.

Scheduling Tree-Dags Using
FIFO Queues: A Control-Memory
Tradeoff

S.N. Bhatt, F.R.K. Chung
F.T. Leighton & A.L. Rosenberg

Computer Science Technical Report 93-48
September, 1993

Scheduling Tree-Dags Using FIFO Queues: A
Control-Memory Tradeoff

Sandeep N. Bhait Fan R. K. Chung
Bell Communications Research Bell Communications Research
Morristown, N.J. Morristown, N.J.
F. Thomson Leighton Arnold L. Rosenberg
MIT University of Massachusetts
Cambridge, Mass. Ambherst, Mass.

Abstract. We study a combinatorial problem that is motivated by “client-server” schedulers
for parallel computations. Such schedulers are often used, for instance, when computations
are being done by a cooperating network of workstations. Our results expose and quantify a
control-memory tradeoff for such schedulers, when the computation being scheduled has the
structure of a binary tree. (Similar tradeoffs exist for trees of any fixed branching factor.) The
combinatorial problem takes the following form. Consider, for integers k, N > 0, an algorithm
that employs k FIFO queues in order to schedule an N-leaf binary tree in such a way that each
nonleaf node of the tree is executed before its children. We establish a tradeoff between the
number of queues used by the algorithm — which we view as measuring the control complezity
of the algorithm — and the memory requirements of the algorithm, as embodied in the required
capacity of the largest-capacity queue. Specifically, for each integer k € {1,2,..., log, N}, let
Qi (N) denote the minimax per-queue capacity for a k-queue algorithm that schedules N-leaf
binary trees; let Q}(/N) denote the analogous quantity for complete binary trees. We establish
the following bounds: For general N-leaf binary trees, for all &,

(2N — 1)+

1
—-— < < 1/k .
k logN +1 S Q(N) <2V 41

For complete binary trees, we derive tighter bounds. We prove that for all constant k,
. Nl/k

For general k, we obtain the following bounds:

1 N1k N1k
- < O 1-1/k
k (log N + 1)1-t/k = QN) < (4k) log'~t* N~

1 Introduction

1.1 Overview

We study the resource requirements of a class of algorithms for scheduling parallel com-
putations. Our main results expose and quantify a tradeoff between two major resources
of the algorithms, the complexity of their control mechanisms and their memory require-
ments.

The Computing Environment. We are interested in schedulers that operate in a
client-server mode, where the processors are the clients, and the scheduler is the server.
One encounters such schedulers, for example, in systems that use networks of workstations
for parallel computation; cf. [9], [10], [15]. We restrict attention to algorithms that
schedule static dags (directed acyclic graphs — which model the data dependencies in a
computation) in an architecture-independent fashion; cf. 1] - (3], [8], [11], [16] - [18]. One
can view schedulers of this type as operating in the following way. (a) They determine
when a task becomes eligible for execution (because all of its predecessors in the dag
have been executed); (b) they queue up the eligible, unassigned tasks (in some way) in
a FIFO process queue (PQ). When a processor becomes idle, it “grabs” the first task on
the PQ.

Note that this scenario allows great latitude for processors: a processor can choose to
participate or disappear from the computation independently at any time. But, once a
processor accepts a task, it must complete the task within “unit time.” In other words,
the scheduler is clocked, and processors must commit to completing work they accept at
a guaranteed rate.

The Computational Load. Our particular focus is on dags that are binary trees
whose edges are oriented from the root toward the leaves. Such dags represent the data
dependencies of certain types of branching computations. (We concentrate on binary
tree-dags only for definiteness; our results extend readily to tree-dags of arbitrary fixed
branching factor.)

Formally, a binary tree dag (BT, for short) is a directed acyclic graph whose node-set
is a prefiz-closed set of binary strings; i.e., for all binary strings z and all @ € {0,1},
if za is a node of the BT, then so also is . The null string (which, by prefix-closure,
belongs to every BT) is the root of the BT. Each node z of a BT has either two children,
or one child, or no children; in the first case, the two children are nodes 0 and z1; in
the second case, the one child is either node z0 or node z1; in the last case, node z is a
leaf of the BT. The arcs of a BT lead from each nonleaf node to (each of) its child(ren).
For each £ € {0,1,...,n}, the node-strings of length £ comprise level £ of the BT (so the

BT: CBT:

width=5

Figure 1: A width-5, depth-6 BT and an 8-leaf depth-4 CBT.

root is the unique node at .level 0). The width of a BT is the maximum number of nodes
at any level, and the depth of a BT is its number of levels.

The (N = 2")-leaf complete binary tree (CBT, for short) T, is the BT whose nodes
comprise the set of all 2"*! — 1 binary strings of length < n; hence the depth of T, is
n + 1. There are N nodes at level n of T,, namely, its leaves, so the width of 7, is N.
See Fig. 1. '

Scheduling Regimens and Scheduler Structure. In order to establish rigorously a
tradeoff between the control complexity of our schedulers and their memory requirements,
we must specify enough of the structure of a scheduler to quantify these resources. We
view a scheduler as using some number of FIFO queues to prioritize tasks that have
become eligible for execution: the specific number of queues is our measure of the control
complexity of the scheduler; the minimax capacity of the queues is our measure of the
scheduler’s memory requirements." Roughly speaking, a scheduler uses its queues as
follows. As tasks get executed, they produce results that are necessary for the execution
of their children. These results are loaded independently onto the FIFO queues of the
scheduler; the task that is assigned to the next requesting processor is chosen from among
those whose required input resides at the head of some queue.

Multi-queue schedulers are interesting for our computational load because increasing
the number of queues within a scheduler allows one to proceed gradually from an eager

!We recognize that one might wish to use data structures other than FIFO queues (e.g., LIFO stacks)
to manage tasks awaiting execution; such alternatives also merit study.

regimen, in which eligible tasks are delayed as little as possible before being assigned for
execution, to a lazy regimen, in which eligible tasks are delayed as long as possible before
being assigned for execution. The following facts about our framework will become clear
as our study develops.

o Any scheduler that uses only one queue:

— observes an eager regimen

— executes tree-nodes level by level, i.e., essentially in a breadth-first manner.
e Lazy scheduling:

— is an option when the number of queues is commensurate with the length of
the longest root-to-leaf path of the tree-dag

— is characterized by executing tree-nodes essentially in a depth-first manner.

