Synthesis of Extended Transaction Models using ACTA !

Panos K. Chrysanthus Krithi Ramamritham
Dept. of Computer Science Dept. of Computer Science
University of Pittsburgh University of Massachusetts

Pittsburgh, PA 15260 Ambherst, MA 01003

April 29, 1993

Abstract

ACTA is a comprehensive transaction framework that facilitates the formal de-
scription of properties of extended transaction models. Specifically, using ACTA, one can
specify and reason about (1) the effects of transactions on objects and (2) the interactions
between transactions. This paper presents ACTA as a tool for the synthesis of extended
transaction models, one which supports the development and analysis of new extended
transaction models in a systematic manner. Here, this is demonstrated by deriving new
transaction definitions (1) by modifying the specifications of existing transaction models,
(2) by combining the specifications of existing models and (3) by starting from first prin-
ciples. To exemplify the first, new models are synthesized from atomic transactions and
join transactions. To illustrate the second, we synthesize a model that combines aspects
of the nested and split transaction models. We demonstrate the latter by deriving the
specification of an open nested transaction model from high-level requirements.

!This material is based upon work supported by the National Science Foundation under grants IRI-
9109210 and TRI-9210588 and a grant from University of Pittsburgh.
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1 Introduction

Although powerful, the transaction model adopted in traditional database systems is
found lacking in functionality and performance when used for applications that involve re-
active (endless), open-ended (long-lived) and collaborative (interactive) activities. Hence,
various extensions to the traditional model have been proposed, referred to herein as
extended transactions. To facilitate the formal description of transaction properties in
an extended transaction model, we have developed ACTA?, a comprehensive transac-
tion framework. Specifically, using ACTA, one can specify and reason about the nature
of interactions between extended transactions in a particular model. ACTA character-
izes the semantics of interactions (1) in terms of different types of dependencies between
transactions (e.g., commit dependency and abort dependency) and (2) in terms of trans-
actions’ effects on objects (their state and concurrency status, i.e., synchronization state).
Through the former, one can specify relationships between significant (transaction man-
agement) events, such as begin, commit, abort, delegate, split, and join, pertaining to
different transactions. Also, conditions under which such events can occur can be speci-
fied precisely. Transactions’ effects on object’s state and status are specified by associating
a view and a conflict set with each transaction and by stating how these are affected when
significant events occur. A view of a transaction specifies the state of objects visible to
that transaction while the transaction’s conflict set contains those operations with respect
to which conflicts need be considered.

In [8, 6], we introduced the formalism underlying ACTA and demonstrated its ex-
pressive power by using it to define extended transaction models in an axiomatic form,
specify correctness properties of the models, and prove that a particular model satisfies
the specified properties. This paper presents ACTA as a tool for the synthesis of extended
transaction models, one which supports the development and analysis of new extended
transaction models in a systematic manner.

New transaction definitions can be derived either by tailoring existing transaction
models, or by starting from first principles. As examples of the former we develop Chain
Transactions (Section 4.1.2), Reporting transactions (Section 4.1.3) and Co-Transactions
(Section 4.1.4) by modifying the specification of joint transactions [17], and derive the
nested-split transaction model (Section 4.2) by combining the specifications of nested and
split transaction models [16, 17]. As an example of the latter, we synthesize in Section
4.3 an open nested transaction model from the high-level requirements on transactions

adhering to the model.

2We chose the name ACTA, meaning actions in Latin, given the framework’s appropriateness for
expressing the properties of actions used to compose a computation.
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Figure 1: Dimensions of the ACTA Framework

2 The ACTA Formal Framework

ACTA is a first-order logic based formalism. It has five simple building blocks: His-
tory, dependencies between transactions, the view of a transaction, the conflict set of a
transaction, and delegation.

This section provides a concise yet complete introduction to ACTA and its formal
underpinnings. Section 2.1 provides some of the preliminary concepts underlying the
ACTA formalism whereas Section 2.2 focuses on the concept of history which is central
to the formalism. ACTA allows the specification of the effects of transactions on other
transactions and also their effect on objects by means of constraints on histories. Inter-
transaction dependencies, discussed in Section 2.3, forms the basis for the former while
visibility of and conflicts between operations on objects, discussed in Section 2.4, form
the basis for the latter. We will use examples from various extended transaction models

to illustrate the concepts.

2.1 Preliminaries
2.1.1 Object Events

A database is the entity that contains all the shared objects in a system. A transaction
accesses and manipulates the objects in the database by invoking operations specific to
individual objects. The state of an object is represented by its contents. Each object has
a type, which defines a set of operations that provide the only means to create, change
and examine the state of an object of that type. It is assumed that an operation always
produces an output (return value), that is, it has an outcome (condition code) or a result.
The result of an operation on an object depends on the state of the object. For a given

state s of an object, we use return(s,p) to denote the output produced by operation p,



and state(s,p) to denote the state produced after the execution of p.

DEFINITION 2.1: Invocation of an operation on an object is termed an object event.
The type of an object defines the operations and thus, the object events that pertain
to it. We use p;[ob] to denote the object event corresponding to the invocation of the
operation p on object ob by transaction ¢ and OF; to denote the set of object events
that can be invoked® by transaction ¢ (i.e., p;[ob] € OE}).

The effects of an operation on an object are not made permanent at the time of the

execution of the operation. They need to be explicitly committed or aborted.

The effects of an operation p invoked by a transaction ¢t on an object ob are made

permanent in the database when p;[ob] is committed.

The effects of an operation p invoked by a transaction ¢t on an object ob are obliter-
ated when the p;[ob] is aborted.

Depending on the semantics of the operations and on the object’s recovery properties,
aborting an operation may force the abortion of other operations as well.

Commait and Abort operations are defined on every object for every operation. In-
voked operations that have neither committed nor aborted are termed in progress oper-
ations. Typically, an operation is committed only if the invoking transaction commits
and 1t 1s aborted only if the invoking transaction aborts. However, it is conceivable that
an extended transaction may commit only a subset of its operations on an object while
aborting the rest. Furthermore, through delegation (see Section 2.4), a transaction other
than the event-invoker, i.e., the transaction that invoked an operation, can be granted

the responsibility to commit or abort the operation.

2.1.2 Significant Events

In addition to the invocation of operations on objects, transactions invoke transaction
management primitives. For example, atomic transactions are associated with three
transaction management primitives: Begin, Commit and Abort. The specific primitives
and their semantics depend on the specifics of a transaction model. For instance, whereas
the Commit by an atomic transaction implies that it is terminating successfully and that
all of its effects on the objects should be made permanent in the database, the Commit of a
subtransaction of a nested transaction implies that all of its effects on the objects should

be made persistent and visible with respect to its parent and sibling subtransactions?.

3We will use “invoke an event” to mean “cause an event to occur.” One of the meanings of the word
“invoke” is “to bring about.”

%As shown in Section 2.4, in ACTA, the ability of a nested subtransaction to make its effect visible to
its parent is specified by means of the notion of delegation.



Other transaction management primitives include Spawn, found in the nested transaction

model, and Split and Join, found in the split transaction model [17].

DEFINITION 2.2: Invocation of a transaction management primitive is termed a signif-
1cant event. A transaction model defines the significant events that can be invoked by
transactions adhering to that model. SE; denotes the set of significant events relevant

to transaction ¢.

ACTA provides the means by which significant events and their semantics can be
specified.

It 1s useful to distinguish, given the set of significant events associated with a trans-
action t, between events that are relevant to the initiation of ¢ and those that are relevant

to the termination of ¢.

DEFINITION 2.3: Initiation events, denoted by IE;, is a set of significant events that

can be invoked to initiate the execution of transaction t. IE; C SE;.

DEFINITION 2.4: Termination events, denoted by TE;, is a set of significant events

that can be invoked to terminate the execution of transaction ¢t. TE; C SE;.

For example, in the split transaction model, Begin and Split are transaction initiation
events whereas Commit, Abort and Join are transaction termination events.

A transaction is #n progress if it has been initiated by some initiation event and
it has not yet executed one of the termination events associated with it. A transaction

terminates when it executes a termination event.

2.2 Histories and Conditions on Event Occurrences

Fundamental to ACTA is the notion of history [2] which represents the concurrent ex-
ecution of a set of transactions 7. ACTA captures the effects of transactions on other
transactions and also their effects on objects through constraints on histories. Transac-
tion models are defined in terms of a set of azzoms which are invariant assertions about
the histories generated by the transactions adhering to the particular model. Axioms can
also be explicit preconditions or postconditions for operations and transaction manage-
ment primitives. Consequently, the correctness properties of different transaction models

can be expressed in terms of the properties of the histories produced by these models.

DEFINITION 2.5: A history H of the concurrent execution of a set of transactions T
contains all the events, significant and object, invoked by the transactions in 7' and

indicates the (partial) order in which these events occur.



DerINITION 2.6: The predicate € — € is true if event € precedes event € in history
H. 1t is false, otherwise. (Thus, € — € implies that e € H and €' € H.)

H denotes the complete history. When a transaction invokes an event, that event is
appended to the current history, denoted by H.. The partial order of the operations in
a history pertaining to T is consistent with the partial order — of the events associated
with each transaction ¢ in 7.

In general, we use ¢ to denote the invocation of an event e, significant or object,
by transaction ¢. We will omit the event-invoker when it is not important to specify the
transaction which causes the event to occur in a history (e € H = Jt ¢, € H).

The occurrence of an event in a history can be affected in one of three ways: (1) An
event € can be constrained to occur only after another event €'; (2) An event € can occur
only if a condition c is true; and (3) a condition ¢ can require the occurrence of an event

€.

