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Abstract

The Synthesizer Generator and Pan are two popular environment generators. While having the
same basic goal of assisting in the development of interactive environments, they use rather different
mechanisms to reach this goal. This paper discusses the three basic descriptive components used
in environment generation: syntactic, semantic, and user interface descriptions. The contrasting
approaches of the Synthesizer Generator and Pan are presented, along with a discussion of the
consequences resulting from their respective mechanisms.

1 Introduction

Software development environments are tools to support the development of software. Ideally,
these environments provide support for the entire software lifecycle, coordinating the efforts of
many people, and supporting a particular software engineering process. Such an all-encompassing
environment is a complex piece of software itself. Thus, researchers have created environment
generators to assist in the development of software development environments.

Environment generators are one category of tool in the more general class of application gener-
ators, which includes such tools as compiler-compilers, expert system generators, and spreadsheet
generators. An environment generator is a tool that takes a description of an environment as input,
processes the description and combines it with a large collection of reusable code to produce an
environment as output. Depending on the environment generator, an environment description may
include a description of the syntax and semantics of the language(s) to be manipulated by the envi-
ronment, a description of the software process to be supported by the environment, and a description
of the user interface. The reusable code typically provides such functionality as file manipulation,
display manipulation, and command interpretation that is shared by all generated environments.

The power of environment generators stems from extensive reuse of a common environment
kernel and the use of declarative descriptions to specify an environment. By combining these two
techniques, an environment implementor can specify a new environment in a concise way, yet de-
velop a powerful environment. Of course, the flip side of the coin is that the generated environments
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may contain features that the environment implementor does not want. As with any application
generator, the environment generator makes certain decisions over which the environment imple-
mentor has no control. It is therefore important for environment generators to provide an appropriate
balance between reuse of common facilities and flexibility in specification [Kru92].

The earliest form of environment generators were editor generators, which produced syntax-
directed editors. These early environments supported programming-in-the-small, that is, a single
programmer working on a small program. As such, they were most commonly used in educational
settings and for rapidly prototyping editors to support development of new programming languages.
Today’s environment generators can produce more sophisticated environments, environments with
a much less obtrusive user interface, environments intended for programming-in-the-large, mul-
tilingual environments, environments that coordinate the efforts of multiple programmers, and
environments to manipulate structured documents, not just source code.

While environment generators have been used to create numerous environments, it would
be premature to claim that current environment generators can easily produce any environment
imaginable. In this article, we compare and contrast the capabilities of two environment generators
so that the software practitioner can determine if they would be useful for his/her work. We have
chosen to present the Synthesizer Generator [RT89] and Pan [BGV92] since they are well known
and present contrasting mechanisms to support environment generation, leading to an interesting
comparison. This paper is necessarily an incomplete survey due to its length and omits important
contributions made by numerous other projects including Gandalf [HGN91], Mentor [DGHKIL.84],
Centaur [BCD*88], PSG [BS92], IPSEN [ELN192], Pecan [Rei85], Mjolner [MHM™90], Y ggdrasil
[Cap85b], GIPE [HKKL86], and ASDL [KS89]. We also limit the discussion to environment
generation and do not attempt to survey the much more general area of software development
environments.

2 Syntactic Descriptions

A syntactic description defines the internal representation of documents as well as the external
presentation of documents. The internal representation is typically an abstract syntax tree, while the
external presentation is typically text. To be useful, an environment generator also needs mappings
between the internal representation and the external presentation. The mapping from the external
representation to the internal representation is used for parsing. The mapping from the internal
representation to the external representation is used for display purposes, and is called unparsing.
With the Synthesizer Generator, the environment implementor specifies an internal representation, an
external presentation, and mappings between the internal representation and the external presentation
explicitly. With Pan, the environment implementor defines an internal representation and a textual
presentation using grammars, while Pan derives the mappings between these representations. In this
section, we examine these two methods for providing syntactic descriptions.

