: () vehicle location methods
(VLM) that represent processing raw signal data at a single location resulting in a single
vehicle location hypothesis; (1) vehicle tracking methods (VTM) that represent short
tracks connecting the results of the VLM at time with the results of the VLM at time 1;
(1) vehicle track completion method (VCM) that represents merging all the VTMs together
into a complete vehicle track hypothesis. Non-local enablement effects exist as shown in
Figure 1—two VLMs enable each VTM, and all VTMs enable the lone VCM.

We have used this model to develop expressions for the expected value of, and confi-
dence intervals on, the time of termination of a set of agents in any arbitrary DSN environ-
ment that has a static organizational structure and coordination algorithm [11]. We have
also used this model to analyze a dynamic, one-shot reorganization algorithm (and have
shown when the extra overhead is worthwhile versus the static algorithm). In each case we
can predict the effects of adding more agents, changing the relative cost of communication
and computation, and changing how the agents are organized. These results were achieved

7

VTM

VCM

VLM
VLM

VLM
VLM

T
min

VTM

VTM

T
minT

min

T
min

T
min

method (executable task)

task with quality
accrual function min

subtask relationship

enables relationship

Figure 1: Objective task structure associated with a single vehicle track.

by direct mathematical analysis of the model and verified through simulation in TÆMS. We
will give a summary of these results later in the paper (Section 5), after discussing the
subjective and generative levels.

3.4.1 Expanding the Model

We will now add some complexity to the model. The length of a track above is a
generative level parameter. Given a set of these generative parameters, we can construct
the objective model for a specific problem-solving instance, or episode. Figure 1 shows
the general structure of episodes in our DSN environment model, rather than a particular
episode. To display an actual objective model, let us assume a simple situation: there are
two agents, and , and that there is one vehicle track of length 3 sensed once by alone
(1), once by both and (2), and once by alone (3). We now proceed to model the
standard features that have appeared in our DVMT work for the past several years. We will
add the characteristic that each agent has two methods with which to deal with sensed data:
a normal VLM and a ‘level-hopping’ (LH) VLM (the level-hopping VLM produces less
quality than the full method but requires less time; see [12, 8] for this and other approximate
methods). Furthermore, only the agent that senses the data can execute the associated VLM;
but any agent can execute VTMs and VCMs if the appropriate enablement conditions are
met.

Figure 2 displays this particular problem-solving episode. To the description above, we
have added the fact that agent has a faulty sensor (the durations of the grayed methods
will be longer than normal); we will explore the implications of this after we have discussed
the subjective level of the framework in the next section. An assumption made in [14] is that
redundant work is not generally useful; this is indicated by using max as the combination
function for each agent’s redundant methods. We could alter this assumption by simply

8

changing this function (to mean, for example). Another characteristic that appeared often
in the DVMT literature is the sharing of results between methods (at a single agent); we
would indicate this by the presence of a sharing relationship (similar to facilitates) between
each pair of normal and level-hopping VLMs. Sharing of results could be only one-way
between methods.

faulty sensor method

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

VCM
A T

min
T
min

T
min

VCM
B

VTM
A

VTM
B

VTM
A

VTM
B

VLM
A (LH)

VLM
B

VLM
A

VLM
B (LH)

VLM
A (LH)

TVLM
max

VLM
A

VLM
B

VLM
B (LH)