(The two uses of the qualifier “essentially” here reflect the fact that inputs for sibling
tasks in the tree can be interchanged in the enqueuing process without any concomitant
change in the complexity of the scheduler.) While the control complexity of a scheduler
increases as it incorporates successively more queues, we shall show that the memory
requirements — as measured by the maximum number of eligible tasks that are awaiting
execution — decrease concomitantly. We are able to establish and quantify this control-
memory tradeoff rigorously.

The Tradeoff. For positive integers k and N, let Qx(N) denote the minimax per-
queue memory capacity for a k-queue algorithm that schedules N-leaf binary tree-dags;
let Q;(N) denote the analogous quantity for complete binary trees. We establish the
following bounds: For general BTs, for all k:?

1(2N — 1)\
k logN +1

Hence, the upper and lower bounds differ by roughly a logarithmic factor. For complete
binary trees, we derive tighter bounds: for all constant k:

0 =0 ()

logl_llk N

< Qu(N) <2N'Vk 41,

for general k: " "

1 Nt N?

- < QH(N) < (4k)F—xp—.

k (log N + 1)1-/k = W(N) < (4k) logl_l/’e N
This verifies rigorously an instance of folklore in the scheduling community to the effect
that lazy dag-schedulers need less memory than do eager ones.

2All logarithms are to the base 2.

1.2 The Formal Problem

BTs, being dags, represent the data-dependency graphs of computations, specifically
a class of branching computations. In this scenario, the nodes of the BT represent
the tasks, while its arcs represent computational dependencies among the tasks. These
dependencies influence any algorithm that schedules the computation represented by the
BT, in that a task-node cannot be executed until its parent task-node has been executed.
This interpretation is consistent with the static (off-line) scheduling problems studied in
(1] - 13], (8], [11], [16] - [18].

Scheduling BTs. The process of scheduling a BT T obeys the following rules. We are
given an endless supply of enabling tokens and ezecution tokens. Placing an execution

an execution token until its Incoming arc contains an enabling token. Thus, the process
of scheduling a BT proceeds as follows: At step 0 of the scheduling process, we place an
execution token on the root of T (which, of course, has no Incoming arc), and we place
an enabling token with time stamp 0 on each arc leaving the root. At each subsequent
step, say step s > 0, we perform two actions:

® We place an execution token on some (one) unexecuted node of T~ whose incoming -
arc contains an enabling token.

¢ We place enabling tokens, with time stamp s, on all arcs that leave the Jjust-executed
node.

This process continues until ajl nodes of 7 contain execution tokens. The reader should
be able to extrapolate from this BT-specific description to a description of a scheduling
process for an arbitrary dag: the major difference js that a node cannot be executed until
all of its incoming arcs contain enabling tokens.

We call a scheduling algorithm eager if, at each step, it places an execution token on
an unexecuted node whose incoming arc contains an enabling token having as small a
time-stamp as possible; we call a scheduling algorithm lazy if, at each step, it places an
execution token on an unexecuted node whose incoming arc contains an enabling token
having as large a time-stamp as possible. Ope verifies easily that an eager scheduling
algorithm executes the nodes of T level by level, i.e., essentially in a breadth-first manner,
while a lazy scheduling algorithm executes the nodes of 7 essentially in a depth-first

between eager scheduling at one extreme and lazy scheduling at the other. We need more
tools to describe this progression formally.

Scheduling BTs using Queues: Control vs. Memory. The reader can verify easily
that the process of scheduling a BT T is “isomorphic” to the process of topologically
sorting T, i.e., linearly ordering the nodes of T so that each nonleaf node precedes
its children. Our study focuses on the structure of the algorithm that “manages” the
process of scheduling/ topologically sorting 7. The particular formal framework for our
study specializes the framework studied in (4] - [7], [13].

A k-queue scheduler for a B T T proceeds as follows. Initially, at time 0, the scheduler
executes the root of 7 and enqueues each arc that leaves the root, independently, in one
of its k queues. Inductively, a node v of T is eligible to be executed — i.e., to receive
an execution token — just when its entering arc is at the head (i.e., the exit port) of
some queue. As the scheduler executes a node v, it dequeues the arc that enters v;
simultaneously — as part of the same atomac action — the scheduler enqueues each arc
that leaves v, independently, on one of the k queues. Henceforth, let us denote the k
queues of the scheduler as queue #1, ..., queue #k.

A multi-queue BT-scheduler uses its queues to manage the eligible tasks that are
awaiting execution. Specifically, enqueuing an arc is equivalent to endowing it with an
enabling token; dequeuing an arc is equivalent to placing an execution token on the node
the arc enters. The “management” function of the queues is manifest in the fact that
only nodes whose incoming arcs reside at the heads of queues can be executed in the
next step.

Easily, there exist k-queue BT-schedulers for every positive integer k. A straight-
forward induction verifies that there is a unique l-queue BT-scheduler — up to the
distinction between “left” and “right” children.

Fact 1.1 The unique 1-queue BT-scheduler ezecutes BT-nodes level by level, i.e., “es-
sentially” in breadth-first order.

A consequence of the rules for manipulating queues is that the arc that enters a BT-
node v does not get enqueued until all of the ancestors of v have already been executed.
This verifies the following simple observation, which is important later.

Fact 1.2 All arcs that coezist in the queues of a multiqueue BT-scheduler at any instant
enter nodes that are independent in the BT; i.e., none is an ancestor of another.

We view the number of queues a BT-scheduler uses as its control complezity; we view
the worst-case individual capacity of the queues as measuring the memory requirements

of the scheduler. In this worldview, the capacity of queue #q is the maximum number
of arcs of T that will ever reside in queue #gq at the same instant. Clearly, the worst-

capacity. Obtaining bounds on the cumulative capacity that are tighter than the one
obtained from this simple observation appears to be quite difficult.

We now turn to the topic of tradeoffs between the amount of control in a BT-scheduler
and its memory requirements.

