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Abstract. The original DIOGENEs design methodology achieves its fault-tolerant layouts of VLSI pro-
cessor arrays by designing the network that interconnects the processors as a (possibly large) number
of bundles of wires, where each bundle is organized as either a stack or a queue. The benefits of the
methodology sometimes come only at high cost, in terms of both the needed configuration hardware and
the algorithmic cost of finding efficient configurations. In this paper, we present an improved version of
the original methodology, that simultaneously streamlines the design process and produces more cost-
effective layouts. The fundamental change imposed by this new methodology replaces the possibly large
number of “stacks” and/or “queues” of the original methodology by a single generalized insertion queue
(c1q for short), independent of the topology of the network. The new methodology has three major
benefits:

1. Whereas the problem of finding an efficient configuration for an array is hard for the original
methodology (in fact, NP-complete for the “stack” version), the new methodology admits a con-
figuration algorithm that operates in almost linear time.

2. The hardware needed to realize a G1Q layout of an array is usually dramatically less than that
needed to realize a “stack” or “queue” layout: while the individual switches for a GI1Q are somewhat
larger than those for a stack or queue, a layout based on GIQs requires only a single, small bundle,
and thus simpler control hardware, in contrast to the possibly many, possibly large bundles of the
original methodology.

3. Once an assignment of edges to “stacks” or “queues” in the original methodology has been chosen,
the array is committed to a restricted set of topologies; by contrast,a GIQ lay out can realize any
linearization of any graph of given cutwidth. One can use this flexibility to lay out dynamically
reconfigurable arrays of processors.

* This research was supported in part by NSF Grant CCR-90-13184.



1 Introduction

1.1 The DIOGENES Design Methodology

Philosophy. The DIOGENES methodology [12, 4] for designing fault-tolerant arrays
of identical processing elements (PE) is one of a class of methodologies that achieve
fault tolerance by interconnecting PEs through a reconfigurable interconnection network
[13]. All of these methodologies: view a processor array as a graph whose nodes are the
PEs of the array and whose edges are (bi-directional) links interconnecting the PEs.
The uniqueness of the DIOGENES methodology lies in its design of the interconnection
network. Specifically, the methodology views the array’s PEs as laid out in a (logical)
line, with a number of bundles of wires running above the line. Each bundle is organized
to behave as either a stack of wires or as a queue of wires, in a sense made explicit in [12]
and described below. '

Stacks and queues of wires. Consider a bundle of n data lines, numbered 1,2,...,n,
that carry the data between PEs in a processor array. The first consequence of the
bundle’s observing either a stack or queue discipline is that, if only & < n of the lines in
the bundle are carrying “active” data, then those k lines are the ones numbered 1,2, .. ., k.
The other consequences are as follows.

Assume first that the bundle observes a stack discipline. When the bundle passes
from left to right past a PE that needs the data from m < k of the active data lines,
then the PE performs m POP operations on the bundle. Each POP consists of routing
line 1 of the bundle into the PE and, simultaneously, routing each line i of the bundle
(1 < 2 < n) onto line : — 1. When the bundle passes from left to right past a PE that
needs to insert [ < n — k data lines, then the PE performs [ PUSH operations on the
bundle. Each PUSH consists of routing a line from the PE onto line 1 of the bundle and,
simultaneously, routing each line ¢ of the bundle (1 < ¢ < n) onto line 7 + 1.

Assume next that the bundle observes a queue discipline. When the bundle passes
from left to right past a PE that needs the data from m < k of the active data lines,
then the PE performs m DEQUEUE operations on the bundle. Each DEQUEUE consists
of routing line 1 of the bundle into the PE and, simultaneously, routing each line 7 of the
bundle (1 < 7 < n) onto line : — 1. When the bundle passes from left to right past a PE
that needs to insert [ < n — k data lines, then the PE performs [ ENQUEUE operations
on the bundle. Each ENQUEUE consists of routing a line from the PE onto line m + 1 of
the bundle, where m is the number of active data lines at the instant of the ENQUEUE
operation. Of course, in a properly designed circuit, one never tries to “augment” a “full”
stack or queue, nor to “extract” from an “empty” one.



Benefits. One can view the main benefit of the DIOGENES methodology and its unique
network organization as residing in the fact that the entire design and implementation
process is amenable to rigorous mathematical verification and analysis. There is a sizable
literature on the logical linearization of PEs: when edges of the network are to be laid
out via stacks, the linearization problem is equivalent to the well-studied problem of
embedding graphs in books; when edges of the network are to be laid out via queues,
the linearization problem has received less attention but is still well understood (8], [9].
The problem of configuring the interconnection network to achieve a desired network
topology efficiently has been studied in depth [10]. Even some of the “engineering”
aspects of making the final implementation efficient have received attention [1], [3], [11].

