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Abstract

In this paper we introduce a robust earliest deadline scheduling algorithm for deal-
ing with sporadic tasks under overloads in a hard real-time environment. The algorithm
synergistically combines many features including a very important minimum level of guar-
antee, dynamic guarantees, graceful degradation in overloads, deadline tolerance, resounrce
reclaiming, and dynamic re-guarantees. A necessary and sufficient schedulability test is
presented, and an efficient O(n) guarantee algorithm is proposed. The new algorithm
is evaluated via simulation and compared to several baseline algorithms. The experi-
mental results show excellent performance of the new algorithm in normal and overload
conditions.

1 Introduction

Many real-time systems rely on the earliest deadline (EDF) first scheduling algorithm. This
algorithm has been shown to be optimal under many different conditions. For example, for
independent, preemptable tasks, on a uni-processor EDF is optimal in the sense that if any
algorithm can find a schedule where all tasks meet their deadline then EDF can meet the
deadlines [Der 74]. Also, Jackson’s rule [Jac 55] says that ordering a set of tasks by deadline
will minimize the maximum lateness. Further, it has also been shown that EDF is optimal
under certain stochastic conditions [Tow 91].

In spite of these advantageous properties, EDF has one major negative aspect. That is,
when using EDF in a dynamic system, if overload occurs, tasks may miss deadlines in an
unpredictable manner, and in the worst case, the performance of the system can approach zero
effective throughput [Loc 86). This aspect of EDF is a well known fact and applies when using
EDF in a dynamic systezn. However, for a static collection of tasks we see by Moore’s rule
[Moo 68], that to minimize the number of jobs which are late, simply order by earliest deadline
and drop the late jobs. By using EDF in a planning mode that performs dynamic guarantees,
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we can make use of a result similar to Moore’s theorem, thereby avoiding the catastrophic
failure of EDF and making it more robust. Moreover, our approach synergistically combines
many nice scheduling features, further enhancing its robustness. The main contribution of
this paper is the development and the performance evaluation of a robust version of the EDF
algorithm, which has the following characteristics:

e it operates in normal and overload conditions with excellent dynamic performance and
avoids the major negative aspect of EDF scheduling;

e it is a priors analyzable together with offering certain minimum guarantees of system
performance;

e it is used in planning mode with additional on-line evaluative properties such as depict-
ing the size of the overload, when and where the overload will occur and dynamically
assessing the overall impact of this overload on the system;

¢ it includes extended timing semantics based on a deadline tolerance per task that is
suitable to certain applications such as robotics;

e it applies to simultaneously handling n classes of preemptable tasks where tasks can
have different values;

o it is embedded in a general framework that:

~ is easily and cost effectively implementable (O(n) complexity),

— separates guarantee, dispatching and rejection policies,

— maintains a state view of the system that accurately depicts overload (to accom-
plish this required us a novel on-line calculation of overload with respect to varying
deadlines),

— reclaims resources to improve performance, and

— dynamically attempts re-guarantees when resources are reclaimed.

A performance study is accomplished via simulation. Our new algorithm is compared
against the standard earliest deadline algorithm and a guarantee based earliest deadline
algorithm [Ram 84). We compare the algorithms under widely varying conditions with respect
to load, arrival rates, value distributions, allowed tolerances, and actual versus worst case
execution times. The new algorithm significantly outperforms these baselines in all tested
situations.

The paper is organized as follows. Section 2 introduces terminology and basic concepts.
In Section 3 we state the main properties of the proposed approach, give the basic guarantee
algorithm, and present the efficient calculation of system load. In Section 4 we deal with
overload conditions and present a new model for robust scheduling in overload. Section 5
discusses the problem of resource reclaiming, which adds flexibility to our approach, and
presents a new framework in which all the parts of the algorithm synergistically integrate
into a general scheme. Section 6 presents the performance study. Section 7 discusses related
research, showing how this work is a significant extension to the state of the art of EDF
scheduling. Section 8 summarizes the main results and presents the implications of the

proposed approach.



2 Terminology and Basic Concepts

In order to motivate and more easily understand the following definitions, proofs, and subse-
quent additions to the basic algorithm, we begin by presenting an overview of the dynamic
operation of the system. First, we assume that there are n known tasks given by T, T3, ..., Tn
where each has a worst case computation time, a deadline relative to when the task is acti-
vated, and a specified deadline tolerance level which indicates the amount of lateness allowed
for a given task (may be zero). Tasks are preemptable. Tasks are invoked dynamically, and
at any point in time the system could have zero, all, or an arbitrary subset of these n tasks
active.

When a task is activated at time t, it is inserted into an ordered list of tasks based on
an earliest deadline first policy and an analysis is performed to determine feasibility of the
entire set of currently active tasks, whether overload exists and, if so, where, when, for how
long, and which tasks are involved in the overload, and how the active tasks would operate
subject to allowed tolerances.

2.1 Minimum Levels of Guarantee

Static real-time systems are designed for worst case situations. Then, assuming that all
the assumptions made in the design and analysis are correct, all tasks always make their
deadlines. Theoretically, we can then say that the level of guarantee for these systems is
absolute. Unfortunately, static systems are not always possible because for many applications
the environment and system itself, being imperfect, violate their assumptions fairly often, or
because to develop a static design with absolute guarantees is too costly. When either or
both of thesée conditions exist, we find dynamic real-time systems. In these systems, absolute
guarantees are not attained. However, we believe that a necessary property of dynamic
systems must be a tradeoff between what is guaranteed and what is probabilistic. A property
of a dynamic real-time system should be a minimum level of guarantee together with best
effort beyond this minimum. For example, assume that we have an application with 2000
different tasks and this application exists in a hostile environment. To statically design a
solution might be impossible, or if it were possible might require a very large number of
processors (say 100s of them). Now it may be known that only 20 of these 2000 tasks are
truly critical and that it is unlikely that more than 10 percent of the tasks are active at
the same time. A good dynamic system design would give an absolute guarantee to the 20
critical tasks and provide enough resources to also meet the deadlines of all other tasks likely
to be active at the same time, i.e., under normal loads. To achieve this may only require 5-6
processors. In other words, to build a system for a reasonable cost, we may miss deadlines
(rarely) on non-critical tasks.