2 A Control-Memory Tradeoff

A Roadmap. Our goal is to verify the tradeoffs that are stated roughly at the end of
Section 1.1, between the control complexity of a BT-scheduler — as measured by the
quantity & — and the memory requirements of the scheduler — as measured by the
quantities Qi(N) and Q}(N). The Possible existence of such a tradeoff js suggested by
a family of simple CBT-schedulers (using successively more queues) that we present and
analyze in Section 2.1. This family of schedulers, which derives from [7), illustrates that
Qr(N) = O(NVk), uniformly in N and k. In Section 2.2, we state formally the actual
tradeoffs that are the main contribution of our study. Sections 3 and 4 are devoted to
proving the upper bounds in the tradeoffs for general BTs and complete BTs, respectively;
Section 5 is devoted to proving the lower bounds of the tradeoffs. We note in Section 6.1
that our results extend readily to other classes of tree-based dags. Although we cannot
characterize what non-tree-based dags experience such tradeoffs, we close the paper with
remarks in Section 6.2 about characteristics of classes of dags that preclude such tradeoffs.

Since our upper and lower bounds derive from recurrences on Q,(N) and Qr(N) as

functions of k and N, it is useful to note the following immediate consequence of Fact
1.1.

Lemma 2.1 Consider q 1-queue scheduling algorithm for an N -leaf, width-W depth-D
BT.

(a) The queue of the scheduler muyst have capacity at least W 2 (2N -1)/D.
(b) It suffices for the queue of the scheduler to have capacity W < N,
(c) In particular, for all N = 2", QI(N) = N.

2.1 A Simple Recursive CBT-Schedule Algorithm

A k-Queue CBT-Scheduler

Input: the (N = 2")-leaf CBT T»

1. Schedule the top [(n + 1)/k] levels of T, using queue #k.

9. For each “leaf” of the tree scheduled in step 1, in turn, schedule the CBT rooted at
that “leaf” by using queues #1, ..., #(k—1) to execute recursively the (k—1)-queue
version of this algorithm.

See Fig. 2.

Analyzing the Algorithm. Since each queue is used to schedule (possibly many)
CBT(s) of height (log N + 1)/k, no queue need have capacity greater than [N'/*]. As
an immediate consequence, we have:

Fact 2.1 For all positive integers N = 2" and k < n,
Qu(N) < [N'H]. (1)

Note that when k = log N in this family of algorithms, each queue has constant
capacity. At this point, the queues are collectively simulating the action of a single stack,
executing the CBT in a depth-first, hence lazy, regimen. (One can verify by a simple
adaptation of the argument in [12] that the cumulative capacity of the queues when
k = log N cannot be improved by more than a constant factor.)

2.2 The Real Control-Memory Tradeoffs

The possible tradeoff suggested in Fact 2.1 (i.e., the possibility that there exist lower
bounds that come close to the upper bounds (1)) does indeed exist. In the next three
sections we prove the following bounds, which are refinements of the rough bounds we
have stated earlier.

A. The Upper Bound for General BTs

In Section 3, we show that the upper bound (1) holds for arbitrary BTS, to within a
factor of 2.

Theorem 2.1 For all positive integers N and k < log N, the minimaz per-queue capacity
of algorithms that use k queues to schedule an N-leaf BT satisfies

1/2)N -1k — Nk
(1/2)] . (2)

Qu(N) <2N'* +1 -

(n+1)/k

+

(n+1)(1 - 1/k)

3

Figure 2: An indication
the 2"-leaf CBT.

-] Use queues
#1 - #(k-1)

of queue utilization in ¢ capacity-

saving two-queue schedule for

CORRECTED PAGE.10 - '"Scheduling Tree-Dags Using FIFO Queues:
A Control-Memory Tradeoff", S.N. Bhatt,
F.R.K. Chung, F.T. Leighton, A.L. Rosenberg.

Computer Science Technical Report - 93-48. 11/10/93

B. The Upper Bound for Complete BTs

In Section 4, we demonstrate that, somewhat surprisingly, the upper bound (1) can be
improved for complete BTs.

Theorem 2.2 For all positive integers N = 2" and k < n, the minimaz per-queue
capacity of algorithms that use k queues to schedule the N-leaf CBT satisfies

NI/k

* -1/k
Qi(N) < ()

(3)

C. The Lower Bounds

Our lower bounds for scheduling BTs derive from the following bound which is proved in
Section 5. For positive integers k, W, and D, let Q1 (W, D) denote the minimaz per-queue
capacity when k queues are used to schedule a BT having width W and depth < D.

Theorem 2.3 Let T be an N-leaf BT having width W and depth D. For all k <log N:
given any k-queue algorithm that schedules T, at least one queue must have capacity

, S 1 1/k Wl/k s
(7> D) 2 (k!zk-l) Di-1/k)

Since W > (2N — 1)/D for an N-leaf BT having width W and depth D, Theorem
2.3 immediately yields

Corollary 2.1 (The Lower Bound for General BTs)
Let T be an N-leaf, depth-D BT. For all k < log N: giwen any k-queue algorithm that
schedules T, at least one queue must have capacity no smaller than

(1)1/* (2N —1)V/* S 1@eN- 1)k
k' 2k-1 D =k D

Since there exist N-leaf BTs of depth log N + 1, it follows that

1(2N — 1)k
>
2(N) 2 k logN +1

Since an (N = 2")-leaf CBT has width W = N and depth D = n + 1, we get a
stronger corollary of Theorem 2.3 for CBTs.

10

Corollary 2.2 (The Lower Bound for Complete BTs)
For all positive integers N = 2" and k < n: given any k-queue algorithm that schedules
the N-leaf CBT, at least one of the queues must have capacity

1 Nk
k (log N + 1)1-1/k

Qi(N) 2

Corollaries 2.1 and 2.2 yield the claimed lower bounds on Qx(N) and Q;(N), respec-
tively.

D. The Fixed-k Tradeoff for Complete BTs

It is worth remarking that for fixed k, the bounds of Theorems 2.2 and Corollary 2.2 are
within constant factors of each other.

