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Abstract

This research addresses difficult issues in generating computer responsiveness
based on assumptions about the user’s state of knowledge and skill. A so-
phisticated tutoring system is described that reasons about and manipulates
the context of the learning environment to ensure that the situation continues
to interest and challenge the student. Intelligent tutors and simulation sys-
tems are not currently customized to improve learning times. In the described
system, a tight interaction between user modeling techniques and simulation
management reduces the time each student spends with a tutor to reach a given
skill level. Control mechanisms concentrate on reasoning about reducing the
propagation of error in the user model, enhancing the human-computer inter-
action process when the model is accurate, without creating serious problems
when it is not. This research makes significant contributions to development
of a sophisticated user model and explores techniques for reducing the time
each student spends with an interactive tutoring system to reach a given skill
level.
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The Problem

Control is at issue when a system must be responsive and flexible with its user.
Strong methods are needed for dealing with a user's unknown skills and knowledge and
with change, contradictions, and inconsistencies in assumptions made by the system
about this knowledge. For example, reasoning in an intelligent tutor should be non-
monotonic, i.e., inferences made about a student’s knowledge, if shown to be inaccurate,
should be replaced by new inferences based on more recent activities. Before a student
begins to work with a tutor, control issues need to be addressed about the acquisition of
and reasoning about pedagogy, domain topics, and machine responses. After a student
begins to work with a tutor, different issues need to be addressed about the dynamic
analysis of student behavior, automatic diagnosis and remediation, identification of
appropriate pedagogical strategies, and generation of effective responses. The goal is not
only generation of immediate responses in the short-term, or single session, but also the
improvement of instruction in the long term between sessions. Current systems are too
simplistic and too static to reason effectively about human learning; frequently they focus
on reasoning about the risk of propagating information about the certainty (or lack of
same) in a user model [Self, 1987] rather than reasoning about action to take when

inferences are inaccurate, as inevitably happens.

Optimal control cannot be accomplished with a single-shot decision mechanism.
Rather than render a “dead reckoning' type diagnosis and prescription for further action. a
reasoner requires processes that make use of multiple diagnostic and reasoning methods
and that modify their approach or do additional work based on the characteristics of
student-machine interactions. Sophisticated control techniques are required for
developing and managing the complex problem solving plan necessary to implement such
processes. Additionally, action-oriented reasoning mechanisms are required which can
interleave reasoning and action. The system described in this article reasons a little, acts
a little, and then reassess a little: It sketches a plan of action (diagnosis and prescribed
strategy), executes a small portion of this plan, assesses the plan's effectiveness, and then
reformulates its goal [Fennema, 1991]. Such formulation by being action-oriented. is
more efficient than traditional tutors or simulations in that it teaches and affects the

simulation only when appropriate.
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Classical planning systems typically cannot represent realistic domains: the search
is either incomplete or impossibly time consuming. An incomplete (heuristic) search may
be acceptable, however, if it caﬁ be organized so that good plans are likely to be found
quickly. Selection of optimal search strategies cannot be a completely theoretical
exercise: the definition of "good plans” must be derived from realistic problems. Al
planning research has developed a very deep understanding of an idealized class of
planning problems, but has made relatively little progress towards using these results in
real domains. For instance, a nonlinear hierarchical planner can solve a classical planning
problem in domains where the operators are independent. Unfortunately, classical
planners work with representations that are not rich enough for most real problems.
Enriching the representation sufficiently to represent real problems makes the search
space too large. It has been proven that expanding the representation of planning
operators (in several specific ways [Chapman, 1987]) makes the search for a solution to a

planning problem arbitrarily large.

Qur Solution

This research addresses the difficulty of controlling system response by
implementing control mechanisms focused on goal selection, plan formation, and plan
instantiation within situated contexts. Errors in the user model will fall away by the
nature of the changing context. If the system suggests less than optimal strategies based
on an error-full user model, the output will be weak, but will not be propagated beyond
the current context and as the systerﬁ quickly moves on to new contexts, the revised user
model suggests improved system responses. Rather than develop the accuracy of the user
model, this research focuses on how to reduce the propagation of error from a possibly
inaccurate user model and on how to proceed (e.g., [Broverman and Croft, 1987)) .
Control enhances the human-computer interaction process when the model is accurate,
without creating serious problems when it is not. Little effort is placed on deliberating

whether the user model is accurate, rather the focus is on tolerating inaccuracies by the

logic of their use.

