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Abstract

Recent work in feature-based classification has focused on non-parametric tech-
niques that can classify instances even when the underlying feature distributions are
unknown. The inference algorithms for training these techniques, however, are designed
to maximize the accuracy of the classifier, with all errors weighted equally. In many
applications, certain errors are far more costly than others, and the need arises for
non-parametric classification techniques that can be trained to optimize task-specific
cost functions. This paper reviews the Linear Machine Decision Tree (LMDT) algo-
rithm for inducing multivariate decision trees, and shows how LMDT can be altered to
induce decision trees that minimize arbitrary misclassification cost functions (MCFs).
Demonstrations of pixel classification in outdoor scenes show how MCF's can optimize
the performance of embedded classifiers within the context of larger image understand-
ing systems.

Keywords: Decision Trees, Non-Parametric Classification, Pattern Recognition, Object Recog-
nition, Computer Vision, Machine Learning.

1 Introduction

Feature-based classification - in which instances are assigned to classes based on vectors of

feature values - is a recurring subproblem in systems that analyze image data. In recent
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years, many researchers have eschewed traditional parametric classification techniques (such
as minimum distance classification) in favor of newer, non-parametric techniques, particularly
decision trees and neural mets. These techniques learn to classify instances by mapping
points in feature space onto categories without explicitly characterizing the data in terms
of parameterized distributions. As a result, they avoid making assumptions about the data

that, when violated, can cause parametric techniques to fail.

Decision trees classify instances by recursively subdividing feature space with hyper-
planes until each subdivided region contains instances of a single type. The best known
algorithm for inducing decision trees from training instances is Quinlan’s ID3 [9], which uses
an information-theoretic measure to choose the best hyperplane at each recursive step. Typ-
ically, the decision tree is expanded until every training instance is correctly classified, and

then the tree is pruned to avoid overfitting to the training data.

One disadvantage of ID3-style decision trees is that each test is univariate. In other
words, when the input features are numeric, each test is of the form z > a, where a is a
value in the observed range of feature z. Because these tests are based on a single input
variable, univariate trees can only aivide feature space orthogonally to a feature’s axis. This

introduces a bias that may be inappropriate for problems with linearly related features[1, 11].

Utgoff and Brodley [11] overcome this problem by using the perceptron learning rule to
induce decision trees in which the tests are linear combinations of features. Linear machine
decision trees, a further refinement of this approach, generalize the two-category multivariate
splits permitted by the perceptron training rule to n-category multivariate splits by the use of
linear machines [2]. Because the linear machine decision tree algorithm (LMDT). is unknown
to most vision researchers, the first half of this paper is dedicated to introducing the computer
vision community to this powerful yet simple classification technique.

The second half of this paper considers the role of goal-directed classifiers. In computer

vision, classification is often an intermediate processing step rather than the final goal. Per-



haps the best known example of this is when color and texture based classifiers are used
as focus of attention (FOA) mechanisms for triggering the application of computationally
expensive matching algorithms. When classifiers are used to focus attention, the goal of
the induction algorithm is to maximize the performance of the overall system by training
the classifier to make one-sided errors, since mistaking part of the background for an ob-
ject merely slows the system down while mistaking the object for the background leads to

unrecoverable errors.

Moreover, FOA mechanisms are only one example of how classifiers can be embedded
in larger systems. In goal-directed classification, the penalties for confusing two instance
labels is determined by a misclassification cost function (MCF), and the goal of the training
algorithm is to minimize the total misclassification cost. Although Bayesian techniques
have long been able to minimize arbitrary MCF's [5], non-parametric techniques have not
previously been able to do so. Section 3 shows how the non-parametric LMDT algorithm can
be modified to reduce arbitrary misclassification cost functions, while Section 4 demonstrates

empirically how MCF's alter the performance of embedded classifiers.