2.1 Synthesizer Generator

With the Synthesizer Generator, an implementor describes a language with two distinct gram-
mars, an abstract grammar and a concrete grammar. The abstract grammar defines the abstract
syntax tree representation and the unparsing rules, while the concrete grammar defines a BNF-like
syntax and tree construction rules for parsing. Both the abstract and concrete grammars are defined
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as collections of phylum definitions. Each phylum definition groups together the productions that
produce that phylum. A phylum can be thought of as a type, with the productions being functions
returning that type. While there are often strong similarities between the abstract and concrete phyla,
they are kept distinct to provide maximum flexibility in defining the two grammars.

2.1.1 Abstract Grammar

An abstract syntax phylum definition has three parts: abstract syntax productions, unparsing
declarations, and attribute declarations. (Attribute declarations will be discussed in Section 3.1.)

Abstract Syntax An abstract syntax statement phylum might be defined as

statement : EmptyStat ()
| While (exp statement)
| Return (return-exp)

Each production has the form x0 : op (xI x2 ... xk) where op is an operator and each x is the name
of an abstract syntax phylum. The right hand side defines the subtrees that can be derived from the
lefthand phylum. The operator labels the root of the subtree, while the operator arguments identify
the phylum of each child in the subtree.

Unparsing The mapping from the internal representation to text is defined using views. Up to
two unparsing schemes can be provided for each production in each view. One unparsing scheme
is the primary unparsing scheme. The second scheme is the alternate unparsing scheme and is
typically used for elision. The user can select which view to display an entire document in and
which unparsing scheme of that view to use for each subtree in the document.

The Synthesizer Generator provides two types of views: dense views and sparse views. In a
dense view, the nodes of the abstract syntax tree that will be unparsed can be determined by knowing
only the shape of the tree and the operators at each node of the tree.

In a sparse view, the nodes that are unparsed depend on the values of attributes of those nodes,
resulting in a more dynamic mapping. For example, an error view can be defined as a sparse view
that unparses only those parts of the tree that have errors. In particular, the unparser first identifies all
nodes with a non-null error attribute. It then finds their least common ancestor and begins unparsing
at that point. The effect is that only the portion of the document that contains errors at any given
time is displayed. The contents of the error view changes as errors are introduced and removed from
a document even if the shape of the tree or the operators in the tree do not change.

Unparsing schemes do not refer to the children of a node by name. Instead, they contain a
marker where each child should appear. Thus, the children are implicitly unparsed from left to right.
For example, the unparsing scheme associated with a while statement could be defined as

statement : While [“while” @ “do” %t%n @ %b]

The @ symbols indicate that the next child should be unparsed. %t increases indentation. %n
inserts a newline. %b decreases indentation. It is also possible to unparse attributes by inserting the
attribute name into the unparsing scheme.
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Statement ::= (WHILE Exp DO Statement) {Statement.ast = While(Exp.ast, Statement.ast) }
| (RETURN Return-exp) {Statement.ast = Return (Return-exp.ast)}

Figure 1: Concrete Syntax in the Synthesizer Generator

Since there is no syntactic distinction between children in unparsing schemes, it is not possible
to vary the order in which children are unparsed, to unparse the same child more than once, or to
skip a child if any subsequent children should be unparsed. However, since attributes are referenced
by name, they can appear in any order or be repeated.

2.1.2 Concrete Grammar

The concrete grammar is a BNF-like grammar used to develop a parser. The parser is generated
by YACC, thereby requiring that the concrete grammar be LALR(1). The parser builds a parse tree
using this concrete grammar.

The implementor defines the translation from a parse tree to the corresponding abstract syntax
tree in the following manner. In each concrete syntax phylum, the implementor declares an attribute
whose phylum is an abstract syntax phylum.! The implementor then defines an attribute equation
to set the value of the attribute in each concrete syntax production of that phylum. The value is
usually the result of applying an abstract syntax operator to the abstract syntax trees created while
parsing the children of the current concrete syntax production. Therefore, parsing and creation of
the abstract syntax tree are both done in a bottom-up manner and occur in parallel.

Figure 1 shows the concrete syntax phylum definition to parse statements. ast is the name of
the attributes holding the abstract syntax tree corresponding to a particular parse tree. For example,
when a while statement is parsed, an abstract syntax tree is created whose root is labeled with the
abstract syntax operator While. The children of the root are the abstract syntax trees produced when
parsing the respective children of the while-statement.

