Major Real-Time Challenges
For Mechatronic Systems*
(invited paper)T

Prof. John A. Stankovic
Dept. of Computer Science
University of Massachusetts

Ambherst, Massachusetts 01003
May 14, 1993

1 Introduction

While robots have been very successful in many environments, truly cognitive
robots used in mechatronic systems have yet to appear. Such robots would sense,
plan, act, and learn in the pursuit of dynamically varying objectives. The robots
would have to be very flexible in dealing with hazardous and uncertain envi-
ronments, sometimes alone, sometimes with other robots, and sometimes with
direction from humans. Many of the tasks that such robots would be perform-
ing are subject to reliability and real-time constraints. Dealing with real-time
constraints requires a major change to some of the paradigms and implementa-
tions previously used by Al researchers [3, 4]. For example, Al systems must be
made to run much faster (a necessary but not sufficient condition [11]), allow
preemption to reduce latency for responding to new stimuli, attain predictable
memory management via incremental garbage collection or by explicit man-
agement of memory, include deadlines and other timing constraints in search
techniques, and further develop anytime algorithms, time driven inferencing,
and time driven planning and scheduling. Rules and constraints may also have
to be imposed on the design, models, and languages to facilitate predictability.
Understanding what predictability means for such systems is also important.

*This work has been supported in part by NSF under grants IRT 9208920 and CDA 8922572,
by ONR under grant N00014-92-J-1048, and the Scuola Superiore S. Anna, Pisa, Italy, while
the author was on sabbatical.

1To appear in Proceedings of International Workshop on Mechatronical Computer Systems
for Perception and Action, June 1993.



Typical applications which might make use of this technology include teams
of robots working together to dig up a gas pipe, or working in other hazardous
environments such as nuclear power plants; or autonomous navigation in various
environments such as on the surface of the earth, subsea, space, or on the surface
of planets such as MARS. This brief paper identifies many challenges that must
be met for such applications, but focuses on the real-time issues. We also briefly
discuss several promising ideas that may serve as a basis for these systems (from
the real-time perspective), and present suggested research directions. While
most of the real-time challenges posed in this paper are discussed in terms of
the grand challenge of truly cognitive robots, they also apply to much simpler
real-time mechatronic systems.

2 Real-Time Challenges

The real-time challenges for mechatronic systems are divided into two classes:
those that are more specific to mechatronic systems (Section 2.1), and those
that are more general within the field of real-time computing [12] (Section 2.2).

2.1 Specific to Mechatronic Systems

Major real-time challenges for Mechatronic systems include:

e learning timing behavior: can a system learn what deadlines are and
adapt to meet these deadlines in a predictable manner; what mechanisms
are required to permit self analysis with respect to time; can neural net-
works handle sophisticated timing requirements [9],

e re-learning: due to environmental changes, new objectives, or faults can
the system un-learn in time and re-learn new timely and predictable be-
havior; it seems incredibly difficult to characterize the timeliness of the
learning process itself,

e tradeoff analysis: exact answers often cannot be achieved in time, if
ever, therefore techniques to trade off quality of solution for processing
time are required,

e worst case execution time: can Al programs be effectively bounded
without limiting flexibility and learning,

e controlling variance: processing times for individual tasks, for compo-
sition of tasks including blocking, for outputs produced and the time at
which they are produced, etc. may have high variance making it difficult
to design a cost effective solution; we need better techniques to address
possible high variance, especially with respect to meeting deadlines,



e actively controlling deadlines: in many situations it may be possible
to actively seek to modify deadlines, e.g., by slowing down the robot or
by reducing the frequency of when a sensor is polled; this may be one
technique for controlling some aspects of variance; also, what deadlines
are hard and which deadlines are soft and can they be controlled or ma-
nipulated,

e system integration: how can large numbers of tasks be composed to
handle cognitive situations, yet their net timing performance be predictable,