TVLM
max

TVLM
max

TVTM
max

TVTM
max

TVCM
max

1

2,31,2

2 3

1,2,3

type
agent

Figure 2: Objective task structure associated with two agents

Now we will add two final features that make this model more like the DVMT. First,
low quality results tend to make things harder to process at higher levels. For example,
the impact of using the level-hopping VLM is not just that its quality is lower, but also
that it affects the quality and duration of the VTM it enables (because not enough possible
solutions are eliminated). To model this, we will use the precedence relationship instead
of enables: not only do the VLM methods enable the VTM, but they can also hinder its
execution if the enabling results are of low quality. Secondly, the first VLM execution
provides information that slightly shortens the executions of other VLMs in the same
vehicle track (because the sensors have been properly configured with the correct signal
processing algorithm parameters with which to sense that particular vehicle). A similar
facilitation effect occurs at the tracking level. These effects occur both locally and when
results are shared between agents—in fact, this effect is very important in motivating the
agent behavior where one agent sends preliminary results to another agent with bad sensor
data to help the receiving agent in disambiguating that data. Figure 3 repeats the objective
task structure from the previous figure, but omits the methods for clarity. Two new tasks
have been added to model facilitation at the vehicle location and vehicle track level.9 VL
indicates the highest quality initial work that has been done at the vehicle level, and thus
uses the quality accrual function maximum. VT indicates the progress on the full track; it
uses summation as its quality accrual function. The more trackingmethods are executed, the
easier the remaining ones become. The implications of this model are that in a multi-agent

9Note that these tasks were added to make the model more expressive; they are not associated with new
methods.

9

episode, then, the question becomes when to communicate partial results to another agent:
the later an agent delays communication, the more the potential impact on the other agent,
but the more the other agent must delay. We examined this question somewhat in [9].

T
min

task with quality
accrual function min

subtask relationship

precedence relationship

facilitates relationship

T
min

T
min

T
min

TVLM
max

TVLM
max

TVLM
max

TVTM
max

TVTM
max

TVCM
max

TVL
max

TVT
!

1

2,31,2

2 3

1,2,3

Figure 3: Non-local effects in the objective task structure

At the end of the next section, we will return to this example and add to it subjective
features: what information is available to agents, when, and at what cost.

4 Subjective Level
The purpose of a subjective level model of an environment is to describe what portions of
the objective model of the situation are available to ‘agents’. It answers questions such as
“when is a piece of information available,” “to whom is it available,” and “what is the cost
to the agent of that piece of information”. This is a description of how agents might interact
with their environment—what options are available to them.

To build such a description we must introduce the concept of agency into the model.
Ours is one of the few comprehensive descriptions of computational task environments, but
there are many formal and informal descriptions of the concept of agency (see [18, 19]).
Rather than add our own description, we notice that these formulations define the notion of
computation at one or more agents, not the environment that the agents are part of. Most
formulations contain a notion of belief that can be applied to our concept of “what an agent
believes about its environment”. Our view is that an “agent” is a locus of belief and action
(such as computation).

The form of the rest of this section is as follows: how does the environment affect
the beliefs of the agents; how do the beliefs of agents affect their actions, and how do the
actions affect the environment.

10

4.1 Agent Beliefs
We use the symbol to denote the set of beliefs of agent at time . A subjective
mapping of an objective problem solving situation is a function : from
an agent and objective assertions to the beliefs of an agent. For example, we could define a
mapping where each agent has a probability of believing that the maximum quality of a
method is the objective value, and a probability 1 of believing the maximum quality is
twice the objective value. Any objective assertion has some subjective mapping, including
q (maximum quality of a method), d (duration of a method), deadlines, and the relations
subtask, nle, and comm.

4.2 Control
The beliefs of an agent affect its actions through some control mechanism. Since this is
the focus of most of our and others’ research on local scheduling, coordination, and other
control issues, we will not discuss this further (but see Section 5.2). The agent’s control
mechanism uses the agent’s current set of beliefs to update three special subsets of these
beliefs (alternatively, commitments[25]) identified as the sets of information gathering,
communication, and method execution actions to be computed.

The models we build typically further divide control into local scheduling and coordi-
nation (see [9]), but this is not required. Besides describing how an agent’s beliefs entail
commitments to particular information gathering, communication, and method execution
actions, a control component model must also describe the duration of its deliberations.
This feature allows us to analyze questions concerning the cost of control without becoming
mired in implementation details.10

4.3 Computation
Our model can support parallel computation, but for brevity we will just describe single
processor computation as a sequence of agent states. Agent ’s current state is uniquely
specified by . We provide a meta-structure for the agent’s state-transition function that
is divided into the following 4 parts: control, information gathering, communication, and
method execution. First the control mechanisms assert (commit to) information-gathering,
communication, and method execution actions and then these actions are computed one at
a time, after which the cycle of meta-states repeats.

A simple model of parallel computation, similar to the implementation in [7], is to allow
control, information gathering, and communication to run on one (abstract) processor, and
multiple method executions on the other processors. Any important interactions between
methods executing in parallel would be represented by non-local effects.