The sophisticated tutoring system reasons about and manipulates the environment
to present explanations and content in a favorable context and to ensure that problems
continue to interest and challenge the student. It improves the tutoring result by biasing

the environment as the system moves on toward new contexts creating opportunities for
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student learmning. Within a tutoring system, several design principles follow directly from
the primacy of this view. The user model serves to guide allacation of the tutor's intemal
resources and informs the tutor's decisions about how to influence the interaction. It is
well suited to support high level strategic decisions by the tutor, but not to control
detailed tutor interaction. On the other hand, the user model will sometimes be inaccurate
so it should not be seen by the user; it is not an evaluation tool. Nor should it be used to
control the user; the system should remain responsive and interactive relative to student
initiatives. These principles are combined in the design of the intelligent interactive

simulation as described in the remainder of this paper.

The tutor is based on the following four abstract steps:

* Goal selection: The system reasons about the user's needs and the best context for
meeting them.

* Plan formation: The system moves from one context to a new context selected for
goal satisfaction. This step is complex because the domain contains dynamically
changing processes and the history of a simulated process must remain consistent.

* Plan instantiation: Once a plausible way to achieve a desirable new context has
been found, the system will simulate the corresponding transitions. User input is
integrated with the simulation possibly forcing the system to revise or abandon
outstanding plans.

* Situated reasoning. When the system reaches a desired context it applies situation
specific knowledge to help achieve the user's goals.

This solution is general because most of the domain specific reasoning is
encapsulated in the simulation or the situated reasoning components. The power of this
approach is the modularity it implies for knowledge representation. We separate
knowledge of 'where to be' and 'how to get there' from knowledge of 'what to do once
there." Examples are presented of a mechanism which presents a user with an appropriate
situation, thus solving the 'where' and 'how' problems. The remaining problem of 'what
to do once there' is greatly simplified because the exact machine response is made in a
context chosen to be most conducive to a successful interaction. This research makes
significant contributions to development of a sophisticated user model and explores
techniques for reducing the time each student spends with a interactive tutoring system to

reach a given skill level.
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An important dilemma is that a system cannot be expected to determine when the
user model is accurate. Inaccuracies must be tolerated and damped by the logic of their
use. At first this may seem impossible, but it is analogous to the commonplace skill
required to carry on a conversation with someone whose name has been forgotten. By
choosing phrases and topics based on partial or fragmented knowledge with a suitable
degree of generality, a person might avoid admitting an embarrassing memory gap.
Conceptually similar techniques allow us to design a user interface that masks

uncertainties of the user model.

Applying_the User Mode]

A user model represents an individual user for the purpose of customizing
program behavior. The most primitive form of user modeling records a stereotype of the
user's skills and stated preferences. This is useful, but intelligent user modeling offers
more and can actively develop its own model of a user, incorporating available clues to
best anticipate the user's goals, needs and abilities. To be effective, a user model must
have predictive content; it cannot be purely descriptive. Analysis of user actions is not
practical unless it contributes to improved system behavior. In this section, principles of
the user model are defined and in subsequent sections the implementation described to
illustrate how the user model principles contribute toward the overall effectiveness of the

system.

Implementing a user model requires: 1) a structure in which to record inferences
about the user: 2) a mechanism for building a user specific model within this theory and
3) knowledge about how to apply this model to other aspects of the system's behavior.
The first requirement limits what the system can "know" and amounts to a domain
specific psychological theory. Knowledge about how to apply a user model is arguably
the most important factor in the success of a user model, possibly more important even
than efforts to improve its accuracy, although the latter is obviously important. However,
without major new advances in psychological theory any user model will be subject to
inaccuracies and uncertainty. Reducing these factors will help, but the system must be

built so that whatever inaccuracy and uncertainty remains will be tolerated by the system.