DEeFINITION 2.7: (e € H) = Conditiong, where = denotes implication, specifies that
the event € can belong to history H only if Conditiong is satisfied. In other words,
Conditiong is necessary for € to be in H. Conditiong 1s a predicate involving the

events in H.

Consider (¢’ € H) = (€ — €'). This states that the event € can belong to the history H

only if event € occurs before €'.

DEerFINITION 2.8: Conditiong = (€ € H) specifies that if Conditiong holds, € should
be in the history H. In other words, Conditiong is sufficient for € to be in H.

Consider (¢ — €') = (a € H). This states that if event € occurs before € then event o

belongs to the history.

2.3 Effects of Transactions on Other Transactions

Dependencies provide a convenient way to specify and reason about the behavior of con-
current transactions and can be precisely expressed in terms of the significant events
associated with the transactions. Basically, dependencies are contraints on the histories
produced by the concurrent execution of interdependent transactions. In the rest of this
section, after formally specifying different types of dependencies, we identify the source

of these dependencies.
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Figure 2: Inter-transaction Dependencies Graphs

2.3.1 Types of Dependencies

Let ¢; and t; be two extended transactions and H be a finite history which contains all

the events pertaining to ¢; and t;.

Commit Dependency (t; CD t;): if both transactions ¢; and ¢; commit then the commit-
ment of ¢; precedes the commitment of ¢;; i.e.,

Commity; € H = (Commity, € H = (Commit;, — Commity,)).

Abort Dependency (t; AD t;): if t; aborts then ¢; aborts; i.e.,
Abort;, € H = Abortt]. € H.

Weak-Abort Dependency (t; WD t;): if ¢; aborts and t; has not yet committed, then
t; aborts. In other words, if t; commits and ¢; aborts then the commitment of ¢;

precedes the abortion of ¢; in a history; i.e.,
Abort;; € H = (—(Commit;; — Abort;;) = (Abort;; € H)).

We would like to note that this list of dependencies involving the Commit and Abort events
1s not exhaustive. Other dependencies that involve significant events besides these events,
can be defined. As new significant events are associated with extended transactions, new
dependencies may be specified in a similar manner (e.g., see [6]). In this sense, ACTA is
an open-ended framework.

Besides the logical representation introduced above, inter-transaction dependencies
can be expressed in a pictorial form as graphs whose vertices represent transactions and
arcs of different shapes represent different dependencies. We refer to such graphs as
dependency graphs. Figure 2 shows the pictorial representation of the dependencies defined

above and in Section 4.2. In general, dependency graphs can be more illustrative than the



corresponding sets of axioms in expressing the structure of extended transactions, such as
the explicit nesting structure of nested transactions. (As discussed in the next section, one
source of dependencies is the structure of extended transactions.) Through dependency
graphs, it is possible to capture both the static structure as well as the dynamics of
the evolution of the structure of transactions. The structure of transactions evolves as

significant events inducing inter-transaction dependencies occur.

2.3.2 Source of Dependencies

Dependencies between transactions may be a direct result of the structural properties
of transactions, or may indirectly develop as a result of interactions of transactions over

shared objects. These are elaborated below.

Dependencies due to Structure

The structure of an extended transaction defines its component transactions and
the relationships between them. Dependencies can express these relationships and thus,
can specify the links in the structure. For example, in hierarchically-structured nested
transactions, the parent/child relationship is established at the time the child is spawned.
This i1s expressed by a child transaction . establishing a weak-abort dependency on its

parent ¢, (t. WD t,) and a parent establishing a commit dependency on its child (¢, ¢D
te).

Spawn, [t.] € H = (t. WD tp) A (t, CD t.).

The weak-abort dependency guarantees the abortion of an uncommitted child if its par-
ent aborts. Note that this does not prevent the child from committing and making its
effects on objects visible to its parent and siblings. (In nested transactions, when a child
transaction commits, its effects are not made permanent in the database. They are just
made visible to its parent. See Section 4.2.1 for a precise formal definition of nested
transactions.) The commit dependency ensures that an orphan, i.e., a child transaction

whose parent has terminated, will not commit.

Dependencies due to Behavior

Dependencies formed by the interactions of transactions over a shared object are
determined by the object’s synchronization properties. Broadly speaking, two operations
conflict if the order of their execution matters. For example, in the traditional framework,
a compatibility table [2] of an object ob expresses simple relations between conflicting

operations. A conflict relation has the form



(pti [Ob] — 4 [Ob]) = (tj D ti)

indicating that if transaction ¢; invokes an operation p and later a transaction ¢; invokes
an operation g on the same object ob, then ¢; should develop a dependency of type D
on t;. As we will see in the next section, ACTA allows conflict relations to be complex
expressions involving different types of dependencies, operation arguments, and results,

as well as operations on the same or different objects.

2.4 Objects and the Effects of Transactions on Objects

In order to better understand the effects of transactions on objects, we need to first

understand the effects of the operations invoked by the transactions.

2.4.1 Conflicts between Operations and the Induced Dependencies

A history H(®® of operation invocations on an object ob, H(®®) = p, 0 p,0...0p,, indicates
both the order of execution of the operations, (p; precedes p;1), as well as the functional
composition of operations. Thus, a state s of an object produced by a sequence of op-
erations equals the state produced by applying the history H(®®) corresponding to the
sequence of operations on the object’s initial state so (s = state(so, H®)). For brevity,
we will use H(°) to denote the state of an object produced by H(®®) implicitly assuming

initial state sq.

DEFINITION 2.9: Two operations p and ¢ conflict in a state produced by H(°®), denoted
by conflict( H(®) p, q), iff

(State(H(Ob) °p, q) 7£ State(H(Ob) °gq, p)) \

(return(H("b), q) # Tetu’l“n(H(Ob) op, q)) V
(return(H("b), p) # Tetu’l“n(H(Ob) 0gq, p))

Two operations that do not conflict are compatible.

Thus, two operations conflict if their effects on the state of an object or their return
values are not independent of their execution order. Since state changes are observed only
via return values, the semantics of the return values can be considered in dealing with

conflicting operations.

DEFINITION 2.10:  Given conflict{ H®® p, q), return-value-independent( H®) p, q) is
true if the return value of ¢ is independent of whether p precedes g, i.e.,
return(H("b) °0p,q) = return(H("b),q); otherwise g is return-value dependent on p

(return-value-dependent( H®) p, q)).



Given a history H in which p[ob] and g, [0b] occur, the state of ob when py; is
executed is known from where p;, occurs in the history. Hence, from now on, we drop the
first argument in conflict, return-value-independent, and return-value-dependent when it
is implicit from the context.

Interactions between conflicting operations can cause dependencies of different types
between the invoking transactions. The type of interactions induced by conflicting oper-
ations depends on whether the effects of operations on objects are tmmediate or deferred.
An operation has an immediate effect on an object only if it changes the state of the
object as it executes and the new state is visible to subsequent operations. Thus, an op-
eration p operates on the (most recent) state of the object, i.e., the state produced by the
operation immediately preceding p. For example, effects are immediate in objects which
perform n-place updates and employ logs for recovery. Effects of operations are deferred
if operations are not allowed to change the state of an object as soon as they occur but,
instead, the changes are effected only upon commitment of the operations. In this case,
operations performed by a transaction are maintained in intentions lists. In the rest of
the paper, we will consider the situation when the effects are immediate.

As mentioned earlier, in ACTA, the concurrency properties of an object are formally

expressed in terms of conflict relations of the form:
conflict(py;[0b], g:;[0b]) A (p;[0b] — g¢,[0b]) = Conditiong,

where Conditiony is typically a dependency relationship involving the transactions ¢; and
t; invoking conflicting operations p and g on an object ob. For instance, commutativity

semantics of operations induce abort dependencies between conflicting operations:
conflic(py; [0b], gi;[0b]) A (ps;[0b] — gu;[0b]) = (£; AD &;).

Obviously, the absence of a conflict relation between two operations defined on an
object indicates that the operations are compatible and do not induce any dependency®.
Commutativity does not distinguish between return-value dependent and return-
value independent conflicts, but if it did then a weaker conflict notion, called recoverability
[1], would result to a weaker conflict relation between return-value independent conflicting

operations where ¢D is induced rather than AD:

SClearly, when an invoked operation conflicts with an operation in progress, a dependency, e.g., an
abort or commit dependency, will be formed if the invoked operation is allowed to execute. That is, this
may induce an abortion or a specific commit ordering. One way to avoid this is to force the invoking
transaction to (a) wait until the conflicting operation terminates (this is what the traditional “no” entry in
a compatibility table means) or (b) abort. In either case, conflict relationships between operations imply
that the transaction management system must keep track of in-progress operations and of dependencies
that have been induced by the conflict. A commonly used synchronization mechanism for keeping track
of in-progress operations and dependencies is based on (logical) locks.



conflict(ps;[0b], g;;[0b]) A return-value-independent(p, q) A (p;[0b] — g1;[0b]) = (t; CD t;).

The generality of the conflict relations allows ACTA to capture different types of
type-specific concurrency control discussed in the literature [18, 13, 21, 1, 7], and even to

tailor them for cooperative environments [11, 19].

2.4.2 Controlling Object Visibility

View of a Transaction

As defined earlier, visibility refers to the ability of one transaction to see the effects
of another transaction on objects while they are executing. ACTA allows finer control
over the visibility of objects by associating two entities, namely, view and conflict set,

with every transaction.