Costs. The benefits of the methodology do not come without cost, both in hardware
and algorithmic resources.

1. DIOGENES designs of all but the (structurally) simplest arrays require several stacks
or queues of wires (2], [5], [9], hence considerable circuitry.

2. DIOGENES designs that attempt to minimize the number of stacks or queues of
wires often do so only at the cost of dramatically increased overall cutwidth! of the
layout (5], [9], [14].

3. The general problem of finding an efficient assignment of array links to wire bun-
dles is algorithmically difficult (technically, NP-complete) for both stack-based and
queue-based layouts. For stack-based layouts, the NP-completeness persists even
when one is given the desired linearization of the array’s PEs a prior: [3].

1.2 A New Version of the Methodology

Generalized Insertion Queues. Our new version of the DIOGENES methodology is
based on a modification of the queue data structure, which we call the generalized inser-
tion queue or GIQ. A GIQ is a linear list (4,,...,d,). Position 1 is the head and position
p the tail of the GIQ; p is the population of the GIQ. The GIQ data structure supports the
following operations.

o The REMOVE operation extracts the element at the head of the GIQ and moves all
remaining elements forward one position, thereby decreasing the population of the
GIQ by one:

!The cutwidth of a linear layout of a graph G is the largest number of edges that cross above an
inter-node gap in the layout. The cutwidth of G is the smallest cutwidth of any linear layout of G.



REMOVE : (8y,...,5,) = &1, (8, ..., 5,)

o The INSERT-k operation adds one element to a GIQ by placing it in position k,
increasing the population of the GIQ by 1. Elements at positions 1 to k£ — 1 remain
in their positions, while elements at positions ¢ (i > k) are moved to the next higher
position: )

INSERT-E :5, (61,8, (81,641, 8, 8ky - .., &)

It 1s clear that GIQ operations can emulate stack and queue operations: The REMOVE
operation on a GIQ has the same effect as a POP operation on a stack, or a DEQUEUE
operation on a queue. An INSERT-1 operation on a GIQ has the same effect as a PUSH
operation on a stack. An INSERT-(p + 1) on a GIQ with population p has the same
effect as an ENQUEUE operation on a queue that holds p items. A GIQ can thus behave
alternatively as a stack or a queue. In fact, the choice of insertion position allows one to
fix the order of removal of elements, independently of the order of insertion. This added
flexibility greatly simplifies the layout of graphs using GIQs, as will be made clear in the
rest of this section.

Sample Layouts. We first illustrate the differences between stack, queue and GIQ
layouts by comparing three layouts of the graph of Figure 1. As pointed out in [9],
certain configurations of edges constitute obstacles to minimizing the number of queues
or the number of stacks for a fixed-order layout of a graph. Specifically, a linearized
graph containing a k-rainbow (i.e., a set k fully nested edges) can be laid out using &
queues, but not less. On the other hand, a linearized graph containing a k-twist (i.e., a
set of k fully intersecting edges) can be laid out with k stacks, but not less.

a b c

£ e d

Figure 1: Example graph



Stack layout. The linearization (d, e, f,a, b, c) (see Figure 2) does not contain any
intersection and can therefore be laid out using a single stack. On the other hand edges
(d,c), (e,b) and (f,a) form a 3-rainbow, so 3 queues would be required for a queue layout.
We show below the sequence of PUSH and POP operations on the stack. In conformance
with the stack regimen, edges are POPed in the reverse order in which they are PUSHed.

d e £ a b c

Figure 2: One-stack layout

| Node | Operation || Composition of the stack |

d | PUSH (d,¢) || (d,c)
PUSH (d,e) || (d,e),(d,c)
e | POP (d,e) | (d,¢)
PUSH (e, c) || (e,¢),(d,¢)
PUSH (e, d) || (e, b), (e, c),(d,c)
PUSH (6] | (100 () (e.) (4
PUSH (e, f) || (e, f), (e, a), (e, ), (e, ¢), (d: €)
f | POP (e, f) | (e a),(e,b),(e,c),(d,c)
PUSH (£,0) || (£,a)s (e a)s (¢, 8), (e1), (4 )
@ [POP (,0) | (&) (o) (0.0, (4,9
POP (e, a) (e,b),(e,c),(d, c)
PUSH (a,b) || (a,b), (e,b), (e, c),(d,c)
b | POP (a,b) | (e,b),(e,c),(dc)
POP (e,b) || (e,¢),(d,¢)
PUSH (b,¢) || (b,¢), (e,¢),(d,c)
¢ | POP (b,¢) (e,¢), (d,¢)
POP (e,c) | (d,c)
POP (d,c) || -