Unfortunately, many algorithms used in dynamic real-time systems do not have good
minimum level of guarantee properties. For example, earliest deadline and rate monotonic
have very limited minimum guarantees. Our RED algorithm considers minimum levels of
guarantees at two different times: a priori and at run time. For the a priori guarantee
of critical tasks, the designer applies all worst case assumptions, but only for the critical
tasks and knowing that the run time algorithm is RED. In this way, an absolute minimum
performance is guaranteed for the critical tasks. In the a priori analysis we show that using



RED all critical task deadlines are met, and that even in the presence of other real-time tasks
from other classes of jobs, that there is no way that these non-critical tasks can negatively
influence the scheduling of the critical tasks. This is a simple yet important property of our
approach. Beyond this a prior{ analysis at run time, RED ensures that all critical and other
real-time tasks will make their deadline under normal loads, simply due to the optimality
feature of EDF scheduling. When overloads occur for non-critical tasks, RED still ensures
that critical tasks can execute and that there is a best effort at maximizing value of non-critical
tasks. Further, even if the load assumptions for the critical tasks are wrong and more critical
tasks arrive than planned for a priori, then RED still guarantees a high value by ensuring
that any critical task, once guaranteed, never misses its deadline. There is no domino effect.
In summary, by maintaining a profile, analyzing it, and using resource reclaiming, the value
output of the system is maintained at a high value. Catastrophic drops in value do not occur
and effective cpu utilization is also maintained at a high value.

2.2 Notations and Assumptions

Before we describe the guarantee algorithm, we first state our definitions, notations, and
assumptions.

Definitions:

o A task is a sequence of instructions that will continuously use the processor until its
completion, if it is executing alone on the processor [Sha 90].

o A sporadic task is a task with irregular arrival times and minimum interarrival time.

o A task set is said to be feasibly scheduled by a certain algorithm if and only if all tasks
" can complete their execution within their time constraints.

o A newly arrived task is said to be guaranteed to complete its execution before its deadline
if and only if a feasible schedule can be created for the newly arrived task and those
still active tasks that have been previously guaranteed, such that all tasks will meet
their timing constraints.

o We refer to the time interval between the finishing time of a task and its absolute
deadline as a residual time.

For the proofs which provide a necessary and sufficient condition for the schedulability
of task sets at each task activation, we require a notation that identifies the it task in the
current ordered list at time ¢{. For this we use the notation J;,Js,...,J;, Where J; is the
task in the #*# position. At the next task activation, the task in each position may change
completely due to the deadline of the new task and possible task completions since the last
task activation. On task completions the order does not change, but all tasks conceptually
move up one position. Further, at each task activation, once a task is inserted into the ordered
list, then each task in the list has a current scheduled start and finish time. If a task completes
before its worst case execution time, then the cpu time will be reclaimed, essentially moving
all other still active tasks starting time forward. The time a task is dispatched is called the
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actual starting time. Since tasks are preemptable, a given task may have multiple actual
start times, but only a single actual finish time. At each new actual start time, a task only
requires its remaining execution time, not the full worst case time (in other words the task
is not restarted, just continued).

Notation:

J denotes a set of active sporadic tasks J; ordered by increasing deadline, J; being the task
with the shortest absolute deadline. )

a; denotes the arrival time of task J;, i.e., the time at which the task is activated and becomes
ready to execute.

C; denotes the maximum computation time of task J;, i.e., the worst case execution time
(wcet) needed for the processor to execute task J; without interruption.

¢; denotes the dynamic computation time of task J;, i.e., the remaining worst case execu-
tion time needed for the processor, at the current time, to complete task J; without
interruption.

d; denotes the absolute deadline of task J;, i.e., the time before which the task should com-
plete its execution, without causing any damage to the system.

D; denotes the relative deadline of task J;, i.e., the time interval between the arrival time
and the absolute deadline.

S; denotes the first start time of task J;, i.e., the time at which task J; gains the processor
for the first time.

s; denotes the last start time of task J;, i.e., the last time, before the current time, at which
task J; gained the processor.

fi denotes the estimated finishing time of task J;, i.e., the time according to the current
schedule at which task J; should complete its execution and leave the system.

L; denotes the laxity of task J;, i.e., the maximum time task J; can be delayed before its
execution begins.

R; denotes the residual time of task J;, i.e., the length of time between the finishing time of
Ji and its absolute deadline.

The meaning of the main task parameters defined above is illustrated in figure 1. It is easy
to verify the following relationships among the parameters defined above:

d = a;+D; (1)
Li = d-a¢;-C; (2)
R; = di-f; (3)
f = t+ey fi=fia+e Vi>l (4)
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Figure 1: Task parameters

In our model, we assume that the minimum interarrival time of each sporadic task is
equal to its relative deadline D;, thus a sporadic task J; can be completely characterized by
specifying its relative deadline D; and its worst case execution time C;. Hence, a sporadic
task set will be denoted as follows: J = {J;(C;, D;), i = 1 to n}.

Throughout our discussion, we assume that tasks are scheduled on a uniprocessor by the
Earliest Deadline First (EDF) scheduling algorithm, according to a preemptive scheduling
discipline, so that the processor is always assigned to the task whose deadline is the earliest.
We assume that tasks arrive dynamically and arrival times are not known a priori. EDF
algorithm is optimal in underload conditions, it is dynamic, it can be used for periodic and
aperiodic tasks, and it can be easily extended to deal with precedence constraints. Group of
tasks with precedence constraints can be scheduled with EDF by modifying their deadlines
and release times so that both deadlines and precedence relations are met [Bla 76] [Che 90].
Overheads are assumed to be zero, but how to account for overheads is discussed in the
conclusions.

3 Guarantee Algorithm

We formulate the dynamic, on-line, guarantee test in terms of residual time, which is a
convenient parameter to deal with both normal and overload conditions. We first present the
main results without the notion of deadline tolerance, and then we will extend the algorithm
by including tolerance levels and task rejection policy. The basic properties stated by the
following lemmas and theorems are used to derive an efficient O(n) algorithm for analyzing
the schedulability of the sporadic task set whenever a new task arrives in the systems.

Lemma 1 Given a set J = {J1,J2,...,Jn} of active sporadic tasks ordered by increasing
deadline, the residual time R; of each task J; at time t can be computed by the following
recursive formula:

Ry = d1-t-¢ (5)
Ri = Rioi+(di—din)-ei. (6)

Proof.
By the residual time definition (equation 3) we have:

R; =d; - fi.
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By the assumption on set J, at time ¢t, task J; is executing and cannot be preempted by
other tasks in the set J, hence its estimated finishing time is given by the current time plus
its remaining execution time:
h=t+a

and, by equation (3), we have:

R1 = d; —fl = dl—t-cl.
For any other task J;, with § > 1, each task J; will start executing as soon as J;_; completes,
hence we can write:

fi=fiate )
and, by equation (3), we have:
Ri=di-fi = di-fisi—¢i =
= d;—(di-1 - Ris1) -6 = Riq+(di—dicq)—ci

and the lemma follows. O
Lemma 2 A task J; is guaranteed to complete within its deadline if and only if R; > 0.

Proof.
(If part): Suppose R; > 0. By the result obtained in Lemma 1 we can write:

Rioi+(di—di1)-¢c; 20
that is, by equation (3):
di—fi-1—620
which can be written as:
fi-r+c¢i < d;
and by equation (7):
fi<d;
which means that J; completes its execution within its deadline, i.e., it is guaranteed.
(Only if part): Suppose task J; completes its execution within its deadline. This means that

figd;
and since, by equation (7), f; = fi-1 + ¢;, we have
fi-1+c <di.
By equation (3) we can write:
(di-1 - Ri-1)+¢;i—-d; <0
and since, by equation (6) of Lemma 1,
(di-1 - Ri-1) +¢;i—di = -R;
we have R; > 0 and the lemma follows. O



Theorem 3 A set J = {J;, i = 1 to n} of n active sporadic tasks ordered by increasing
deadline is feasibly schedulable if and only if R; > 0 for all J; € J.