DEFINITION 2.11: The wew of a transaction, denoted by View;, specifies the objects

and the state of objects visible to transaction ¢ at a point in time.

This implies that that view specifies what objects can be operated on by a transaction. In
addition, view specifies the state of these objects that is visible to the operations invoked
by the transaction.

View; 1s formally a projection of a history where the projected events satisfy some

Predicate, typically involving H:
View; = Projection(H,, Predicate).

In other words, View; is the subhistory constructed by eliminating any events in H,; that
do not satisfy the given Predicate while preserving the partial ordering of events in the
view. For example, the view of a subtransaction ¢, in the nested transaction model is
defined to be the current history, i.e., View;, = H. This states that (the effects of) all
the events that have occurred thus far are visible to ¢, meaning that ¢, can view the most
recent state of objects in the database.

For a slightly more elaborate example, suppose that a subtransaction t. is restricted
to view, at any given moment during its execution, only those objects that have been

accessed by its parent ¢,. The view of such a subtransaction £, is defined as follows.

View,, = Projection(H, (Vt,0b, q g:[ob] | Ir 7¢,[0b] € H)).

10



That is, the view of t. is the history projected to contain all the operations g invoked by

any transaction ¢ on any object ob on which ¢, has performed some operation 7.

Conflict Set of a Transaction

A transaction ¢ can invoke an operation on an object without conflicting with an-
other operation invoked by transaction t; if the operation performed by ¢; is in the view
of t but it is not included in the conflict set of £.

DEFINITION 2.12: The conflict set of a transaction ¢, denoted by Con flictSet;, con-
tains those operations in the current history with respect to which conflicts have to

be determined when ¢ invokes an operation.

The Con flictSet; is a subset of the object events in H,; that satisfy some Predicate:
ConflictSet, = {p;,[0ob] | Predicate}.

For example, let us consider nested transactions once again. In nested transactions, a
subtransaction ¢, can access without conflicts any object currently accessed by one of its

ancestors t,. This is captured by:

ConflictSet,, = {p:;[0b] | Inprogress(p;[0b]) A t; # t. At; & Ancestor(t.)};
Ancestor(t.) is the set of ancestors of ¢..
Inprogress(p;[ob]) is true with respect to current history H.: if p;[ob] has been per-
formed but has neither committed nor aborted yet; i.e.,
Tnprogress(pi ob)) = ((palob] € Ha) A
((Committi [pti [Ob]] € Hct) N (Abortti [pti [Ob]] € Hct)))'

This states that an operation p invoked by ¢; on an object ob is considered to conflict
with an operation invoked by a child transaction t. only if ¢; and t. are different, ¢; is
not an ancestor (in the nested transaction structure) of t., and p is still in progress. In
other words, any operation invoked by an ancestor of . is not contained in Con flictSet;,.
For this reason, a transaction ¢, can invoke an operation that conflicts with another in
progress, invoked by its ancestor {,, without forming a dependency.

The axiomatic definition of a transaction model specifies the View; and Con flictSet;
of each transaction ¢ in that model. These determine if a new event can be invoked. Specif-
ically, the preconditions of the event derived from the axiomatic definition of its invoking
transaction are evaluated with respect to H,. using the View; and ConflictSet;. If its

preconditions are satisfied, the new event is invoked and appended to the H. reflecting

11



its occurrence. The axiomatic definitions also specify how new dependencies may be es-
tablished. As we saw earlier, if an event is an object event, the operation semantics may

also induce new dependencies.

Delegation by a Transaction

The final building block of ACTA is Delegation. Traditionally, the invoker of an
operation has the responsibility for committing or aborting the operation. In general,

however, the operation invoker and the one committing the operation may be different.

DEFINITION 2.13:  ResponsibleT'r(p;;[ob]) identifies the transaction responsible for

committing or aborting the operation p;,[ob] with respect to the current history H.;.

In general, a transaction may delegate some of its responsibilities to another transaction.

More precisely,

DEFINITION 2.14: Delegates,[t;, pi;[0b]] denotes that ¢; delegates to t; the responsibil-
ity for committing or aborting operation p;,[0b].
More generally, Delegate,,[t;, DelegateSet| denotes that t; delegates to t; the

responsibility for committing or aborting each operation in the DelegateSet.
Delegation has the following ramifications which are formally stated in [6]:

e ResponsibleTr(ps,[ob]) is t;, the event-invoker, unless ¢; delegates p;, [ob] to another
transaction, say t;, at which point ResponsibleTr(p:,[ob]) will become t;. If sub-
sequently t; delegates pi,[ob] to another transaction, say ¢, ResponsibleTr(ps;[ob])

becomes ty,.

o The precondition for the event Delegatey,[ts, py;[0b]] is that
ResponsibleTr(p;[ob]) is t;. The postcondition will imply that
ResponsibleTr(p;[0b]) is t.

o A precondition for the event Abort, [p;;[ob]] is that ResponsibleTr(py;[ob])is t;. Sim-
ilarly, a precondition for the event C'ommit,,[p;;[0b]] is that ResponsibleTr(p;;[ob])
is ¢t;. Hence, from now on, unless essential, we will drop the subscript, e.g., t;,

associated with the operation abort and commit events.

o Delegation cannot occur in the event that the delegatee has already committed or
aborted, and it has no affect if the delegated operations have already been committed

or aborted.

12



e From the prespective of dependencies, once an operation is delegated, it is as though
the delegatee performed the operation. Thus, delegation redirects the dependencies
induced by delegated operations from the delegator to the delegatee — dependencies

are sort of responsibilities.

Note that delegation broadens the visibility of the delegatee and is useful in selectively
making tentative or partial results as well as hints, such as, coordination information,
accessible to other transactions.

In controlling visibility, we will find it useful to associate each transaction with an

access set.

DEFINITION 2.15: AccessSet; = {ps;[0b] | ResponsibleTr(p:,[ob]) = t}; i.e.,

AccessSet; contains all the operations for which ¢ is responsible.

In nested transactions, when the root commits, its effects are made permanent in the
database, whereas when a subtransaction commits, via inheritance, its effects are made
visible to its parent transaction. The notion of inheritance used in nested transactions is
an instance of delegation. Specifically, when a child transaction f. commits, ¢, delegates

to its parent ¢, all the operations that it is responsible for
Commit,, € H & Delegate, [t,, AccessSet; ] € H.

Delegation need not occur only upon commit or abort but a transaction can delegate any
of the operations in its access set to another transaction at any point during its execution.
This is the case for Co-Transactions and Reporting Transactions described in Section 4.

Delegation can be used not only in controlling the visibility of objects, but also to
specify the recovery properties of a transaction model. For instance, if a subset of the
effects of a transaction should not be obliterated when the transaction aborts while at
the same time they should not be made permanent, the Abort event associated with the
transaction can be defined to delegate these effects to the appropriate transaction. In
this way, the effects of the delegated operations performed by the delegator on objects
are not lost even if the delegator aborts. Instead, the delegatee has the responsibility for
committing or aborting these operations.

In cooperative environments, transactions cooperate by having intersecting views,
by allowing the effects of their operations to be visible without producing conflicts, by
delegating operations to each other. By being able to capture these aspects of transactions,

the ACTA framework is applicable to cooperative environments.
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3 A Simple Example of ACTA Specification:
Atomic Transactions

Atomic transactions combine the properties of serializability and failure atomicity. These
properties ensure that concurrent transactions execute without any interference as though
they executed in some serial order, and that either all or none of a transaction’s operations
are performed. Below we first define the correctness properties of objects starting with

the serializability correctness criterion.
Let C be a binary relation on transactions in 7'

Let H be the history of events relating to transactions in 7T'.

DEFINITION 3.1: Serializability
Vit € T,t; # ¢
(t; C t;) iff Job dp, q (conflict(p:;[0b], g;[0b]) A (pe;[0b] — g¢;[0b]))

Let C* be the transitive-closure of C ;i.e.,

(t: C ) iff [(t; C tx) V It; (t: C t; At; C ).

H is (conflict) serializable iff Vt € T —(t C* t)
DEerINITION 3.2: Objects’ Correctness
An object ob behaves correctly iff
Vi, t;,t; # t;, Vp,q
(return-value-dependent(p,q) A (pt;[0b] — g1;[0b])) =
((Abort[py;[ob] € H(*Y)) = (Abort[g;,[0b]] € H(P)).

An object ob behaves serializably ift
Vt € T Vp (Commit[p;[ob]] € H(®)) = —(t C* t).

An object ob is atomac if ob behaves correctly and serializably.

For an object to behave correctly it must ensure that when an operation aborts,
any return-value dependent operation that follows it must also be aborted. This ensures
the correct behavior of objects in the presence of failures assuming immediate effects of
operations on objects. Similarly, such dependencies can be defined for deferred effects.

A serializable behavior of an object is ensured by preventing committed transactions

from forming cyclic C relationships.
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DErINITION 3.3: Transaction ¢ is failure atomuc if

1. dJob dp (Commit[pob]] € H) =

Vob' Vq ((g:[ob’] € H) = (Commit|gob']] € H))
2. Job dp (Abort[p:[ob]] € H) =

Vob' Vq ((g:[ob'] € H) = (Abort[g:[ol']] € H))

As mentioned earlier, failure atomicity implies that all or none of a transaction’s
operations are committed (by some trasnaction). In the above definition, the “all” clause
is captured by condition 1 which states that if an operation invoked by a transaction ¢ is
committed on an object, all the operations invoked by ¢ are committed. The “none” clause
is captured by condition 2 which states that if an operation invoked by a transaction ¢
is aborted on an object, all the operations invoked by t are aborted. Note that failure
atomicity does not require an operation to be committed or aborted by the invoking
transaction.

