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ABSTRACT
LEARNING OBJECT RECOGNITION STRATEGIES
MAy, 1993
BRUCE A. DRAPER
B.S., YALE UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS
Pu.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Edward M. Riseman

Most knowledge-directed vision systems recognize objects by the use of hand-
crafted, heuristic control strategies. Generally, the programmer or knowledge
engineer who constructs them begins with an intuitive notion of how an object should
be recognized, a notion that is laboriously refined by trial-and-error. Eventually
the programmer finds a combination of features (e.g. shape, color, or context)
and methods (e.g. geometric model matching, minimum-distance classification or
generalized Hough transforms) that allow each object to be reliably identified within
its domain.

Unfortunately, human engineering is not cost-effective for many real-world
applications, a defect that has relegated most knowledge-directed visions systems
to the laboratory. Knowledge-directed systems also tend to be difficult to analyze,
since their performance, in terms of cost, accuracy, and reliability, is unknown, and
comparisons to other hand-crafted systems are difficult at best. Worst of all, when
the domain is changed, knowledge-directed systems often have to be rebuilt from
scratch.

The Schema Learning System (SLS) addresses these problems by learning

knowledge-directed recognition strategies under supervision. More precisely, SLS

vil



learns its recognition strategies from training images (with solutions) and a library
of generic visual procedures. The result is a system that develops robust and efficient
recognition strategies with a minimum of human involvement, and that analyzes the
strategies it learns to estimate both their expected cost and probability of failure.
In order to represent strategies, recognition is modeled in SLS as a sequence of
small verification tasks interleaved with representational transformations. At each
level of representation, features of a representational instance, called a hypothesis,
are measured in order to verify or reject the hypothesis. Hypotheses that are
verified (or, more accurately, not rejected) are then transformed to a more abstract
level of representation, where features of the new representation are measured and
the process repeats itself. The recognition graphs learned by SLS are executable
recognition graphs capable of recognizing the 3D locations and orientations of objects

in complex scenes.

viil



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . e e e e e e e e e e e e e e e s e e e A%
ABSTRACT . . . ottt it et it e e e e vil
LIST OF TABLES . . . . . .. ot ittt e e e e e e xiil
LIST OF FIGURES . . . . . o e e e e s s e e e e e s e e e e e Xiv
1. INTRODUCTION . . .. .t e e 1
1.1 Introduction . . . .. .. ... ... 1

1.2 The Schema System . . . . . . .. .. .. ... ... 4

1.3 The Schema Learning System . . . . . .. .. ... ... ... .... 7
1.3.1 Recognition Goals . . . . . . .. .. ... oL 8

1.3.2 The Processing Model . . . . . ... ... ... .. ... ... 9

1.3.3 Recognition Graphs . . . . . . . .. ..o 10

1.3.4 The Three Phases of SLS. . . . . . .. ... .. ... .. ... 12

1.3.5 Contributions . . . . . . . ... 13

1.3.6 Limitations . . . . . .. .. .. ... 14

2. GOAL-DIRECTED VISION . . . .. ... .. i 17
2.1 Theories . . . . . . .. 18
2.1.1 Schema Theory . . . .. .. .. .. .. ... ... ... ..., 19