Proof.
It follows directly by applying Lemma 2 to each task of the set. O

Notice that if we have a feasibly schedulable set J of n active sporadic tasks, and a new
task J, arrives at time ¢, to guarantee the new ordered task set J' = J U {J,} we only need
to compute the residual time of task J, and the residual times of tasks J; such that d; > d,.
This is because the execution of J, does not influence those tasks having deadline less than
or equal to d,;, which are scheduled before J,.

We now summarize the basic guarantee algorithm in the form of pseudo code. This basic
version is enhanced in later sections of the paper to produce the robust ED (RED) algorithm.

Algorithm GUARANTEE(J,J,)

begin
t = get_current_time();
Ro=0;
do =t;
Ingert J, in the ordered task list;
J=Jul,;
k = position of J, in the task set J';
for each task J; such that i > k do {
R; = Ri_y + (di — di—1) — ¢i;
if (R; < 0) then return ("Not Guaranteed");
}
return ("Guaranteed“);
end

Clearly, the above guarantee algorithm runs in O(n) time in the worst case. This makes
the proposed approach an efficient schedulability test to run whenever a sporadic task arrives.

Now we introduce a new framework for handling real-time sporadic tasks under overload
conditions, and we propose a robust version of the Earliest Deadline algorithm. Before we
describe such a robust algorithm, we define few more basic concepts.

3.1 Load Calculation

In some real-time environments, the workload of the system can be considered the same as the
processor utilization factor. For example, for a set of n periodic tasks with computation time
C; and period T;, with no resource conflicts, the utilization factor can be easily computed, as

proposed in [Liu 73], by
n C|
U= ; T
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For sporadic tasks, the utilization factor could be computed by considering the minimum
interarrival time as a sort of period. However, this would lead to an overestimation of the
workload, since it would refer to the (very pessimistic) case in which all sporadic tasks have
the maximum arrival rate.

In a real-time environment with aperiodic tasks, a commonly accepted definition of work-
load refers to the standard queueing theory, according to which a load p, also called traffic
intensity, represents the expected number of task arrivals per mean service time [Zlo 91].
This definition, however, does not say anything about task deadlines, hence it is not as useful
in a hard real-time environment.

A more formal definition has been proposed in [Bar 92}, in which is said that a sporadic
real-time environment has a loading factor b if and only if it is guaranteed that there will
be no interval of time [t;,¢,) such that the sum of the execution times of all tasks making
requests and having deadlines within this interval is greater than b(t, — ¢t:). They use this
definition in order to prove worst case bounds on the performance of on-line algorithms in
the presence of overloads. Theoretically, this is fine for bounds analysis. For practical use,
however, these intervals can be very numerous, requiring too much computation if used on-
line. Moreover, having only a single load value can easily be misleading. Although such a
definition is more precise than the first one, it is still of little practical use, since no on-line
methods for calculating the load are provided, nor proposed.

One main purpose of RED is to operate well even in overload conditions. However, it
is difficult to develop a good measure of load in a real-time system because each task has a
unique start time and deadline. This gives rise to overloads occurring in specific intervals, even
when the total processor utilization is very low. For actual use on-line, we need an efficient
mechanism to detect and react to overload. Our approach uses a technique that is very
similar to the off-line iterative analysis done in rate monotonic scheduling; however, we use
it on-line and apply it to aperiodic tasks scheduled by earliest deadline rather than periodic
tasks scheduled by frequency of period. The idea is to iteratively identify the cpu utilization
required by all the tasks up to the i** task. For example, first we compute the utilization
required by the first task in the schedule. Then we compute the utilization required by the
first two tasks in the schedule, etc. As we show below, this iterative procedure is efficient,
avoids needing to know the theoretically worst case load in any interval, and has many nice
properties including:

¢ a complete load profile is efficiently created,
e the time (intervals) at which overloads might occur is predicted,
o the magnitude of the overload is identified,

o the impact of the overload on the system as a whole is calculated, e.g., will only a few
tasks miss their deadlines or is it possible that many (all) tasks will miss their deadlines,
and

* many types of other analysis can be applied to the profile including

— applying semantics of deadline tolerance levels (of specific tasks being late by
specific amounts)



~ shifting load by altering deadlines (possible, e.g., by slowing down operations in a
robotics application).

Before we explain our method of computing system load, we introduce the following
notation:

pi(ts) indicates the processor load in the interval [t,, d;), where ¢, is the arrival time of the
latest arrived task in the sporadic set,

Pmaz indicates the maximum processor load among all intervals [t,, d;), i = 1 to n, where ¢,
is the arrival time of the latest arrived task in the sporadic set.

In practice, the load is computed only when a new task arrives, and it is of significant
importance only within those time intervals [t,, d;) from the latest arrival time t,, which is
the current time, and a deadline d;. Thus the load computation can be simplified as:

Ed* <d; Ck

di - ta )
Theorem 4 The load p;(t,) in the interval [to,d;) can be directly related to the residual time
R; of task J;, according to the following relation:

R;
d;i—t,

pi(ta) =

pi=1- (8)

Proof.
Since tasks are ordered by increasing deadline, after the arrival time ¢4, they will be executed

in such a way that f) = ¢, + ¢; and f; = fi_1 + ¢;. Therefore, we can write:

Y oektta=fi

dx<d;
and since, by equation (3),

fi=di-R;
we have:
Z ek = (di — t3) - R,.
dy<d;
Hence the load p;(t;) can be directly related to the residual time R; of task J;, as follows:
R;
pi{ta) =1- FArI

0O
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3.2 Load function

It is important to point out that, within the interval [t,,d,] between the latest arrival time
t, and the latest deadline of task J,,, the processor work load is not constant, but it varies in
each interval [t,,d;). To express this fact, we define the following load function:

p fort, <t<dy

P(tm t) = pi forte [di—la dl)
0 fort>d,

Definition 1 Let pyq: be the mazimum of the load function p(t,,t) in the interval [t,, dy).
We say that the system is underloaded if pmqr < 1, and overloaded if ppa: > 1.

Definition 2 We define Ezceeding Time E; of a task J; as the time that task J; will ezecute
after its deadline, that is: E; = maz;(0,—R;). We then define Mazimum Ezceeding Time
E .z the mazimum among all E; in the tasks set, that is: E,,,; = maz;(E;).

Notice that, in underloaded conditions (pmar < 1), Emar = 0, whereas in overload condi-
tions (pmaz > 1), Emaz > 0.