2.1.3 Relationship between the Abstract Grammar and Concrete Grammar

The example shown above exhibits a 1-1 relationship between the abstract syntax phyla and
the concrete syntax phyla. Furthermore, there is also a 1-1 relationship between abstract syntax
productions and concrete syntax productions. However, neither of these relationships is necessary.
By separating the abstract syntax and concrete syntax, the grammars can be quite different, thereby
allowing each to be customized for its intended purpose. Furthermore, the input language, as defined
by the concrete grammar, and the display presentation, as defined by the unparsing declarations of
the abstract grammar, can be quite different. For example, the input language could be concise to
speed entry by experienced users, while leaving the displayed presentation verbose to maintain its
readability.

Also, notice that parsing is a two step process. The YACC-generated parser produces a parse
tree which is then converted to an abstract syntax tree using the tree-building attribute equations in

! Attributes are described more completely in Section 3.1 which discusses the Synthesizer Generator’s semantic
processing capabilities.
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Expression : Null ()
| Sum (Expression, Expression)
| Diff (Expression, Expression)
| Prod (Expression, Expression)
| Quot (Expression, Expression)
I

Constant (Integer)
Binding :  Bind (Identifier, Integer)
Environment : NullEnv ()

| EnvConcat (Binding Environment)

ExpCommand  { inherited Environmentenv ;
synthesized Binding b;
synthesized expression ast; };

ExpCommand (’. Identifier)
{ ExpCommand.b = lookup (Identifier, ExpCommand.env);

ExpCommand.ast = with (b): (Binding (*, intvalue): Constant (intvalue));}

Figure 2: Flexible Binding of Abstract and Concrete Syntax in the Synthesizer Generator

the concrete syntax. This allows the use of attribution during parsing so that the abstract syntax tree
can depend on context, not just the input string.

For example, Figure 2 demonstrates this flexibility in an example of a desktop calculator where
the user’s input can be the name of a constant, while the value inserted in the abstract syntax tree
is the constant’s value (adapted from [RT91, p. 76]). The concrete syntax for ExpCommand is of
the form .Identifier. When an ExpCommand is parsed, the attribute equations look for a binding of
the identifier in the current environment. If one is found, intvalue is bound to the integer value in
the binding. The abstract syntax tree produced uses the Constant operator defined in the Expression
abstract syntax phylum. The child of the Constant operator is the integer value found in the binding.
(We have omitted details of how the binding and environment attributes are created, or how a binding
is found in an environment.)

2.2 Pan

Pan’s internal representation is defined by an abstract syntax and its external presentation
is defined by a concrete syntax. Pan determines the relationship between the abstract syntax and
concrete syntax automatically through a technique called grammatical abstraction and then generates
the parsing and unparsing functions.

2.2.1 Grammatical Abstraction

Unlike the abstract syntax of the Synthesizer Generator, Pan’s abstract syntax definitions typically
contain a great deal of syntactic sugar, more closely resembling the concrete syntax notation of the
Synthesizer Generator. In fact, a Pan environment can be generated using only an abstract syntax.
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Concrete Syntax
<stmt> —  <if-stmt>";"
<if-stmt> —  <if-part> <else-part>
<if-part> —  if <expr>then <stmts>
<else-part> — €
| else <stmts>

Abstract Syntax
<stmt> — <expr> <stmts>
| <expr> <stmts> <stmts>

Figure 3: Grammatical Abstraction in Pan

In that case, the internal representation is the parse tree. In practice, an implementor would only
define concrete syntax productions for those parts of the grammar for which the parse tree would
be an awkward internal representation. For example, the concrete syntax might use a number of
productions to define precedence in expressions, which could be represented implicitly in an abstract
syntax tree.

Grammatical abstraction requires that the abstract syntax and the concrete syntax define lan-
guages that can easily be mapped to each other. Each nonterminal in the abstract syntax must
correspond to a nonterminal in the concrete syntax. Furthermore, the right hand side of each abstract
nonterminal production must correspond to a string of nonterminals and terminals that can be de-
rived from the corresponding concrete nonterminal. Some ways in which the abstract and concrete
syntaxes may differ are the following:

e Terminals in the concrete syntax that represent keywords and tokens can be omitted from the
abstract syntax if they can be inferred.

e Nonterminals in the concrete syntax can be omitted from the abstract syntax by substituting
the (abstract version of their) definitions for where they are used.