2.1.2 The Subsumption Architecture . . . . ... .. ... .. ... 21

2.1.3 Purposive Vision . . . . .. . ... ..o o 23

2.1.4 Animate Vision . . . . . .. ... oo 24

2.1.5 Goal-directed Vision . . . . .. .. .. ... 25

2.2 Knowledge-directed Vision Systems . . . . . . .. ... .. ... ... 25
2.2.1 Blackboard Systems . . . . .. ... ... oL 26

2.2.2 Production Systems . . . . . .. ... 26

2.2.3 Semantic Networks . . . . . .. .. .. ... ... ... 27

2.2.4 Knowledge Base Construction . . . . . ... .. .. ... ... 29

2.3 Learning Recognition Strategies . . . . . . .. .. ... .. ... ... 30

X



3. SLS:

3.1
3.2

3.3
3.4

4. SLS:
4.1

4.2

4.3

5. SLS:
5.1

REPRESENTATIONS . . . . ..ottt e 33
Introduction . . . . . ... L 33
The Processing Model . . . . . .. ... ... ... .. 34
3.2.1 Transformation Procedures (TPs) . . . ... .. .. ... ... 35
3.2.2 Feature Measurement Procedures (FMPs) . . . .. .. .. .. 36
3.2.3 VP Declarations . . . . .. .. .. ... oL 36
Object Models . . . . . . .. . .. 37
Recognition Graphs . . . . . . .. ... oo 40
3.41 Decision Trees . . . . . . . . ... Lo 42
3.4.2 Decision Tree Optimization . . . . .. ... .. .. .. .... 43
3.4.3 Multiple-argument FMPs . . . . . .. ... ..o 47
3.4.4 Decision Trees as Classifiers . . . . .. ... ... ... .... 48
3.4.5 Capabilities and Limitations of Recognition Graphs . . . . . . 49
ALGORITHMS . . . .ottt it e e e 51
Exploration . . . . . . . ... 51
4.1.1 Discretizing Continuous Features . . . . . ... .. .. .. .. 54
4.1.2 Characterizing FMPs . . . . . .. ... .. 0L 56
4.1.3 Making Exploration Efficient . . . . . . .. ... .. ... .. 58
Learning from Examples (LFE) . . . . .. ... ... ... ... ... 58
4.2.1 Learning from Examples . . . . . ... ... ... ... .. .. 59
4.2.2 Dependency Trees. . . . . . . . . .. L. 60
4.2.3 LFE: A DNF-based Algorithm . . . . . .. ... ... ... .. 62
4.2.4 The Minimum Hypothesis Count Heuristic . . . . . .. .. .. 64
Graph Optimization . . . . . . .. .. .. .. ... ... 65
4.3.1 Graph Layout . . . . . . .. .. ... 65

4.3.1.1 Optimizing Control of Single-Argument FMPs . . . . 66

4.3.1.2 Optimizing Multiple-argument FMPs . . . . . . . .. 70
4.3.2 Estimating Total Cost . . . . . . ... ... ... . ...... 72
4.3.3 Making Optimization Efficient . . . . . . . ... .. .. .. .. 72
ANALYSIS . . . oo 74
Robustness . . . . . . . .. 75
5.1.1 Assumptions . . . . . . . . . ... 75
51.2 PAC Analysis . . . . . . .. .. 76
5.1.3 Pre-training Analysis . . . . . .. ... .o 78
5.1.4 Post-training Analysis . . . . .. ... ... 79
5.1.5 Implications of Post-training Analysis . . . . . . .. ... ... 82



5.2 Computational Complexity . . . . . ... .. ... ... ... .... 83

5.2.1 Knowledge Base Complexity . . . . . . ... .. .. ... ... 83
5.2.2 The Complexity of Exploration . . . . ... ... ... .... 84
5.2.3 The Complexity of Learning From Examples . . . . . . . . .. 85
5.2.4 The Complexity of Optimization . . . ... .. .. ... ... 87
5.2.5 Conclusions About Complexity . . . .. .. .. .. ... ... 88

6. DEMONSTRATIONS . . . .. .ottt e e e 90
6.1 Introduction . . . . . . . . ... 90
6.2 Implementation Notes . . . . . . . .. .. ... ... ... ... .. 92
6.3 Tree Recognition from an Approximately Known Viewpoint . . . . . 93
6.3.1 Training Images . . . . . .. .. .. .. ... ... 93
6.3.2 Recognition Goal . . . . .. ... .o oo 96
6.3.3 Testing Methodology . . . . . .. ... ... .. ... ... .. 96
6.3.4 The Knowledge Base . . . . . .. ... .. ... .. ...... 98
6.3.50 Knowledge Base Complexity . . . . . . ... .. .. ... ... 100
6.3.6 Training (An Example) . . . . . .. .. ... ... .. 102
6.3.6.1 Exploration . . . ... ... ... ... ... 102

