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Abstract:

A series of Japanese full-text retrieval experiments
were conducted using an inference network document
retrieval model. The retrieval performance of two
major indexing methods, character-based and word-
based, were evaluated. Using structured queries, the
character-based indexing performed retrieval as
well as, or slightly better, than the word-based
system. This result has practical significance since
the character-based indexing speed is considerably
faster than the traditional word-based indexing.
All the queries in this experiment were
automatically formulated from natural language
input.

1. Introduction

There are two major difficulties in applying
text retrieval techniques already developed for
English (or other European languages) to Japanese.
The difficulties are: (1) the intensive use of the
Kanji (=Chinese) character set which is an
ideographic system, and has 2000-3000 characters in
practical use [INT+86]; and (2) as an agglutinating
language, Japanese sentences have no spaces between
words.

In previous Japanese full-text IR studies,
there are few experimental results using
probabilistic or ranking approaches. Most studies
use Boolean exact matching approaches, although
the limitation of the exact-matching approach is
recognized. For example, Negishi [Neg89] discusses
the low precision of such retrieval approaches, and
his expectation of improvements from the adjacency
operator. Probabilistic retrieval has not been
thought of as a practical method in Japan [Sas88].
Even in recent review papers about Japanese full text
IR, there is no discussion about probabilistic ranking
([Neg92), [OKT92]). On the other hand, there are
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many studies focusing on the Kanji character’s
semantic discrimination ability ((GHO+84}, [Sas89],
[MUH+91], [HGH+89)), but no experimental results of
the application of character level indexing for IR.

A number of studies have shown that good
retrieval performance can be achieved by
probabilistic methods such as the inference network
model [Tur91], [TC91], but we know little about how
Japanese language features affect performance in a
total system. The advantage of the inference net
model for Japanese retrieval is that queries can be
expressed as structured combinations of characters.

In this paper, we report evaluations of
inference network-based retrieval using the major
Japanese text indexing techniques - character-based
(CB) which treats every character as an index term,
and word-based (WB) indexing which uses each
word (or word stem) as an index term.

This paper has three research contributions.
First, we get performance data for probabilistic
retrieval for Japanese. Second, the data shows that
character-based indexing performs retrieval as well
as a word-based system. Third, this retrieval
performance can be achieved by automatic structured
query formulation from the natural language input.
The second point has a practical significance since
the character-based indexing speed is considerably
faster than word-based indexing.

2. The INQUERY/JINQUERY System

2.1 Japanese INQUERY System, JINQUERY

For our experiments, we implemented a
Japanese IR system, JINQUERY, based on an inference
network retrieval system, INQUERY [CCH92]. Since
the inference network retrieval is an extension of the
probabilistic retrieval model, INQUERY is language
independent. Using an INQUERY retrieval engine,
JINQUERY provides the Japanese language oriented
modules.

JINQUERY consists of two modules. One isan
indexing module to create a database from source
texts. Since the Japanese words in a text are not
separated by spaces, a segmentation program is used



to identify and extract index terms from the
documents. In this experiment, we used the JUMAN
segmentation program [MKM+91] for word-based
indexing.

The other is a query front-end module to
formulate a structured query using Japanese
grammatical aspects. When a query is input as a
natural language, JUMAN is again used for the query
segmentation.

JINQUERY was implemented on a SUN-IPC
Unix workstation using the C language.

2.2 Inference Network Retrieval Model

The Bayesian probabilistic inference
network [Pea89] is specialized for IR as the
document retrieval inference network model. The
details of this model are discussed in [Tur91] and
[TC91]. A simple document retrieval inference
network is shown in Figure 1. The network is
represented as a directed acyclic graph in which
each node corresponds to the propositional variable
(true or false) and the arc between two nodes
represents the dependency between them. The
dependency is defined as a conditional probability
for the relevance, which is interpreted as the belief
in the course of inference. :

Rretrieval is viewed as an estimation of a
conditional probability to satisfy an information
need (I) given the document, i.e., P(I| Document). An
information need is represented by a query node (q) at
the root of the network. Between the query (=root)
and documents (=leaves), there are two subnetworks -
adocument network and a query network.

The document network consists of document
nodes (d;’s) and content representation nodes (ri’s).
Every document node corresponds to the existence of
each document. The content representation nodes
represent concepts for the documents. When a concept
is observed in a document, an arc links them.