Several inferences can be made from these observations. The user model may be
inaccurate, which is to say that it may be inconsistent with the reality of the user. Hence.

we cannot reason from a user model simply by classical logic because such inconsistency
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would render the reasoning meaningless. The system must tolerate unexpected user
actions unobtrusively. since the user might be correct and the user model at fault
[Broverman, 1991]. A user will also change over time, introducing another form of
inconsistency that the user model must tolerate. Application of the user model is guided
by these principles: 1) conclusions are always tentative and may need to be revised; 2)
negative consequences of an error should be minimized; 3) positive consequences should
be maximized; and 4) the weakest sufficient assumptions should be used. For example,
when the user's needs can be anticipated, automation of subsequent steps is possible.
However, the value of this automation must be balanced against the consequences of

misinterpreting the user's intentions.

iasing the Simulati
Many tutoring systems are based upon a simulation of a real world task in which
each situation confronts the student with a different set of problems. One simulated
situation might enable a student to learn better than another situation. For example, as a
student learns more material, problems should be made more complex to remain
challenging, but not overwhelming. Similarly, a student will better grasp an explanation if

it relates to a recently encountered situation than if the staement is made out of context.

We have built a simulation which is biased toward situations that create
opportunities for student leaming. In some domains, biasing a simulation is straight-
forward. For example, a flight simulation can present new problems for the student
naturally by altering what lies beyond the horizon and allowing the student to fly into it.
However, we are working in a medical domain which has more constraints. The
simulation must proceed in physiologically and clinically plausible sequences, taking into
account all interventions that have been applied so far. These path constraints severely

restrict the order in which our system can present problems.

Another concern is development of a user model rich enough to express the goals
toward which the simulation should be directed. The model of an individual student
should be accurate enough so the system can reason effectively about which tutoring
goals to set for that student. Accuracy in a user model is an important issue and requires
substantial research effort. The medical domain user model integrates medical
constraints, pedagogical constraints and user model features to determine a current set of

tutoring goals, their relative priority and plans for achieving them. Such plans are built
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and used to improve the learning time for students based on those user model principlcs

proposed in the previous section.

Finally, there are statistical constraints on the simulation: events in the simulation
must occur with a realistic overall probability distribution. Making the simulation goal-
directed inherently conflicts with making it realistic. Resolving this conflict demands
achieving a balance between goal-directedness and probabilistic behavior that is efficient

and psychologically satisfying to the user.

These conflicting constraints affect the relationship between biasing the system
and its resulting tutoring effectiveness: adding more bias reduces the time between
important tutoring steps and reduces the time between steps in the tutorial lesson, but

does not necessarily translate into greater overall teaching effectiveness.

The system uses a process based model simulation language, although some
features of object based models have been incorporated. The representations supported
by this type of simulation language can be easily related to plans and the resulting
reasoning strongly complements what can be performed in traditional planners. An
object based model (Simuletter 88) results from organizing the simulation language
around domain objects. The behavior of each object is a process. More advanced models
allow objects to respond to messages sent by other objects. A process based model is an
extension of the event based model [Kiviat, 1973]. The basic unit of modularity
represents an ongoing process, not just an instantaneous event. Primitives in the
simulation language provide for synchronization among multiple processes and the
ability to wait for events or state changes to occur. In practice, the synchronization
primitives cause affected processes to be stored in the event queue, in much the same way
that a suspended task waits for CPU time or IO events to. occur. A process model looks
much like a concurrent program, but all delays and scheduling refer to the simulated

clock and not to real time.

The biasing mechanism was based on: 1) a non-cooperative mixed initiative
planner designed and implemented for a complex non-deterministic domain, and 2)

enabling the planner to alter the simulation without destroying its realism. In addition,

the biasing mechanism operates efficiently enough to be used within a real-time

simulation.
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For the purpose of this discussion it is sufficient to think of the planner as a
directed graph with arcs for user actions and state changes. Nodes represent perinds
when no qualitative changes occur; those which are expected to best support tutoring are
selected and ranked as goal nodes. The time needed to reach a goal is one of the factors
to be optimized so it is a cost function associated with nodes in the graph. If the user does
nothing then eventually the simulation will follow one of the arcs to a new state. The
time this will take defines one probability distribution constrained by the domain model.
Alternatively, the user may take some action altering the relative likelihood of successor
states and resulting in a faster state change. Combining the user model and domain
model gives an overall probabilistic model of how likely each state change is and and

when it will occur.