6.3.6.2 Learning From Examples (LFE) . . . . . ... .. .. 104

6.3.6.3 Graph Optimization . .. .. ... .. ........ 109

6.3.7 Reliability Results . . . . . .. .. .. ... ... ... ..., 112
6.3.7.1 Redundancy . . . .. ... ... ... ... .. 114

6.3.7.2 Generation Failures . . . . . . ... ... ... .. .. 114

6.3.7.3 Predicted Reliability . . . .. ... ... . ... ... 116

6.3.8 Efficiency Results . . . . . . .. .. ... ... ... ... 117
6.3.9 Complexity of SLS . . . . . .. .. ... L 118

6.4 Building Recognition from An Approximately Known Viewpoint . . . 119
6.4.1 Training Images . . . . . .. .. .. ... ... ... ... 119
6.4.2 Recognition Goal . . . . .. ... L Lo 121
6.4.3 The Knowledge Base . . . . . . . ... ... ... ....... 124
6.4.4 Reliability Results . . . . . .. .. .. ... ... ... ..., 126
6.4.5 Timing . . . . . . . . ... 129

6.5 Recognizing Buildings from an Unknown Viewpoint . . . . . . . . .. 129
6.5.1 Training Images . . . . . .. .. .. ... ... ... ... 130
6.5.2 Recognition Goal . . . . .. ... Lo oL 133
6.5.3 The Knowledge Base . . . . . .. ... ... ... ....... 133
6.5.4 Relability . . . . . ... ... 135
6.5.0 Timing . . . . . . . . ... 136

6.6 Summary of Demonstrations . . . . . . .. .. ... 137

x1



7. CONCLUSIONS . . . ottt e e e s s,
7.1 Contributions (SoFar) . . . .. .. ... ... ...

7.2 Topics

BIBLIOGRAPHY

for Future Research . . . . . . . . . . . . ... ... ... ..

xi1



Table

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LIST OF TABLES

Page

Results of twenty-one trials of learning to recognize the image position
of a tree, with a minimum distance classifier for goal-level verification. 115

Estimated probabilities of failure for twenty-one tree recognition trials.117
Timing results for the twenty-one tree recognition trials. . . . .. .. 118

Results of twenty-one trials of learning to recognize the pose of the
Marcus Engineering Building. . . . . . .. ... ..o 128

Timing results for the twenty-one Marcus Engineering trials. . . . . . 129

Results of ten trials of learning to recognize the pose of the Lederle

Graduate Research Center (LGRC) from an unknown viewpoint. . . . 136
Estimated probabilities of failure for the twenty-one tree recognition

trials. . . . L L 137
Timing results for the ten LGRC trials. . . . . . . ... .. ... ... 137

xiil



Figure

1.1

1.2
1.3
3.1
3.2
3.3
3.4
4.1
4.2

4.3

4.4

4.5
4.6
6.1
6.2
6.3
6.4

6.5

LIST OF FIGURES

Knowledge-directed recognition of roads and centerlines in rural road
SCEMES. « « v v e e e e e e e e e e

Top-level view of SLS architecture . . . . . . . ... .. .. ... ...
A recognition graph. . . .. ..o
VP Declaration Templates. . . . . . . . .. ... ... ... ... ...
A recognition graph. . . .. ..o
A Decision Tree. . . . . . . .
An SLS decision tree. . . . . ..o
The Three Algorithms of SLS. . . . . . . ... .. ... ... ... ..
Discretizing Continuous Features. . . . . . . .. ... ... ... ...

An example of a dependency tree showing the different ways that one
correct pose hypothesis can be created during training. . . . . . . ..

A generalized dependency tree created by replacing the hypotheses
in Figure 4.3 with their feature values. . . . . . .. .. ... ... ..

An initial decision graph. . . . . .. .. oL oo
A pruned decision graph. . . . . ..o oL o oL
The first of twenty-one training images. . . . . . . . .. .. ... ...
The last of twenty-one training images. . . . . . . . .. .. ... ...
Representing the 2D projection of a trees as a parabola in the image.
The tree recognition knowledge base. . . . . . ... .. .. ... ...