Observation 1 Once we have computed the load factor p; for task J;, the nezt load factor
Pi+1 can be computed as follows: :

- pi(di — ta) + civ1
diy1—ta

Pi+1

Proof.
By Theorem 4 we can write:
Riq
- —3 1 — —
AL S

and by Lemma 1:

p.+1=1_Ri+di+l—di—Ci+1 =di—ta—Ri+c,'+l
' diy1—ta dip1 -ty .

Applying equation (8) we have:
(d1 -t - Rl) = Pi(dl' - ta)

therefore we obtain:
pl(dt - a) + Cis+1
dl'-H =t )

Pi+1 =

11
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Table 1: Task parameters for the Example 1

3.3 Example 1

To clarify the concepts defined above, we present an example to illustrate how the residual
times and the load function help to identify the time at which the overload occurs, the tasks
involved, and the effects that this produces on the system.

Let us consider a set of four tasks as indicated in Table 1. At time ¢, = 7, when task J,
arrives, the residual times R; and the corresponding load factors p; have the following values:

Ro=do—ta—co=1 po=1- Ro/(do — t,) = 0.8
R1=Ro+d1—do—cl=—2 p1=1—R1/(d1—t¢)=1.22
Ry=Ry+dy—dy—c2=-1 p2=1- Ry/(d2 - ;) = 1.07
R3=Rz+d3—d2—¢:3=1 p3=1—R3/(d3—ta)=0.95

Figure 2a illustrates the scheduling sequence of the four tasks in the time domain. Figure
2b and 2c shows the residual values and the resulting load function calculated at time ¢, = 7.
As we see, since ppyar > 1, the system is overloaded. However, the load function shows that
after time ¢ = 21 the overload condition disappears. Moreover, from the residual values we
know that the maximum exceeding time is E,,,- = 2, and it is caused by task J,. This a very
useful information since, if tasks have deadline tolerances, the peak load may be tolerated by
the system. For example, if task J; can tolerate an exceeding time of 2 time units and task
Ja can tolerate an exceeding time of 1 time unit, then the task set can still be scheduled so
that all tasks will meet their timing constraints.

3.4 Localization of exceeding time

As we have shown in the above example, by computing the load function, we can have a
global picture of the system load, and we can see in advance the effects of an overload in
the system. For instance, we can see whether the overload will cause a “domino effect”, in
which all task will miss their deadlines, or whether it is transient and it will extinguish after
a while. In other words we are able to locate the time or times at which the system will
experience the overload, identify the exact tasks that will miss their deadlines, and we can
easily compute the amount of computation time required above the capacity of the system -
the exceeding time.

This global view of the system allows us to plan an action to recover from the overload
condition. Our approach is general enough that many recovering strategies can be used to
solve this problem. The recovery strategy we propose in this paper is described in Section 6.
The important advantages of our approach are:

12
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Figure 2: Scheduling sequence of the tasks defined in Table 1 (a); residual values calculated
at time t, = 7 (b); resulting load function at ¢, = 7 (c);
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¢ it increases flexibility in expressing time constraints via the deadline tolerance mecha-
nism,

o it makes the scheduling algorithm more robust in the sense of giving better and more
predictable performance under all loads; this is achieved via a combination of using
value, deadline tolerance, and resource reclaiming,

o it allows the integration of different rejection policies for different classes of tasks, and

e it provides a minimum guarantee even in overload conditions.

4 Deadline Tolerance

In many real applications, such as robotics, the deadline timing semantics is more flexible
than scheduling theory generally permits. For example, most scheduling algorithms and ac-
companying theory treat the deadline as an absolute quantity. However, it is often acceptable
for a task to continue to execute and produce an output even if it is late — but not too late.
In order to more closely model this real world situation, we permit each task to be char-
acterized by a computation time, deadline, and deadline tolerance. The deadline tolerance
is then the amount of time by which a specific task is permitted to be late. Further, when
using a dynamic guarantee paradigm, a deadline tolerance provides a sort of compensation
for the pessimistic evaluation of using the worst case execution time. For example, without
tolerance, we could find that a task set is not feasibly schedulable, and hence decide to reject
a task. But, in reality, the system could have been scheduled because with the tolerance and
full assessment of the load we might determine that overload is simply for this task and it
is within its tolerance level. Another effect is that various tasks could actually finish before
their worst case times so the resource reclaiming part of our algorithm could then compensate
and the guaranteed task with tolerance could actually finish on time. Basically, our approach
minimizes the pessimism found in a basic guarantee algorithm.

Another real application issue is that once some task has to miss a deadline, it should
be the least valuable task. Again, many algorithms do not address this fact. In summary,
we modify our previous task model by introducing two additional parameters: a deadline
tolerance and a task value.

Notation:

m; denotes the deadline tolerance of task J;, i.e., the maximum time that task J; may execute
after its deadline, and still produce a valid result.

v; denotes the task value, i.e, the relative importance of task J; with respect to the other
tasks in the set.

Moreover, we split real-time tasks into two classes:

o HARD tasks are those tasks that are guaranteed to complete within their deadline in
underload conditions;
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o CRITICAL tasks are those tasks that are dynamically guaranteed to complete within
their deadline in underload conditions and in overload conditions. CRITICAL tasks
may also be guaranteed a priori for specified loads (in both under and overloads) by
ensuring enough cpu power for them.

In our more robust model, a sporadic task J; is completely characterized by specifying its
class, its relative deadline D;, the deadline tolerance m;, the worst case execution time C;,
and its value v;. In the following, we assume that the task class can be derived from the task
value. For instance, tasks with maximum value v; = Vo, can be considered as CRITICAL.

In summary, a sporadic task set will be denoted as follows:

J = {Ji(Ci, D;, m;, v;), i = 1 ton}

Within this framework, different policies are used for handling sporadic tasks in a robust
fashion. In particular, tasks are scheduled based on their deadline, guaranteed based on
C;, D;, m;,v;, and rejected based on v;.

4.1 The general RED scheduling strategy

When dealing with the deadline tolerance factor m;, each Exceeding Time has to be computed
with respect to the tolerance factor m;, so we have: E; = maz(0, —(R; + m;)).