Method Execution. How do the actions of an agent affect the environment? Both the
objective environment (e.g. quality of the executing method) and the subjective mapping
(e.g. information available via) can be affected. We use two execution models: simple

10Understanding the details of the control costs of particular algorithm implementations is important, but
usually not at early stages of research. Detailed information about control costs can be used by TÆMS if it is
available.

11

method execution, and execution with monitoring, suspension, and preemption. These
follow from the discussion of DTT and lin in Section 3.2, and are simple state-based
models. Basically, for non-interruptible, single processor method executions, the agent
enters a method execution state for method at time S and remains in that state
until the time when S d . Method execution actions are similar to what
Shoham terms ‘private actions’ like DO[25].

We have also considered pre-emptable method execution, where a method execution
action is given a set upper time limit, after which computation will proceed to the next
meta-state. The agent can then monitor the execution of long methods, and interleave their
execution with other actions or pre-empt them entirely [17].

Communication. How do the actions of an agent affect other agents? Communication
actions allow agents to affect each others’ beliefs to a limited extent. Many people have
worked on formalizing aspects of communication; the semantics of communication actions
can be freely defined for each environment. The simplest communication act is to send
another agent the ‘current result/value’ of a method—the effect is to change the available
quality avail at the remote agent after the message has been received. What
happens when a communication is ‘received’? The reception of information, by changing
the available quality of a task, may trigger a non-local effect as we described earlier, and
may influence the behavior of an agent as specified by its control algorithm.

Information Gathering. An information gathering action trades-off computational re-
sources (time that could be spent executingmethods) for information about the environment.
For example, one useful information gathering action is one that queries the environment
about the arrival of new tasks or task groups. Another information gathering action causes
any communications that have arrived at an agent to be ‘received’ (added to the agent’s set
of beliefs). A third kind of information gatheringmay identify coordination relationships—
non local effects that span multiple agents. Both communication and information gathering
actions take some period of time (not necessarily constant) to execute, as specified in the
model.

4.4 Subjective Modeling Example
Let’s return to the example we began in Section 3.4 to demonstrate how adding a subjective
level to the model allows us to represent the effects of faulty sensors in the DVMT. We
will define the default subjective mapping to simply return the objective value, i.e., agents
will believe the true objective quality and duration of methods and their local and non-
local effects. We then alter this default for the case of faulty (i.e., noisy) sensors—an
agent with a faulty sensor will not initially realize it (d0 faulty-VLM 2d0 VLM , but

d0 faulty-VLM d0 VLM).11 Other subjective level artifacts that are seen in [14]
and other DVMT work can also be modeled easily in our framework. For example, ‘noise’
can be viewed as VLMmethods that are subjectively believed to have a non-zeromaximum
quality (q0 noise-VLM 0) but in fact have 0 objective maximum quality, which
the agent does not discover until after the method is executed. The strength with which

11At this point, one should be imagining an agent controller for this environment that notices when a VLM
method takes unusually long, and realizes that the sensor is faulty and replans accordingly.

12

initial data is sensed can be modeled by lowering the subjectively perceived value of the
maximum quality q for weakly sensed data. The infamous ‘ghost track’ is a subjectively
complete task group appearing to an agent as an actual vehicle track, which subjectively
accrues quality until the hapless agent executes the VCM method, at which point the true
(zero) quality becomes known. If the track (subjectively) spans multiple agents’ sensor
regions, the agent can potentially identify the chimeric track through communication with
the other agents, which may have no belief in such a track (but sometimes more than one
agent suffers the same delusion).