Table 1: Stack Layout



Queue layout. The linearization (d,a,e,b, f,c) (see Figure 3) does not contain
any rainbow and can therefore be laid out using a single queue. On the other hand, it
cannot be laid out using fewer than 2 stacks, due to the intersections of pairs of edges
((d, €) and (a, ) for instance). We show below the sequence of ENQUEUE and DEQUEUE
operations on the queue. In conformance with the queue regimen, edges are DEQUEUEed

in the order in which they were ENQUEUEed.

d a e b £ c

Figure 3: One-queue layout

| Node | Operation | Composition of the queue |

GIQ layout.

d | ENQUEUE (d,a) || (d,0)
ENQUEUE (d,e) || (d,a), (d,e)

a | DEQUEUE (d,a) || (d,¢)
ENQUEUE (a,e) || (d,¢), (a,e)
ENQUEUE (a,b) || (d,¢), (a,e), (a,b)

e | DEQUEUE (d,e) || (a,e), (a,b)
DEQUEUE (a, e) || (a,b)

ENQUEUE (e, d) || (a,b), (e, )
ENQUEUE (e, f) || (a,b),(e,b), (e, f)
ENQUEUE (e, ¢) || (a,d), (e, ), (e, £), (e, €)

b | DEQUEUE (a,b) || (e, d), (e, f), (e, ¢)
DEQUEUE (e, b) || (e, f), (e, ¢)
ENQUEUE (b,¢) | (e, £), (e, c), (b, ¢)

f | DEQUEUE (e, f) || (e;¢), (bsc)
ENQUEUE (f,¢) || (e,¢), (b,¢), (£, c)

c | DEQUEUE (e, c) || (b,¢), (f,c)
DEQUEUE (b,¢) || (£,¢)

DEQUEUE (f,¢) | -

Table 2: Queue Layout

We show now a single GIQ layout for a linearization of the sample
graph which does not admit either a single stack layout or single queue layout.




linearization (a, b, ¢, d, e, f) (see Figure 4) contains a 3-twist (edges (a, b),(b, €) and (c, f))
and thus cannot be laid out using fewer than 3 stacks. It also contains a 2-rainbow
(edges (a,d) and (b,c)) and thus cannot be laid out using fewer than 2 queues. To lay
out the linearization with a GIQ, we just choose the place of INSERTion of a new edge so
as to keep edges in the GIQ in the order in which they are to be REMOVEd. There are
several ways of dealing with edges with common source? or destination. In the example,
we chose to INSERT edges with common source in the order of their destination. This
leads to the following sequence of INSERT and REMOVE operations. We give a formal
description and analysis of the algorithm in the next section.

a b c d e £

Figure 4: Linearization used for the GIQ layout

2 GIQ Layout

In this section we describe an algorithm for computing the GIQ layout of a linearized
graph, i.e., the sequence of INSERT and REMOVE operations on the edges of the graph
and the position of each insertion. The input to the algorithm is the adjacency list of
the graph, given in the order of the linearization; the output is the position of insertion
of each edge in the GIQ.

The strategy of the algorithm is to scan the linearized graph from left to right, pro-
cessing the edges in the order in which they appear in the adjacency list. Edges are
INSERTed in and REMOVEed from an ordered list which simulates a GIQ. The position
of an edge in the list at the time of its insertion is the same as the parameter to the
INSERT operation in the GIQ.

Assumptions and definitions. The nodes of the linearized graph are laid in a line
from left to right, and are labeled with their ranks in the linearization: for any pair of
nodes ¢ and b, the assertion a < b denotes the fact that a is to the left of b.

The source of an edge is the left node to which it is incident in the linearization; the destination of
an edge is the right node to which it is incident.



| Node | Operation || Composition of the GIQ |
a | INSERT-1 (a,bd) || (a,b)

INSERT-2 (a,d) || (a,b),(a,d)
INSERT-3 (a,e) || (a,b),(a,d),(a,e)
b | REMOVE (a,b) || (a,d),(a,e)
INSERT-1  (d,¢) || (b,¢),(a,d),(a,e)
INSERT-4 (ba e) (bw c)l (av d): (a7 C), (b’ e)

c | REMOVE (b,¢) (| (a,d),(a,e),(b,€)

INSERT-4  (c,¢€) || (a,d),(a,e),(b,e),(c,€)
INSERT-5 (¢, f) || (a,d),(a,e),(b,e),(c,e), (e, f)
d REMOVE (a,d) || (a,e),(b,e),(c,e),(c, f)
INSERT-4 (d,e) || (a,e),(b,e),(c,e),(d,e),(c, f)

e [REMOVE (a,¢) [ (5:9), (. ), (4, ), (&, 7)
REMOVE (b E) (C, e)7 (d$ 6)1 (C’ f)
REMOVE  (c,e) || (d,e),(c, f)

REMOVE (d,e) || (¢ f)
INSERT-2 (e, f) || (¢, f), (e, f)
f | REMOVE (e, f) | (e, f)

REMOVE (e, f)

Table 3: G1Q Layout

The source of edge e, source(e), is the left node incident to it, and its destination,
dest(e), is the right node incident to it.