A query network is built in the retrieval
session. The session may contain the process of
(automatic or manual) query formulation, and/or
relevance feedback. A query (q) is analyzed into

Figure 1. A simple inference network for
document retrieval.

several query concepts (c;), and query concepts are
attached to the document network in the query
processing. Between query concepts and the query
node, it is possible to construct a set of intermediate
node levels to express a complex query structure
constructed by various operators. This structure has a
corresponding canonical link matrix representation.

By the attachment of the document network
and a query network, the system can compute the
probability of the desired documents, then it can
rank them according to these estimations.

3. Indexing Techniques

3.1 General Issues

Indexing is the use of language to describe
the documents and user’s information needs. . Index
terms are derived from the document text or the
user’s input. Indexing is done by either human
experts or an qutomatic indexing program. Manual
document indexing is labor-intensive and time-
consuming work, and has the drawbacks of lack of
uniformity and indexer-user mismatch. In contrast,
automatic indexing has the advantage of bias-free
uniformity and efficiency. Furthermore, studies show
that automatic indexing has approximately the
same retrieval performance as manual indexing
[Sal86] - at least in English. In Japanese also, there
are many studies about the effectiveness of various
automatic indexing techniques (e.g., [TAK+81],
[Kim87], [Kam89), [Tom89], [ISN92)).

Two factors affect retrieval performance.
One is the exhaustivity, which refers to how much
the index covers the topics of the document; the
other is the.specificity, which refers to how precise
the index :is. Since these factors have opposite
effects on recall/precision retrieval performance, we
need to control from both sides [Van79].

A word, as a whole, has more specific
meaning than its Kanji constituents. Kaniji
constituents in a word are even not necessary to be
exhaustive. Under these conditions, CB indexing
needs post-coordinating (i.e., run-time) handling for
better retrieval performance.

Automatic indexing usually proceeds by the
following steps: (i) get words in each document, (ii)
exclude stopwords from them, (iii) do stemming to
produce index terms, (iv) compute the pre-
coodination information (e.g., term frequency etc.)
and pointers from the term to documents to build an
inverted file. Our JINQUERY system works in a
similar way.

See the detailed discussion about indexing in
e.g., [SM83], [Fra92], and [CCH92] for indexing in an
inference network system .



3.2 Indexing of Japanese Texts

3.2.1 Basic Indexing Techniques for Japanese

There are four basic indexing approaches: (1)
subcharacter-based, (2) character-based (CB), (3) n-
gram and (4) word-based (WB). ,

The majority of the Kanji characters are not
minimum semantic units in a word. These characters
are composed by parts which are called bushu.
Subcharacter-based indexing extracts them as index
terms. The problem here is that some bushu are like
meaningless strokes, and some others are very
uncommon. The semantics, therefore, are often too
vague. For this reason, we did not evaluate the
subcharacter-based method in this experiment.

The character-based method indexes each
character in the document. N-gram indexing uses
(overlapping) n-characters in words for indexing.
That is, the CB method is equivalent to 1-gram
indexing.

The simple n-gram method will not be
suitable for Japanese IR, since it ignores the
important language structure of written Japanese.
Heterogeneous character classes are used, where
each class has a clear linguistic functional role:
Kaniji terms are primarily used to express abstract or
complex important concepts ideographically;
Katakana words are mostly phonetic loan words
especially from English; Hiragana characters are
used for inflection or other functional words such as
particles, auxiliary verbs, etc. Furthermore, one can
often see English alphabetic words in a Japanese
text, espedially as proper nouns such as “IBM” or “C"
{San86].

Because of the above facts, we used the
following method in our character-based indexing
experiment: All Hiragana’s are dropped from the
text; each Kaniji is individually indexed; sequences
of Katakana characters or English characters are
extracted as index terms. As we see in the next
section, this algorithm is very fast since the program
needs just to distinguish the class of the characters.

(In the following discussion, we call this approach
MCB'I.)
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Figure 2. An example of character-based (a) and
word-based (b) term boundaries.

The word-based technique extracts words (or
some normalized forms like word stems), as the index
terms. Although this is a standard approach for
Japanese automatic indexing (e.g., [KMKS80]), the
problem of Japanese is how to identify “words”
(morphemes) in a character sequence which is not
delimited by blanks. This identification process is
called segmentation. The segmentation problem is
discussed in Section 3.2.3.

Examples of Character-based and word-
based indexing are shown in Figure 2 (a) and (b).
Figure 3 and 4 show how these indexing methods fit
in the inference network framework.

network.