2 Linear Machine Decision Trees

As the name implies, linear machine decision trees are a marriage of two well-known clas-
sification techniques, linear machines [8, 5] and decision trees [1, 9]. The LMDT algorithm
builds a multivariate decision tree using a top-down approach. LMDT trains a linear ma-
chine to classify the initial set of training instances. The linear machine partitions the feature
space into R regions, one for each of the R observed classes. If the instances in a region are
from one class, the region is assigned that class label. Otherwise the algorithm is applied
recursively to the region. The result is a decision tree with a linear machine at each internal
node and a class label at every leaf. To classify an instance, one follows the branch indicated

by the linear machine, starting at the root of the tree and working toward the leaves. When



a leaf node is reached, the instance is assigned the corresponding label.

2.1 Training a Linear Machine

As per Nilsson [8], a linear machine is a set of R linear discriminant functions that are used
collectively to assign an instance to one of R classes. Let Y be an instance description (a
feature vector) consisting of a constant threshold value 1 and a set of numeric features, which
describe the instance. Then each discriminant function g;(Y') has the form WYY, where W;
is a vector of adjustable coefficients, also known as weights. A linear machine infers instance
Y to belong to class i if and only if (V4,1 # ) &:(Y) > g;(Y)".

One well known method for training a linear machine is the absolute error correction rule
[4], which adjusts W; and W; whenever an instance is misclassified, where 7 is the class to
which the instance belongs and j is the class to which the linear machine incorrectly assigns

the instance. The correction is accomplished by W; « W;+cY and W; — W; —cY, where

c= [W] is the smallest integer such that the updated linear machine will classify

the instance correctly. If the training instances are linearly separable, cycling through the

instances allows the linear machine to partition the instances into separate convex regions.

If the instances are not linearly separable, the error corrections will not cease, and the
classification accuracy of the linear machine will be unpredictable. Frean [6] has developed
the notion of a “thermal perceptron”, which gives stable behavior even when the instances
are not linearly separable. Utgoff and Brodley apply this idea to linear machines, changing
the implementation slightly so that it can be embedded within the tree induction algorithm.
Frean observed two kinds of errors that are problematic. First, when an instance that is far
from the decision boundary is misclassified, the decision boundary needs a large adjustment

in order to remove the error. On the assumption that the boundary is converging to a

1Throughout this discussion we will assume that all features are in standard normal form, i.e. zero men
and unit standard deviation. See Brodley and Utgoff 2] for a discussion of normalization and missing feature
values.



Table 1: Training a Thermal Linear Machine
1. Initialize 8 to 2.
2. If linear machine is correct for all instances or 8 < 0.001, then return.

3. Otherwise, pass through the training instances once, and for each instance Y that would be
misclassified by the linear machine and for which k < 8, immediately

(a) Compute correction ¢, and update W; and W;.

(b) If the magnitude of the linear machine decreased on this adjustment, but increased on
the previous adjustment, then anneal 8 to af — b. (a = 0.999 and b = 0.0005)

4. Go to step 2.

good location, relatively large adjustments are considered counterproductive. To achieve

stability, Frean suggests paying decreasing attention to large errors. LMDT achieves this
by setting ¢ = 3% , where k = [%ﬂ], and annealing 8 during training. The second
kind of problematic error occurs when a misclassified instance lies very close to the decision

boundary. As k approaches 0, ¢ approaches 1 regardless of 8. Therefore, to ensure that

the linear machine converges, one also needs to anneal the amount of correction ¢. This is

accomplished this by annealing ¢ by 8, giving the correction coefficient ¢ = B%e'

Table 1 shows the algorithm for training a thermal linear machine. To allow the algo-
rithm to spend more time training with small values of 8 when it is refining the location of
the decision boundary, 8 is reduced geometrically by rate a, and arithmetically by constant
b. Note that 8 is reduced only when the magnitude of the linear machine decreased for the
current weight adjustment, but increased during the previous adjustment. Here, the magni-
tude of a linear machine is defined as the sum of the magnitudes of its constituent weight
vectors. This criterion for reducing 3 was selected because the magnitude of a linear machine
initially increases rapidly during training, and then stabilizes when the decision boundary is

near its final location [5].



2.2 Eliminating features

In order to produce accurate and understandable trees that do not evaluate unnecessary
features, one wants to eliminate features that do not contribute to classification accuracy
at a node. Noisy or irrelevant features may impair classification, and LMDT finds and
eliminates such features. When LMDT detects that a linear machine is near its final set
of boundaries, it eliminates the feature that contributes least to discriminating the set of
instances at that node, and then continues training the linear machine. Elimination proceeds
until only one feature remains or further elimination will significantly reduce the accuracy
of the linear machine.