e distributed control: moving more intelligence to the reactive front ends
of the system increases ability to respond quickly (in time), but may in-
crease communication costs and the need for distributed cooperation pos-
sibly slowing global decisions; distributed control requires the integration
of scheduling of cpu and communication at two levels: between the dis-
tributed entities of reactive front end control and from this front end with
higher level cognitive entities; see also the adaptivity and stability issues
raised below,

e time bounded communication: real-time datagrams and real-time vir-
tual circuits with quality of service levels are required [1]; vast amounts
of information may be involved, e.g., in vision subsystems; interaction of
the communication protocols with the kernel for end-to-end timely per-
formance is required,

e off-line vs. on-line: what is the impact of off-line a priori knowledge
together with subsequent design and implementation decisions made on
the on-line operation of the system, both for functionality and timing,

e faults: the integration of handling faults and real-time constraints in
a dynamic on-line manner is in its infancy; mechatronic systems should
already be dealing with noisy, uncertain, missing and incorrect information
[3, 5], but how this relates to handling faults and recovery in time as part
of producing dependable systems has not been explored well, and

e adaption and stability: dynamically adapting in time to uncertain en-
vironmental inputs is very difficult especially when trying to guarantee
stable performance.

2.2 More General Real-Time Challenges

The science and technology of real-time computing has progressed significantly
over the last 10 years. However, many open questions remain. Many of these
must be solved in order to provide a well understood and analyzable real-time
foundation (software and hardware) upon which to develop the cognitive layers.
For example, if a cognitive level planner is reasoning about time and decides to



execute certain tasks, if the underlying system is not predictable and controllable

then the careful time planning may easily be violated by the actual run-time

system. More general, but key real-time problems include:

3

can we formally analyze the timing properties of the system,

how should we specify timing constraints which are flexible, dynamically
change and have more sophisticated semantics than addressed to date by
the real-time community,

what languages and language features are appropriate,

what RTAI and system level paradigms [14] are or are not appropriate
and how do they affect each other,

what interfaces should exist between the OS and the reactive front-end
and between the OS and the cognitive layer [13],

how should various subsystems be integrated such as vision and robot
control,

can we solve the dilemma of wanting a predictable, analyzable, safely
behaving system, but one which operates in highly uncertain environments
and learns,

how to exploit high performance parallel computing for real-time prob-
lems,

what should be the comprehensive and integrated scheduling approach for
networks of multiprocessors,

what part will real-time databases play in the solution (note, very limited
work has been done on real-time databases), and

what improvements to design tools and its associated analysis are required
to engineer such systems.

Promising Technology

To support mechatronic systems, real-time systems technology must provide
a higher degree of on-line adaptability and flexibility than is typically found
in most of today’s real-time systems. Here we briefly discuss two promising

research directions: reflective real-time systems, and multi-level and multi-
dimensional scheduling algorithms. Embedded in both of these promising di-
rections is adaptive fault tolerance.



3.1 Reflective Real-Time Systems

Reflection is defined as the process of reasoning about and acting upon the
system itself. Reflection is not new. It has appeared in Al systems, e.g., within
the context of rule based and logic based languages [7, 10]. More recently
it is being used in object-oriented languages and object-oriented databases in
order to increase their flexibility [6, 8]. Combining object oriented programming
with reflection seems to be very important since object oriented programming
supports abstraction and good design and adding reflection supplies flexibility.
Reflection also has been touted as valuable to distributed systems for supporting
transparency and flexibility [18]. While reflection is not new, using reflection
is real-time systems is new. In fact, the only work we are aware of is our own
work [15, 16].