(coguiticn) (scicnoce) (lmowlodge)(engineering)(cl
(no link)

intelligenoce)

Q

Figure 4. An example of Japanese word-based inference
network.



In Figure 3, both document words and query words are
decomposed into a set of Kaniji characters. In Figure
4, each Kanji compound noun is divided into its
components.

In CB indexing, the connections between a
query word and the query characters are formulated
by structured query operators. In WB indexing, the
connections between a query compound word and the
compound elements are structured. The operators
used to define the structure are part of the inference
net model.

322 Problems of Word Compounds

As in German, Kanji words are frequently
composed into a long compound word (Figure 5).
Each compound element is often referred as a short
unit keyword, and the compound as a long unit
keyword in Japanese IR literature. Each method has
advantages and disadvantages as index terms.
Someya [Som85] summarized that long keywords are
suitable for Boolean retrieval, and short unit
keywords are suitable for contextual retrieval using
adjacent  operators. Short unit keywords
demonstrated better retrieval performance [KHKS8].
We also took the short unit keyword approach for
WB indexing.

. N, N, N VA M NN L VNV _ VY
9?@11-%’;& HEREFHHBESSETER
(labor) Dublla (bodies) (labor) (me (head)

etin
(ministry) (corporation)(etc.) (committee) (cgt.\)mmiztec)
<Ministry of Labor, Public Corporation and National Enterprise
Labor Relations Commission, Chairperson>
FigureS. An example of a Japanese long unit keyword.

323 Segmentation Problems

We have seen how the CB indexing system
separates each Kanji character and Katakana word
in the text. On the other hand, there are three
levels of algorithms for the WB indexing : 1)
character class segmentation, 2) closed lexicon
segmentation, and 3) open lexicon segmentation.

The character class segmentation drops all
Hiragana out from the text, then the rest are
extracted as index terms. This method works as
efficiently as CB, but suffers from low accuracy in
finding the word boundaries.

The second segmentation approach is closed
lexicon segmentation. It improves the word
recognition by using inflectional or derivational
lexicons, and the computational cost doesn’t increase
much since this lexicon would be comparatively
small. This method doesn’t, however, solve the
problem of Kanji compounds discussed in the previous
section.

The last approach, open lexicon
segmentation , is aimed at solving the Kanji
compound problem, discussed in the previous section.

This is very important for Japanese WB indexing,
since important concepts in the text are very
frequently represented in Kanji compounds. Like the
Japanese Kana-Kanji-transformation algorithms,
this method usually uses a large dictionary look-up
for the heuristic algorithm such as the longest string
matching, and checking word class connectivities
[Tan89]. The problems with these methods are their
expensive computational cost, and the difficulty of
building and maintaining a sufficiently large term
dictionary, especially for proper nouns.

As we will see later, we evaluate CB
indexing, and WB indexing by an open lexicon
segmentation program, JUMAN.

In a few cases of CB retrieval, segmentation
mismatch between some query terms and document
terms were observed. For example, a Katakana query
word WakuSutéshon (=workstation) was segmented
into Wiku and Sutéshon by JUMAN for query
segmentation, but the database was indexed by
character classes in CB indexing. So, the word is
stored as a single string WakuSutéshon. To correct
this problem, we will need post-processing after the
segmentation.

3.2.4 Synonymy and Multi-Spellings

In addition to common synonyms, Japanese
uses synonyms of loan words from foreign countries.
For example, to express running in English, there are
at least three variations: (i) Hashiru-koto, this is an
example of original Japanese usage, (ii) SouKou, this
Kanji term is a word from Chinese, and (iii)
ran‘ningu, this is a phonetic Katakana translation
from “running”. To avoid this problem, it is necessary
to build a thesaurus, but it will be large.
Furthermore,.each of these words has often different
meaning or role in a context. So, we did not address
this problem in this experiment.

1. Abbreviations

*ﬁ}_ﬁ.ﬂﬁﬁ= Eﬁ_ﬁ (Kobe-Steel Co.)
E%§+%=§ﬁ—% (computer)

2, Pardal Matching

FRAT~ AT~ MRIT~ TR =17 <

) gency) (wawvel abroad) ( amp”)

BRI~ R~ (R IR )

(insurance) (life- cost)

3. Synonyms/Related Words

BR B~ B {2 ~ B B

(movie) (icial (Touei :
( image) {a movie company name})

B &)~ H~MimE

(automoblle) (passengercar) (4-wheelvehicle)
Figure 6. Examples of thesaurus effects.