Consider the example shown in Figure 3 taken from [BGV92, p. 106]. In this example, the
abstract syntax nonterminal <stm¢> corresponds to the concrete syntax nonterminal <stm¢>. The
remaining nonterminals and tokens shown in the concrete syntax have been abstracted away in
the abstract syntax. The right hand side of the first abstract statement production corresponds to
the concrete string if <expr> then <stmts> €, which is derivable from the concrete nonterminal
<stmr>. Similarly, the right hand side of the second abstract nonterminal <expr> <stmts> <stmts>
corresponds to the concrete string if <expr> then <stmts> else <stmts>, which is also derivable
from the concrete nonterminal <stmz>.

Parsing is accomplished using a modification of the Jalili-Gallier incremental parsing algorithm
[JG82] which provides LR parsing. The Jalili-Gallier algorithm supports incremental parsing by
incrementally modifying the parse tree as the user modifies the text. Pan’s modifications support
incremental modification of the abstract syntax tree directly, rather than the parse tree.

Unparsing is accomplished by reversing the mapping from the abstract to the concrete grammars.
Asaconsequence, Pan automatically provides a unique unparsing for each document. In addition, the
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environment implementor and sophisticated users (called view style designers in Pan’s terminology)
can develop new views using CommonLisp, much as Emacs can be extended by sophisticated users.
A view style designer must have at least some knowledge of the abstract syntax and can use the
semantic information maintained by Pan, if desired. Since the full generality of CommonLisp is
available, new views can be quite sophisticated. They can traverse the abstract syntax tree and
examine any semantic information available to produce either textual or graphical views.

2.2.2 Relationship between the Abstract Syntax and Concrete Syntax

Pan provides a great deal of flexibility in binding abstract syntax to concrete syntax, while
allowing the common case where the syntaxes are the same to be easily shared. However, since
the abstract syntax tree construction algorithms are based upon grammatical abstraction rather
than explicitly provided by the implementor as in the Synthesizer Generator, Pan lacks the full
generality found in the Synthesizer Generator. On the other hand, since the mappings are produced
automatically, Pan guarantees that it can parse any document that it unparses. This guarantee is
missing from the Synthesizer Generator.

3 Semantic Descriptions

The semantic description of an environment typically defines the semantic rules of the language.
For example, a language’s type-checking rules and inheritance mechanism would be described in
the semantic section of an environment description. The semantic description may also describe
the environment’s semantics, such as coding styles, version control mechanisms, and software
processes.

3.1 Synthesizer Generator

The Synthesizer Generator’s semantic descriptions are written using attribute grammars. An
attribute grammar is a context-free grammar enhanced with attribute declarations and attribute
equations. An attribute declaration can be attached to either a phylum or a production in either the
abstract or concrete grammar. The attribute’s type is itself a phylum. An attribute might represent a
semantic structure not normally visible to the user, such as a symbol table. Alternatively, an attribute
might contain part of an abstract syntax tree, as is done to support the translation of parse trees to
abstract syntax trees, which was described in Section 2.1.2. Another use of attributes is to mark
nodes that have a particular meaning and define a sparse view to display those nodes, as described
for defining error views in Section 2.1.1. Attribute equations are attached to the productions in the
grammar and define how to compute the values of the attributes.

Attributes are divided into two categories: synthesized and inherited. The value of a synthesized
attribute is computed by attribute equations defined with the productions of the phylum declaring the
attribute. Its value is typically computed by a function applied to the attribute values of the children
of the node containing the synthesized attribute. The value of an inherited attribute is computed
by attribute equations defined with the productions that use the phylum declaring the attribute. Its
value is typically computed by applying a function to the attribute values of the parent of the node
containing the inherited attribute. Information is shared among different nodes in the tree by passing
the value around from parent to child and vice versa. This form of sharing is one of the frequently

7



Environment Generator Comparison

cited criticisms of attribute grammars, as a straightforward implementation of a large attribute, such
as a symbol table, will result in a lot of copying of the attribute value when some small portion
of the attribute changes, as when a new variable is declared. Various researchers have proposed
mechanisms to support more efficient handling of such attribute propagation by allowing non-local
propagation of attributes [HT86, Hed91, BC85, DRZS85, Hoo86, JF85].