We believe that the notion of a reflective architecture can serve as a central
principle for building complex, flexible, and fault tolerant real-time systems,
and, if used correctly, can support nice timing analysis properties because the
notion of time and certain implementation aspects are visible across the lay-
ers. This visibility seems to be required to do realistic timing analysis, but is
at odds with typical design that hide all implementation issues. Further, by
identifying reflective information, exposing it to application code, and retaining
it at run time, a system is capable of reacting in a flexible manner to changing
dynamics in the environment including faults, to better evolve over time, and
even for better monitoring, debugging, and understanding of the system. It is
also a common understanding that we want integrated system-wide solutions
so that design, implementation, testing, monitoring, fault tolerance, and vali-
dation are all addressed. We argue again that what is required is a reflective
system architecture that exposes the correct meta-level information so that
the application programmer and various tools can utilize it at design and im-
plementation time, and the actual system can use it at run time. Exactly what
this information should be and how it should be supported will be the subject
of research for many years. An example of reflective information for real-time
computing at the kernel level can be found in [15, 16]. Also, in [2], a structure
for adaptive fault tolerance is proposed where adaptive control and management
of redundancy under time constraints is supported by identifying and exposing
reflective information.

3.2 Multi-Level and Multi-Dimensional Scheduling

One key challenge we face in building complex real-time systems is that they
must be both flexible and predictable. To do this we must first move away
from completely static solutions. For example, in static scheduling we assume
that we know all the tasks, all their deadlines, worst case computation times,
importance levels, precedence constraints, communication requirements, fault
tolerance requirements, resource requirements, and their future arrival times.



This is unrealistic. Second, we must control how dynamic the system can be.
For example, for most real-time systems, it is reasonable to require that we
know everything in the above list except the future arrival times. For a RTAI
system less information may be known, but even for these systems we cannot
regress to the completely dynamic case and hope to analyze the timing prop-
erties of the system. A completely dynamic situation is acceptable for general
purpose computing, but not for real-time computing. All of this information
that we must acquire is part of the reflective architecture we propose. Next,
we must decompose the system according to functionality, granularity of timing
constraints, fault tolerance requirements, and task criticalness. This will entail
different scheduling solutions in different subsystems and for different gran-
ularity and criticalness requirements. These multi-level scheduling solutions
must sometimes be integrated across subsystem interfaces, although a goal is
to minimize such interactions. Also, it may also be necessary to schedule in
a multi-dimensional manner, meaning simultaneously accounting for cpu, data
resources, 1/O resources, precedence constraints, etc. Otherwise, unpredictable
blocking may occur, thereby causing missed deadlines.

In such a system, the types of performance guarantees would vary depend-
ing on cost, subsystem, criticalness, timing granularities, fault hypotheses, and
expected workloads including overloads. For example, it should be possible to
guarantee 100% of critical tasks subject to fault hypotheses made when allocat-
ing time for these tasks, and have a quantifiable graceful degradation in overload
without losing any critical tasks. If unexpected overload were to occur on the
critical tasks (beyond what was conservatively planned for), then the system
should be flexible enough to, in a best effort manner, borrow processing time
from other tasks. In a more static system design the system would just fail at
this point.

4 Research Directions

While it is obvious that research advances on any of the multitude of individual
topics presented here may improve the likelihood of success, I propose several
more integrated research directions, including:

e integrate research in intelligent sensors and actuators, robotic control,
distributed control, real-time scheduling, and real-time kernels or micro-
kernels,

e integrate research in cognitive level real-time processing with a real-time
predictable platform consisting of a real-time kernel and hardware; part of
the work here would be to develop good interfaces between the cognitive
and system layers, and

e combine the first two suggestions into an integrated system.



To produce good research in these three areas requires a fairly large and
interdisciplinary team. It is probably best to be somewhat application driven,
at least at first, and then try to generalize. For smaller teams or even as a
good strategy for incremental development, one could assume much simpler
cognition levels, dynamics and goals than the ultimate goal of a truly cognitive
robot. With the proper base of a predictable and analyzable framework, one
could then try to incrementally improve it without losing these nice properties.