In the same way that serializability and failure atomicity were expressed above,
other correctness properties of extended transactions, such as, quasi serializability [10]
and predicatewise serializability [14] can be expressed in ACTA [6].

Recall that each transaction model defines a set of significant events that transac-
tions adhering to that model can invoke in addition to the invocation of operations on
objects. A transaction is always associated with a set of initiation significant events that
can be invoked to initiate the execution of the transaction, and a set of termination sig-
nificant events that can be invoked to terminate the execution of the transaction. A set
of Fundamental Azioms which is applicable to all transaction models specifies the rela-
tionship between significant events of the same or different type, and between significant

events and operations on objects.

DEFINITION 3.4: FUNDAMENTAL AXIOMS OF TRANSACTIONS
Let ¢t be a transaction and H* the projection of the history H
with respect to t.

. Va€IE (a € H) = A8 € IE;, (a — )

II.V§€ TE, Ja € IE;, (§ € H*) = (a — §)

III. Vy € TE; (y € H) =26 € TE; (v — §)

IV. Vob Vp (pi[ob] € H) = ((Fa € IE; (a — pi[0b])) A (Fy € TE; (p:]od] — 7))

Axiom I prevents a transaction from being initiated by two different events. Axiom II
states that if a transaction has terminated, it must have been previously initiated. Axiom

III prevents a transaction from being terminated by two different termination events. The
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last axiom, Axiom IV, states that only in-progress transactions can invoke operations on
objects.
Now let us express in ACTA the basic properties of atomic transactions with a set

of axioms.

DEFINITION 3.5: AXIOMATIC DEFINITION OF ATOMIC TRANSACTIONS

t denotes an atomic transaction.

SE; = {Begin, Commit, Abort}

IE; = {Begin}

TE; = {Commit, Abort}

t satisfies the fundamental Axioms I to IV

View, = Hu

ConflictSet, = {py[ob] | t' # t, Inprogress(py|ob])}
Yob dp p:[ob] € H = (ob is atomic)

Commit, € H = —(t C* t).

Job Ip Commit[p[ob]] € H = Commit, € H

10. Commit, € H = Yob Vp (pi[ob] € H = Commit|p:[ob]] € H)
11. dJob dp Abort[p:[ob]] € H = Abort; € H

12.  Abort, € H = Vob Vp (p:[ob] € H = Abort:[p:[ob]] € H)

© XN oW

Axiom 1 states that atomic transactions are associated with the three significant events:
Begin, Commit and Abort. Axiom 2 specifies that Begin is the initiation event for atomic
transactions. Axiom 3 indicates that Commit and Abort are the termination events as-
sociated with atomic transactions. Axiom 4 states that atomic transactions satisfy the
fundamental axioms.

Axiom 5 specifies that a transaction sees the current state of the objects in the
database. Axiom 6 states that conflicts have to be considered against all in-progress
operations performed by different transactions. Axiom 7 specifies that all objects upon
which an atomic transaction invokes an operation are atomic objects. That is, they
detect conflicts and induce the appropriate dependencies. Axiom 8 states that an atomic
transaction can commit only if it is not part of a cycle of C relations developed through the
invocation of conflicting operations. Note that the atomicity property local to individual
objects is not sufficient to guarantee serializable execution of concurrent transactions
across all objects [20]. Axiom 9 states that if an operation is committed on an object, the
invoking transaction must commit, and Axiom 10 states that if a transaction commits,
all the operations invoked by the transaction are committed.

Axioms 8, 9 and 10 define the semantics of the Commit event of atomic transactions

in terms of the Commuat operation defined on objects. Similarly, Axioms 11 and 12 define
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the semantics of the Abort event in terms of the Abort operation defined on objects.
Axiom 11 states that if an operation is aborted on an object, the invoking transaction
must abort, and Axiom 12 states that if a transaction aborts, all the operations invoked
by the transaction are aborted.

Based on the above axioms, the failure atomicity and serializability properties of

atomic transactions can be shown (see [6]).

4 Synthezing New Transaction Models

Below we synthesize two new families of extended transaction models. The first is derived
from the joint transaction model [17]. The second is derived from the nested transaction
model [16] and the split transaction model [17]. We also synthesize a new open nested
transaction model starting from first principles and high-level requirements.

A common characteristic of these new extended transaction models is that they
support delegation between transactions. The following definition of conflicts takes into

account the presence of delegation.

DEerFINITION 4.1: Let Cy be a binary relation on transactions, and ¢; and t; be
transactions.
(t; Cn t;),t: # t; iff
dob Jp, g tm, tn (conflict(py,,[0b], gt.[0b]) A (Pt [0b] — g, [0b]) A
(ResponsibleTr(ps,, [0b]) = t;) A (ResponsibleTr(p:,[0b]) = t;))

This definition extends the definition of the C relation [Definition 3.1] to include the
serialization orderings due to the delegated objects. (To see that Cy is a generalization
of C, consider the case in which delegation does not occur. In the absence of delegation,
tm = t; and ¢, = t;.) In this way, by substituting Cy for C in the definition of
serializability [Definition 3.1], transactions are serialized with respect to operations for

which they are responsible.

DEFINITION 4.2: H is (conflict) serializable iff
VieT —(tCy t)

There is no need to revisit the definition of failure atomicity in face of delegation.
Failure atomicity does not require the invoking transaction of an operation to be the
transaction to either commit or abort the operation. Thus, failure atomicity [Definition
3.3] allows the possibility for all the operations invoked by a transaction and not delegated
to another transaction to be committed (aborted) by the invoking transaction and for all

the delegated operations to be committed (aborted) by the delegatees. However, the

17



examination of a transaction’s failure semantics only with respect to the objects that the
transaction is responsible for leads to a definition of another failure property which is

weaker than failure atomicity.

DEFINITION 4.3: Transaction ¢ is quast failure atomac if

1. dJob dp 3t; Commit.[p;[ob]] € H =

Vob' Vq Vt; (gi;[0b] € AccessSet, = Commity[q,,[ob']] € H)
2. dob dp 3 Abort,[p:,[0b]] € H =

Vob' Vq Vt; (gi;[0b'] € AccessSet, = Abort,|q,;[ob]] € H)

According to this definition, a transaction ¢ is quasi failure atomic if either “all” or “none”
of the operations for which the transaction ¢ is responsible are committed. Recall the
AccessSet, contains all the operations for which ¢ is responsible. (To recap, a transaction
is failure atomic if all the operations it invokes are committed or none at all; a transaction
is quasi failure atomic if all operations that it is responsible for are committed or none at
all.) Clearly, in the absence of delegation quasi failure atomicity is equivalent to failure

atomicity.

4.1 Joint Transaction Model and its Variations

In this section, we derive three new extended transaction models, namely, chain trans-
actions, reporting transactions and co-transactions, though a series of manipulations, be-
ginning with the axiomatic definition of joint transactions [17]. In [5], we defined these
models using dependency production rules, a formalism close to dependency graphs which
capture the static structure and the dynamics of the evolution of the structure of trans-
actions. Here we use axiomatic definitions to express the properties of these transaction

models.

4.1.1 Joint Transactions

In the joint transactions model, Join is a termination event (in addition to the standard
Commit and Abort events). That is, it is possible for a transaction, instead of committing
or aborting, to join another transaction. The joining transaction delegates its objects to
the joint transaction. Thus, the effects of the joining transaction are made persistent
in the database only when the joint transaction commits. Otherwise they are discarded.
Thus, if the joint transaction aborts, the joining transaction is effectively aborted. A joint
transaction can itself join another transaction.

Here are the basic properties of joint transactions, expressed in ACTA.
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DEFINITION 4.4: AXIOMATIC DEFINITION OF JOINT TRANSACTIONS
t, denotes a joining transaction.
tp denotes a joint transaction.

t denotes either a joining or a joint transaction.

1. SE; = {Begin, Join, Commit, Abort}

2. IE, = {Begin}

3. TE; = {Join, Commit, Abort}

4. t satisfies the fundamental Axioms I to IV

5. View, = Hu

6. ConflictSet, = {py]ob] | t' # t,Inprogress(py[ob])}

7. Yob Jp pfob] € H = (ob is atomic)

8. Commit, € H= —(tCx 1)

9. dob dq It; Commityq,[ob]] € H = Commit, € H

10. Commit, € H = Yob Vg Vt; (g1,[0b] € AccessSet; = Commit,|q;[ob]] € H)
11. dob dq 3t; Abort:|g:,[0b]] € H = Abort, € H

12.  Abort; € H = VYob VYq Vt; (g, [0b] € AccessSet; = Aborty[g:;[ob]] € H)
13. Joing, [ts] € H < Delegate,,[ty, AccessSet;,| € H

Axiom 1 states that transactions in the joint transaction model are associated with four
significant events, namely, Begin, Join, Commit and Abort. The Begin, Commit and Abort
events have the same semantics as the corresponding events of the atomic transactions
[Axioms 4-12].

Axiom 13 specifies that when Join occurs, the joining transaction’s access set is
delegated to the joint transaction. In this regard, a joining transaction behaves similar
to child transaction in the nested transaction model when the child transaction commits
(see Section 4.2.1).

We now state some of the failure and ordering properties of joint transactions. Their

proof can be found in [6].
LEMMA 4.1: A transaction ¢ in the joint transaction model is quas: failure atomac.