Some of these probabilities define the domain model and so are under control of
the tutor. The planner will alter these probability distributions to reach a goal node while
simultaneously minimizing the cost and the amount of probability alteration. Maximizing

the priority of the goal reached is a further constraint.

Goals in this directed graph correspond with simulation states that have been
identified as providing an opportunity for useful tutoring actions. Several interrelations
among these goals exist: several goal states in the graph may satisfy a single tutoring
goal, tutoring goals may fail even though the simulation reaches the chosen state and all
tutoring goals need to be satisfied eventually. Several measures were specified to make
this problem well formed. In particular, there must be a way to specify how much the
domain probabilities have been altered and a function to combine this measure with the

cost of arc traversal to obtain a global measure of the utility of a proposed solution.

We call the degree of domain probability alteration "improbability.” Entropy is a
measure of randomness so conceptually these concepts are opposites like heat and cold.
It is important to realize that improbability is defined procedurally. like a random
number, rather than logically, like a prime number. It is a measure of how much the
procedure for generating a simulation has been changed and cannot be determined from
the results of the simulation alone. For example, the number "5" is a random number if it
is the result of a fair roll of dice but it is not a random number if it is the result of
computing the sum of the first two prime numbers since that computation always yields

the same answer.
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Improbability is defined as the combined changes to the simulation. The problem
is reduced to defining a measure of improbability for each random node and defining a
combination function. The biased random node is created by changing the; probabilities.
The sum of the amount by which each probability is increased is used as the measure of
improbability for a random node. For example, changing a random node from a 50-50%
outcome into a 70-30% outcome has a cost of 20 points of improbability. Note that this
definition counts only the amount by which the probability of an outcome has been
increased. The intuition behind this is that randomly choosing an outcome that has been
made less likely cannot make the simulation seem more improbable. The sum of the
absolute differences is another intuitively attractive formula but not significantly different
since there is clearly only a constant factor of two difference between the sums. Once the
required utility function is defined we still need a mechanism for computing an optimal
(or satisfactory) set of improbabilities. Theoretically we may consider all possible ways
'of altering the probability distributions in the simulation, but in practice a more efficient
search technique is devised.

Both improbability and the time needed to reach a goal are minimized in the
working system. The simultaneous optimization of two variables often requires a

tradeoff; in this system we impose an upper limit on the improbability, keeping the

simulation realistic, and then attempt to improve the tutoring time as much as possible.

The Cardiac T : A C

The issues discussed above were studied in the context of building a system for
training medical professionals to lead cardiac resuscitation teams. The system contains
an intelligent interactive simulation of the patient, emergency room team and hospital
environment, see Figures 1 and 2. The simulation provides a realistic exposure to the
task and allows physicians and other medical personnel to practice realistic simulated
treatments. The simulation presents a continually changing context automatically
updated. Its progress is partly under control of the user (through intervention selection)

and partly dictated by clinical reality.

Emergency medical techniques for acute cardiac failure saves many lives. Yet,

proper training for the Advanced Cardiac Life Support (ACLS) team leader requires
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approximately two years of closely supervised training in an emergency room,
ambulance, or similar medical facility. The cost of this training period is high, hoth in
patient care and for the health industry. Team leaders, e.g., paramedics, EMTs, and
resident physicians, have different prior levels of expertise, yet each must perform the
same difficult cognitive tasks in a noisy environment, working with little margin for error
and under severe time pressure, while interpreting multi-modal information. The
simulation is biased to achieve full coverage of common as well as rarely seen cardiac
arrest situations as quickly as possible and to efficiently tutor the student based on a

model of his or her level of knowledge and skills.