Corollary 2.3 For any fized constant k, there exist positive constants ¢; and c, such
that, for all N = 2%,

Nl/k Nl/k
Clm < (N) < Czlogl_TN-

3 The Upper Bounds for General BTs

This section is devoted to proving the upper bounds of Theorem 2.1, via a recursive
family of BT-scheduling algorithms that match the memory requirements of the CBT-
scheduling algorithms of Section 2.1 (to within constant factors). Let us be given an
N-leaf BT T.

Preprocessing. Label each arc of 7 with the number of leaves in the sub-BT of 7 rooted
at the node that the arc enters. This can be accomplished using either an O(N)-time
sequential algorithm or an O(log N)-time parallel algorithm, depending on the resources
available to the scheduler.

3.1 The k-Queue Algorithm

Use queue #k to start executing the nodes of T, from the root, level by level. As the
scheduler executes a node v that has two children, it scans the labels of the arcs leaving
v.

11

o If the label of one arc leaving v is > [1N'~'/*| and the label of the other arc
leaving v is < |3 N'-1/*| then the scheduler

1. enqueues the arc leading to the big subtree in queue #k

2. immediately schedules the smaller subtree, using queues #1,...,#(k — 1) in
a recursive invocation of the (k — 1)-queue version of this algorithm.

o If the labels of both arcs leaving v are < |3 N!~1/¥|, and the label of the arc entering
vis > I_%N 1-1/k| then the scheduler immediately schedules the subtree rooted at
node v, using queues #1,...,#(k—1) in a recursive invocation of the (k—1)-queue
version of this algorithm.

3.2 Analyzing the k-Queue Algorithm

In order to assess the memory requirements of the algorithm, we isolate the portions
of the scheduled tree 7 that are executed under the control of each of the k queues.
Specifically, in order to bound the capacity of queue #k, we prune it by removing all
subtrees that are processed using queues #1,. .., #(k — 1). We claim that the pruned
version of 7 has no more than

e,y (U2)N-VE — anvk
ANk 41 =0

leaves. In order to see this, note that the “leaves” of the pruned version of 7" all have
incoming arcs with labels > |1N'-17*| meaning that the subtree rooted at each of these
“leaves” has > L%N 1-1/ “_| leaves. Since T has N leaves in all, this bound on the number
of leaves in each of the removed subtrees implies that there are fewer than

N
(72N 7F] ®)
removed subtrees. But, the roots of these subtrees comprise the “leaves” of the pruned
version of T, and it is the pruned version which is the tree scheduled using queue ##%.

The claimed capacity of queue #k now follows from Lemma 2.1 and elementary bounds
for the fraction (5). '

In order to bound the capacities of queues #1,...,#(k — 1), note that each recursive
invocation of the algorithm using those queues schedules a BT having no more than
| N'-/%| leaves. It follows that

(1/2)N'-1/k _ o N1/k
LNl—l/kJ

Qi(N) < max (2N1/'= +1- , Quor ([N J)) ,

whence the Theorem.

12

4 The Upper Bounds for Complete BTs

This section is devoted to proving the upper bound of Theorem 2.2, via a recursive family
of CBT-scheduling algorithms that have better memory requirements than the family of
schedulers of Section 2.1.

For purely technical reasons, our algorithmic strategy inverts the question we really
want to solve. Specifically, instead of starting with a target number N of leaves and
asking how small a queue-capacity is sufficient to schedule an N-leaf CBT, we start with
a target queue-capacity () and ask how large a CBT we can schedule using queues of
capacity (). We proceed, therefore, by considering the quantity A(Q) which denotes
the mazimum number of leaves in a CBT that can be scheduled using k queues, each of
capacity Q. By deriving a lower bound on the quantity A'4(Q), we can infer an upper
bound on the dual quantity Q;(/N). In order to avoid a proliferation of floors and ceilings
in our calculations, we assume henceforth that Q is a power of 2; this assumption will be
seen to affect only constant factors.

Since the algorithm that establishes the general case of Theorem 2.2 is somewhat
complex, we present first the algorithm for the case of two queues (k = 2), which already
exposes the subtlest ideas in the general algorithm.

4.1 The Case k=2

Our two-queue CBT-scheduling algorithm operates in three phases which we describe
now in rough terms. Let A(Q) =4es [log(log @ — 1)]. In the first phase, the algorithm
uses queue #2 to schedule (the execution of) the top A(Q) + 1 levels of a CBT, retaining
the “leaves” from the last level in the queue. In the second phase, the algorithm staggers
executing these “leaves” (hence, removing them from queue #2) with beginning to use
queue #1 to schedule the middle log @ — 1 levels of the CBT. By the end of the second
phase, queue #2 has been emptied, hence is available for reuse. In the third phase, the
algorithm staggers using queue #1 to schedule the remainder of the middle log@ — 1
levels of the CBT with using queue #2 to schedule the bottom log @ levels. This latter
staggering proceeds by having queue #2 schedule a Q-leaf CBT rooted at each middle-
tree “leaf” from queue #1. To assist the reader in understanding the ensuing detailed
description of the algorithm, we depict in Fig. 3 the ultimate usage pattern of the two
queues.

A. An Efficient Two-Queue CBT-Scheduling Algorithm

Phase 1: The Top of the Tree.
In this phase, we use queue #2 to schedule (the execution of) the top A(Q) + 1 levels

13

log h =1

QUEUE #2

#2

!

Figure 3: The target utilization of two capacity-Q queues when scheduling the ezecution
of a “big” CBT; h =log Q.

14

loglogQ -1
TOP TREE
Last level:
(1 NODES REMAINING IN QUEUE #2

Figure 4: Scheduling the ezecution of the top of the CBT.

of the CBT we are scheduling, using the breadth-first regimen that is the unique way a
single queue can schedule a CBT (cf. Fact 1.1). At the end of this phase, queue #2 will
contain 2?) nodes. We make the transition into Phase 2 of the algorithm by considering
each node in queue #2 as the root of a “middle” CBT (which will have Q/2 “leaves”).
See Fig. 4.

Phase 2: The Middle of the Tree.