The CB indexing has an advantage for
thésaurus effects. Since the Kaniji is an ideogram, if
two words share a Kanji character, some shared
conceptual elements-are observed between them.
Word stemming works as a recall enhancement
device, but this CB technique has a wider range of
effects. Some examples are shown in Figure 6.

We see multi-spelling problems sometimes in
English, e.g., “color” and “colour”, but in Japanese,
they occur much more frequently. To identify these
equivalences, we need various normalization
processes [HKF89].- The following are some cases
[INT+86) :

(A) Okuri-gana (= inflectional Hu'agana) - This is
often dropped from a verbal expression such as verb
plus noun (e.g., Yo(mi)-Mono = reading material), or
verb plus verb (e.g., Yo(mi)-kiru = finish reading).
Nakamura [Nak87]- proposed a normalization
algorithm for this problem. This problem doesn’t
occur in CB indexing since it drops all Hiragana.

(B) Katakana words - Most Katakana words are
phonetic translations from English words, and there
is no standard. For example, a word interface has
five different Katakana spellings, intdfésu ,
intafeisu, intafésu, intafeisu and intafeusu [TOT83).

(C) Multi Character Classes - Since Japanese uses
phonetic Hiragana and Katakana, Kanji words can
be also spelled in them.

(D) Multiple glyphs - Sometimes a single Kanji has
different character forms (glyphs), for example, the
old form and modern form of a character. Character
unification is necessary to avoid this problem.

325 Stemming Problems and Morphological
Changes

In English indexing, derivational or
inflectional ending of words are stemmed out to
identify equivalence class. For the derivational
changes, a segmentation program like JUMAN
usually recognizes the prefixes or postfixes in a word.

In JINQUERY, inflected forms of verbs (and
adjectives) are converted into the root form as their
index term using the function of JUMAN. Nouns
don’t have any inflectional changes (e.g., number,
gender, etc.) at all. This is good news for IR, since the
Japanese heavily use verbal Kanji/Katakana nouns
with Sahen-verbs (i.e. suru = “do” in English, e.g.,
puroguramu (n.)+suru=to “program”), and they would
be integrated with common nouns. Similar problems
occur for some adjectives(Na-adjective, eg.,
kon'nan ("dxfflculty”(n )+na ="difficult”(adj.) ), but
this cannot be solved in the segmentation stage, since
the inflectional part of a word cannot be separated
from the root [Yam92]. To solve this problem, some
post processing after segmentation is necessary. We

are working on this improvement. Note that this
difficulty is raised only in a WB system, not in a CB
system. ‘

There is another problem that many
Iapanese verbs have similar, but different forms of
transitive and intransitive verbs. For example,
Ugoku is an intransitive verb (“I move to a new
house.”), but Ugokasu is transitive (“I move the book
on the table.”). Treating them as a single
representation in WB indexing, string normalization
is necessary as seen for various multi-spelling
problems. But again, this is not a problem in CB
indexing since it drops all Hiragana inflectional
endings. In this sense, the CB index is more robust
than WB.

3.2.6 Stopwords and Word Categories

In English IR systems, terms in a document
are usually classified into index terms and
stopwords. This selection is usually done by matching
between a document term and a stopword list. A
stopword list contains very frequent (mostly
functional) words such as articles, pronouns, etc. On
the other hand, most Japanese IR systems extract
only nouns as retrieval keywords.

JINQUERY takes a different approach. The
JUMAN program not only segments the words, it also
outputs their lexical categories and subcategories.
Given this, we throw out words in functional
categories such as particles, Sa-hen verb (suru), etc.
Other categories such as nouns, verbs (exclude Sa-hen
verbs), adjectives, prefixes/postfixes, undefined
terms (which JUMAN couldn’t recognize) etc. are
used as the index terms.

4. Japanese Query Formulation

In English, using statistical phrases in a
structured query with retrieval operators is an
effective method for improving retrieval
performance ([Fag87], [CTL91]). We did experiments
with the same technique in Japanese.

As a pretest before retrieval experiments, we
compared automatically formulated queries and
manually crafted queries over our test queries. The
result was that more than 90% of queries were
identical in any formulation method. We decided to
evaluate the automatically formulated queries.

In our experiments, we examined four
models: 1) NLQ, 2) SHORT, 3) LONG, and 4)
JOINED. Each model is described in the following
sections, and Figure 7 is a sample input query which
is commonly used for them.