The ultimate goal is to improve training, save lives, and enable health care
professionals to routinely apply the accepted ACLS protocols in an emergency setting.
The basic system includes an accurate descriptive model of the emergency room
environment and general patient status, combined with a causal model of cardiac function
and related physiologic systems. Needed interventions are modeled such as (medications,
compressions, oxygen flow, defibrillation, etc.), measurable parameters (cardiac trace.
vital signs, etc.), physiological conditions (i.e., cardiac rthythm). The “patient’” undergoes
simulated cardiac arrest, e.g., ventricular fibrillation, Bradycardia, asystole and other
arrhythmias. The physician applies a precordial thump or compressions, administers
medications, e.g., Lidocane, Atropine, or Epinephrine, defibrillates, intubates, starts an

IV, or takes other actions as recommended in the ACLS manual.

The high level simulation coordinates the multimedia modules and corresponds
closely with the ACLS protocol both in terms of level of detail and structure. Generally,
it is a descriptive model rather than a causal model and is synchronized with the real-time
clock of the computer. Events within the simulation drive the sound and graphic routines,
and pass information up to the tutoring module. Student input is treated as events within
the simulation. The low level causal simulation can be called directly from the high level

simulation when a substantial physiologic change is expected.

Alternatively the steady state description of the standard physiological states can
be computed using the causal simulation in an off line mode with the results stored and
recalled as needed. Medical interventions by the team leader are mediated by the
computer and compared to the accepted protocols. The computer offers automated
tutorial help in addition to recording, restoring, critiquing and grading student

performance. It customizes the simulation to suit different previous levels of
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achievement and assists the learning process dynamically. Good or improved
performance is noted with positive feedback: incorrect hehavior is categorized and

commented upon.

Patient ecqg trace

status

Systolic BP NONE
Respiration NONE
Mental Status UNRESPONSIUE

Figure I: The Cardiac Tutor, showing the patient. computed cardiac rhythm,
and several intervention windows

Computer generated graphics provide a real time "ECG trace” based upon the
causal cardiac model, see Figure 1. Other pertinent information is shown using a
schematic patient diagram, including current interventions. Both background sounds
(emergency room noise) and foreground sounds (shouted responses) are generated by
computer and can be played through headphones. When the tutor is used by a student in
a public space or library, input can be accepted using a graphic input device (mouse).
When the tutor is used at home or in a laboratory, students can speak commands within a

restricted set of natural language phrases through a microphone attached to head gear.
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Figure 2: The Simulated Emergency Room

Several crucial problems were solved on route to developing this biasing
mechanism. 1) Domain knowledge was encoded to enumerate the entire curriculum.
Covering the required topics is a goal of the tutoring system. The relative importance and
difficulty of each topic is represented, so the system is able to reason about the priority of
tutoring goals. 2) The student's understanding of each topic is represented and the user
model updated in response to correct or erroneous student interactions with the
simulation. A simple overlay model of the user determines which topics remains to be
covered. 3) The system reasons about the medical constraints of the domain and forms
goals to teach specific domain topics. However, each topic requires the simulation to
reach a certain state. Hence the system finds ways to drive the simulation into a state
where a relevant tutoring subject was one of the outstanding topics. The planning process
satisfies three high level constraints: 1) the simulated patient's underlying physiology
generated by the system must be physiologically and clinically realistic; 2) a limited
number of events can happen, given any state in the simulation. subject to alterations

caused by the bias, and given that each outcome is determined by a known probability:
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and 3) the system integrates into the simulation any medical intervention applied by the

student in a medically reasonable way.

Student actions are outside the control of the tutoring system and frequently upset
the system's plans to achieve a goal or create opportunities to achieve other goals. Thus,
the planning process dynamically reorders its goal priorities in response to both changes

in the user model and the current state of the simulation.
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Figure 3: Simulation Bias and Tutoring Effectiveness

Future Work

The tutor has been successfully used by half a dozen physicians and nurses. and
formative evaluation is proceeding.‘ We intend to explicitly evaluate the relationship
between tutoring effectiveness and simulation bias. Currently this relationship is
unknown, and may be directly related, inversely related or be related through more
complex formulae positive, see Figure 3. Curve a shows steady improvements in the
overall tutoring effectiveness as the simulation is increasingly biased.- Curves b and ¢
show improvements up to some limit, followed by declines. A minuscule improvement
in tutoring effectiveness as seen in curve ¢ may not be enough to justify the expense and
complexity of the biasing mechanism. Even worse adding bias may simply cause a
decrease in tutoring effectiveness as shown in curve d. A steady improvement as shown

in curve a would be ideal but is not expected. The expected result is that the relationship
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between overall tutoring effectiveness and increased simulation bias will be similar to

curve b. Results similar to curves ¢ or d would refute the hypothesis hehind this research.