Next we turn to the control of the agents in an environment. As an example, we will
now present a very simple static control algorithm that uses no meta-level communication
(more information about this and other algorithms can be found in [11]). In a static
organization, agents divide their overlapping areas of responsibility as evenly as possible,
resulting in new areas of responsibility for each agent with no overlap (to avoid redundant
processing). Given a subjectively believed task structure as described in Section 3.4 and any
communicated task results received by information gathering actions, the agent can at any
time build a list of currently executable methods (under the set of precedence constraints).
At any time an agent can also build a list of methods that need to be executed, but cannot be
because their precedence constraints have not yet been met. The communication action in
this algorithm is a broadcast of the highest level results of all the task groups an agent has
worked on. Each agent follows the same control algorithm, all the raw data is available at
the start, and terminates when all task groups are completed (either locally or by reception
of the result from another agent):

(Repeat
Do Information-Gathering-Action
(Repeat

Let E = [get set of currently executable methods]
(For method In E

Do Method-Execution-Action(method))
Until (null E))
Do Communication-Action(broadcast highest-level results)
Let W = [get set of methods still waiting on precedence constraints]

Until (null W))

It would be useful to know the performance of a system using this coordination algo-
rithm. If we let represent the largest amount of low-level data in one task group seen
by any agent, and the total number of agents that see the task group, then the amount of
time it will take that agent to construct a complete solution is equal to the amount of time it
will take for the initial information gathering action d 0 plus the amount of time to do
all the local work d0 VLM 1 d0 VTM , communicate that work d0 , get
the other agents’ results d0 , plus the amount of time to combine results from the other

1 agents 1 d0 VTM , plus time to produce the final complete task group result
d0 VCM , plus communicate that result to everyone d0 .
We have explained the objective and subjective levels of our modeling framework, and

presented an example of a moderately complex task structure and a simple control algorithm
for an agent that can accomplish this task. Next we turn to the generative level, where we
specify the statistical properties of an environment across many episodes.

13

5 Generative Level
By using the objective and subjective levels of TÆMS we canmodel any individual situation;
adding a generative level to the model allows us to go beyond that and determine what the
expected performance of an algorithm is over a long period of time and many individual
problem solving episodes. Our previous work has created generative models of task
interarrival times (exponential distribution), amount of work in a task cluster (Poisson),
task durations (exponential), and the likelihood of a particular non-local effect between
two tasks [11, 9, 17]. Generative level statistical parameters can also be used by agents in
their subjective reasoning, for example, an agent may make control decisions based on the
knowledge of the expected duration of methods.

A generative level model can be constructed by careful analysis of the real environment
beingmodeled, or by observing the statistical properties of real episodes (if that is possible).
Even when certain parameters of the real world are unknown, they can be made variables in
the model and then you can ask questions about how much they affect the things you care
about. Our approach so far has been to verify our assumptions about the environment with
simple statistical approaches [20]. Detailedmodel verificationwill be more importantwhen
using our framework to optimize parameters in a real application, as opposed to learning
the general effects of parameters on a coordination or negotiation algorithm (see Section 6).

In our DSN model example, any single episode can be specified by listing the task
groups, and what part of each task group was available to which agents, given the orga-
nizational structure. Our analyses are be based on the statistical properties of episodes in
this environment, not any single instance of an episode. The properties of the episodes
in a DSN environment are summarized by the tuple where spec-
ifies the number of agents, the expected number of task groups, and specify the
structural portion of the organization by the range of each agent and the overlap between
agents12, and specifies the homogeneous task group structure (as discussed in Sec-
tions 3.4 and 4.4). A particular episode in this environment can be described by the tuple

1 where is a random variable drawn from a Poisson distribution
with an expected value of . If we were to extend this generative model to cover every
feature we added to the objective and subjective models in Sections 3.4 and 4.4, we would
need to add the likelihood of a sensor being faulty (noisy), the likelihood of a ghost track,
etc.

5.1 Analysis Summary
We briefly showed at the end of Section 4.4 howwe can predict the performance of a system
given the objective and subjective models of a particular episode. This is very useful for
explaining or predicting agent behavior in a particular episode or scenario, but not over
many episodes in a real environment. To do this, we need to build probabilistic models of
the relevant objective and subjective parameters (now viewed as random variables) that are
based on generative level parameters. Our companion paper, [11], details this process, and

12We also assume the agents start in a square geometry, i.e, 4 agents in a 2 2 square, 25 agents arranged
5 5.

14

shows how the distributions of objective parameters such as “the number of VLM methods
seen by the maximally loaded agent” () and “the max number of task groups seen by the
same agent” () can be defined from just the generative parameters .