LEMMA 4.2: A transaction ¢ in the joint transaction model behaves like an atomic
transaction if ¢ commits or aborts, i.e., if it does not join any other transaction, and

has not been joint by any other transaction.

In other words, a joint transaction that commits or aborts is failure atomic and executes

in a sertalizable manner.
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THEOREM 4.1: A joining transaction ¢, may not be serializable with respect to the

joint transaction tp.

COROLLARY 1: A joining transaction ¢, is serializable with respect to the joint trans-
action ¢y iff Join,, [ts]) € H = —((ta Cy ) A (ts Cy ta))-

4.1.2 Chain Transactions

A special case of joint transactions is one that restricts the structure of joint transactions
to a linear chain of transactions. We can call these transactions Chain Transactions®. A
chain transaction is formed initially by a traditional transaction joining another tradi-
tional transaction and subsequently by the joint transaction joining another traditional
transaction. This is achieved by introducing an axiom to restrict the invocation of the

Join event such that only linear structures result [Axiom 14].

DEFINITION 4.5: AXIOMATIC DEFINITION OF CHAIN TRANSACTIONS
t, denotes a joining transaction.
tp denotes a joint transaction.

t denotes either a joining or a joint transaction.

1..13. Axiom 1..13 of Definition 4.4.
14.  Joing, [ts] € H = At (Joing[ts] — Joing, [ts])

All the lemmas and theorems expressing the correctness properties of joint transac-
tions (Section 4.1.1) hold also for chain transactions.

Chain transactions can more appropriately capture a reliable computation consist-
ing of a varying sequence of tasks each of which executes possibly at a different site of
a computer network. That is, each task is structured as a transaction. The beginning
of the first transaction initiates the computation. The computation expands dynamically
when a transaction completes its execution by joining another transaction and hence
extending the sequence of transactions. The commitment of any transaction in the se-
quence successfully completes the computation. The abort of any transaction terminates
the computation and due to quasi failure atomicity its effects together with those of all

previous transactions in the sequence are obliterated.

4.1.3 Reporting Transactions

A variation of the joint transaction model is the transaction model in which Join is not

a termination event (Join ¢ TE;). A joining transaction continues its execution and

6Chain transactions are of a more general form than IBM’s Chain transactions.
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periodically reports its results to the joint transaction by delegating more operations
to the joint transaction. We call these transactions Reporting Transactions. Reporting
transactions must invoke either Commit or Abort to complete their computation [Axiom
3].

Here is the formal definition of reporting transactions in ACTA. Other than the
axioms for the Join event, the axioms for the other significant events are the same as in

the joint transaction model.

DEFINITION 4.6: AXIOMATIC DEFINITION OF REPORTING TRANSACTIONS
t, denotes a joining transaction.
tp denotes a joint transaction.

t denotes either a joining or a joint transaction.

1. SE; = {Begin, Join, Commit, Abort}

2. IE, = {Begin}

3. TE; = {Commit, Abort}

4..12. Axiom 4..12. of Definition 4.4.

13.  Joing,[ts] € H < Delegate,,[ty, ReportSet;,| € H
14. Joing,[ts) € H = (t, AD tp)

15. (Joing,[ts] € H) = At,t # t, (Joing, [t] — Joing,[ts])
16.  Joing, [ts] € H = Joiny,[t,] ¢ H

ReportSet;, contains the operations on the objects to be delegated [Axiom 13].
ReportSet;, C AccessSet;,. Thus, reporting transactions may delegate some and not
necessarily all of their operations on objects at the time of a join.

The abort-dependency induced by Axiom 14 effectively maintains the termination
semantics of joining transactions in the joint transaction model by guaranteeing the abor-
tion of the joining transaction ¢, if the joint transaction ¢, aborts. This is because Axiom
15 prevents ¢, from joining more than one transaction. Furthermore, Axiom 16 prevents
ty from joining back ¢,.

Reporting transactions provide a more interesting control structure than joint trans-
actions and can be useful in structuring data-driven computations. Reporting transactions
can be restricted to a linear form in a manner similar to chain transactions in which case
they can support pipeline-like computations, or allowed to form more complex control
structures by permiting a reporting transaction to join more than one transaction in

which case they can support, for example, star-like computations.
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4.1.4 Co-Transactions

The characterization of reporting transactions allows ¢, to continue its execution but
prevents ¢, from joining ¢, [Axiom 15|. Suppose ¢, is suspended when it joins ¢, and also
ty is allowed to join t,. The transaction ¢, can be effectively suspended, if, at the time
of the join, its view becomes empty. With an empty view, ¢, can no longer access any
object in the system. We call this view curtailment. t, will be able to resume execution
when t; joins t,. This is because, after the join, t,’s view will be restored while ¢;’s is
curtailed. We call these transactions co-transactions because they behave like co-routines
in which control is passed from one transaction to the other transaction at the time of the
delegation and they resume execution where they were previously suspended. In the co-
transaction model specified below, the view of the co-transaction that resumes execution
is restored to H,;.

Clearly, in the co-transaction model, the Join event is not a termination event (Join
¢ TE;) and co-transactions must invoke either commit or abort in order to complete their
execution [Axiom 3.

Here is the formal definition of co-transactions in ACTA:

DEFINITION 4.7: AXIOMATIC DEFINITION OF CO-TRANSACTIONS
t, denotes a joining transaction.
tp denotes a joint transaction.

t denotes either a joining or a joint transaction.

1. SE; = {Begin, Join, Commit, Abort}

2. IE, = {Begin}

3. TE; = {Commit, Abort}

4..14. Axiom 4..14 of Definition 4.6

15  post(Joing, [ty]) = (Views, = ¢) A (View;, = He)
16  Joing, [ts) € H = (tp SCD t,)

Here SCD stands for strong commat dependency whereby if ¢’ commits, t” must commit:
(t" scp t'): (Commity € H = Commaity € H).

The termination semantics of co-transactions are captured by Axioms 14 and 16.
According to the semantics of joint and reporting transactions, Axiom 14 ensures the
abortion of the joining transaction ¢, if the joint transaction ¢, aborts. Axiom 16 states
that if the joint transaction £, commits, then the joining transaction ¢, is also committed.
Thus, both commit or neither.

Co-Transactions are useful in realizing applications that can be decomposed into

interactive, and potentially distributed, subtasks which cannot execute in parallel. For
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Figure 3: Structure of Nested Transactions

instance, co-transactions can be used in setting a meeting between two persons by hav-
ing one co-transaction executing per person against the individual’s calendar database.
Co-transactions, as well as reporting transactions, can be easily modified to form more

complex control structures in order to produce more interesting styles of cooperation.

4.2 Nested-Split Transaction Model

We first give the axiomatic definition of nested transactions and split transactions and

then show how a combined model can be produced.

4.2.1 Nested Transactions

In the Nested Transaction model, e.g. [16], transactions are composed of subtransac-
tions or child transactions designed to localize failures within a transaction and to exploit
parallelism within transactions. A subtransaction can be further decomposed into other
subtransactions, and thus, a transaction may expand in a hierarchical manner. Subtrans-
actions execute atomically with respect to their siblings and other non-related transactions
and are failure atomic with respect to their parent. They can abort independently without
causing the abortion of the whole transaction.

A subtransaction can potentially access any object that is currently accessed by one
of its ancestor transactions. In addition, any object in the database is also potentially
accessible to the subtransaction. When a subtransaction commits, the objects modified
by it are made accessible to its parent transaction and the effects on the objects are made
permanent in a database only when the root transaction commits.

Now, let us define nested transactions using the ACTA formalism. Ancestors(t)
is the set of all ancestors of a transaction ¢ whereas Descendants(t) is the set of all

descendants of t. Parent(t) contains the parent transaction of ¢.
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DEFINITION 4.8: AXIOMATIC DEFINITION OF NESTED TRANSACTIONS
to denotes the root transaction. Parent(to) = Ancestor(to) = ¢
t. denotes a subtransaction of ¢,. Parent(t.) =t,

t, denotes a root or a subtransaction.

1. SE;, = {Begin, Spawn, Commit, Abort}

2. IE,, = {Begin}

3. TE;, = {Commit, Abort}

4. SE;, = {Spawn, Commit, Abort}

5. IE;, = {Spawn}

6. TE;, = {Commit, Abort}

7. t, satisfies the fundamental Axioms I to IV

8. View;, = Hy

9. ConflictSet;, = {pi[ob] | t # to, Inprogress(p:[ob])}
10.  Vob dp p;,[0b] € H = (0b is atomic)

11. Commit,, € H = —(t, Cx tp)

12. Jdob dp It Commit,,[pob]] € H = Commit,, € H A Parent(t,) = ¢
13. Commit,, € H A Parent(t,) = ¢ =

Vob Vp Vt (p[ob] € AccessSety, = Commit, [p;[ob]] € H)
14. dob dp 3t Abort,,[pi[ob]] € H = Abort,, € H
15. Abort,, € H = Yob Vp Vt (p:[ob] € AccessSet,, = Abort,,[p:[ob]] € H)
16. Begin;, € H = Parent(t,) = ¢ A\ Ancestor(t,) = ¢
17. ConflictSet;, = {pi[ob] | t # t.,t & Ancestors(t.), Inprogress(p:[ob])}
18. Spawn, [t.] € H = Parent(t.) = t,
19. Spawn, [t.] € H = (t. WD t,) A (¢, CD L)
20. Commit;, € H & Delegate,, [Parent(t.), AccessSet,,] € H
21. Vt € Descendants(t,) Yob Vp, q (pi[ob] — g;,[0b]) =

dt. ((Delegate, [t,, AccessSet;,] — gi,[0b]) A plob] € AccessSety,)
22.  Ancestor(t.) = Ancestor(t,)U{t,} AVt t, € Descedant(t) = t. € Descendant(t)

The nested transaction model supports two types of transactions, namely, root transac-
tions and mnested subtransactions, which are associated with different significant events
[Axioms 1 and 4]. The semantics of root transactions are similar to atomic transactions
[Axioms 7-15]. The Abort event has the same semantics for both transaction types which
are similar to those of the Abort in atomic transactions [Axioms 14 and 15]. However, the
semantics of the Commit event are different for each transaction type. In the case of a
root transaction, Commit has the semantics of the Commit event in atomic transactions

[Axioms 11-13]. In contrast, when a subtransaction commits, through delegation, the
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operations in its access set are made persistent and visible only to its parent transaction
[Axiom 20]. Axiom 20 which together with Axiom 11 define the semantics of the Commit
event of subtransactions, clearly specifies that the commitment of a subtransaction does
not imply the commitment of its operations and the operations that it is responsible for.