The top level of a dependency tree for tree recognition. . . . . . . ..

xiv

55

97



6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

The top two levels of a dependency tree for a single training image,
with hypotheses shown in boldface and transformation procedures

(TPs) shown in italics. . . . .. .. .. ... ... ... .. ..... 106

A complete dependency tree for one example, showing how correct
parabola hypotheses can be generated from a training image. . . . . . 107

The generalized dependency tree, with image-specific hypotheses
replaced by their feature vectors. . . . . . .. ... 0L 108

An example DNF expression. . . . .. ... .. ... ... ...... 109

The first two levels of a smooth region decision tree, before pruning. . 111

One possible pruned decision tree for smooth regions. . . . . . . . .. 113
The complexity of LFE during tree recognition. . . . . .. .. .. .. 120
A correct pose from one trial of the Marcus recognition strategy. . . . 123

A wire-frame model of the Marcus Engineering Building, copied from
its blueprints. . . . . . .. Lo 126

One of ten images of the Lederle Graduate Research Center (LGRC). 131
Another image of the Lederle Graduate Research Center (LGRC). . . 132

A correct pose from one trial of the LGRC recognition strategy. . . . 134

p. 9%



CHAPTER 1

INTRODUCTION

1.1 Introduction

The goal of computer-based object recognition is to identify objects in images,
and if necessary to determine their three-dimensional location and orientation.
Objects are identified by comparing data extracted from images to a prior: models
of objects or object classes in memory. When a model matches the image data, an
object is recognized, and features of the object, including its location and orientation
in the world (i.e. its pose), can be recovered from the data-to-model correspondence.

In one approach, described by Grimson [32], object recognition is divided into
three parts. Selection focuses attention on a subset of the image data, indezing
selects object models from a model base, and matching searches for correspondences
between the data selected by segmentation and the models selected by indexing [32].
Although they may be interleaved within a single process, segmentation, indexing
and matching are generally considered distinct and independent activities, and their
algorithms are designed not to depend on each other. For example, the matching
algorithm is designed to be independent of the model(s) retrieved by indexing, and

the segmentation algorithm is designed to be independent of the matching algorithm.



However, in many situations it is possible to select object models based on
the context and goals of the viewer. Mobile robots, for example, can determine
their location by looking for pre-defined landmarks, and industrial robots can
assemble widgets by searching their workspace for specific components. In both
cases, the goal is to find a specific object, an easier task than unconstrained object
recognition. This suggests an alternate approach to computer vision in which objects
are predicted based on the goals and context of the viewer, and object-specific
recognition strategies are invoked to find the predicted targets. The advantage of
this approach is that special-purpose strategies focus the matching process on the
most distinctive characteristics of an object or object class and direct the selection
process to look for specific low-level features.

Goal-directed vision can be useful even in less constrained scenarios than those

mentioned above. Most environments change little from day to day, so in familiar
settings the position of a viewer is enough context to generate strong expectations
about a scene. In novel settings, the functionality of one object can trigger
expectations of another: one expects to see a car on a road, for example, but not
in the middle of a field or up a tree. Similarly, cultural norms and common-sense
reasoning can be used to generate expectations about one’s environment. As a result,
vision is usually an exercise in looking for specific objects, and only when confronted
with the unusual or unexpected is it reduced to the problem of unconstrained object
recognition.

This thesis presents a system for learning specialized strategies to recognize
predicted objects. The underlying intuition is that object recognition is a visual
skill, and the more often a system sees an object the more quickly and reliably it

ought to recognize it. The skill comes in knowing what to look for by learning what



characteristics of an object are visually distinctive. Some objects, for example, are
most easily recognized by their shape, while others are recognized more easily by
their color or texture, or by recognizing a subpart of the object. By exploiting
distinctive or unusual characteristics, special-purpose recognition strategies can
reduce the cost and improve the reliability of object recognition.

The system we have developed is called the Schema Learning System (SLS),
and it is designed to learn to recognize any object, in context, from a set of training
images. A training signal is provided by a teacher who indicates what objects should
be found in each training image and how they should be represented. For example,
if the goal is the find the image positions of trees, the training signal is the positions
of trees in the training images. Conversely, if the goal is to determine the location
and orientation of a building, the training signal is the pose of the building (relative
to the camera) in each image. By comparing the image data to the training signals,
SLS learns an efficient strategy for satisfying the goal, subject to rigid reliability

constraints.

Significantly, SLS does not try to match abstract object models directly to image
data. Drawing on thirty years of computer vision research, SLS compares models
to data by reasoning across multiple levels of representation instead. The computer
vision literature contains many representational systems for visual data, as well as
many algorithms for creating and evaluating instances of these representations. SLS
integrates this research by selecting the visual procedures and representations that
will best satisfy a particular goal, and building an executable control strategy for
invoking those procedures to achieve the goal.