In this phase, we use queue #1 to schedule (the execution of) the middle trees that
comprise the next log@ — 1 levels of the CBT we are scheduling. This is the most
complicated of the three phases, in that these middle trees get executed in a staggered
manner, in two senses. First, the executions of the 2*(?) middle trees get interleaved in
the schedule we are producing. Second, the execution of the middle trees is interleaved
with segments of Phase 3, wherein the bottom trees are executed.

We describe first the initial portion of Phase 2, i.e., the portion before the phase gets
interrupted by segments of Phase 3.

Execute the first node from queue #2, which is level 0 (i.e., the root) of the first
middle tree; place the children of this node in queue #1. Next, proceed through the
following iterations; see Fig. 5.

Step 1. Begin the first middle tree.

15

3 3 3 3 3 3 3 3

Figure 5: The initial steps of Phase 2.

16

Step 1.1. Use queue #1 to schedule the execution of level 1 of the first middle
tree.

Step 1.2. Execute the root (level 0) of the second middle tree (removing that node
from queue #2); place the children of this root in queue #1.

Step 2. Continue the first middle tree; begin the second middle tree.

Step 2.1. Use queue #1 to schedule the execution of level 2 of the first middle
tree.

Step 2.2. Use queue #1 to schedule the execution of level 1 of the second middle
tree.

Step 2.3. Execute the root (level 0) of the third middle tree (removing that node
from queue #2); place the children of this root in queue #1.

Step 3. Continue the first and second middle trees; begin the third middle tree.

Step 3.1. Use queue #1 to schedule the execution of level 3 of the first middle
tree.

Step 3.2. Use queue #1 to schedule the execution of level 2 of the second middle
tree.

Step 3.3. Use queue #1 to schedule the execution of level 1 of the third middle
free.

Step 3.4. Execute the root (level 0) of the fourth middle tree (removing that node
from queue #2); place the children of this root in queue #1.

Step (2*(@ — 1). Finish the first middle tree; continue the second through next-to-last
middle trees; begin the last middle tree.

Step (29 —1).1. Use queue #1 to schedule the execution of level log@ — 2 of
the first middle tree.

Step (2M(@ —1).2. Use queue #1 to schedule the execution of level log @ — 3 of
the second middle tree.

Step (2M(@) —1).(2M@) — 1), Use queue #1 to schedule the execution of level 1 of
the second from last middle tree.

Step (2*(Q) —1).(2X(9)). Execute the root (level 0) of the last middle tree (re-
moving that node from queue #2); place the children of this root in queue

#1.

17

After the ith step of Phase 1, the following progress has been made: i+ 1 of the nodes
that began the Phase in queue #2 have been executed; the first 7 + 1 levels (i.e., levels
0,...,7) of the first middle tree have been executed, and level i + 1 of the tree resides
queue #1; the first ¢ levels of the second middle tree have been executed, and level i of
the tree resides in queue #1 (behind the nodes from the first middle tree); the first ; — 1
levels of the third middle tree have been executed, and level 7 — 1 of the tree resides in
queue #1 (behind the nodes from the second middle tree); and so on. When Phase 1
is completed (i.e., after the (2*(@) — 1)th step of the Phase), all 2X@ of the nodes that
began the Phase in queue #2 have been executed, so queue #2 is completely emptied,
hence is available for reuse. Queue #1, on the other hand, contains some number of
nodes that is guaranteed to be less than Q. Specifically, queue #1 contains

22 < g/2

nodes from the first middle tree, and, in general, it contains only half as many nodes
from the (i 4+ 1)th middle tree as it does from the ith; there are, of course,

2M@ <logQ —1

middle trees, hence
2X(Q)

Y 2<@ -2
i=1

nodes in queue #1. See Fig. 6.

We have now completely executed the first middle tree and partially executed all the
other middle trees. Ultimately, we shall continue to use queue #1 in the same interleaved,
power-of-2 decreasing manner as described here, to schedule the remaining middle trees
for execution. First, though, we initiate Phase 3 in which queue #2 is used to schedule
the bottom levels of the CBT for execution. It is important to begin Phase 3 now,
because some of the contents of queue #1 must be unloaded at this point, in order to
make room for the remaining levels of the remaining middle trees.

Phase 3: The Bottom of the Tree.

Phase 3 is partitioned into two subphases. In Phase 3a, we begin viewing the “leaves”
of the middle trees as the roots of bottom trees — each being a CBT with V,(Q) = Q
leaves. In Phase 3b, we continue using the regimen of Phase 2 to schedule the middle
trees.

Phase 3a. This subphase is active whenever the nodes at the front of queue #1 come
from level 2X(?) of a middle tree (which is the last level to enter queue #1). During the
subphase, we iteratively execute a single node — call it node v — from queue #1, and we

18

TOP TREE —

log h - 1 leaves

level 1

‘4__ in queue #1

~=—— MIDDLE TREES

level h-1

[<— |n queue #1

Figure 6: The situation after Phase 2.

19

level h-2 [~@——— |n queue #1

TOP TREE —p
log h - 1 leaves

level 1 |<g———— in queue #1

~%——— MIDDLE TREES

level h=2 |-==——in queue #1

level h-1 g [N queue #1

g BOTTOM TREES
{h levels each)

Figure 7: The situation after Phase 3a begins: the first two bottom trees have been eze-
cuted.

20

use queue #2 to schedule the CBT on @ leaves rooted at node v (using the breadth-first
regimen, of course). See Fig. 7.

Phase 3b. This subphase is active whenever the nodes at the front of queue #1 do
not come from level 2(?) of a middle tree. During the subphase, we perform one more
step of Phase 2, to extend the executed segment of the middle tree. To illustrate our
intent, the instance of Subphase 3b that is executed immediately after the first round of
executions of Subphase 3a (wherein the leftmost Q/2 bottom trees are executed) has the
following form.

Step (2*@ +1). Finish the second middle tree; continue the third through last middle
trees.

Step (2@ +1).1. Use queue #1 to schedule the execution of level 2XQ) of the
second middle tree.

Step (2X?) +1).2. Use queue #1 to schedule the execution of level 2XQ) — 1 of
the third middle tree.