We say that edge e is hanging over node a either if a is the source of e, or if source(e)
is to the left of a and dest(e) is to the right of a; equivalently, we say that a lies under
edge e.

Edge e crosses edge f if source(e) lies under f and dest(f) lies under e: source(f) <
source(e) < dest(f) < dest(e). The crossing number of an edge in the linearization is
the number of edges it crosses.

For the purpose of the algorithm, nodes of the linearized graph are split into subnodes
corresponding to the incident edges. In the following sections, source and destination
refer to the nodes incident to an edge, left and right to the subnodes of the split graph.
Consider edge (c,e) in Figure 4: it has source ¢ and destination e; after the splitting of
the nodes, node ¢ has been split into subnodes 7 to 9, and node e has been split into
subnodes 12 to 16. Edge (c,e) now connects subnode 8 (left subnode) and subnode 14
(right subnode) and we thus label it (8,14) (see Figure 5). '



12 13 14 15 16

Figure 5: The example graph after splitting

Data structures. The linearized graph is represented by a variant of its adjacency list
in which the nodes are listed in left-to-right order, and, for each node, the neighbors are
also listed from left to right.

As a preliminary step, the algorithm organizes all the relevant information about
the edges of the graph in an array called subnodes. Each cell of the array corresponds
to the extremity of one edge (a subnode of the split graph), and contains the following
information: rank of the subnode, whether it is the source or the destination of the edge,
rank of the neighboring subnode and label of the edge (the pair source, destination).

During the scanning of the graph, we keep the labels of the edges hanging over the
current node in a sorted list. Operations on this list are insertion (which adds a new
label to the list and returns the rank of insertion edge) and deletion (which deletes an
edge from the list). We call this list hanging. Since insertions and deletions in the hanging
list account for most of the operations of the algorithm, the choice of data structure
for the hanging list has some bearing on the total running time of the algorithm. We
implement the list as a balanced order-statistic tree, specifically, the augmented red-
black tree described in [6].

Finally, the crossing number of each edge is stored in an array called crossings ordered
according to the source of the edges: the edge with leftmost source is first.

The Layout Algorithm. The algorithm that we present here is called CROSSING-
NUMBER. Given a linearization of a graph, it computes the crossing number of each edge,
which is easily seen to be the insertion position in the GIQ layout. CROSSING-NUMBER
calls the procedures SPLIT-GRAPH and LABEL-EDGES, which set up the subnodes array,
and COMPUTE-CROSSINGS, which actually performs the computation. We now describe
the three procedures in detail, using the example of the previous section as an illustration.



Node splitting. Each node of the graph is split into as many subnodes as there are
edges incident to it. We keep the subnodes ordered in an array of size twice the number
of edges in the graph (18 in the example). Each subnode corresponds to one extremity
of an edge (and, therefore, to one entry in the adjacency list). SPLIT-GRAPH fills each
cell of the subnodes array with the following information: rank of the subnode, source,
destination and direction of the corresponding edge; it also initializes the left look-up
table to the leftmost subnode of each node (see Tables 4 and 35).

SPLIT-GRAPH :
s+1
for node< 1 to number-of-nodes(G) do
left[node] + s
for edge + 1 to node-degree(node) do
subnodes(s].rank + s
get neighbor from adjacency list
if neighbor > node
subnodes[s].direction: + right
subnodes|s].source + node
subnodes[s|.destination « neighbor
else
subnodes[s|.direction + left
subnodes(s].source + neighbor
subnodes[s].destination + node

Edge labeling. LABEL-EDGES scans the subnodes array from left to right, deter-
mining the rank of the left and right subnode of each edge (the pair left-subnode,right-
subnode). Each time it encounters a left subnode, it determines the right subnode of
the corresponding edge by looking up the element of the left array corresponding to the
destination node; it then increments this element. The label of the edge, consisting of
the pair (left subnode index, right subnode index), is written in the appropriate field of
the cells of the subnodes array corresponding to the left and right subnodes.