Spawn is used to initiate a new subtransaction. The Spawn event establishes a
parent/child relationship between the spawning and spawned transactions [Axiom 18].
This relationship is reflected by the weak-abort dependency WD and commit dependency
CD between the related transactions [Axiom 19]. The ability of a subtransaction to invoke
operations without conflicting with the operations of its ancestor transactions is expressed
by excluding all the operations performed by its ancestors from the conflict set of the
subtransaction [Axiom 17].

Axiom 21 states that given transaction ¢ and its ancestor ¢, and operations p and g,
t, can invoke g after ¢ invokes p if ¢, 1s responsible for committing or aborting p. In other
words, t, cannot invoke g before p is delegated to ¢,. In the absence of this restriction,
it would be possible for t, to develop an abort dependency on t (¢, AD t) by invoking an
operation that conflicts with a preceding operation invoked by ¢. In such a case in which
a parent transaction develops an abort dependency on its child, if the child aborts, the
parent also aborts. This means that it would be possible for a subtransaction to cause the
abortion of its parent and possibly of the whole nested transaction (if the parent happens
to be the root transaction). But this violates the property of nested transactions that
localizes failures by allowing a subtransaction to abort independently without causing the
abortion of the whole transaction.

Based on the above axiomatic definition of nested transactions, the failure seman-
tics and the serializability property of nested transactions can be shown [6]. For example,
although Axioms 7, 10, and 11 are sufficient to ensure the serializability of atomic trans-
actions, they are not in the case of nested transactions because of Axiom 17 which allows
dependencies between a parent transaction and its children to be ignored. Thus, a parent

and a child transaction are not serializable.

4.2.2 Split Transactions

In the Split Transaction model [17], a transaction ¢, can split into transactions ¢, and .
At the time of the split, operations invoked by ¢, up to the split can be divided between ¢,
and t, making each responsible for committing and aborting those operations assigned to
them. In order to facilitate further data sharing between ¢, and ¢;, operations which re-
main the responsibility of £, may be designated as not conflicting with operations invoked
by t; after the split, and hence, ¢, can view the effects of these operations. Depending on

whether or not such operations have been designated, a split may be serial, or may be
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Figure 4: Structure of Split Transactions

independent. In the former case, t, must commit in order for ¢, to commit, whereas in

the latter, ¢, and ¢, can commit or abort independently.
After the split, ¢, can split again creating another split transaction .. Split transac-

tions can further split creating new split transactions. A sequence of serial splits leads to a

different type of hierarchically structured transactions from those of nested transactions.

See Figure 4.

DEFINITION 4.9: AXIOMATIC DEFINITION OF SPLIT TRANSACTIONS

t, denotes a primary transaction.

t, denotes a splitting transaction, primary or split.

tp denotes the split transaction of ¢,.

t denotes a transaction, primary or split.

© 0N o oW
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SE;, = {Begin, Split, Commit, Abort}

IE;, = {Begin}

TE:, = {Commit, Abort}

SE:, = {Split, Commit, Abort}

IE,, = {Split}

TE:, = {Commit, Abort}

t satisfies the fundamental Axioms I to IV

View, = Hu

ConflictSet,, = {p:[od] | t # t., Inprogress(p:[od])}
Yob dp pfob] € H = (ob is atomic)

Commit, € H = —(t Cy t)

dob dq Jt; Commit,|q,[ob]] € H = Commit, € H
Commit; € H = Vob Vq Vt; (g;[0b] € AccessSet; = Commit,|g;[ob]] € H)
dob dq Jt; Abort,[q:,[0b]] € H = Abort; € H
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15. Abort; € H = VYob VYq Vt; (gi,[0b] € AccessSet; = Aborty[g:;[ob]] € H)

16. Split, [ty, CanAccess;,(ta)] € H = (CanAccessy,(ta) # ¢ = (s AD ta))

17.  Split, [ty, CanAccess;,(ta)] € H < Delegate,[ty, DelegateSet] € H

18. Yob dp Tt p:[ob] € DelegateSet = (Vt' Vq (ResponsibleTr(gy[ob]) = t, A
(gu[ob] — Delegatey,[ty, DelegateSet])) = qu[ob] € DelegateSet)

19. ConflictSets, = {p:[ob] | (t # ts,t # ta, Inprogress(p:[od])) V
(t = tq, Inprogress(p:[ob]) A (p:[ob] & CanAccess;,(t,)))}

20. Vob Vp,q (3r (r,[0b] € CanAccesss,(ta))) A pi,[0b] € H = (pt,[0b] — ¢1,][0b])

In the split transaction model, a transaction can be initiated through either the Begin
event, called primary transaction, or the Split event, called split transaction. Although
primary and split transactions are associated with different significant events [Axioms 1
and 4], their corresponding events share the same semantics [Axioms 11-15].

Split,, [ts, CanAccessy,(t,)] splits a primary or a split transaction ¢, into a splitting
transaction ¢, and split transaction ¢,. Since the idea is to allow the splitting transaction
to give the split transaction the responsibility for finalizing some of its operations (these
are the operations in the DelegateSet), the Split event is partially specified in terms of the
delegation event Delegate,,[ty, DelegateSet] [Axiom 17]. To be more precise, a splitting
transaction transfers to a split transaction the responsibility for all the operations on a
particular object [Axiom 18]. That is, when a splitting transaction delegates an operation
on an object ob, it delegates all the operations on ob that the splitting transaction is
responsible for at the time of the split. Here, it is interesting to note that, in contrast to
transactions initiated by the Begin event, through delegation, split transactions can affect
objects in the database by committing or aborting delegated operations and without
invoking any operation on them.

Further, the splitting transaction has the ability to allow the split transaction to
view some of its operations on some objects without conflict (these are the operations in
the CanAccess,(t,)) [Axiom 19]. However, the splitting transaction cannot view the op-
erations of the split transaction on the same objects. A splitting transaction can continue
to invoke operations on such objects as long as the split transaction has not invoked an
operation on them [Axiom 20].

A split is independent, if CanAccess;, (t,) is empty. In the case of serial split in
which CanAccess;,(t,) is not empty, ¢, develops an abort dependency on t,” [Axiom 16].

Asin the case of nested transactions, Axioms 7, 10 and 11 are not sufficient to ensure

serializability of split transactions due to Axioms 17 and 19. However, split transactions

"By taking into consideration the semantics of operations on the individual objects in CanAccessy, (ts),
it would be possible to induce weaker dependencies, e.g. commit dependency, rather than abort
dependency.
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are serializable as shown in [6]. That is, if ¢, splits ¢, serially, then t, preceeds t; in any
serializable history in which both commit. If the spit is independent then ¢, and ¢, are
serializable in any order. It should be pointed out that the above axiomatic definition
of split transactions is more general than their original description which was within the

context of lock-based concurrency control protocols.

4.2.3 Nested-Split Transactions

Given our definitions for atomic transactions (see Definition 3.5), nested transactions
(see Definition 4.8) and split transactions (see Definition 4.9) in axiomatic form, it is
not difficult to see which axioms reflect the differences between these models and which
axioms capture their similarities.

For instance, the Begin, Abort, and Commit events in the split transaction model
have the same semantics as those for the root transactions in the nested transaction model
(which are the same as those of atomic transactions). However, although at first glance
the Spawn event in nested transactions and the Split event in split transactions appear to
have similar semantics, their precise definitions show the actual differences, for instance,
in the induced dependencies. Specifically, whereas the Spawn event induces a commit
dependency and a weak-abort dependency between the spawning and the spawned trans-
actions [Axiom 18], the Split event induces an abort dependency of the split transaction
on the splitting transaction [Axiom 19]. In addition, in contrast to the Spawn event, due
to delegation, the Split event may associate a non-empty access set with the split transac-
tion. Turning to similarities, it is possible to prove that both nested and split transactions
produce only hierarchical transaction structures.

Given the similarities and differences between two models, the question of whether
the two transaction models can be used in conjunction becomes important. Let us consider
combining aspects from the nested and split transaction models. We would like to check
whether the resulting model retains the properties of the two original models. This
combination is derived by combining, where possible, nested transaction structures with
split transaction structures, i.e., by considering how to handle existing dependencies, the

view and the conflict set of the individual transactions.

Split-and-Nested Transactions

The obvious first approach is to merge the definitions of the two models. The re-
sulting model is called Split-and-nested Transaction Model. In this model, given a nested
transaction, it is possible to split the root or a subtransaction. A split transactions may

further split creating another split transaction, or spawn a new subtransaction becom-
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Figure 5: Structure of Split-and-Nested Transactions

ing a root of a new nested transaction. In this way, a set of possibly depended nested

transactions may be created (See Figure 5).