Step (29 +1).(2M@) — 1). Use queue #1 to schedule the execution of level 2 of
the second from last middle tree.

Step (2M@ 4 1).(2X9)). Use queue #1 to schedule the execution of level 1 of the
last middle tree.

See Fig. 8.

B. The Analysis

Correctness being (hopefully) clear, we need only assess how much CBT we are getting
for given queue-capacity Q. There are

2X(@) 5 -21-(10g Q-1

top-tree leaves, hence, at least iQ(log @—1) middle-tree leaves, hence at least %Qz(log Q-
1) CBT leaves. It follows that

N:(Q) 2 1Q(los @ ~ 1)

Inverting this inequality to obtain the desired upper bound on Q3(N), we find that

. N 1/2
G <2 ()

21

TOP TREE ——p»
log h - 1 leaves

level 2 | ge— in queue #1

Vs
7/
/7 \

~¢— MIDDLE TREES

h-1 leveis

level h-1 lag=——— in queue #1

. BOTTOM TREES
(h leveis each)

Figure 8: The situation after Phase 3b begins: the first set of bottom trees have been
ezecuted; the second middle tree has been completed.

22

4.2 The Case of General &

We now show how to generalize our two-queue CBT-scheduler to obtain multiqueue
CBT-schedulers for arbitrary numbers of queues.

A. The Algorithm

Our k-queue CBT-scheduling algorithm uses Phases 1, 2, and 3b of our two-queue
scheduling algorithm directly. It modifies only Phase 3a, in the following way.

Phase 3a. This subphase is active whenever the nodes at the front of queue #1 come
from level log @ — 2 of a middle tree (which is the last level to enter queue #1). During
the subphase, we iteratively execute a single node — call it node v — from queue #1,
and we use queues #2,...,#k to schedule a CBT on Q leaves, rooted at node v, using
a recursive invocation of the (k — 1)-queue version of this algorithm.

Note that the two-queue CBT-scheduler of the previous subsection can, in fact, be
obtained via this recursive strategy, from the base case k = 1.

As with the case £k = 2, queues #2,...,#k are all available for this recursive call
because: (a) the last “leaf” of the top tree is extracted from queue #2 for execution
Just before the first “leaf” of the leftmost middle tree is extracted from queue #1 for
execution; (b) queues #3, ..., #k are not used at all with the top or middle trees above
this level of the final CBT.

B. The Analysis

Correctness being (hopefully) obvious, we need consider only how many leaves the CBT
we have scheduled has, as a function of the given queue-capacity Q. Because each recur-
sive call to our CBT-scheduler generates its own “top” tree and its own set of “middle”
trees, but uses one fewer queue than the previous call, it is not hard to verify that this
number is given by the recurrence

N1(Q) Q
New(Q) > %Q(logQ—l)Nk(Q)

Easily, this system yields the following solution, which holds for all £ > 1.

V@2 (jewsq)

For our ends, we invert this relation, to get the sought upper bound on Qr(N). O

23

5 The Lower Bounds in the Tradeoff

This section is devoted to proving the lower bound in Theorem 2.3.

Let us be given an N-leaf BT 7 having width W and depth D. Call a level of T
that has W nodes a wide level. Consider the action of an arbitrary k-queue schedule for
executing 7.

Our analysis of the given schedule is based on parsing the sequence of node-executions
prescribed by the schedule into phases. Recall that the action of executing a node and
loading its outgoing arcs into queues is a single atomic action.

Define Phase 0 to be that part of the process wherein the root of 7 (which must be
the first node in the schedule) is executed and its outgoing arcs loaded onto queues.

Inductively, define Phase 7 + 1 to be that part of the process that completes the
execution of all nodes whose incoming arcs were loaded into queues during Phase ¢. In
other words, Phase ¢ + 1 continues as long as some queue still contains an arc that was
put there during Phase i; the Phase ends when the last of these Phase-i “legacies” has
been executed.

One verifies by a straightforward induction that all nodes on level 7 of 7 must have
been executed by the end of Phase i. The following Fact is an immediate consequence of
this inference.

Fact 5.1 There are at most D phases in the sequence of node-ezecutions.
Fact 5.1 has the following corollary.

Fact 5.2 There must be a phase during which at least W/D nodes from a wide level of
T are erecuted. Call such a phase long.

Now look at what happens during a phase of an execution of 7 that minimizes the
capacity of the largest-capacity queue. The phase starts with some arcs residing within
the k& queues — at most Q,(W, D) per queue. As we noted in Fact 1.2, all of the nodes
entered by these arcs are independent in 7. Moreover, by definition of “phase,” all of
these nodes must be executed by the end of the phase. We can, therefore, characterize
what the portion of T that is executed during a phase looks like.

Fact 5.3 The nodes that are ezecuted during a phase of the ezecution of T form a forest
of BTs rooted at the < kQj (W, D) nodes whose incoming arcs resided in the k queues at
the start of the phase.

24

Let us henceforth focus on a specific long phase in the given schedule. Now, the
widest BT in the forest executed during this phase is at least as wide as the average BT
in the forest. Combining Fact 5.2 with Fact 5.3, the average width of a BT in this forest
must be at least W/(kDQ;(W, D)), since nodes that reside on the same level of 7 must
reside on the same level of any sub-BT of 7 that contains them. We conclude, therefore,
the following bound.

Fact 5.4 At least one of the BTs in the forest of nodes ezecuted during a long phase
must have width no smaller than

W
kDQL(W, D)’

Next, note that, by definition of “phase,” there must be some queue — say, queue
#m — whose sole contributions to the set of nodes executed during our long phase are
the nodes whose incoming arcs reside in this queue at the beginning of the phase. This
is because the phase ends when the last node whose incoming arc was enqueued during
the previous phase is executed; we are identifying queue #m as the source of this last
incoming arc. Now, queue #m started the phase (as did every queue) with no more
than Q) (W, D) arcs. As we noted earlier, each of these arcs enters the root of a BT
whose nodes are executed during the long phase. Of all the nodes executed during the
long phase, only these root nodes have incoming arcs that were enqueued in queue #m.
Therefore, if we remove all these queue #m-nodes from the forest, then we partition each
BT 7 that is rooted at a node whose incoming arc came from queue #m into two BTs,
call them 77} and T3. Clearly, at least one of 7 and 7% has at least half the width of
T'. It follows, therefore, that

Fact 5.5 The forest of nodes ezecuted during the long phase must, after all the nodes
from queue #m are removed, contains a BT of width no smaller than

W
2kDQL(W, D)

that is scheduled for ezecution by only k — 1 of the queues.