LABEL-EDGES :
for s «— 1 to 2 x number-of-edges(G) do
if subnodes(s].direction = right
l—s
r «left[subnodes|s].destination]

10



left[subnodes|s].destination]++
subnodes(l].label « (I, 7)
subnodesr].label « (,7)

Node | Adjacent Nodes
a b,d,e
b a,ce
c be, f
d a,e
e a,bcdf
f c,e

Table 4: Adjacency list of the chosen linearization

| Subnode || Source | Dest. | Dir. | Label |

1 a b left | (1,4)
2 a d left | (2,10)
3 a e left | (3,12)
4 a b |right| (1,4)
5 b c left | (5,7)
6 b e left | (6,13)
7 b c |right| (5,7)
8 ¢ e left | (8,14)
9 c f left | (9,17)
10 a d | right | (2,10)
11 d e | left | (11,15)
12 a e right | (3,12)
13 b e |right | (6,13
14 ¢ e | right | (8,14)
15 d e right | (11,15)
16 d f left | (16,18)
17 ¢ f | right | (9,17)
18 e [ | right | (16,18)

Table 5: Contents of the subnodes array after LABEL-EDGES

11



Determining the crossing numbers. COMPUTE-CROSSINGS scans the subnodes
of the split graph (i.e., the subnodes array) from left to right, inserting or removing (as
appropriate) the label of the corresponding edge into or from the hanging list. Each
time it encounters a left subnode, it inserts the incident edge into the list, and returns
the position of insertion. Since the list is kept ordered by destination, the position of
insertion is equal to the crossing number of the edge.

COMPUTE-CROSSINGS :
c+1
for s + 1 to 2 x number-of-edges(G) do
if subnodes(s|.direction = right
INSERT(subnodes(s].label, position)
crossings(c] <+ position
c++

Correctness of the Algorithm.

Theorem 1 Algorithm CROSSING-NUMBER correctly computes the crossing number of
each edge in a linearized graph.

Proof. The first two procedures of the algorithm, SPLIT-GRAPH and LABEL-EDGES,
arrange and label the edges of the graph in the order of the linearization, provided the
adjacency list is written in the correct format. The correct identification of the source
and destination of each edge follows from the fact that the nodes are listed in the order
of the linearization. The correct indexing of destination subnodes follows from the facts
that neighbors of a given node are listed in the order of the linearization, and, therefore,
that all right subnodes precede all left subnodes.

COMPUTE-CROSSINGS scans the subnodes from left to right, and the hanging list is
kept ordered with respect to destination subnode. Consider edge (I, ) when it is inserted
into the list. Since the edge is inserted, [ is the rank of the subnode being scanned.
Consider edge (I',7') not present in the list. Either it has not been inserted (I < I'), or
it has already been removed from the list (»' < ), in both cases, edge (I,7) cannot cross
it. Consider edge (I',7') following edge (I,r) in the list. Since the list is sorted in order
of destination, it follows that »' > r; therefore, edge (!,7) does not cross edge (I, ).
Finally, consider edge (I',r') preceding edge (l,r) in the list. Clearly, ! > I, since I is
already in the list, and 7' < 7 since the list is sorted. Therefore, edge (I’,r’) precedes
edge ({,7) in the list when (I, 7) is inserted if and only if /' < [ < #' < r. This means that
all the edges crossed by edge (/,7) precede it in the list, and, therefore, the position of
insertion of edge ([, r) is equal to its crossing number.O

12



Running time of the Algorithm.

Theorem 2 Algorithm CROSSING-NUMBER computes the crossing number of each edge
in a linearized graph in time O(|E|log c), where |E| is the number of edges in the graph,
and c s the cutwidth of the graph.

Proof. Procedure SPLIT-GRAPH scans the adjacency list and initializes one cell of the
subnodes array per entry. Since there are two entries per edge in the adjacency list,
this clearly takes O(|E|). The same reasoning applies to procedure LABEL-EDGES which
initializes the remaining fields of the cells of the same array.

The loop in COMPUTE-CROSSINGS executes 2| E| times, and, since each edge is inserted
and removed once from the list, COMPUTE-CROSSINGS consists of | E| insertions and |E|
deletions. Since we implement the hanging list as a balanced order-statistic tree in which
each insertion and deletion takes time O(logn), where n is the size of the tree, and
since the number of edges in the list is at most equal to the cutwidth of the graph,
COMPUTE-CROSSINGS runs in time O(|E|log c).C

3 Implementation Issues

3.1 Switch Graphs

The introduction of the GIQ structure in the new version of the DIOGENES methodology
was motivated by “engineering” considerations: while looking at the detailed implemen-
tation of the switches required for stack and queue layout, we found that a relatively
small modification of the basic switches allowed the flexibility of the GIQ regimen.

To describe the connections established by individual switches in a GIQ network,
we introduce a graph representation which we call switch graphs. Basically, nodes of a
switch graph correspond to the terminals of a hardware switch, i.e., its connections to the
bundle of wires and to a processor port; edges of a switch graph represent the connections
established by the switch. We therefore talk of the number of lines, the direction, and
the setting of a switch graph.

Besides offering a convenient representation of the operations on a bounded size GIQ,
switch graphs reflect the structure of the necessary switches closely enough that one can
use them to model the hardware switch design which is part of the physical design of a
GIQ-DIOGENES layout of a processor array. We can, therefore, use the switch graphs to
estimate the cost of a proposed design.