To guarantee the execution time of CRITICAL tasks in overload conditions, the algo-
rithm uses a rejection strategy to reject tasks based on their values, to remove the overload
condition. Several rejection strategies can be used for this purpose. As discussed in the next
section on performance evaluation, two rejection strategies have been implemented and com-
pared. The first policy rejects a single task (the least value one), while the second strategy
tries to reject more tasks, but only if the newly arrived task is a CRITICAL task. In the
single task policy, since the algorithm knows the Mazimum FEzceeding Time E,,,, and the
task J,, which would cause such a time overflow, it tries to reject the least value task in
the sporadic set, whose execution time is greater than E,;;;. The multiple task policy may
choose to reject more tasks such that Y ;c; > Engr and whose deadlines are less than the
deadline of the newly arrived CRITIC AL task. Both of these options are evaluated in the
performance study. Another strategy for rejecting tasks is based on the concept of value
density, defined as the ratio v;/C;. According to this strategy, tasks with longer computation
times have lower value density and hence have more chances to be rejected. To be general,
we will describe the RED algorithm by assuming that, in overload conditions, some rejection
policy will search for a subset J* of least value (non critical) tasks to reject in order to make
the current set schedulable. If J* is returned empty, then the overload cannot be recovered,
and the newly arrived task cannot be accepted. Notice that CRITICAL tasks previously
guaranteed cannot be rejected. :

If J,, is the task caixsi.ng the maximum exceeding time overflow, the rejectable tasks that
can remove the overload condition are only those tasks whose deadline is earlier than or equal
to d,. This means that the algorithm has to search only for tasks J;, with i < w.
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Algorithm RED _guarantee(J,J,)

begin .
t = get_current_time();
E =0; /* Maximum Exceeding Time */
w=1; /* Exceeding task index */
Ry =0;
do=1t;
J'=Ju{J,}; /% Insert J, in the ordered task list */
k = position of J, in the task set J';
for each task J! such that i>k do {
Ri=Ri_y +(di—di_1) —ci;
if (R;+m; < —E) then {
E = —(Ri + mi);
w=1i;
}
if (E =0) then return (‘‘Guaranteed”);
else { Let J* be the set of least value tasks
selected by the rejection policy;
if (J* is not empty) then {
reject all task in J*;
return (‘‘Guaranteed");
}
else return (‘‘Not Guaranteed");
}
end

4.2 Example 2

To show how the RED algorithm works, we present an example on a set of five tasks, whose
parameters are given in Table 2. The rejection policy adopted in the example is to remove
the least value task, such that its execution time is greater than the maximum exceeding
time Ensz. The estimated scheduling sequence of the set at time ¢ = 3, before Jp arrives, is
shown in figure 3a, while the situation at time ¢ = 4 is illustrated in figure 3b. When task Jo
arrives, the set is found not schedulable, because R3 + m3 = —2 < 0, meaning that task J;
would exceed its (tolerant) time constraint by 2 units.

To make the set schedulable, some task has to be rejected, so that all residual times
become non negative. According to this strategy, the least value task in the set, task J,
(with value 2) cannot be removed, since it would not recover the overload situation. The
next least value task, J, (with value 3) cannot be removed, because its computation time
(e2 = 1) is not sufficient to remove the exceeding load. The first least value task that can be
removed is task J, since its computation time (c; = 5) is greater than Ep,,..
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Figure 3: Estimated scheduling sequence at time ¢ = 3 (a); Estimated scheduling sequence
at time t = 4, when task Jp arrives (b). Deadline tolerances are indicated with a vertical bar
with no arrow.
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task [a; [Ci[ di [ mi| vi |
Jo N4 3[7]2]10
J, 1582165
T, 1219 1]3
T Jol410| 1|7
Ja 3|3 (15| 2 [ 2

Table 2: Task parameters for the Example 2

5 Resource Reclaiming

One of the advantages of dynamic scheduling is that whenever a task completes before its
estimated finishing time, because its computation time was less than the worst case, the
processor time saved is automatically! used for the execution of the other tasks. Such a
dynamic allocation of processor time to the task set lowers the loading factor of the system.
In order to take advantage of this fact in the guarantee algorithm, the loading function has to
be computed not only at each task activation, but also at each task completion. To simplify
the calculation of the workload at each task completion, the following results can be used.

Lemma 5 If § is the ezecution time saved by task J, at its completion, the residual times
R; of the remaining tasks will increase ezactly by delta, that is:

R.=R;+8. (9)

Proof.

Let f; be the estimated finishing time of task J; based on the worst case execution time, and
let f! be the actual finishing time of task J;, so that f{ = f; — §. We prove the lemma by
induction. By Lemma 1 we can write:

Rl = di-fl-a =
= d1-—fi—cl+8=R1+6.

Now, we assume the lemma true for R]_,, and we derive R;:

R = Riy+(d-do)-c =
Ry +(di-disy)—ci+6 =
R;+6

which proves the lemma. O

UIf resources can be locked or multiprocessing is being used then resource reclaiming is not automatic. See
(She 90] for a full discussion and solutions.
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Observation 2 If § is the ezecution time saved by task J, at its completion, the loading
factors p; of the remaining tasks will decrease by the following amount:

_ _bpi(1 - pi)
B0 = Ty 6= ) (19)

Proof.
Let p! be the workload due to the residual time R{. By equation (8) of Theorem 4 we can
write: "

AP.'=P;—P§=P-'—(1-H)
and by equation (9) of Lemma 5 we can write:

__Ri+§ _di-fi-R
;- fi+6 di-fi+6

and since, by Lemma 4, (d; - f;) = -(-li_‘f;‘j, we have:

oo Pl
' Ri+8(1-pi)

pi=1

and hence:
Api = 8pi(1 - pi)
'T R+ 6(1-pi)

5.1 Increasing flexibility

The result obtained in Lemma 5 suggests that if a sporadic task cannot be guaranteed by
the RED algorithm at its arrival time, there are chances that it could be guaranteed at later
time, by using the execution time saved by other tasks. Scheduling tasks at an “opportune”
time, rather than at arrival time has been proposed in [Zlo 91] as a technique called Well-
Timed Scheduling. However, this technique has been mainly used to reduce the scheduling
overhead in highly loaded systems, rather than focusing on increasing the probability of a
successful guarantee by utilizing reclaimed time. Also it did not treat holding a rejected task
for possible re-guarantee at a later time.

In a more general framework, a task J, rejected in an overload condition can still be
guaranteed if the sum of the execution time saved by all tasks completing within the laxity
of J, is greater or equal to the Maximum Exceeding Time found when J, was rejected. This
result is formally expressed in the following theorem.

Theorem 6 Let J, be a sporadic task rejected at time t, in an overload condition because

Epmaz(t,) > 0, and let a, and L, be its arrival time and its current lazity. If f] is the actual
finishing time of the current running task Jy, 8§, is the ezecution time saved by previous tasks
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after t,, and 6, is the ezecution time saved by J,, then the task set J' = (J — {/;}) U {J;}
can be guaranteed at time f] if and only if

(f: S t" + I"‘) a‘nd (5 .>_ Ema:)

where § = &, + 8, is the total ezecution time saved in the interval ft,, f{].

Proof.
Without loss of generality, we assume m; = 0 for all tasks.
(If part). If task J, was rejected, there was a task Ji such that Ry = —Enas(t,) < 0 and

R; > R for all task J;. Let § = §, + §; be the total execution time saved in the interval [tr,
t}]. X § > Emaz, then at time t}, by Lemma 5, we have that

R! > R;, for all tasks J;

therefore:
R! > 0 for all tasks J;

and by Theorem 1 the task set is feasibly schedulable.
(Only if part). Left to the reader. O

5.2 General scheduling scheme

Theorem 6 provides a necessary and sufficient condition for guaranteeing a previously rejected
task as soon as a running task completes its execution. This result can be used to propose a
more general framework for scheduling sporadic tasks, as illustrated in figure 4.