DEFINITION 4.10: AN AXIOMATIC DEFINITION OF SPLIT-AND-NESTED TRANSAC-
TIONS

to denotes a root or a primary transaction. Parent(to) = Ancestor(t,) = ¢.

t. denotes a subtransaction of ¢,. Parent(t.) = t,.

tp denotes the split transaction of ¢,. Parent(t,) = Ancestor(ty) = ¢.

tp or t, denotes a splitting transaction, root/primary, a subtransaction, or split.

SE;, = {Begin, Spawn, Split, Commit, Abort}
IE;, = {Begin}

TE:, = {Commit, Abort}

SE;, = {Spawn, Split, Commit, Abort}

IE;, = {Spawn}

TE:, = {Commit, Abort}

SE;, = {Spawn, Split, Commit, Abort}

IE;, = {Split}

TE;, = {Commit, Abort}

10..25. Axiom 7..22 of Definition 4.8.

26..30. Axiom 16..20 of Definition 4.9.

31. Split, [ty, CanAccess,,(t,)] € H = Parent(ty) = ¢

© N o oWy =

Axiom 31 ties together Split, a significant event that creates a new transaction not sup-

ported by nested transactions, with the notion of parent and ancestral transactions, not
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present in split transactions in a way similar as in the case of Begin and Spawn events
[Axioms 18 and 20 (or Axioms 16 and 18 of nested transactions)].

The split-and-nested transaction model produces only hierarchical transaction struc-
tures as the two original models. It involves the same dependencies between the various
transaction types which are found in the original models. The additional abort depen-
dency induced between a root or a subtransaction and its split transaction, in the case of
serial split [Axiom 26 (or Axiom 16 of Split transactions)|, does not violate the structure
of nested transactions. Such abort dependencies between (sub)transactions of a nested
transaction and other (sub)transactions are possible in the nested transaction model and
may develop when transactions invoke conflicting operations on shared atomic objects
[Axiom 10 of nested transactions].

Although this new model retains the properties of split transactions, it does not
retain those of nested transactions. Specifically, split-and-nested transactions do not have
the same ordering and failure properties of nested transactions. For instance, the split-
and-nested transaction model allows the effects of subtransactions to be made permanent
in the database by a transaction other than their ancestral root transaction.® To illustrate
this, suppose a subtransaction ¢ splits delegating to its split transaction ¢’ an operation
pilob]. The delegated p;[ob] may be committed by t' since, when a split transaction
commits, it commits all the operation in its AccessSet to the database [Axioms 16 and
31]. Furthermore, in the case of an independent split, it is possible for ¢ (or its ancestral
root transaction) to abort while p;[ob] is committed by ¢’ and vice versa.

The split-and-nested transaction model is an example of an open-nested transaction
model in which some component transactions (subtransactions) may decide to commit
their effects in the database unilaterally. In Section 4.3, we will synthesize an open nested
transaction model by precisely stating the requirements on the transactions adhering to
the model.

Nested-Split Transactions

The split-and-nested transaction model defined above fails to retain the properties
of nested transactions because the split-and-nested transaction model does not distinguish
between splitting a root and a subtransaction. In the split-and-nested transaction model,
it is possible for a subtransaction to split a root transaction. In fact, a split transaction is

always a root transaction. However, the semantics of subtransactions are different from

81t can be proved (1) that operations invoked by subtransactions of a nested transaction are committed
to the database only by the root transaction, and none of the subtransactions commit any operations,
and (2) that if a root transaction aborts, all operations performed by the root and its descedants abort

[6].
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those of root transactions. This suggests that the semantics of a split transaction should
be similar to those of its splitting transaction. Thus, when a root transaction splits, it
should split into two root transactions, and when a subtransaction splits, it should split
into two sibling subtransactions. In this way, a split of a subtransaction can no longer make
any operations’ effects permanent in the database but, as with any other subtransaction,
when it commits, it delegates all operations in its access set to its parent transaction. We
call such a derived model Nested-Split Transaction model. Nested-split transactions still
retain the properties of split transactions in the sense that both a splitting and its split
transaction exhibit the same behavior (i.e., their associated significant events have the
same semantics) [Axioms 11 to 15 of split transactions].

The axiomatic definition of nested-split transactions can be derived from the defini-
tion of split-and-nested transactions by modifying Axioms 30 and 31, and by adding two
new axioms, Axioms 32 and 33, one of which specifies the dependencies that are assumed

to hold after a subtransaction is split into two subtransactions.

DEFINITION 4.11: AN AXIOMATIC DEFINITION OF NESTED-SPLIT TRANSACTIONS
to denotes a root or a primary transaction. Parent(to) = Ancestor(t,) = ¢.

t. denotes a subtransaction of ¢,. Parent(t.) = t,.

t, denotes the split transaction of ¢,. Parent(t,) = Ancestor(ty) = ¢.

tp or t, denotes a splitting transaction, root/primary, a subtransaction, or split.

SE;, = {Begin, Spawn, Split, Commit, Abort}
IE;, = {Begin}
TE:, = {Commit, Abort}
SE;, = {Spawn, Split, Commit, Abort}
IE;, = {Spawn}
TE:, = {Commit, Abort}
SE;, = {Spawn, Split, Commit, Abort}
IE,, = {Split}
TE:, = {Commit, Abort}
10..25. Axiom 7..22 of Definition 4.8.
26..29. Axiom 16..19 of Definition 4.9.
30. Vt,t=t,Vt e Descendant(t,) Vob Vp,q
(3r (e, [0b] € CanAccess:,(t,))) A pe,[ob] € H = (pi[ob] — gy, [0b])
31. Split, [ts, CanAccess;,(t,)] € H = Parent(t,) = Parent(t,)
32. Split, [ty, CanAccess;,(t,)] € H =
(Parent(t,) # ¢ = (t» WD Parent(t,)) A (Parent(t,) CD t3))

© PN oo W
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33. Vob 3t dp p:i[ob] € DelegateSet =
(Vt' € Descendant(t,) Yq (qu[ob] — Split:,[ts, CanAccess,(t,)]) =
Jt. ((Delegate, [t,, AccessSet: | — Split,,[ty, CanAccessy,(t,)]) A
ge[ob] € AccessSet;,)

Axiom 30 corresponds to Axiom 20 of split transactions extended to take into ac-
count the descendants of a splitting transaction ¢, which have the ability of invoking
operations without conflicting with the operations of ¢,. That is, the descendants of a
splitting transaction as well as the splitting transaction itself, can continue to invoke op-
erations on objects in the CanAccess,(t,) as long as the split transaction has not invoked
an operation on them.

Axiom 31 establishes the parent relationship of the split subtransaction by specifying
that its parent is the parent of the subtransaction whose split it is.

Axiom 32 states that when a subtransaction ¢, splits a transaction ¢, the depen-
dencies between subtransaction ¢, and its parent, say transaction ¢,, are assumed to hold
between ¢, and t,.

Axiom 33 states that in order for an operation on an object ob to be delegated at the
time of a split, the splitting transaction should be responsible for all the operations on ob
invoked by any of its descendant transactions. Consequently the split subtransaction is
never delegated operations on objects which have been accessed by an active descendant
of the splitting transaction. In the opposite case, the model would have required that
the split subtransaction be considered an anscestor of the descendants of the splitting
transactions due to Axiom 19.

Note that not all of the existing dependencies of splitting transaction are retained
by the split transaction. For example, when a non-leaf subtransaction ¢, splits, the de-
pendencies between subtransaction t, and its children are not assumed to hold between
its split transaction ¢, and t/s children. The reason is that by establishing these depen-
dencies either the hierarchical structure of the nested transactions is destroyed or some of
the dependencies required by the nested transactions are eliminated. To illustrate this,
consider the case of the independent split of a non-leaf subtransaction t. into t.; and t.,.
If the above dependencies were retained, a subtransaction t4 of . would have weak-abort
dependencies on two ancestors, t.; and t.,, which is clearly disallowed by the hierarchical
structure of the nested transaction model. The effects of retaining these dependencies are
analyzed in [4].

Axioms 30 to 33 establish a sibling relationship between the splitting and split
subtransactions. Hence, given a nested transaction, it is possible to split a root or any
subtransaction while properties of both nested and split transactions are retained. Fur-

thermore, due to delegation and the specification of CanAccess set at the time of a split,
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two sibling transactions can effectively cooperate while they are still executing. In nested
transactions, two sibling subtransactions cannot achieve cooperation while both siblings
are active due to the conflict set specification of nested transactions (i.e., conflicts relative
to the operations invoked by a transaction are not considered only by the descendants of
the transaction). A nested subtransaction ¢ can observe the effects of one of its siblings ¢’
on an object without conflicts after ¢’ has committed and delegated all its operations to
their parent. Thus, nested-split transactions support a higher level of visibility between
subtransactions than nested transactions making them a useful new transaction model for
a cooperative environment. (A similar type of interaction occurs in the extended nested

transaction model proposed in [15].)

4.3 Open Nested Transaction Model

In an open nested transaction model, component transactions may decide to commit or
abort unilaterally. Assume that we need an open nested transaction model that supports
two-level transactions with special components. Let s be a two-level transaction that has
n component transactions, %q,..,f,. Some of the components are compensatable; each
such ¢; has a compensating transaction comp_t; that semantically undoes the effects of ¢;.