Consider the parsing example in Figure 1. ast is an attribute representing the abstract syntax
tree being constructed. The value of the ast attribute is computed by applying the While operator
to the abstract syntax tree attributes associated with the children of the parse tree for the while
statement. Since the abstract syntax tree of the Statement depends upon the abstract syntax trees of
the Statement’s children, ast would be declared as a synthesized attribute.

A symbol table is an example of an attribute that would be synthesized for some phyla and
inherited by others. The symbol table would be synthesized during the processing of the declarations
section of the abstract syntax tree. It would then be inherited by the statements section of the
corresponding block in the abstract syntax, so that variable references could be semantically verified.
For example, the env attribute in Figure 2 represents a collection of bindings. The attribute is
synthesized as bindings are inserted, which occurs when they are declared (not shown in the figure).
The attribute is then inherited by the portion of the tree where expressions are entered, so that it can
be used to look up specific bindings.

The collection of attribute equations for a language description must obey the following proper-
ties:

e Each production must have exactly one equation defining the attribute value for each synthe-
sized attribute associated with the production or the production’s phylum.

e Each production must have exactly one equation defining the attribute value for each attribute
inherited by its children.

e There may be no circular dependencies in the attribute equations.

The first two properties ensure that all attributes will be assigned values. The last property ensures
that there is a unique value for each attribute in a tree. If this property does not hold, the attribute
evaluation algorithm may enter an infinite loop. It is this last property that makes implementation of
dynamic semantics infeasible with attribute grammars. Suppose we had a value attribute associated
with each node in expression subtrees. If a program had no loops or procedure calls, this would
suffice. However, the value of an expression node in a loop depends upon which iteration of the
loop is being considered. In other words, there is neither a unique value for the expression nor a
bounded number of values, in the general case. Similarly, the value of parameters in a procedure
depends upon which call is being considered.

By default, attributes are evaluated eagerly. That is, after each change made by the user, the
incremental evaluation algorithm is executed to update the values of all affected attributes. However,
the implementor may indicate that some attributes should be evaluated on demand, in which case
they are only evaluated when needed for some other purpose, such as to update the display. In
addition, the user can turn off all semantic checking if so desired.

3.2 Pan

Pan’s semantic descriptions are written using a logic constraint language, Colander [Bal89],
which combines logic programming and consistency maintenance. A logic constraint grammar is
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a context-free grammar with goals attached to the productions in the grammar. There may also be
goals that are independent of the productions. These goals initialize global data. The environment’s
semantics are defined with rules.

Pan performs semantic analysis using unification as in Prolog. First, the semantic analyzer
attempts to satisfy the goals that are independent of the productions. Then, it attempts to satisfy
the goals associated with the nodes in the tree, where the goal associated with a node is the same
as the goal associated with the production used to create the node. Evaluation stops when either
all the goals have been satisfied, or no more goals can be satisfied. In the first case, the document
satisfies the specified semantics. In the second it indicates that there is a semantic error in the
document. As with attribute grammars, the semantic analyzer will not terminate if it encounters
circular dependencies among the goals.

As goals are satisfied, tuples are added to a logic database. This information can be accessed as
needed to satisfy other goals. It does not need to be explicitly passed up and down the tree as in an
attribute grammar. Colander supports the concepts of collections and contexts in the database. A
collection groups together related tuples, such as the tuples corresponding to the declarations within
a scope. A context is a group of collections representing the portion of the database that is used to
satisfy a subtree’s goals, such as the set of collections representing all scopes visible in a subtree.

For example, consider Figure 4, derived from [BGV92, pp. 113-5]. This is a very simple
example involving the definition and use of identifiers. When a definition is created, ?Scope is
bound to the context in which the definition occurred. ?Name is bound to the string representing the
identifier. The next predicate tests that there is no declaration of the name in the given scope. If this
predicate fails, the corresponding error message is produced. Otherwise, a new entity is created.
Two tuples are added to the database concerning the entity. The first says it is an identifier, while
the second says it is declared with the identifier’s name in the current scope.