Input Query:

~<'l'h¢!,lapanseauton-nketsdeddedtllelx"e:q:ortxegulemon> )

@‘%gf)) E'%%'gfm;eﬁ‘g export %%‘g’ 2&%-;:;7‘;:;
@:(3;:;[ (?;.{:};w;; : (;ﬂgg;f) ;{;:L

(decide)

+origin) +vehicle) reonttol)
word-level aracter-level '
semantics semantics

Figure 7. A sample input query and the semantic constituents.

4.1 Natural Language Query

The Natural Language Query (NLQ) does not
assume any structure within the query. A natural
language input query is transformed into a form :

Quig= #SUM(ty, by, - tp);
Here, #sum is an operator to evaluate the node as an
average of child node beliefs in the inference net, and
t; is an index term of the query [Tur91]. Index terms
are selected from input query only when it is not a
stopword category word (e.g., particle, auxiliary
verb, sahen-verb, etc.).

In CB indexing, terms constructed only by
Hiragana are not selected as well.  This term
selection rule is applied in any following formu-
lation, too. '

Example:

[CB] #SUM( <sun><origin><self><move><vehicle>
<maker><bring><out><norm><control> <decide>);

[WB] #SUM(<Japan><automobile><maker> <export>
<regulation> <decide>);

4.2 SHORT Query
The SHORT query is an attempt to capture a
“short unit keyword” structure which roughly
corresponds to the word in English. This is only the
case for CB indexing, since in the WB system, the
short unit keywords are given as primitives of
indexing language. SHORT query has a form:
Qsuort = #SUM(T,,... Ty);
Ti1= #Op(tﬂ,tiz,m 'tim) ’ and
ti1,- ,tim forms a short unit keyword.
Here, #op is an operator to tie the operands, and we
examined the phrase operator (#phrase, window
size = 1 and 3) operator and proximity operators (#1
and #3) ([Fag87], [CTL91], [CCH92]). (Following
sections as well.)
Example:
[CB] #SUM( #phrase(<sun> <origin>) #phrase(
<self><move><vehicle>) <maker> #phrase(<bring>
<out>) #phrase(<norm> <control>) <decide>);

4.3 LONG Query

The LONG query is an attempt to capture a
structure of long unit keyword, i.e.,, compound nouns.
Intuitively, this structure similarly corresponds to

the noun phrase in English. A compound noun in a
LONG query is defined by a regular expression.
JINQUERY produces the LONG query as a structured
query such that :
quG= #SUMGI pooe ,Tn);
Tj:= #op(tiy tiniwtim) » if ti1,mwlim formsa
compound noun(NC),
=4 , otherwise.

NC := [<prefix> <noun>* <postfix> ]* .
Example: .
[CB] #SUM( #phrase(<sun> <origin>)
#phrase(<self> <move> <vehicle> <maker>)
#phrase(<bring> <out> <norm> <control>)
<decide>);
[WB] #SUM(<Japan> #phrase(<automobile><maker>)
#phrase(<export> <regulation>)<decide>);

4.4 JOINED Query
The JOINED query is an attempt to capture a
structure of a maximal sequence of noun phrases
which are connected by a particle “no” (= “of” in
English) or its variants. This structure is a model
based on a fact : such particles are often dropped from
the sentence, and produces a new long noun compound.
JOINED structure is defined by a regular expression.
The form of JOINED query is:
Gomvep = #SUM(Ty,.... Tn);
T; := #op(ti1.tigi-mrtim) + if ti1,eeertipy, formsa
JOINED structure(JS).
=t , otherwise.

J := NC2(NV NC2)’

NC2 := <adjective/ adnoun>'[<prefix>' <noun>"*
<postfix>.]+

NV :=“no” | <noun-connect-particle> |
<case particle> “no” | <noun-connect-
particle> “no”.

Example:

[CB] #SUM( #phrase(<sun> <origin> <self> <move>
<wvehicle> <maker>) #phrase(<bring> <out>
<norm> <control>) <decide>);

[WB] #SUM(#phrase(<Japan><automabile> <maker>)
#phrase(<export> <regulation>) <decide>);

There is an imperfect case of the JOINED
regular expression in parallel form, “A of B and C”
(in English order), e.g., “king of the world and the
queen” and “king of the earth and ocean”. The
current system produces #SUM(#phrase(king world)
queen) and #SUM(#phrase(king earth) ocean),
respectively. We need a natural language
disambiguation technique to solve this problem.