An n-line switch graph G,(D, S) has 2n + 1 nodes: n left nodes { Niese1, - - - Niesen}
n right nodes {Nyight,1, - - - , Nright.n} and a single node Np (see Figure 6). The edges of the
graph are described by the direction D € {left,right} and the setting S € {0,1,...,n}.

13



Nierfe, 4 Nright, 4

Nilert, 3 Nright, 3

Niare, 2 Nright,2

Nleft,1 Nright,1
Np

Figure 6: Nodes of a 4-line switch graph

If $ =0, node Np is not connected to the rest of the switch. There are then n edges
in the graph, (E,, ..., E,), each edge E; connecting nodes Ny.s:r and Nyighs . (see Figure
7).

Nierst, ¢ +——e Nright, 4
Nieztt, 3 o——eo | Nrignt,3
Nlezte,2 ——e@ | Nrignt,2
Niere,2 o———g9 | Nrignt,1

Np

Figure 7: A 4-line switch graph with setting S =0

If § > 0, then there is an edge Ey connecting node Np to node Nps. The rest of
the edges are as follows, for 0 < ¢ < S, there is an edge E; connecting nodes Nieyst,i and
Niyighti, and for § < j < n, there is an edge E; connecting nodes Np: ; and Np ;i1 (where
D' is the direction opposite to D) (see Figures 8 and 9).

A switch graph can be used to represent a switch connecting a port of a PE to a GIQ-
DIOGENES network: the nodes of the switch graph correspond to wires passing through
the switch, and the edges of the switch graph describe the routing established by the
switch. Specifically, node Np represents the connection to the wire coming into or depart-
ing from the port of the PE, while nodes {Nise1, .- ., Niesen} and {Neighen, - - -, Nrightn}
represent, respectively, the connections to wires to the left and the right of the switch.
The direction of the switch graph indicates whether the wire connected to the port is
INSERTed into the bundle or REMOVEd from it. Since we view the logical line of PEs
as oriented from left to right, a n-line switch graph G,(right, k) represents a switch IN-
SERTing a new wire into position k of a bundle of n wires, and a n-line switch graph

14



Niett, 4 e | Nrignt,4
Nlert, 3 \ Nrignt, 3
Nieft,2 \ Nzight,2
Niest, 1 :\‘\ Nright,1

Np

Figure 8: A 4-line left switch graph with setting S =1

Nlaft, 4 ° Nright, 4
Niefe, 3 / Nrighe, 3
Nleft, 2 ./. Nright, 2
Nleft,1 ..74 Nrighe, 1

Np

Figure 9: A 4-line right switch graph with setting S = 2

Gn(left,1) represents a switch REMOVing the first wire from a bundle of n wires; finally,
a switch graph with setting O represents the bypassing of a port.

To represent a whole GIQ-DIOGENES network, we use a graph obtained by intercon-
necting a collection of switch graphs, one for each port of every PE of the array. A
network requiring a bundle of n wires and K switches can be represented by a graph
comgosed of K interconnected n-line switch graphs. The nodes of this graph are:
{NBslie{1,...,K},D e {left,right}, S € {0,1,...,n} JU{NE li € {1,...,1{}? The
edges of the graph are the edges of the switch graphs, plus a set of edges connecting each
switch graph to its neighbors: each right node of each switch graph is connected to the
corresponding left node of the neighboring switch graph (see Figure 10).

The connections of port node N§ (1 < k < K) to the network are described by the
direction D and setting Sy of switch graph k. The direction and setting of each switch
graph, which are used in the physical layout of the GIQ network, can be easily derived
from the result of the algorithm CROSS-OVER. One switch graph corresponds to each
element of the subnodes array, the direction of the switch graph being the direction of the
corresponding edge. The right switch graphs, corresponding to INSERT operations, have
settings one greater than the crossing number of the corresponding edge, as computed
by algorithm CROSSING NUMBER. The left switch graphs, corresponding to REMOVE
operations all have setting 1. This asymmetry between left and right switch graphs
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Figure 10: Switch graph representation of the example GIQ layout.
The bottom row of switches is a continuation of the top row.

substantially reduces the hardware needed to implement GIQ-DIOGENES networks, as we
show in the next section.

Example layout. Figure 10 represents the layout of the example graph of the previous
section using GIQ switches. The graph contains nine edges, and the cutwidth of the
chosen linearization (a,b,c,d, e, f) is five (between nodes ¢ and d and d and e); the GIQ
layout therefore requires nine 5-line left switch graphs with setting 1 and nine 5-line right
switch graphs, whose setting is derived from the crossing number of the corresponding
edge. Switch graph settings and direction for the example graph are given in Table 6.