During feature elimination, the best linear machine with the minimum number of fea-
tures is saved. When feature elimination ceases, the test for the decision node is the saved
linear machine. The best linear machine is the one with the fewest features whose accuracy
is not statistically significant from the highest accuracy observed during elimination, or the

linear machine underfits the data?

A feature’s discriminability is measured by the dispersion of its weights over the set
of classes. A feature that has not been eliminated from a linear machine has a weight
in each class’s discriminant function. A feature whose weights are widely dispersed has
two desirable characteristics: a weight with a large magnitude causes the corresponding
feature to make a large contribution to the value of the function, and hence discriminability,
and a feature whose weights are widely spaced, across the discriminant functions, makes
different contributions to the value of the discrimination function of each class. Therefore,
one would like to eliminate the feature whose weights are of smallest magnitude and are
least dispersed. To this end, LMDT computes, for each feature, the sum of the squared

differences in the weights for each pair of classes; for each feature, F, LMDT computes

I there are fewer instances than the capacity of a hyperplane (twice the dimensionality of the feature
vector), then there is insufficient data to pick the best hyperplane orientation, and the linear machine is said
to underfit the data. [5)



dispersion = :-:‘;‘;;‘“ (weightp; — weightr;)?. The feature with the smallest dispersion is

then eliminated.

The weights of a thermal linear machine have converged when the magnitude of each
correction to the linear machine is larger than the amount permitted by the thermal train-
ing rule for each instance in the training set. However, one does not need to wait until
convergence to begin discarding features. The magnitude of the linear machine asymptotes
quickly, and it is at this point that one can make a decision about which features to discard.
When to begin feature elimination is determined by a heuristic: if for the past n instances,
the ratio of the magnitude of the linear machine to the maximum magnitude observed thus
far is less than a, then the linear machine is close to converging, where n is the capacity of
a hyperplane and « set to be 1%. Empirical tests across a variety of data sets have shown
that setting a = 1% is effective in reducing total training time without reducing the quality

of the learned classifier.

2.3 Error-Reduction Pruning

Overfitting becomes a problem in domains (such as vision) that contain noisy instances,
i.e. instances for which the class label or some number of the feature values are incorrect.
Overfitting occurs when the learning algorithm induces a classifier that classifies all instances
in the training set, including the noisy ones, correctly. Such a classifier will perform poorly
for previously unseen instances. To avoid overfitting, the LMDT classifier is pruned back to
reduce the estimated classification error, as computed for an independent set of instances
[1, 10). A node is pruned if its error rate is higher than the error rate that would occur if the

node were replaced with a leaf containing the most frequently observed class at that node.



3 Goal-Oriented Classification

As discussed earlier, a goal-oriented classification system is one in which the performance of
the classifier is tailored to maximize overall system performance rather than classification

accuracy. More formally, we define a misclassification cost function (MCF) as
MCF:LxL—Z*

where L is the set of possible labels, such that MCF(I,1) =0 for all I € L. A goal-oriented
classifier is one that minimizes the total cost 3 MCF(p,t) of its confusions, where p is the
classifier’s predicted label for an instance and ¢ is the instance’s “true” label.

Given this definition, a goal-oriented classifier can be trained to maximize classification
accuracy by assigning an equal weight to all confusions in the MCF. Conversely, a classifier
can be trained as an FOA mechanism for instances of type ¢ by making MCF(q,t) >
MCF(t,q) Vg # t. In the extreme case, MCF(t,q) = 0, implying that there is no cost
whatsoever for a false positive. Such an MCF will lead a classifier to assign all pixels the
label ¢, thereby minimizing the number of false negatives and the total cost. To avoid this,
a small cost should be associated with false positives, where the ratio of costs between false

negatives and false positives is an explicit statement of the system’s reliability/cost tradeoff.

3.1 Inducing a Minimum-Cost Classifier

We have altered the LMDT algorithm to form a classifier with the explicit goal of reducing
the total misclassification cost of the errors. Section 3.1.1 describes the changes made to
the tree building algorithm and Section 3.1.2 describes the change made to the pruning

algorithm.