The total time until termination for an agent receiving an initial data set of size is the
time to do local work, combine results from other agents, and build the completed results,
plus two communication and informationgathering actions, as was discussed in Section 4.4:

d0 VLM d0 VTM 1 d0 VTM d0 VCM 2d0 2d0 4

We can use Eq. 4 as a predictor by combining it with the probabilities for the values of
and . Again, we refer the interested reader to [11] for derivations, verification, and

applications of these results. Note that if the assumptions behind our generative model
change (for instance, if we assume all agents initially line up side-by-side, instead of in a
square, or if vehiclesmade a loop before exiting the sensed area) the probability distributions
for and might change, but that the form of Eqn. 4 does not. If the agent’s coordination
algorithm changes, then Eqn. 4 will change (see [11]).

5.2 Simulation
Simulation is a useful tool for learning parameters to control algorithms, for quickly explor-
ing the behavior space of a new control algorithm, and for conducting controlled, repeatable
experiments when direct mathematical analysis is unwarranted or too complex. The sim-
ulation system we have built for the direct execution of models in the TÆMS framework
supports, for example, the collection of paired response data, where different or ablated
coordination or local scheduling algorithms can be compared on identical instances of a
wide variety of situations (generated using the generative level of the model). We have
used simulation to explore the effect of exploiting the presence of facilitation between tasks
in a multi-agent real-time environment where no quality is accrued after a task’s deadline
[9]. The environmental generative characteristics here included the mean interarrival time
for tasks, the likelihood of one task facilitating another, and the strength of the facilitation
(d).

The TÆMS framework is not limited to experimentation in distributed problem solving.
In [17], Garvey and Lesser used the framework to describe the effects of various task
environment and agent design features on the performance of their real-time ‘design-to-
time’ algorithm. Theymanipulate the objective-to-subjectivemapping to examine questions
about monitoring the execution of tasks when true method durations are not known. They
show that monitoring does provide a reduction in missed deadlines but that this reduction
may be significant only during ‘medium’ loads. Garvey is now using amore complexmodel
of enabling and hindering task structures to design an optimal design-to-time algorithm for
certain task environments.

6 Conclusions
This paper has presented TÆMS, a framework for modeling computationally intensive task
environments. TÆMS exists as both a language for stating general hypotheses or theories and

15

as a system for simulation. The important features of TÆMS include its layered description of
environments (objective reality, subjectivemapping to agent beliefs, generative description
of the other levels across single instances); its acceptance of any performance criteria
(based on temporal location and quality of task executions); and its non-agent-centered
point of view that can be used by researchers working in either formal systems of mental-
state-induced behavior or experimental methodologies. TÆMS provides environmental and
behavioral structures and features with which to state and test theories about the control of
agents in complex computational domains, such as how decisions made in scheduling one
task will affect the utility and performance characteristics of other tasks.

TÆMS is not only a mathematical framework, but also a simulation language for execut-
ing and experimenting with models directly. The TÆMS simulator supports the graphical
display of generated subjective and objective task structures, agent actions, and statistical
data collection in CLOS on the TI Explorer. These features help in both the model-building
stage and the verification stage. The TÆMS simulator is being used not only for research
into the coordination of distributed problem solvers[11, 9, 10], but also for research into
real-time scheduling of a single agent[17], scheduling at an agent with parallel processing
resources available, and soon, learning coordination algorithm parameters.

TÆMS does not at this time automatically learn models or automatically verify them.
While we have taken initial steps at designing a methodology for verification (see [11]),
this is still an open area of research [5]. Our future work will include building new models
of different environments that may include physical resource constraints, such as airport
resource scheduling. The existing frameworkmay have to be extended somewhat to handle
consumable resources. Other extensions we envision include specifying dynamic objective
models that change structure as the result of agent actions. We also wish to expand our
analyses beyond the questions of scheduling and coordination to questions about negotiation
strategies, emergent agent/society behavior, and organizational self-design.

References
[1] Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence, August 1989.

[2] Piero P. Bonissone and Keith S. Decker. Selecting uncertainty calculi and granularity: An experiment
in trading-off precision and complexity. In L. N. Karnak and J. F. Lemmer, editors, Uncertainty in
Artificial Intelligence. North Holland, 1986.