3.2 Implementing Switch Graphs in Hardware

We turn now to the physical implementation of switch graphs. In CMOS technology,
the bidirectional connections established by the switches of a DIOGENES network can be
realized in a straightforward fashion using 2-to-1 multiplexers composed of two coupled
complementary switches (see Figure 11). A 2-to-1 multiplexer has two “input” lines A and
B, one “output” line and one control line (actually two lines, one for the control and one
for its complement). Depending on the value of the control line, the output is connected
to line A or B. The connection established by such a multiplexer is bidirectional.

Left switch graph. Ina GIQ network, left switches implement the REMOVE operation:
each wire coming from the right of the switch can either be connected to the corresponding
wire to the left of the switch (if the port is by-passed), or to the next lower wire if the
port is connected. This switching mechanism is realized in a straightforward fashion,
using one 2-to-1 multiplexer per wire (see Figure 12). Since the multiplexers in a switch
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| Rank | Operation | Direction | Setting |
1 INSERT-1 | right 1
2 INSERT-2 | right
3 INSERT-3 | right
4 REMOVE | left
5 INSERT-1 | right
6

7

8

INSERT-4 | right
REMOVE | left
INSERT-4 | right
9 | INSERT-5 | right
10 | REMOVE | left
11 | INSERT-4 | right
12 | REMOVE | left
13 | REMOVE | left
14 | REMOVE | left
15 | REMOVE | left
16 | INSERT-2 | right
17 | REMOVE | left
18 | REMOVE | left

P N E I S T = N RSy I Q) [T R NSy UGSy X

Table 6: Switch Setting and Direction for the Example Layout

all function in unison, one control line is sufficient to configure a switch, independently
of the number of wires.

Right switch graph. The connections established by the right switch graph (INSERT
operation) are more complex: each wire going out to the left of the switch can be con-
nected to:

o the corresponding wire coming from the right (straight connection)
e the next lower wire coming from the right (slanted connection)

e the port (port connection)

Two 2-to-1 multiplexers are thus required for each but the lowest wire. In our design
(see Figure 13), the right multiplexer establishes whether a connection is straight (control
bit 0) or not. The left multiplexer, whose output is one of the inputs of the right
multiplexer, determines whether the connection is a port connection (control bit 0) or a
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Figure 11: A CMOS multiplexer

slanted connection. An n-line switch realizing a INSERT-k operation has k& — 1 straight
connections separated from n — k — 1 slanted connections by a single port connection.
It is thus possible to limit the number of configuration bits to one per wire; the kt
configuration bit controls the rightmost multiplexer of wire k and the leftmost multiplexer
of wire k + 1.

4 A Cost Comparison

In this section, we substantiate our claim that, although GIQ networks are slightly more
expensive to implement than stack or queue networks of the same width, they are more
economical from a global, system point of view, due to their flexibility. In other terms,

a GIQ network is considerably more powerful than a stack or queue network of the same
width.

4.1 Hardware Cost

The cost of switches in a DIOGENES network, whether it is implemented using stacks,
queues or GIQs, can be partitioned between switching cost (the complexity of the switches
themselves) and configuration cost (the cost of storing the configuration of each switch).
We base the hardware cost comparison of the different techniques on our proposed im-
plementation of CMOS switch graph. Moreover, we do not consider the details of the
configuration cost, since it may vary greatly depending on the purpose of the network

18



---------------------------- : Ctrl
\ N
]
]

! Data
]
]

Port

Figure 12: A 4-line Left switch

(fault-tolerance or dynamic reconfigurability). In the following analysis, all computations
are for 1-bit wide data paths; they scale linearly to wider paths.

POP, DEQUEUE, and REMOVE operations. The POP, DEQUEUE, and REMOVE
operations can all be represented by the same switch graph, i.e., a left switch graph
with setting 1; they can, thus, be implemented at the same cost, both for switching and
configuration. One 2-to-1 multiplexer is required per wire in the bundle traversing the
switch, and one bit is needed to store the configuration of the switch (active or not).

PUSH, ENQUEUE and INSERT operations. The PUSH operation on a stack is the
exact reverse of a POP operation and can, therefore, be represented by a right switch
graph with setting 1. The hardware required for the implementation of the switch is the
same as for the POP operation, i.e., one 2-to-1 multiplexer per wire and one control bit
per switch.

To perform an ENQUEUE operation, it is necessary to keep track of the population
of the queue at each node, namely, the number of edges hanging over the node. The
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connections established by a switch performing an ENQUEUE operation on a queue with
population p are as follows: wire p going to the right is connected to the port, all other
wires going to the right are connected to the corresponding wires coming from the left.
One 2-to-1 multiplexer is thus required per wire. Additionally, one control bit is required
per wire.

As was shown in the previous section, two 2-to-1 multiplexers per line are required to
implement the INSERT operation; therefore, the hardware cost of the switching parts of
a GIQ-based DIOGENES network is roughly fifty percent higher than the cost of a stack-

based or queue-based network of same width. The configuration cost is the same as for
a queue-based network.