3.1.1 Building a Tree with the Goal of Reducing Misclassification Cost



Table 2: Misclassification-Cost Training
1. Initialize the training proportion; = 1.0 for each class, i;

2. If linear machine has converged (by the thermal training rule) then return.

3. Otherwise, train linear machine thermally in the proportions specified by the training

proportion for n objects, where n = Y.7<%%¢ proportion;. Specifically, for each observed
object Y with class label ::

o Increment observed;.

¢ If Y would be misclassified by the linear machine as class p, then update cost; =
cost; + MCF(p,1).

cost; [observed;

;T"“(::mt,- [observed;)

4. For each class, {, recalculate proportion; =

5. Go to step 2.

We changed LMDT’s weight learning algorithm and feature elimination strategy to meet
the new goal of reducing misclassification cost. LMDT’s original method for training the
weights of a linear machine sought to reduce overall error by randomly sampling instances
to update the weights of the linear machine. In the modified version of LMDT, the training
routine samples objects based on the cost of misclassifications that the current classifier
makes. This focuses training on objects proportional to their contribution to the total

misclassification cost, as specified by the MCF.

The misclassification cost training routine is shown in Table 2. Specifically, the training
proportions are initialized to 1 (Step 1), ensuring that at the start of training all classes
are sampled evenly. Using the training proportions, objects are sampled from each class in
proportion to the misclassification cost for the class (Step 3). Each class’s cost, which is the
sum of all misclassification error costs made in the past, is updated. The error cost of each
class is updated each time the linear machine misclassifies an instance, while the number of
observed objects for the class is incremented each time an instance from the class is observed.
After LMDT trains using instances in the specified proportions, it uses the updated error

costs to recalculate the proportions (Step 4). To compute the sample proportion for class 1



the error cost rate of class 1 is weighted by the total error cost, which is the sum of the error
cost rate over all observed classes. LMDT now uses the updated sampling proportions and
continues training (Step 5).

The second change to the LMDT algorithm alters the feature elimination method to
take into consideration misclassification costs. The original LMDT algorithm preferred lin-
ear machines with fewer features over more complex ones unless, the simpler machine was
significantly less accurate or the larger linear machine underfit the training data. The new
version changes this preference criteria to take into consideration the misclassification costs
of the two linear machines. Instead of preferring a lineaf machine that has a higher classi-

fication accuracy we now prefer the linear machine that has a lower misclassification cost.

We retain the criterion that the linear machine not underfit the data.

3.1.2 Cost Reduction Pruning

Given a misclassification cost function, pruning schemes that seek to reduce overall classifi-
cation error can be adapted to reduce overall cost of the misclassifications. There are many
different tree pruning methods, but all use some estimate of the true error to prune back
the tree [1]. LMDT uses reduced-error pruning, which computes the estimate of the true
error using a set of instances that is independent from the training set [10]. When deciding
whether to prune back a node, the cost of keeping the node is compared to the cost of re-
placing the node with a leaf node. To compute the cost, we weight each classification error
by the cost of that error (as given by the MCF) and then sum the computed costs across all

of the errors.

4 A Demonstration of Minimum-cost Classification

To demonstrate minimum misclassification cost learning, we considered an FOA scenario

in which the classifier’s task is to focus attention on roads in outdoor scenes. We began by

10



Table 3: Varying the Ratio of False Negatives to False Positives

Ratio False False Accuracy
FN : FP Negatives Positives Test Set
1:1 44.6 26.8 83.6
2:1 27.0 44.2 83.2
5:1 17.8 53.0 83.3
10:1 10.8 125.4 80.0
20:1 9.2 190.8 79.3
200:1 8.4 296.0 75.0

assigning every confusion an equal weight, a strategy that leads LMDT to optimize overall
classification accuracy. Averaged over five trials, LMDT correctly classified 83.6% of all
pixels. We then began to alter the MCF, steadily increasing the cost for false negative
road hypotheses relative to the cost for false positive ones. In so doing, we shifted LMDT
into an FOA mode, in which the classifier is willing to create a few “false alarms” in order
to avoid missing part of the road. (All confusions not involving the “road” category were
assigned equal weight of 0.1.) At a ratio of 2 : 1, the system begins to label more pixels as
“road”, creating more false positives but fewer false negatives. At a ratio of 10 : 1, LMDT
creates almost no false negatives, albeit with an increase in false positives. Beyond 10 : 1
system performance degrades, as the false negative count, which is already negligible, cannot

decrease significantly, while the number of false positives continues to climb.