Many other research questions remain, including several psychological questions.
Central among these is how a student perceives biasing the simulation. Potentially, we
anticipate several effects that might diminish or eliminate the theoretical advantages of
the controlled simulation. For example, the simulated patient might seem "unreal” to the
student. Even worse, the student might develop erroneous expectations about the
likelihood of various events in the domain. During the next few months, the tutor will be
tested with numerous physicians, nurses, EMT, and other emergency room personnel to

provide a quantitative evaluation of the relationship.

Previous Work

Current computational models of reasoning in tutor systems focus on generalized
stereotypes, a kind of “dead reckoning” to assess student learning or a bug library to
anticipate procedural bugs and generate appropriate instruction [Van Lehn, 1988]. These
models are both too simplistic and too static to reason effectively about humaﬁ learning,
which is uncertain, inconsistent, and highly variable. ~Such results are often formulated
in a deterministic manner based on experience with long term protocols of human
activities [Spada, 1992]. User modeling is still an area of active debate [Clancy, 1989:
Brown et al., 1988, Katz et al., 1992]. Katz et al. distinguish between researchers who
are "model-builders” committed to explicit representations of user models and "model-
breakers” who doubt the possibility or usefulness of such models. We concur with Katz
[Katz et al., 1992] that a user model should be used "without interfering with the
opportunities that the learning environment affords students for experimentation,
reflection, and self-diagnosis." For example, Sherlock II uses a substantial lattice of
fuzzy variables to model the student [Katz et al., 1992]. The aim of this representation is
to explicitly represent uncertainty in the user model. A vague description of the student.
it was argued, would be a more truthful representation, and would better support the
tutor's interactions. However, this approach ignores the central issue; what to do about

erroneous assumptions made about the student at least some of the time.

There are many parallels between this work on biasing the simulation and
research into customized explanation. In both cases the goal is to present "correct”

information to a user based upon the system's understanding of what the user wants and
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needs to know [Suthers et al., 1992]. It is possible to generate explanations that are
correct relative to any given set of facts about a user (perhaps) but this is of no great value
since much of what we need to know cannot be determined with confidence and
precision. In both cases the system needs to be designed with a "fail soft" principle in
mind; unavoidable errors in the user model must not cause egregious misbehavior as a
result. Early results with medical reasoning systems provides the clearest indication of
how difficult is the presentation of coherent explanations [Szolovitz, 1979]. Canned-text
and simple translations of execution traces do not provide high quality explanations.
Work on knowledge representation [Michner, 1978] and reasoning [de Kleer, 1979; Patil,
1981] illustrate how multidimensional representations are needed for full use of a

system's knowledge knowledge.

Many tutoring systems present the student with a realistic simulation of a working
environment and the tools normally used to manipulate that environment. Other systems
use a simulation but do not attempt to provide a realistic one. For example, the
CIRCSIM-TUTOR [Khuwaja, 1990] provides a "prediction table" which is filled by a
student and compared with results generated by a circulation simulation. Filling this
table is not a natural domain task but forces the student to develop abilities that are
thought to be crucial in real domain tasks. Recently there has been interest in combining

artificial intelligence and simulation techniques [Elzas, 1986].

Classical Al planning solves the problems they were designed to handle, but never
found much practical use, and the field was largely dormant until the mid 1980's. The
fundamental problem with these earlier systems is the assumption that the world is static.
This assumption is obviously false. Many aspects of the world change dynamically, and
a planner should include alternative reasoning about plans and be capable of making
changes in existing plans. People constantly make plans and predictions that are useful
without being able to fully understand the consequences of their actions. Developing

ways to program this ability, at least in part, was one goal of this research.
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