Within this framework, if a task cannot be guaranteed by the system at its arrival time,
it is not removed forever, but it is temporarly rejected in a queue of non guaranteed tasks,
called Reject Queue, ordered by decreasing values, to give priority to the most important
tasks. As soon as the running task completes its execution before its worst case finish-
ing time, the highest value task in the Reject Queue having positive laxity and causing a
Mazimum_Ezceeded_ Time < § will be reinserted in the Ready Queue and scheduled by
earliest deadline. All rejected tasks with negative laxity are removed from the system, and
inserted in another queue, called Miss Queue, containing all late tasks; whereas all tasks that
complete within their timing constraints are inserted in a queue of regularly terminated jobs,
called Term Queue. The purpose of the Miss and Term Queues is to record the history of
the system, which aids in debugging and understanding the operation of system.

6 Performance Evaluation

Simulations were conducted to evaluate the performance of the RED algorithm with respect
to several other baseline algorithms including EDF which is commonly used in dynamic hard
real-time environments.

In all the experiments, the following scheduling algorithms have been compared:
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Figure 4: RED Scheduling Block Diagram

e EDF - Earliest Deadline First algorithm, without any form of guarantee. As soon as
a new task arrives in the system, it is inserted in the ready queue by its deadline and
scheduled according to the EDF policy.

¢ GED - Guaranteed Earliest Deadline algorithm. When a new task arrives, a guarantee
routine verifies whether the new task set is schedulable: if yes, the newly arrived task
is inserted in the ready queue and scheduled by its deadline; if no, the newly arrived
task is rejected.

¢ RED - Robust Earliest Deadline algorithm with single task rejection. When a new task
arrives, a guarantee routine verifies whether the new task set is feasibly schedulable:
if yes, the newly arrived task is accepted; if no, the system will reject the least value
task, if any, such that the remaining set is schedulable, else the newly arriving task is
rejected. Everytime a task completes its execution, a recovery routine tries to reaccept
the greatest value task, among those rejected tasks whose laxity is positive.

e MED - Robust Earliest Deadline algorithm with multiple task rejection. The same
as the RED algorithm, with the following difference: if the new task set is found
unschedulable and the newly arrived task is critical, then the system may reject more
than one lower value tasks to make the remaining task set schedulable.

The main performance metrics we used are:

Loss Value Ratio (LVR) : ratio of the sum of the values of late HARD processes to the total
set value.
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atime arrival time

dline deadline

wecet | estimated worst case computation time
ctime ~ actual computation time

toler deadline tolerance

value relative importance

Table 3: Task parameters

N number of tasks in the set
A arrival rate
load initial system workload

a load rate or growth factor: a € [-1,1]
a > 0 increasing load
a = 0 constant load
a < 0 decreasing load
erit (critical factor) ratio of the
average number of critical tasks
to the total number of tasks
dw | average difference between the estimated
wcet and the real computation time

Table 4: Set parameters

Loss Critical Ratio (LCR) : ratio of the number of critical tasks that missed their deadline
to the total number of critical tasks. This is used to show how the system operates in
a region beyond which the a priori guarantee had accounted for.

While all the graphs plot average values obtained over 50 runs, the standard deviations
were also computed and are reported in the figures. A summary of the task, task set, and
test parameters is given in Table 3, Table 4, and Table 5, respectively.

The wecet parameter is a random variable with uniform distribution within a range
[weet_min, wcet_maz].

The ctime parameter is computed from the weet, by subtracting a factor dw, which is also

N_VAL | number of different values for a test
DELTA parameter increment
NIT number of iterations for each value

Table 5: Test parameters
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a random variable with uniform distribution within a range [dw_min, dw_maz]. Deadline
tolerances are also uniformly distributed in the interval [tol_min, tol_.maz].

Task arrival times are generated in sequence based on the arrival rate A specified in the
set parameters. The arrival time of task i is computed as:

atime(i) = atime(i — 1) + r(1/A,0)

where #(a,b) is a Gaussian random variable with mean & and variance b2. Task deadline is
calculated according to the workload specification given by the two parameters p and a:

Ci+1 Ci+1
diy1=di + p r(a p , o).
Finally, the value of non critical tasks is defined as a random variable uniformly distributed
in the interval [1, N]. The value of critical tasks is defined as CRIT_VALUE, which is a value
greater than N. The number of critical tasks in the set is controlled by the crit parameter.
Default values were set at: N = 50, A = 0.2 (a task every 5 ticks), load = 0.9, a = 0.5,
erit = 0.2 (20 percent of critical tasks), wcet = 30, dw = 0, tol = 0.

6.1 Experiment 1: Critical Factor

In the first experiment, we tested the capability of the algorithms of handling critical tasks
in overload conditions. Figure 5a and 5b plot the Loss Critical Ratio (LCR) and the Loss
Value Ratio (LVR) obtained for the four algorithms as a function of the critical factor. In
this experiment, the initial workload was 0.9, with a growth factor a = 0.5. For each task,
the deadline tolerance was set to zero, and the computation time (ctime) was set equal to
the estimated wcet (dw = 0).

As shown in Figure 5, both LVR and LCR for EDF go over 0.9 as soon as the critical
factor become greater than 0.2. This is clearly due to the domino effect caused by the heavy
load. Although the guarantee routine used in the GED algorithm avoids such a domino effect
typical of the EDF policy, it does not work as well as RED nor MED, since critical tasks are
rejected as normal hard tasks, if they cause an overload. For example, when the percentage
of critical tasks is 50% (critical factor = 0.5) we see a gain of about 15% for RED and MED
over GED.

Another important implication from Figure 5 is that RED and MED are able to provide
almost no loss for critical tasks in overload conditions, until the number of critical tasks
in the set is above 50% of the total number of tasks; the LCR is practically zero for both
algorithms. Above this percentage, however, some loss is experienced and, by around 80% of
the load being critical tasks, we start to see the multiple task rejection policy used in MED
begin to be slightly more effective than RED.

To understand the behavior of RED and MED depicted in figure 5a, remember that the
LVR is computed from the value of HARD tasks only, since CRITICAL tasks belong to a
different class. Therefore, as the critical factor increases, RED and MED have to reject more
HARD tasks to keep the LCR value low, whereas GED does not make any dinstiction between
HARD and CRITICAL tasks.

As a matter of fact, an important result shown in this experiment is that for task sets in
which the number of critical tasks is less than the number of hard tasks, it is not worthwhile
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Figure 5: LVR vs critical factor (a); LCR vs critical factor (b).
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to use complicated rejection strategies. In this cases, the simple (O(n)) strategy used in
RED, in which the least value task is rejected, performs as well as more sophisticated and
time consuming policies.