Table 3 shows the false negative and false positive counts of the road pixels (combined
over the four images) for each MCF. The first column shows the ratio of the cost of classifying
a road pixel something else (a false negative) to the cost of classifying a non-road pixel as
road (a false positive). The next two columns report the number of false negatives and false
positives in the set of test instances, averaged over five runs; each run uses a different random
partition of the data set into training, pruning and test instance sets®. The final column

reports the overall classification accuracy for the test instances. As expected, the overall

3Note that the instances for the test set are samples randomly and are not sampled according to cost.
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classification accuracy decreases as the cost of mislabelling the road is increased. However,
by reducing the number of false negatives, the system’s performance as a FOA mechanisms

improves, at least until the cost ratio approaches 10 : 1.

Table 3 gives a concise, quantitative summary of LMDT’s performance under different
MCFs. To show the impact changing the MCF can have on the classification of a single
image, Figure 1 shows an image and the pixels labeled as “road” under three different MCF's.
The upper right hand corner shows the road pixels under a 1 : 1 cost ratio between false
negatives and false positives. Although the overall labeling is quite good, many road pixels
on the left side of the foreground are missed. As the ratio of costs between false negatives
and false positives is raised to 5 : 1 (lower left corner), these false negatives are removed and
the structure of the road becomes clearer. As the ratio is further increased to 20 : 1 (lower
right corner), the benefit of removing a few additional false negatives is overwhelmed by the

clutter introduced by the increase in false positives.

An even more compelling example is shown in Figure 2 where the false negatives pro-
duced by the 1 : 1 classification are bunched near the top, so that the road “disappears”
before it recedes into the background (see the upper-right hand corner of Figure 2. When
the ratio of false negative to false positive costs is raised to 5 : 1, however, the spatial ex-
tent of the road becomes clear. In essence, the 5 : 1 MCF creates an FOA that allows the
system to see more of the road, increasing the distance ahead an autonomous navigation or
interpretation system can see. (As in Figure 1, the 20 : 1 ratio adds more to clutter than to

clarity.)

5 Conclusion

In many computer vision applications, classification is a means to an end, rather than the
goal. Consequently, classification learning algorithms should be judged by how well they

support the system’s final goal, rather than by their classification accuracy. One way to
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measure how well a classifier supports a given goal is through a misclassification cost function
(MCF), which assigns a cost (weight) to every type of confusion based on the impact the
confusion would have on later processing. The ideal classifier is then defined as the one that
minimizes the total misclassification cost. This paper presents a modification of the LMDT
algorithm that minimizes the total misclassification cost for arbitrary misclassification cost

functions (MCF's), allowing multivariate decision trees to be tailored to specific goals.
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Figure 1: A color image and the pixels classified as “road” under three different MCFs. The
classification in the upper left-hand corner optimizes a MCF with a 1: 1 cost ratio between
false negative road errors and false positive road errors. The lower left optimizes a 5 : 1 false
negative to false positive ratio, while the lower right optimizes a 20 : 1 ratio. In the 1:1
classification, overall accuracy is optimized but false negative road pixels are tolerated, as
can be seen in the lower foreground. At 5 : 1, false negatives are discourages, leading to more
road detection. At 20 : 1 false negatives are almost completely surpressed, but the number
of false positives has grown sharply.
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Figure 2: A color image and the pixels classified as “road” under three different MCFs. The
classification in the upper left-hand corner optimizes a MCF with a 1: 1 cost ratio between
false negative road errors and false positive road errors. The lower left optimizes a 5 : 1 false
negative to false positive ratio, while the lower right optimizes a 20 : 1 ratio. Notice how the
receding portions of the road are missed by the 1: 1 MCF, but captured by the two biased
MCPFs.
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