The use production binds ?Scope and ?Name in a similar manner. It binds ?Entity to the entity
declared with that name in the scope. If ?Entity cannot be bound, an error message is produced. It
also checks if the database contains a tuple indicating that ?Entity is an identifier, and reports an
error if it does not.

Pan keeps track of the dependencies between the abstract syntax tree and the tuples in the
database. When the tree is modified, Pan automatically removes the tuples from the database that
depend on the removed portion of the tree and attempts to satisfy a set of new goals based on the
new portion of the tree.

Colander’s declarative notation relies on logic programming constructs exclusively. Thus,
the entire semantics of an environment is written in the same notation, rather than relying on an
imperative language to define semantic functions, as the Synthesizer Generator does. It may therefore
be easier to create and maintain Pan semantic descriptions than the Synthesizer Generator’s. As
with attribute grammars, Colander cannot be used to define dynamic semantics. An open question
is whether the logic inferencing can be as fast as attribute evaluation since it is implemented with
backtracking search. Thus far, Pan has introduced contexts to improve performance, but has not
otherwise concentrated on efficiency issues.

4 User Interface

The environments produced by environment generators share one very important characteristic:
they provide highly interactive, language-specific support for software development. Rather than
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<def> — “DEF”id

- context ($$, ?Scope),
string-name ($id, ?Name),
not (<declared (?Name, ??), ?Scope>):

“Invalid redeclaration of ?Name in the scope.”,

new-entity (?Entity),
assert (<type-of (“id”), ?Entity>),
assert (<declared (?Name, ?Entity), ?Scope >).

<use> — “USE”id
- context ($$, ?Scope),
string-name ($id, ?Name),
<declared (?Name, ?Entity), ?Scope>):
“No identifier named ?Name is in the scope.”;
<type-of (“id”), ?Entity>:
“?Name is not declared as an identifier.”.

Figure 4: Pan Semantic Description Example

the traditional edit-compile-debug cycle, generated environments perform syntactic and semantic
analysis during the edit phase typically using a compiler only for code generation.

There are two basic approaches to syntactic analysis. In the first approach, the user is able to
freely enter any string of text, which is then parsed to determine its syntactic legality. This is the
form of input most commonly associated with text editing. A second means of ensuring syntactic
legality is by making it impossible to enter input that is syntactically incorrect. This is the approach
taken in programs that have a menu-based user interface such as syntax-directed editors.

Environments also can apply a variety of policies regarding how semantic errors are handled.
The user might be prevented from constructing a semantically ill-formed document, the user might
be allowed to create a semantic inconsistency but immediately be warned of the inconsistency,
semantic inconsistencies might be noticed immediately but not reported immediately, or semantic
analysis might be delayed until it is explicitly requested by the user.

Another issue distinguishing syntax-directed editors from text editors is how the user navigates
through the document. In a text editor, the user’s current focus of attention is identified by a small
cursor the size of a single character. The user can generally move this cursor backwards and forwards
by characters, words, or lines.

In syntax-directed editing the user’s focus of attention is identified by a larger two-dimensional
character that highlights an entire programming construct, which corresponds to a subtree in the ab-
stract syntax tree. Most syntax-directed editors support both structural and line-oriented navigation.
In structural navigation, the cursor can move up to a parent in the abstract syntax tree, down to a
child, or left or right to a sibling. In line-oriented navigation, the cursor can move down a line, for
example, but it remains a structural cursor. Rather than highlighting a character on the next line, the
cursor will highlight a structure on the next line.

10
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4.1 Synthesizer Generator

Synthesizer Generator environments support both syntax-directed editing and a limited form of
incremental parsing. The environment implementor defines the commands in the syntax-directed
interface using transformation declarations. A transformation declaration specifies how to transform
one subtree into another. They are typically used to define commands that replace placeholders in
the document with subtrees corresponding to some syntactic structure, such as an if-statement.
However, they can also be used to define commands that replace any arbitrary structural pattern
with another structure. For instance, a transformation declaration could specify how to transform
a procedure declaration into a function declaration, and vice versa, or how to rewrite a boolean
expression using DeMorgan’s Laws.