We infer from Fact 5.5 the recurrent lower bound

7 7 W
Qk(W’ D) 2 Qk—l (2kDQ;c(W,D), D) (6)
whose initial case (k = 1)
xW,D)=w (7)

25

is resolved in Lemma 2.1. We solve this recurrence by induction. Specifically, note
that the expression in inequality (4) reduces to equation (7) for the case k = 1. Direct
calculation verifies that inequality (4) is “preserved” by recurrence (6); i.e., if we assume,
for induction, that

1 1/(k-1) (DW)H/(k=1)
’ > — A
Qk—l(m D) - ((k _ 1)!2k_2) D)

then an application of recurrence (6) yields inequality (4), which is the lower bound of
Theorem 2.3. O

6 Closing Remarks

We close the paper with some observations on directions for extending our work and
on directions in which extensions are impossible. The extensions we know of (Section
6.1) concern queue-based scheduling algorithms for tree-dags; the impossibility results we
know of (Section 6.2) concern queue-based scheduling algorithms for dags whose underly-
ing graphs are not trees. A topic that we have not considered, which might be fruitful, is
the possible existence of control-memory tradeoffs that might arise with schedulers that
use other data structures (e.g., stacks) to manage tasks awaiting execution.

6.1 Extending Our Results on Scheduling Tree-Dags
The results we have reported here can be extended in a variety of ways.

A. A Better Lower Bound

A more careful analysis replaces the recurrent bound (6) by

w
(k+1)DQ;(W, D)

which solves to a marginally larger lower bound (by a constant factor). The reasoning
behind this better recurrence is as follows. If we remove the nodes that came from queue
#m, we have left < (k + 1)@} (W, D) trees, each of which is generated by only k — 1 of
the queues. Since each of the nodes that came from queue #m could, in fact, come from
a wide level of the big BT, removing these nodes could decrease the number of wide-level
nodes laid out during this phase by < Q. (W, D). What this means is:

26

Fact 6.1 The forest of BTs from a phase during which L nodes from a wide level of T
are ezecuted must contain a BT of width no smaller than

L
(k+1)@i(W, D)

that is generated by only k — 1 of the queues.

- Q(W, D)

B. Extensions to Broader Classes of Tree-Dags

Arbitrary Fixed Node-Degrees. We have focussed here on binary tree-dags solely
for the sake of definiteness; our results extend to tree-dags of any fixed branching factor,
with only clerical modifications.

Root-to-Leaf Tree-Dags. We have focussed here on tree-dags whose arcs point from
the root toward the leaves, thereby modeling a class of branching computations. The
control-memory tradeoff that we have proved obtains also for tree-dags whose arcs point
from the leaves toward the root, such as are used in many evaluative computations (e-g.,
evaluating arithmetic expressions or computing parallel-prefixes). This fact can be proved
by fleshing out the details of the following indirect argument.

The formal framework of our study emerged from [4] - [7], [13] wherein queues are
used to topologically sort graphs and dags. Indeed, the processes of topologically sorting
a dag and scheduling it (in our sense) are isomorphic processes.? In order to make this
isomorphism formal, one must complicate our framework slightly, to accommodate nodes
whose in-degrees exceed unity. Two changes are required: .

e When scheduling a general dag using (enabling and execution) tokens, a node v
becomes eligible for execution when all arcs that enter v contain enabling tokens.

* When scheduling a general dag using queues, a node v becomes eligible for execution
when all arcs that enter v are at the “fronts” of queues, in the sense of either being
at the heads of queues or being behind other arcs that enter v.

Using insights and results in the cited sources, one can readily prove the following lemma
(which does not occur in the sources). Underlying the proof is the fact that, if one
takes any topological sort of a dag G and reverses the linearization of G’s nodes, then

—
one obtains a topological sort of the dag G which is obtained from G by reversing the
orientation of all arcs.

Lemma 6.1 If the dag G can scheduled by a k-queue algorithm whose queues each have
—
capacity < C, then so also can the dag G.

3We noted this isomorphism earlier, in Section 1.2, for tree-dags.

27

6.2 Remarks on Scheduling General Dags

The control-memory tradeoff that we have exhibited in this paper is interesting because
of its nonlinearity: roughly speaking, the ezponent in the expression for the memory
requirements decreases linearly with the increase in the number of queues. It is an
inviting challenge to discover other classes of dags that admit nonlinear control-memory
tradeoffs and, hopefully, to characterize the properties of those dags that enable such
tradeoffs. While we have been unable to find either such classes or such properties, we
have discovered two simple properties that preclude such tradeoffs.

A. Pebbling Number

Fact 6.2 The cumulative capacity of the queues in a k-queue scheduling algorithm for
a dag G can be no less than the “pebbling number” of G, in the sense of [12] and its
NUMErous SUCCesSoTs.

The validity of this principle is clear from our formulation of dag-scheduling in terms
of (a nonstandard) type of pebble game. It is this principle that assures us (via the
results in {12]) that we should not consider BT-schedulers with more than log N queues
to schedule N-leaf BTs.

B. Separator Size

Fact 6.3 The cumulative capacity of the queues in a k-queue scheduling algorithm for
a dag G can be no less than the size of the smallest (arc-)separator of the dag into two
disjoint subdags.

The validity of this principle is clear once one notices that the (arc-)boundary between
the sets of executed and unexecuted nodes of a dag — which must coreside in the queues
of the scheduling algorithm — forms an (arc-)separator of the dag. It is this principle
that assures us that mesh-pyramids do not admit nonlinear control-memory tradeoffs.
We illustrate the argument for two- and three-dimensional mesh-pyramids.