Notice that in all experiments presented in this paper, no assumption has been made
on the minimum interarrival time of critical tasks. Therefore, even when the percentage of
critical tasks is low, there is always a (low) probability that a critical task can be rejected
with the MED algorithm, if it arrives just after another critical task and the deadlines of
both are close. Note that this condition is an overload.

8.2 Experiment 2: Load Rate

In this experiment, the number of critical tasks was 20 percent of the total number of tasks
(which means 10 in the average out of 50). The initial workload was 0.9, and the load growth
factor a, was varied from 0 to 0.75, with a step of 0.05. For each task, the deadline tolerance
was set to zero, and the computation time (ctime) was set equal to the estimated wcet (dw
= 0).

Figure 6a plots the loss value ratio (LVR) obtained with the four algorithms as a function
of the load growth factor a, and figure 6b plots the loss critical ratio (LCR). When a = 0 the
system workload is maintained on the average around its initial value p = 0.9, therefore the
loss value is negligible for all algorithms. By increasing a, the load increases as new tasks
arrive in the system.

As it is clear from the figure, the EDF algorithm without guarantee was not capable of
handling overloads, so that the loss in value increased rapidly towards its maximum (equal to
the total set value). At this level, only the first tasks were able to finish in time, while all other
tasks missed their deadlines. Again, RED and MED did not show any significant difference
between themselves during this test, but a very significant improvement was achieved over
EDF and GED. For example, using a growth factor a = 0.5, which causes a heavy load,
the LVR is 0.98 with EDF, 0.17 with GED, and only 0.11 for both RED and MED. Notice
that the loss value obtained running RED and MED is entirely due to hard tasks, since from
figure 5b we see that the number of critical tasks missing their deadlines is practically zero
for RED and MED.

6.3 Experiment 3: Arrival Rate

In the third experiment, we monitored the loss value by varying the task arrival rate. In this
case, task deadlines were generated in a slightly different fashion. Task laxity was generated
first as a random variable uniformly distributed in the interval [laz_min, laz_maz]. Then,
task deadline was computed as follows:

deadline = arrival time + wcet + lazity.

As shown in the graphs reported in figure 7, the results of this test are consistent with
those discussed in the previous experiment. So the results hold over a wide range of system
conditions.

25



10
LVR |

0.8 +

foad = 0.9
critical factor = 0.2
tolerance = 0

(¢

(0.028) —=— EDF
(0.038) —a— GED
(0.040) —O— RED
(0.040) ——e—

L]
0.0 0.2 0.4
@ load

0.8 0.8

rate

1.0
LCR |
0.8 load = 0.9
critical factor = 0.2
4 tolerance = 0
(4
0.6 -
(0.038) =——8— EDF
: (0.069) —a— GED
(0.038) —O— RED
0.4 (0.036) ———w— MED
0.2 1

0.0
0.0 0.2 0.4

®) load rate

Figure 6: (a)LVR vs load rate;

26

(b) LCR vs load rate.



1.0

LVR |
i critical factor = 0.2
0.8 tolerance = 0
-
0.6
0.4

c
(0.031) —@— EDF
(0.036) —a— GED
(0.029) —O— RED
(0.031) =—=w— MED

0.0 v T
0.08 0.10 0.15 0.20
(@) arrival  rate
1.0
LCR G
(0.053) —@— EDF
0.8+ (0.066) ——a— GED
J (0.033) =O— RED
(0.028) ——e—
0.6 4 p
0.4 4 critical factor = 0.2

tolerance = 0

0.05 0.10 0.15 0.20
(b) arrival rate

Figure 7: (a) LVR vs arrival rate A; (b) LCR vs arrival rate A.

27



1.0
LVR |

0.8 4

load = 0.9

load rate = 0.5

critical factor
tolerance = 0

c
(0.041) ~——gp—
(0.031) ——a—
(0.018) —O—
{0.018) =——w—

=02

EDF
GED
RED

0.0
0 10 15
(@) dw
1.0
load = 0.9
LCR load rate = 0.5
critical factor = 0.2
0.8 tolerance = 0
(o]
(0.040) —=— EDF
0.6 = (0.070) —a— GED
(0.015) —O— RED

dw

28

(0.013) —=—

10

15

Figure 8: (a) LVR vs dw; (b) LCR vs dw.



6.4 Experiment 4: Early Completion

Experiment 4 is intended to show the effectiveness of the recovery strategy used in the RED
(and MED) algorithm. When a task completes its execution before its estimated finishing
time, the recovery strategy tries to reaccept rejected tasks (based on their values) until they
have positive laxity. This is a very important feature of RED since, due to the pessimistic
evaluation of the weet, the actual computation time of a task may be very different from its
estimated value. We call computation time error dw the difference between the estimated
wecet and the actual computation time of a task. Figure 8a and 8b show the loss value ratio
LVR and the loss critical ratio LCR as a function of dw. In this test, the initial load was
set to 0.9, with a growth factor @ = 0.5. The number of critical tasks was 20 percent of the
total number, and computation time error dw varied from 0 to 15, with an estimated wcet
ranging from 30 to 40 time units.

Notice that, although EDF does not use any recovery strategy, EDF performs better than
GED for high values of dw. This is due to the fact that for high computation time errors,
the actual workload of the system is much less than the one estimated at the arrival time, so
EDF is able to execute more tasks. On the other hand, GED cannot take advantage of saved
time, since it rejects tasks at arrival time based on the estimated load. RED and MED also
reject tasks based on the current estimated workload, but the recovery strategy makes use
of saved execution time for reaccepting rejected tasks. Since tasks are reaccepted based on
their value, RED and MED perform as well as EDF for large computation time errors.

For example, with an average computation time error of dw = 5, the LVR obtained with
RED is about 3 times less than the one obtained with GED, and about 13 times less than
the one obtained with EDF. For large errors, say dw > 10, EDF shows about the same
performance of RED and MED, in terms of both LVR and LCR, whereas GED performs
almost as before.

6.5 Experiment 5: Deadline Tolerance

Experiment 5 shows the effect of having a deadline tolerance. Remember that a task with
deadline d; and tolerance m; is not treated as a task with deadline (d; + m;): deadline is
used for scheduling, and tolerance is used for guarantee. This means that the algorithm
always tries to schedule all tasks to meet their deadlines; only in overload conditions there is
a chance that some task may exceed its deadline. In order to compare the four algorithms in
a consistent fashion, the concept of tolerance has been used also for EDF and GED. In this
experiment, the initial load was 0.9, with a growth factor @ = 0.2. The number of critical
tasks was 70 percent of the total number (i.e., about 35 out of 50), and tolerance level was
varied from 0 to 15.

Figures 9a and 9b show the LVR and the LCR values for the four algorithms, as the
tolerance level varies from 0 to 15. LCR can be considered as the probability for a critical
task of missing its deadline. LCR values obtained with EDF were more than an order of
magnitude bigger than those obtained with the other algorithms. Notice that, as the number
of critical tasks in the set was relatively high, for low tolerance values, the MED algorithm
performs better than RED, whereas for higher values the two algorithms have the same
performance.
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For example, with a tolerance level of 5 units, the LCR factor is 0.62 with EDF, 0.042
with GED, 0.0014 with RED, and only 0.009 with MED. As we can see from the graph, for
tolerance values greater than 10, RED and MED cause no late critical tasks.