Through transformation declarations, the Synthesizer Generator has again taken a very flexible
approach to the development of the user interface, since it separates the concerns of the definition
of the internal representation from the definition of the syntax-directed interface. However, this ap-
proach requires the environment implementor to explicitly define all of the commands that construct
subtrees, when most of them could be trivially derived from the abstract syntax.

Incremental parsing is accomplished using the parsing declarations described in Section 2.1.2
and entry declarations. An entry declaration creates a binding between an abstract syntax phylum
and an attribute in a concrete syntax phylum. When the user attempts to edit a document textually,
the environment looks at the phylum at the root of the subtree identified by the user’s cursor. It then
locates the entry declaration defined for that phylum to determine which concrete syntax phylum’s
parsing rules to use. After the user has completed the textual modifications and submitted the
modified text for parsing, the environment parses it using the parsing rules defined for the concrete
syntax phylum in the entry declaration. The parsing rules must build an abstract syntax tree whose
root phylum is the abstract syntax phylum of the entry declaration and store the tree in the attribute
identified in the entry declaration. After parsing is complete, the old abstract syntax subtree is
replaced with the subtree stored in the attribute identified in the entry declaration. The example
below shows an entry declaration that binds the statement abstract syntax phylum to the ast attribute
of the Statement concrete syntax phylum.

statement ~ Statement.ast

There are several limitations to the incremental parsing provided by the Synthesizer Generator.
First, the environment implementor must explicitly provide entry declarations to allow parsing.
Second, the user must always edit complete syntactic constructs and produce syntactic constructs
of the same phylum as the original. Third, the user is not allowed to leave text editing until the
modified text is syntactically correct.

Whether the user uses syntax-directed editing or incremental parsing, the Synthesizer Generator
requires the document to be syntactically correct at all times. The environment implementor can
control when semantic checking is done and reported to the user to some extent by using demand
attributes whose values are only computed when they are needed elsewhere. The user can also turn
off semantic analysis if desired.

4.2 Pan

Syntax-directed editing has been criticized for numerous reasons. It unnaturally constrains the
experienced user by requiring documents to always be built top-down. Furthermore, syntax-directed
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editing typically requires the user to know implementation details of how the editor represents the
document. (See [VGB92, Van92, Min92] for more detailed criticism.)

The user interface for Pan environments differs markedly from those for the Synthesizer Gen-
erator. Pan generates a syntax-recognizing interface rather than a syntax-directed interface. Pan
supports a very general algorithm for incremental parsing that allows arbitrary text editing, and also
allows the user to leave arbitrary syntactic (and semantic) errors in the document.

Parsing and semantic analysis are done incrementally, but only at the user’s request. This has
the advantage that the user is not interrupted with error messages when editing. However, to get the
effect of eager analysis, the user must request analysis frequently.

An important aspect of Pan’s user interface is its treatment of syntactically and semantically
incorrect documents. Pan’s philosophy is to treat the incorrect portions of a document as variances,
rather than errors. In this spirit, variances are noted by placing a small graphical character (called
a glyph) in the upper right corner of the screen to indicate the presence of a variance. The glyph
may appear and disappear as the user modifies the document. The user only sees the messages
corresponding to the glyph when he/she is ready. The user is never forced to change a document
to remove the variances. This contrasts strikingly with Synthesizer Generator environments, which
require that documents at least be syntactically correct at all times. Nevertheless, Pan attempts to
provide as much incremental analysis as possible despite variances.

In addition, the Pan designers have paid considerable attention to the appropriate use of color
and font styles such that they are truly informative rather than simply cluttering the screen. For
example, the text in the document that corresponds to a syntactic variance is displayed in the same
color as the glyph that indicates that variances exist. Thus the user can quickly identify, and possibly
fix, syntactic variances without seeing an error message.

In addition to the text-editing interface, Pan also provides a structural interface based on the
notion of operand classes, which can be dynamically created. Membership of a node in an operand
class is determined by evaluating a predicate on the node. While operand classes can be used to
create a syntax-directed interface to a Pan environment, they are much more general. A typical Pan
environment would have operand classes corresponding to “language variance” and “query result”.
A user can select an operand class, like “language variance”, and then use structural navigation to
walk through his/her document, stopping only at nodes in the selected operand class, in this case
those nodes that represent variances.