45 Some Grammar Related Problems .

Since this is an important area of natural
language processing, we just mention the S-O-V word
order problem. Although most of the words in a
Japanese sentence are ordered quite freely, the verb is
almost always placed at the end of the sentence. So,
a typical word order format of the Japanese sentence
is S-O-V (as is the majority of world languages
[Tsu91}). Thus, the distance between subject and verb
will be larger, but subject and object will be closer
than in English. The effect of phrase or proximity
operator for Japanese will be different from English.

5. The Experiments

5.1 Collections

The characteristics of the test collection
often affect IR performance seriously. To compare the
retrieval performance with other data, using a
standard collection is very important for the
experiment, but unfortunately, a standard test
collection in Japanese, such as CACM collection in
English, is not established yet.

So, we used a test collection which has 1101
newspaper articles on Japanese business and
economics. It contains articles from three major
Japanese newspapers, The Asahi, The Mainichi and
Nihon-Keizai(Nikkei)-Shinbun. A larger collection
is desirable for more reliable experiments. Table1
is a statistical summary of this collection.

52 Test Queries

In this experiment, we used 30 test queries.
Most queries are simple noun phrases like “joint
ventures in the steel industry”. Table 2 shows the
summary. Weare planning to try longer and more
complex queries to see the difference.

5.3 Evaluation Methods

We evaluated the retrieval performance in
terms of the precision value of the top-10 documents
in the rank. We are currently working on creating a
complete predsion-recall table using full judgments
of documents in the database.

5.4 Indexing Effidency

In this section, we compare the indexing
efficiency of CB and WB indexing using time and
space measures.

(1) Time Efficiency

CB indexing was around 7 times faster than
WB to parse and segment the source text. Sorting
transactions and building an inverted file take
around the same time in both cases. By simple
extrapolation, WB indexing would take more than 2
weeks(!) for 1 GB data.

Table 1. Summary of Japanese test collection.

Collection Size 1,101 docs. (1,270 KB, 635 K Chars)
A Document Si
verage m“(bog!? 500.0 chars (1.0 KB)
Char-Based Word-Based
- 24 (“IBM” and
Max Term Freq. 47 (Sha = "car’) ShouKen = “stock”);
Average Max_Term_Freq. | 947 676 ’
Kanji: 533% | Indexed:
Katakana®: 5.0% Noun: 472%
Term Categorics

* 1 Verb: 5.9%
Alphabets®; L% Undefined: 11.1%

Hira; : 407
s(‘gl‘:t-lndezzd) Not-Indexed: 31.6%
Indexed: 133 .
Average Term Length Kanji: 1.00°* Mﬁ:’:'dm 2'3206
(chars) | Katakana: 462

Alphabets: 2.67 Not-Indexed: 1.21

Kanji: 283% Noun: 384%

(1746 Kanji) | Verb: 64%

Katakana: 63.3% Undefined: 51.0%

Alphabets: 8.4% Others: 3.8%
(* Words are termms.  ** Characters are tenma.)

(root form, Indexed

Unique-Term Calegoriq

Table 2. Summary of test queries.

30 queries

9.03 chars/query (max=17, min=4)
6.37 Kanji/query

1.17 Katakana/query

3.40 short unit keywords/query

2.87 phrases/query

SHORT 2.03 chars/phrase

2.20 phrases/query

LONG |l ' 315 chars/phrase

1.07 phrases/query

JOINED || 7,7 chars/phrase

Table 3. Time efficiency of indexing methods.

g];:ergcter- Word-Based
Segmentation ' 08" 44"
+ Parsing (rate ?12,8 2(’2.'?)4
Sorting + " pow ' 46"
Build Inv.File ¥Fs3 346
Total 8' 01" 31'30"

(2) Space Efficiency

: The total file size of CB and WB indexed
file was 1.2 MB and 1.6 MB, respectively. A
significant difference between them is that hash
dictionary (to convert a term to its identification
number) size by CB indexing was around half of
WB's, since unique Kanji characters can quickly
saturate. (Figure 8)
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(1) : mainly contributed by Kanji characters
(2) : mainly contributed by Katakana words

text

Figure 8. Increase of unique index terms.