The N-sink two-dimensional mesh-pyramid Mg) has nodes {(z,7) |0 <i+j < N};
its arcs lead from each node (i, j), where t + j < N — 1, to nodes (¢ + 1,7) and (3,5 + 1).
Easily, Mg) can be executed, level by level, by a 1-queue scheduler whose queue has

capacity 2N — 2. Since the smallest bisector of M%) must “cut” a number of arcs
proportional to N (cf. [14]), the queues of any multiqueue scheduler must (collectively)

contain this many arcs at the moment when precisely half the nodes of Mg) have been
executed.

28

The (N = 3n(n+1))-sink three-dimensional mesh-pyramid MY has nodes {(i, j, k) | 0 <
i+ j+ k < n}; its arcs lead from each node (7,7, k), where ¢t + j + k < n — 1, to nodes
(t+1,7,k), (3,7 +1,k) and (3,5, k + 1). Mg), being nonplanar, cannot be executed by
any l-queue scheduler [7]. Easily, however, there is a 2-queue scheduler that executes
M 53) face by face, as follows. The scheduler uses queue #1 to execute face k = 0 of Mﬁ?’
“level by level;” while executing the nodes, the scheduler fills up queue #2 with the arcs
that lead from face £ = 0 to face £ = 1. Inductively, the scheduler executes face k = r,
where r > 0, “level by level,” using queue #1 for the arcs that lie within that face, and
emptying queue #2 of the arcs that come from face k¥ = r — 1; additionally, if r < n,
while executing the nodes, the scheduler fills up queue #2 with the arcs that lead from
face k = r to face k = r 4+ 1. The capacity of queue #1 in this algorithm is 2n — 2 (which
is achieved just before the algorithm executes the last “row” of face k = 0); the capacity
of queue #2 is n(n + 1) (which is achieved just after the algorithm executes the last
“row” of face k = 0). Since the smallest bisector of MS\:;) must “cut” a number of arcs
proportional to n? (cf. [14]), the queues of any multiqueue scheduler must (collectively)

contain this many arcs at the moment when precisely half the nodes of Mg) have been
executed.

ACKNOWLEDGMENTS. The authors thank Marc Snir for helpful comments in the
early stages of this research, Li-Xin Gao for helpful discussions in the later stages, and
Lenny Heath and Sriram Pemmaraju for helpful comments on the presentation.

The research of S. N. Bhatt was supported in part by NSF Grants MIP-86-01885 and
CCR-88-07426, by NSF/DARPA Grant CCR-89-08285, and by Air Force Grant AFOSR-
89-0382; the research of F. T. Leighton was supported in part by Air Force Grant AFOSR
F49620-92-J-0125, and by ARPA Contracts ARPA N00014-91-J-1698, and ARPA N00014-
92-J-1799; the research of A. L. Rosenberg was supported in part by NSF Grants CCR-
90-13184 and CCR-92-21785. A portion of this research was done while S. N. Bhatt, F.
T. Leighton, and A. L. Rosenberg were visiting Bell Communications Research.

References

[1] A. Gerasoulis and T. Yang (1992): A comparison of clustering heuristics for schedul-
ing dags on multiprocessors. J. Parallel and Distr. Comput.

[2] A. Gerasoulis and T. Yang (1992): Scheduling program task graphs on MIMD ar-
chitectures. Typescript, Rutgers Univ.

29

[3] A. Gerasoulis and T. Yang (1992): Static scheduling of parallel programs for message
passing architectures. Parallel Processing: CONPAR 92 - VAPP V. Lecture Notes
in Computer Science 634, Springer-Verlag, Berlin, pp. 601-612.

[4] L.S. Heath, F.T. Leighton, A.L. Rosenberg (1992): Comparing queues and stacks
as mechanisms for laying out graphs. SIAM J. Discr. Math. 5, 398-412.

(5] L.S. Heath and S.V. Pemmaraju (1992): Stack and queue layouts of posets. Tech.
Rpt. 92-31, VPL

[6] L.S. Heath, S.V. Pemmaraju, A. Trenk (1993): Stack and queue layouts of directed
acyclic graphs. In Planar Graphs (W.T. Trotter, ed.), American Mathematical So-
ciety, Providence, R.I., 5-11.

(7] L.S. Heath and A.L. Rosenberg (1992): Laying out graphs using queues. SIAM J.
Comput. 21, 927-958.

[8] S.J. Kim and J.C. Browne (1988): A general approach to mapping of parallel com-
putations upon multiprocessor architectures. Intl. Conf. on Parallel Processing 3,
1-8.

[9] M. Litzkow, M. Livny, M. Matka (1988): Condor - A hunter of idle workstations.
8th Ann. Intl. Conf. on Distributed Computing Systems.

(10] D. Nichols (1990): Multiprocessing in a Network of Workstations. Ph.D. thesis,
CMU.

(11] C.H. Papadimitriou and M. Yannakakis (1990): Towards an architecture-
independent analysis of parallel algorithms. SIAM J. Comput. 19, 322-328.

[12] M.S. Paterson and C.E. Hewitt (1970): Comparative schematology. Project MAC
Conf. on Concurrent Systems and Parallel Computation, ACM Press, 119-128.

(13] S.V. Pemmaraju (1992): Ezploring the powers of stacks and queues via graph layouts.
Ph.D. Thesis, Virginia Polytechnic Inst.

(14] A.L. Rosenberg (1979): Encoding data structures in trees. J. ACM 26, 668-689.

(15] S.W. White and D.C. Torney (1993): Use of a workstation cluster for the physical
mapping of chromosomes. SIAM NEWS, March, 1993, 14-17.

[16] J. Yang, L. Bic, A. Nicolau (1991): A mapping strategy for MIMD computers. Intl.
Conf. on Parallel Processing 1, 102-109.

30

[(17) T. Yang and A. Gerasoulis (1991): A fast static scheduling algorithm for dags on
an unbounded number of processors. Supercomputing ’91, 633-642.

[18] T. Yang and A. Gerasoulis (1992): PYRROS: static task scheduling and code gen-
eration for message passing multiprocessors. 6th ACM Conf. on Supercomputing,
428-437.

31