Operand classes provide a mechanism similar to the Synthesizer Generator’s sparse views with
two exceptions. First, Pan supports dynamic creation of operand classes, essentially allowing the
user to define new ways to traverse his/her document, while only the environment implementor
can do so in the Synthesizer Generator. Second, Pan’s operand classes are orthogonal to the view
mechanism. Thus, the same text can be displayed, but the interpretation of the structural navigation
commands varies depending on the operand class being used. The Synthesizer Generator’s sparse
views combine the modified view and navigation into a single mechanism.

The user interface of a Pan environment is fully customizable, in the same spirit as Emacs. The
environment implementor or user can define key bindings, fonts, menu contents, new commands,
textual or graphical views, etc. using Common Lisp. Since Pan is written in Common Lisp, the
customizations can access any functions defined by Pan, at least in principle. Thus, Pan supports
full generality, but does not provide a simple declarative language to describe common textual
representations as the Synthesizer Generator does.

12
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5 Conclusions

Each environment generator surveyed here has made contributions to the field. However, neither
provides all the features we would like to have. If we could choose components from each system
and freely combine them, we might end up with the following hybrid. Pan’s user interface is
superior, not just in its syntax-recognizing approach, but also in more general user friendliness. Its
treatment of ill-formed documents as variances rather than errors gives the user more control of
the environment. It also uses fonts, colors, and other visual clues effectively to assist the user in
understanding the state of the document.

A declarative notation for describing semantics would facilitate the development of environ-
ments, although, as previously noted, attribute grammars and logic constraint grammars are incapable
of providing dynamic semantics. Kaiser’s work on action equations [Kai85] addresses this problem
by combining the attribute grammar notation with an event architecture. Action equations can be
attached to productions and evaluated in the same manner as attribute equations. However, action
equations can also be defined to be triggered only when certain events happen, such as when an
instruction is executed. This allows action equations to capture the historical information necessary
to support dynamic semantics.

While the syntactic description mechanisms provided by Pan are not as general as those provided
by the Synthesizer Generator, the grammatical abstraction mechanism seems to support the types
of differentiation needed between the abstract and concrete grammars, especially in light of the fact
that the internal representation is hidden from the user.

We would also choose other features from environment generators that were not presented here.
In particular, we would borrow ideas from Gandalf’s support for programming-in-the-large [KSH89]
and grammar evolution [GKS86] and Mercury’s [KKMS87] support for programming-in-the-large.
These features allow more realistic environments to be developed and maintained over time with
support for large documents, many programmers working concurrently, cooperating languages, and
an internal representation that can evolve as the requirements of the environment change over time.

The systems presented here use radically different methods to define semantic processing.
However, semantic descriptions are still rather difficult to write in either notation. Part of the
problem is that the notations are very low-level and do not attempt to assist the definition of semantics
by providing higher-level mechanisms to express common features of programming languages or
environments, such as symbol table generation, type checking, definition of inheritance rules, version
control, etc. Some work has been done to assist in the binding of names to definitions, such as
[VL88, Cap85a,Rei83], and more is needed to facilitate other common types of semantic processing.

Also, while the environments produced by environment generators can support all phases of
the software lifecycle in principle, the vast majority of environments have been developed for the
coding phase. There are two reasons for this. First, until recently, the environment technology could
only support a single language and a single programmer. To support all phases of the lifecycle, we
need a design notation, a programming language, tests and their results, etc., all managed by the
environment in a cooperative fashion. Second, until recently, software engineering processes were
typically managed in ad hoc fashions. With the development of support for programming-in-the-
large and the research into processes, the time is ripe to experiment with generated environments
for more of the software lifecycle, and some work is beginning in that regard [SLC92].

Finally, both systems produce environments that are basically closed from interaction with
externally-developed tools. While they can be integrated with other tools through procedure calls,
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the interfaces are not clean or well thought-out. Clearly, if environment generation technology is to
succeed, this limitation must be overcome. The Synthesizer Generator is attacking this problem by
adding SoftBench style messages [Ger90] to support integration.
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