The elimination of stopwords was around
40% in CB, and 30% for WB. In English, 50-70% is
possible [Van79]. If we use a stopword list addition-
ally, the efficiency may increase to the English
level. :

The average rate of (root form length)/
(surface form length) was 99.2% for verbs, that is
almost no impact on the space increasing or
decreasing by our “stemming”.

5.5 Retrieval Effectiveness

Table 5 shows the retrieval performance of
CB indexing for every query model with various
operators. Query models are ordered from simple to

complex. Operators are ordered from less strict to -

more. Proximity operators work better for SHORT
queries than for natural language queries (NLQ), but
not for others probably because of its strictness.

In contrast, the phrase operator with the
LONG model works significantly better than NLQ.
Since SHORT and LONG correspond to the word and
compound noun phrase, this result seems to be
meaningful. JOINED queries don’t work well for
phrase operators. We might need a more
complicated query structure for this model.

Table 4. Space efficiency of two indexing methods.

Table 5. Character-based retrieval performance.
(T ‘cvpflo pmgisiop), (): % changes from NLQ

T3] %5 SHORT LONG JOINED
#phrase (d=3) | 57.9(4.3) || 65.5(+8.3) || 60.8(+0.5)
#phrase (d=1) | 56.3(69) || 66.6(+10.1)|| 57.8(4.5)
Proximity (d=3) | 62.9(+4.0) || 46.8(-22.6) “ 16.0(-73.6)
Proximity(d=1) | 62.8(+3.8) || 48.3(-20.2) " 14.5(-76.0)

d: window size

Table 6 shows the result of the retrieval
performance of WB indexing. In this case, NLQ is
almost as high as CB’s best result. The phrase
operator of JOINED form worked slightly better
than NLQ, but not significantly. The results of the
proximity operators are similar to the CB data, and
they don’t work well.

Table 6. Word-based retrieval performance.
(Top-10 precision), (): % changes from NLQ

NLQ (=SHORT) | 65.2 LONG " JOINED
#phrase (d=3) | 64.3(-1.4) “ 65.5 (+0.5)
#phrase (4=1) | 636(25) | 66.3(+12)
Procimity (4=3) | 46.0¢29.4) || 102(849
Proximity (d=1) | 44.7(-31.4) || 10.7 (-83.6)

Table 7 is a performance comparison between
CB and WB. Each data is the best value in all
operator cases. The interesting result is that CB
with comparatively simple LONG query structure
was at least as good as any WB result.

Table 7. Retrieval performance of char-based & word-based

Char-Based Word-Based
Hash Dict. Size 220 KB 423 KB
(6173 entries) (14847 entries)
Inverted File Size 989 KB 1145 KB
(6,173 records) (14847 records)
(1602 b/rec) (77.1 b/ rec)
Transaction Records 120,610 103,785
Indexed Terms 228,137 152,741
Unique Indexed
Tegms (root form) 6,173 14847
Avcfae;g‘; J‘ndexed Term 133 chars 239 ¢l
Dropped Text/Doc.Size 40.2% 29.5%
" (Hiragana: 28.2%) i
oot Length/
.5 Indexed: 99.8%
Original Length -
8 (Avscra ge%) Verb: 992%

indexing. (Top-10 precision, best results)
(): % changes from char-based NLQ

g}::::cter- Word-Based
NLQ 60.6 65.2 (+7.8)
SHORT 62.9 (+4.0) 65.2(+7.8)
LONG 66.6 (+10.1) 64.3(+6.3)
JOINED 60.8 (+0.6) 66.3 (+9.6)




We can also make the observation that the
retrieval performance appears to be good and
certainly comparable with the performance of
probabilistic systems with English.

6. Conclusion

In our experiments, we got the following
results:

1) Using LONG model structured query with
phrase operator, CB indexing achieved around the
same or slightly higher retrieval performance than

the best WB indexing result.

' 2) The above achievement was possible by
automatic query formulation.

3) CB indexing is more efficient than WB in both
time and space. CB indexing may have more chance
to improve retrieval performance in the post-
coordination stage. WB methods may get significant
improvements at pre-coordination e.g., by using Al
techniques for indexing, but more sophistication will
increase the computing cost of document indexing.

We hope to get a clearer picture of the above
research results in future work. We are going to
overcome several limitations in this experiment such
as the size of the test collection, incomplete
relevance judgments, very simple test queries, and
various indexing/segmentation problems, e.g.,
segmentation mismatch.  Developing different
models of structured queries for phrases will help to
understand what is going on “behind the scenes” in
Japanese IR.
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