Note from figure 9a that GED performs better than the other three algorithms in terms
of LVR. This is due to the fact that RED and MED reject more hard tasks than GED, to
keep the LCR as low as possible.

6.8 Performance Evaluation Summary

The performance results clearly show the poor performance of EDF scheduling in overload.
This fact has been often stated, but rarely shown with performance data. The results also
show the clear advantage of on-line planning (dynamic guarantee) algorithms under such con-
ditions. More importantly, the results also show that the new RED algorithm is significantly
better than even the basic guarantee approach because it uses the entire load profile, dead-
line tolerance, and resource reclaiming. The better performance occurs across different loads,
deadline distributions, arrival rates, tolerance levels, and errors on the estimates of worst case
execution time. RED also is significantly better than EDF and better than GED in handling
unexpected overloads of critical tasks; an important property for safety critical systems. This
implies that RED keeps the system safe, longer, when unanticipated overloads occur. We
also see that the very simple rejection policy for RED suffices in almost all conditions, and
that MED only improves RED in a small part of the parameter space.

7 Related Work

Earliest deadline scheduling has received much attention. It has been formally analyzed
proving that it is an optimal algorithm for preemptive, independent tasks when there is no
overload [Der 74], and proving that it is not optimal for multiprocessors [Mok 83]. It has
been used in many real-time systems, often assuming that overload will not occur. However,
it is now well known that earliest deadline scheduling has potentially catastrophically poor
performance in overload. Various research has been performed attempting to rectify this
problem. We briefly present EDF work related to overload as well as some general work on
overload in real-time systems.

Ramamritham and Stankovic [Ram 84] used EDF to dynamically guarantee incoming
work and if a newly arriving task could not be guaranteed the task was either dropped or
distributed scheduling was attempted. All tasks had the same value. The dynamic guarantee
performed in this paper had the effect of avoiding the catastrophic effects of overload on EDF.
In [Biy 88] the previous work was extended to tasks with different values, and various policies
were studied to decide which tasks should be dropped when a newly arriving task could not
be guaranteed. However, the work did not fully analyze the overload characteristics, build a
profile, allow deadline tolerance, nor integrate with resource reclaiming and re-guarantee, as
we do in this paper.

Haritsa, Livny and Carey [Har 91) present the use of a feedback controlled EDF algorithm
for use in real-time database systems. The purpose of their work is to get good average per-
formance for transactions even in overload. Since they are working in a database environment
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their assumptions are quite different than ours, e.g., they assume no knowledge of transaction
characteristics, they consider firm deadlines not hard deadlines, there is no guarantee, and no
detailed analysis of overload. On the other hand, for their environment, they produce a very
nice result, a robust EDF algorithm. The robust EDF algorithm we present is very different
because of the different application areas studied, and because we also include additional
features not found in [Har 91].

In real-time Mach [Tok 87) tasks were ordered by EDF and overload was predicted using
a statistical guess. If overload was predicted, tasks with least value were dropped. Jeffay,
Stanat and Martel [Jef 91] studied EDF scheduling for non-preemptive tasks, rather than the
preemptive model used here, but did not address overload.

Other general work on overload in real-time systems has also been done. For example, Sha
[Sha 86] shows that the rate monotonic algorithm has poor properties in overload. Thambidu-
rai and Trivedi [Tha 89] study transient overloads in fault tolerant real-time systems, building
and analyzing a stochastic model for such a system. However, they provide no details on
the scheduling algorithm itself. Schwan and Zhou [Sch 92] do on-line guarantees based on
keeping a slot list and searching for free time intervals between slots. Once schedulability is
determined in this fashion, tasks are actually dispatched using EDF. If a new task cannot
be guaranteed, it is discarded. Zlokapa, Stankovic and Ramamritham [Zlo 91] propose an
approach called well-time scheduling which focuses on reducing the guarantee overhead in
heavily loaded systems by delaying the guarantee. Various properties of the approach are
developed via queueing theoretic arguments, and the results are a multi-level queue (based
on an analytical derivation), similar to that found in [Har 91] (based on simulation).

In [Loc 86] an algorithm is presented which makes a best effort at scheduling tasks based
on Earliest Deadline with a rejection policy based on removing tasks with the minimum value
density. He also suggests that removed tasks remain in the system until their deadline has
passed. The algorithm computes the variance of the total slack time in order to find the
probability that the available slack time is less than zero. The calculated probability is used
to detect a system overload. If it is less than the user prespecified threshold, the algorithm
removes the tasks in increasing value density order. Consequently, detection of overload
is performed in a statistical manner rather than based on an exact profile as in our work.
This gives us the ability to perform specific analysis on the load rather than a probabilistic
analysis. While many features of our algorithm are similar to Locke’s algorithm, we extend
his work, in a significant manner, by the careful and exact analysis of overload, support n
classes, provide a minimum level of guarantee even in overload, allow deadline tolerance,
more formally address resource reclaiming, and provide performance data for the impact of
re-guarantees. We also formally prove all our main results.

Finally, Gehani and Ramamritham [Geh 91] propose programming language features to
allow specification of deadline and a deadline slop factor (similar to our deadline tolerance),
but propose no algorithms for supporting this feature.

8 Conclusions

We have developed a robust earliest deadline scheduling algorithm for hard real-time envi-
ronments with preemptive tasks, multiple classes of tasks, and tasks with deadline tolerances.
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We have formally proven several properties of the approach, developed an efficient on-line
mechanism to detect overloads, and provided a complete load profile which can be usefully
exploited in various ways. A performance study shows the excellent performance of the al-
gorithm in both normal and overload conditions. Precedence constraints can be handled by
a priori converting precedence constraints to deadlines. A future extension we are working
on is to include resource sharing among tasks.

In this paper we assumed zero overheads for dynamic scheduling. This, of course, is not
true. Basically, there are two distinct and important aspects to scheduling overhead, one is
the cpu time it steals from application tasks, and two, is the latency it creates while making
the decision. We advocate the use of a scheduling chip that does the dynamic guarantees and
which runs in parallel with the application processor. This eliminates the first aspect of the
overhead, i.e., scheduling no longer steals cpu cycles from application tasks. A scheduling
chip would also minimize latency because it can be tailored to the scheduling function and
therefore be quite fast. However, the worst case latency must still be taken into account
and this can be accomplished by computing a cutoff line — a time equivalent to worst case
scheduling cost. Then the planning does not modify the application processor schedule prior
to the cutoff line. This two part approach to dealing with scheduling overhead works and
has been implemented in the Spring Kernel [Sta 91]. The technique is easily applied to the
algorithm in this paper.
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