[3] Norman Carver and Victor Lesser. A new framework for sensor interpretation: Planning to resolve
sources of uncertainty. In Proceedings of the Ninth NationalConference on Artificial Intelligence, pages
724–731, August 1991.

[4] Paul Cohen, Michael Greenberg, David Hart, and Adele Howe. Trial by fire: Understanding the
design requirements for agents in complex environments. AI Magazine, 10(3):33–48, Fall 1989. Also
COINS-TR-89-61.

[5] Paul R. Cohen. A survey of the eighth national conference on artificial intelligence: Pulling together or
pulling apart? AI Magazine, 12(1):16–41, Spring 1991.

[6] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial Intelligence,
42(3), 1990.

16

[7] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R. Lesser. Control heuristics for
scheduling in a parallel blackboard system. International Journal of Pattern Recognition and Artificial
Intelligence, 7(2), 1993.

[8] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R. Lesser. A real-time control archi-
tecture for an approximate processing blackboard system. International Journal of Pattern Recognition
and Artificial Intelligence, 7(2), 1993.

[9] Keith S. Decker and Victor R. Lesser. Analyzing a quantitative coordination relationship. COINS
Technical Report 91–83, University of Massachusetts, November 1991. To appear in the journalGroup
Decision and Negotiation, 1993.

[10] Keith S. Decker and Victor R. Lesser. Generalizing the partial global planning algorithm. International
Journal of Intelligent and Cooperative Information Systems, 1(2), June 1992.

[11] Keith S. Decker and VictorR. Lesser. An approach to analyzing the need for meta-level communication.
In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Chambéry,
August 1993.

[12] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending a blackboard architecture for
approximate processing. The Journal of Real-Time Systems, 2(1/2):47–79, 1990.

[13] D. Dubois and H. Prade. Criteria aggregation and ranking of alternatives in the framework of fuzzy
set theory. In H.J. Zimmermen, L. A. Zadeh, and B.R. Gains, editors, TIMS/Studies in Management
Science, volume 20, pages 209–240. Elsevier Science Publishers, 1984.

[14] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Coherent cooperation among communi-
cating problem solvers. IEEE Transactions on Computers, 36(11):1275–1291, November 1987.

[15] E.H. Durfee and V.R. Lesser. Partial global planning: A coordination framework for distributed hypoth-
esis formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1167–1183, September
1991.

[16] Alan Garvey, Marty Humphrey, and Victor Lesser. Task interdependencies in design-to-time real-time
scheduling. In Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington,
July 1993.

[17] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE Transactions on Systems,
Man, and Cybernetics, 23(6), 1993. Special Issue on Scheduling, Planning, and Control.

[18] Les Gasser. Social conceptions of knowledge and action. Artificial Intelligence, 47(1):107–138, 1991.

[19] Carl Hewitt. Open information systems semantics for distributed artificial intelligence. Artificial
Intelligence, 47(1):79–106, 1991.

[20] Jack P. C. Kleijnen. Statistical Tools for Simulation Practitioners. Marcel Dekker, New York, 1987.

[21] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao. Algorithms for scheduling
imprecise computations. IEEE Computer, 24(5):58–68, May 1991.

[22] Martha E. Pollack and Marc Ringuette. Introducing Tileworld: Experimentally evaluating agent archi-
tectures. In Proceedings of the Eighth National Conference on Artificial Intelligence, pages 183–189,
July 1990.

[23] Stuart J. Russell and Shlomo Zilberstein. Composing real-time systems. In Proceedings of the Twelfth
International Joint Conference on Artificial Intelligence, pages 212–217, Sydney, Australia, August
1991.

[24] W. Richard Scott. Organizations: Rational, Natural, and Open Systems. Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1987.

[25] Yoav Shoham. AGENT0: A simple agent language and its interpreter. In Proceedings of the Ninth
National Conference on Artificial Intelligence, pages 704–709, Anaheim, July 1991.

17

[26] Gilad Zlotkin and Jeffrey S. Rosenschein. Blocks, lies, and postal freight: The nature of deception
in negotiation. In Proceedings of the Tenth International Workshop on Distributed AI, Texas, October
1990.

18