In order to derive the specification of this new transaction model, during synthesis
we need to identify the different types of transactions which the model will support, the
significant events associated with each type and the relationships among transactions.
We will express these transaction relationships in terms of the significant events of the
involved transactions. Also, for each type we need to define the visibility (i.e., view set)
and conflict set of the transactions of the type and the semantics of the events associated

with a particular transaction.

4.3.1 Specifying the Building Blocks

Let us begin the specification of this model by associating all transactions, components
or otherwise, with the significant events {Begin, Commit, Abort}. Component and com-
pensating transactions are atomic transactions with structure-induced inter-transaction
dependencies.

Component transactions can commit without waiting for any other component or
s to commit. However, if s aborts, a component transaction that has not yet committed
will be aborted. We can capture this requirement using a weak-abort dependency:

V0 <i<n(t WD s)

Suppose some of the components of s are considered vital in that s is allowed to

commit only if its vital components commit. These components are members of the set
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VitalTrs. We can capture this requirement as follows:

V0 <i<mn(t € VitalTrs = (s AD t;)).
If a vital transaction aborts, s will be aborted. Transaction s can commit even if one of
its non-vital components aborts but s has to wait for them to commit or abort. This is
expressed using a commit dependency.

V0 <i<n(t¢VitalTrs = (s cD t;)).

Assume that a compensatable component of s is a component of s which can com-
mit its operations even before s commits, but if s subsequently aborts, the compensating
transaction comp_t; of the committed component ¢; must commit. Compensatable com-
ponents are members of the set Comp_Trs.

Abort, € H = V0<1<n (t; € Comp-Trs = (comp_t; SCD t;)).
Recall that SCD stands for strong commit dependency whereby if ¢’ commits, t” must

commit.

Compensating transactions need to observe a state consistent with the effects of their
corresponding components and hence, compensating transactions must execute (and com-
mit) in the reverse order of the commitment of their corresponding components. We can
capture this requirement by imposing a begin-on-commat BCD dependency on compensat-
ing transactions:

Vt; tj € Comp Trs ((Commit,, — Commit,,) = (comp_t; BCD comp_t;)).
Begin-on-commit dependency states that transaction t; cannot begin executing until
transaction ¢; has committed.

(t; BCD t;): (Beging, € H = (Commit,;, — Beginy,))

Suppose we assume that a compensating transaction compensates the effects of a
component by invoking the undo operations of each of the operations invoked by the
component. In this case, the compensating transaction must be allowed to view (the
current state of) only those objects accessed by the corresponding component:

VieWeomp 1; = Projection(H, (Vt, ob, p pi[ob] | Iq g1, [0b] € Hy)).

Since we assume that all component transactions, including non-compensatable
ones, can commit at any time, non-compensatable components should not be allowed
to commit their effects on objects when they commit. There are a number of ways to
structure non-compensatable component transactions [6, 9]. The simplest method is to
structure them as subtransactions (as in nested transactions) which at commit time del-
egate all the operations in their AccessSet to s.

Vo<i<m

(t; & Comp_Trs = (Commit,, € H < Delegatey,[s, AccessSet,;| € H)).

It is possible to continue the development of our simple hierarchical transaction
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model but at this point we have already considered all the basic interactions among the
various special component transactions. For instance, it is possible to require that some
component transactions execute in a predefined order as in the case of the Saga transaction

model [12].

4.3.2 Complete Specification

Now let us put everything together. These axioms constitute the specifications of the

open nested transaction model.

DEFINITION 4.12: Axiomatic definition of Open Nested Transactions

s denotes a top-level transaction.

t, denotes either a top-level or a component transaction.

t. denotes a compensatable component. t, € Comp_T'rs

comp_t. denotes a compensating transaction of ..

t, denotes a transaction which is not a non-compensatable component.
t,=sVt,=CompTrsVt,=comp.lt,

t denotes either a top-level, a component, or a compensating transaction.

1. SE; = {Begin, Commit, Abort}

2. IE, = {Begin}

3. TE; = {Commit, Abort}

4. t satisfies the fundamental Axioms I to IV

5. View;, = Hg.

6. ConflictSet, = {py]ob] | ResponsibleTr(py[ob]) # t, Inprogress(py[ob])}
7. Yob Jp pfob] € H = (ob is atomic)

8. Commit, € H= —~(tCy t)

9. dob dp 3t' Commit,,[py[ob]] € H = Commit,, € H

10. Commit,, € H = Yob Vp Vt' (py[ob] € AccessSet,, = Commity,[py[ob]] € H)
11. dob dp t' Abort py|ob]] € H = Abort, € H

12.  Abort; € H = VYob Vp Vt' (py[ob] € AccessSet, = Abort:[pwv]ob]] € H)
13. ViewWeomp.t, = Projection(He, (Vt', 0b, p py[ob] | 3¢ ¢, [0b] € Het))

14. Vt ¢ CompTrs Commit, € H < Delegate;[s, AccessSety] € H

15. Begin: € H = ((t WD s) A

(t € VitalTrs = (s AD t)) A (t & VitalTrs = (s CD t))).
16. Abort, € H = Vi (t; € Comp_Trs = (comp_t; SCD t;))
17. Vt; t; € Comp Trs ((Commit,, - Commit,,) = (comp_t; BCD comp_t;))

In summary, Axioms 1 to 12 are similar to the corresponding ones of atomic transactions.

All twelve axioms pertain to top-level transactions and their compensatable components.
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As in the case of atomic transactions, everything is visible to these transactions [Axiom 5]
whereas only objects accessed by a component are visible to its compensating transaction
[Axiom 13].

For all transactions, a transaction’s operations conflict with all ongoing operations
invoked by other transactions [Axiom 6]. The serialization order must be acyclic, i.e.,
the transactions must be serializable taking into consideration the presence of delegation
[Axiom 8].

Axioms 8 to 12 state the failure atomicity property of open nested transactions
whereas Axioms 14 to 17 capture their failure properties with respect to compensatable
and non-compensatable transactions. When a non-compensatable component commits,
it delegates its access set to its top-level transaction [Axiom 14]. If top-level transaction
aborts the compensating transaction comp_t; for the committed component ¢; must com-
mit [Axiom 16]. Compensating transactions must execute (and commit) in the reverse
order of the commitment of their corresponding components [Axiom 17].

Axiom 15 states that when a component begins, the component has a weak-abort
dependency on its top-level transaction; also, if the component is vital, the top-level trans-
action has an abort dependency on the component, otherwise the top-level transaction
has a commit dependency on the component.

The synthesis process followed above can be viewed as the derivation of a new model
by combining and modifying the specifications of existing transaction models, namely,
nested transactions and sagas [12]. We should point out that our open nested model is
similar to the DOM transactions [3].

Obviously, the nested transaction model and the open nested transaction model
have different properties merely due to the fact that they involve different types of
component transactions. (Subtransactions of nested transactions are non-vital and non-
compensatable.) This is still the case even if we consider the special case of an open nested
transaction all of whose component transactions are non-vital and non-compensatable and
compare it with a two-level nested transaction. The reason is that these two special nested
and open nested transactions have different concurrent behaviors and different visibility
properties because of the differences in the specifications of views and conflict sets. But
for these differences, the two special cases of nested and open nested transactions have the
same permanence and recovery properties since (1) they have similar structure-induced
dependencies, and (2) their Commit and Abort events have similar semantics.

The above exercise reveals the many advantages of using a simple formalism like
ACTA to deal with extended transactions: We can precisely state the behavior of trans-
actions adhering to a given transaction model; We can analyze if higher-level require-

ments are satisfied; We can modify some of the properties to tailor a different transaction
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model; We can precisely delineate the differences between models and understand what

contributes to the differences and similarities between transaction models.

5 Conclusion

The ACTA transaction framework used in this paper to synthesize new transaction mod-
els was motivated by a need to provide a RISC-like meta model for treating extended
transactions. We showed how the building blocks of ACTA, namely, history, dependen-
cies, view of a transaction, and conflict set of a transaction along with the notion of
delegation, glued by first-order logic, serve as powerful tools for the development of new
transaction models in a systematic and precise way.

We also showed how ACTA is amenable to the synthesis of new transaction mod-
els by tailoring existing models or by starting from first principles. Specifically, chain
transactions were a result of a restriction imposed on the invocation of the Join event
associated with joint transactions such that they result in linear structures only. This
restriction was captured by an axiom which, when added to the axiomatic definition of
joint transactions, yields the definition of chain transactions. Also, reporting transactions
and co-transactions were derived from joint transactions by removing the restriction that
Join be a terminating event. This allows a transaction to join multiple times with another
transaction, thereby delegating more operations to the joint transaction. Co-transactions
are more flexible than reporting transactions since they allow transactions to join back
and forth.

Nested-split transactions were derived by combining the axiomatic definitions of
nested transactions and split transactions, the requirement being that nested-split trans-
actions retain the properties of nested and split transactions.

Finally, an open nested transaction model was synthesized starting from first prin-
ciples. The behavior of transactions adhering to the model were derived from high-level
requirements.

ACTA has also been applied to derive from the original definition of the saga model
[12], more flexible saga models in which failed components can be retried, replaced with
alternative ones, or ignored. More flexibility was achieved by introducing new component
transaction types, new significant events associated with these types, and new dependen-
cies describing the relationship between these new transaction types [9].

These new extended transactions models show that besides supporting the specifica-
tion and analysis of existing transaction models [4, 8, 6], ACTA has the power to support
the synthesis and analysis of new extended transaction models in a systematic way, as

well as the tailoring of existing ones. Thus, handling the requirements of new database
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applications is facilitated.
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