In the next section, we see that the system-level flexibility of the GIQ regimen gives
it a considerable advantage from a system point of view.

4.2 System Cost

Stack-based and queue-based layouts each have their particular strengths and weaknesses:
some families of graphs which can be efficiently laid out with one strategy are often a
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problem for the other. This means that neither of the strategies can efficiently realize
all families of graphs. Since a GIQ can simulate both a stack and a queue, it guarantees
an efficient layout for all graphs that admit either an efficient stack-based layout or an
efficient queue-based layout (one can simply use a linearization derived from the stack-
based or queue-based layout). In fact, even when there is no stack-based or queue-based
layout, the designer can use any optimization technique to derive an efficient layout,
knowing that the resulting linearization can be implemented using a single bundle of
wires following the GIQ regimen. In this section, we present examples of specific graphs
for which the G1Q-based layout leads to significant cost reduction over either stack-based
or queue-based layouts; we also illustrate how the flexibility of the regimen allows the
designer to address some other issues, such as regularity of structure and usage of wires.

Ternary hypercube. Some families of graphs do not lend themselves to efficient stack-
based layouts. In particular, the ternary hypercube TC(n), which has N = 3" nodes, can
be laid out using a logarithmic number of queues, namely 2n, but requires exponentially
more stacks, namely Q(N'/-¢) [8].

Binary tree. In contrast, there are cases in which a stack-based layout is more “effi-
cient” than a queue-based layout: a depth-d complete binary tree, with n = 2¢ nodes,
can be laid out using a single queue, but any such layout has cutwidth at least (2n —
2)/(d + 1) = Q(n/logn) [9]. The same binary tree can be laid out using a single stack
with only O(d) cutwidth.

Trade-offs between stacknumber and stackwidth. In a multiple stack (multiple
queue) layout, each stack (queue) requires its own bundle of wires, complete with control
mechanism. Once the number of stacks (queues) has been decided upon, the freedom of
the implementor is severely restricted.

Building on the base cases described in [3], [14] exposes a family of families of graphs
{{Grn}nen}ren, (where N denotes the positive integers); these graphs have the following
property. For all k,

e any k-stack layout of a graph in the family {{Gin}nen} must have cutwidth pro-
portional to the size of the graph;

- o every graph in the family admits a (k + 1)-stack layout of cutwidth O(k).

Reusability of wires. The last consequence of the ability of a GIQ to realize any
linearization of any graph is a better overall usage of the wires. In a multiple stack
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(queue) DIOGENES array, wires cannot be shared across bundles, so one must a prior:
partition the available wires among the bundles. In contrast, a GIQ-DIOGENES array has
only one bundle, so the cutwidth can be allocated in a way that best serves the layout of
the particular array of interest. One can see the benefits of this allocability in the layout
of an m X n mesh.

One can realize a two-stack layout of a mesh by laying out the nodes in a snake-
like fashion along the smaller dimension (see Figure 14). This layout has cutwidth
2min(m,n), but only half of the lines are used at any given time: whenever one stack is
full, the other one is empty.

Figure 14: 2-stack layout of a 4 x 5 mesh

Since we can realize any linearization with a single GIQ, we can choose the ordering
of the graph according to any criterion we which to optimize. For instance, one could
want to maintain some “structural” properties of the original graph. In the case of the
mesh, for example, it could be desirable to insure that edges of the same dimension all
have the same length. In the row major layout of a 4 x 5 mesh (see Figure 15) all row
edges have length 1 and all column edges have length 4. For an arbitrary graph, one
could choose to minimize bandwidth, cutwidth or any other criterion, use a heuristic to
obtain an acceptable linearization, and implement the layout using a GIQ network.

Figure 15: GIQ layout of a 4 x 5 mesh
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5 Conclusion

/e have shown in this paper how a relatively simple and inexpensive modification of the
switches used in a DIOGENES network can give a much greater flexibility in the layout
regimen. The GIQ regimen, which we introduced here, allows much simpler layout of
fault-tolerant networks. The advantages reside both in a simpler layout algorithm and a
lower overall cost. Another consequence of the ability to lay out any graph (with limited
degree and cutwidth), is that, if we compute the settings for a selection of graphs off-line,
it is possible to switch configuration during the computation.

As a proof of concept, we are currently designing a 32-processor array in which each
processor is connected to the network by six ports; there are eight datalines in the bun-
dle. In our design, the network can adopt any of a set of precomputed configuration.
The reconfiguration of the network simply consists in loading another set of settings for
the switches. This circuit will be able to assume such different topologies as butterfly,
hypercube, three-dimensional mesh and de Bruijn graph. Furthermore, we are investi-
gating strategies that time-multiplex the wires and the ports pf a GIQ-DIOGENES array,
to vercome the physical limitations of fixed cutwidth and node-degree.
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