5 Summary

This paper has presented a wealth of open problems and challenges, many very
difficult to solve. It is unfortunate that so many problems still remain, but that
is reality. Too often the difficulty of satisfying timing constraints in a scientific
manner is underestimated or ignored, e.g., by treating real-time as fast comput-
ing. For a discussion of this common misconception as well as others see [11].
One challenge, then, might be to not repeat the mistakes of the past where time
was treated as an afterthought, rather we must elevate it to a central principle
in the system design and implementation. In fact, possibly the first question
that must be answered when building such systems is how will we represent and
deal with time in the deployed system. Many research directions can be envi-
sioned for this emerging field, but those that stress integrated solutions across
hardware and software, across reactive levels to the highest levels of cognition,
and across functional and time requirements, will be the most valuable.

6 Acknowledgments

I would like to thank Rod Grupen and Giorgio Buttazzo for their comments on
an earlier version of this paper.

References

[1] K. Arvind, K. Ramamritham, and J. Stankovic, A Local Area Network
Architecture for Communication in Distributed Real-Time Systems, invited
paper, Real-Time Systems Journal, Vol. 3, No. 2, pp. 113-147, May 1991.

[2] A. Bondavalli, J. Stankovic, and L. Strigini, Adaptable Fault Tolerance
for Real-Time Systems, Proc. Predictable Distributed Computing Systems,
September 1993.

[3] K. Decker, V. Lesser, and R. Whitehair, Extending a Blackboard Architec-
ture for Approximate Processing, Real-Time Systems Journal, 2, pp. 47-79,
1990.



[4]

[5]

[12]

[13]

B. Hayes-Roth, Architectural Foundations for Real-Time Performance in
Intelligent Agents, Real-Time Systems Journal, 2, pp. 99-125, 1990.

E. Horvitz and G. Rutledge, Time Dependent Utility and Action Under Un-
certainty, Proc. of the Sizth Conference on Uncertainty in Al Los Angeles,
July 1991.

M. Ibrahim, editor, Proc. OOPLSA 91 Workshop on Reflection and Met-
alevel Architectures in Object Oriented Programming, October 1991.

P. Maes, Concepts and Experiments in Computational Reflection, OOP-
SLA 87, Sigplan Notices, Vol. 22, No. 12, pp. 147-155, 1987.

S. Matsuoka, T. Watanabe, Y. Ichisugi, and A. Yonezawa, Object Oriented
Concurrent Reflective Architectures, 1992.

W. Miller, R. Sutton, and Paul Werbos, editors, Neural Networks for Con-
trol, MIT Press, Cambridge, Mass., 1990.

B. Smith, Reflection and Semantics in a Procedural Language, MIT TR
272, 1 982.

J. Stankovic, Misconceptions About Real-Time Computing: A Serious
Problem For Next Generation Systems, IEEE Computer, Vol. 21, No. 10,
pp- 10-19, October 1988.

J. Stankovic and K. Ramamritham, Hard Real-Time Systems, Tutorial
Text, IEEE Computer Society Press, Wash. DC, 618 pgs., 1988.

J. Stankovic, K. Ramamritham and D. Niehaus, On Using The Spring
Kernel To Support Real-Time AI Applications, Proc. EuroMicro Workshop
on Real-Time Systems, June 1989.

J. Stankovic and K. Ramamritham, The Spring Kernel: A New Paradigm
for Real-Time Systems, IEEFE Software, Vol. 8, No. 3, pp. 62-72, May 1991.

J. Stankovic, On the Reflective Nature of the Spring Kernel, invited paper,
Proc. Process Control Systems 91, February 1991.

J. Stankovic, Reflective Real-Time Systems, in preparation May 1993.

J. Stankovic, Distributed Real-Time Computing: The Next Generation,
invited paper, special issue of Journal of the Society of Instrument and
Control Engineers of Japan, Vol. 31, No. 7, pp. 726-736, 1992.

R. Stroud, Transparency and Reflection in Distributed Systems, position
paper for Fifth ACM SIGOPS European Workshop, April 1992,