SLS’s recognition strategies should be immediately useful in such emerging tech-

nologies as intelligent vehicles and flexible manufacturing systems, where predictable



environments invite the use of special-purpose recognition strategies. In the future,
they may also be part of general-purpose computer vision systems that rely on
expectations to reduce the computational cost of vision, except in those rare cases

where contextual predictions fail.

1.2 The Schema System

The idea of using special-purpose vision routines to satisfy specific goals or
within particular contexts is the central tenet of goal-directed (also known as
purposive) vision. In the next chapter we review the motivations for, and history
of, goal-directed vision in detail, but for the moment let us focus on one goal-
directed system as an example. Work on the Schema System began in the late
nineteen-seventies as part of the larger VISIONS system [33], and after ten years
of development reached its culmination in the work of Draper, et. al. [23] (See
also Weymouth [70] and Draper, et. al. [22]). The schema system makes the
notion of specialized recognition strategies explicit, with each schema being an
expert at recognizing one type of object or scene. Schemas execute concurrently,
and cooperate with each other by exchanging tentative hypotheses via a global
blackboard, gradually building a consensus about the contents of a scene.

To understand why cooperating, specialized experts are an attractive paradigm,
consider the task of finding roads in rural New England scenes, such as the one
pictured in Figure 1.1. Although road edges are often broken or missing altogether
in images such as these, roads can usually be found on the basis of area properties,
such as color and texture, except where they go into or out of shadows or where

they disappear into the distance.



Figure 1.1: Knowledge-directed recognition of roads and centerlines in
rural road scenes. Rural roads are most easily recognized on the basis
of color and texture, while centerlines are recognized as projected line
segments. The initial road hypothesis, shown in black in the upper right,
is used to constrain the search for centerlines, shown in the lower left
and right. The resulting centerline hypothesis is then used to extend the
original road hypothesis, as shown in gray in the upper right.



Centerlines painted down the middle of roads have almost the opposite char-
acteristics. While their projections are too small to generate measurable area
properties, their boundaries generate edge chains that can be pieced together to
form centerline hypotheses. As a result, the strategy for recognizing centerlines
is completely different from the road recognition strategy. Nonetheless, the two
strategies can interpret more of the scene together than either could alone. The
road recognition strategy hypothesizes roads based on color and texture features
(shown in black in the upper right of Figure 1.1). The centerline strategy uses road
hypotheses to focus attention on long image lines near roads, and begins to piece
them together into chains of parallel lines to form centerline hypotheses (shown
in the lower left and lower right of Figure 1.1). The resulting centerline hypothesis
extends farther into the image than the original road hypotheses, providing evidence

that the road hypothesis should continue into a heavily shadowed region (shown in

gray in the upper right of Figure 1.1).

The road and centerline recognition strategies above are an example of how
cooperating, specialized processes interpret a scene. Building a system that inte-
grates many such strategies requires addressing several software engineering issues.
In particular, schemas must be modular, so that modifications to one schema do
not have unforeseen consequences in others. The Schema System supports data
hiding by giving each schema a private “local blackboard” for storing special-purpose
representations not needed by other schemas. Local blackboards also reduce the
message traffic on the global blackboard, reducing shared memory contention and
run-time overhead. Cooperation results when schemas write and read strictly

controlled global hypotheses to and from the central blackboard, where the global



hypotheses can contain only the core representations understood by every schema
[23].

Unfortunately, while the schema system is a successful proof of concept for goal-
directed vision, it also highlights the principle problem of the approach: strategy
acquisition. The Schema System, like other knowledge-directed systems, relies on
hand-crafted knowledge bases. The programmers and knowledge engineers who
construct schemas begin with an intuitive notion of how each object should be
recognized, a notion that is laboriously refined by trial-and-error. Eventually, the
programmer finds a combination of features (e.g. color, shape) and methods (e.g.
minimum distance classification, geometric model matching) that allow each object
to be reliably identified.

Human engineering is therefore not cost-effective for applications that require
more than a few strategies. (An intelligent vehicle, for example, might need to
recognize dozens or even hundreds of landmarks in order to navigate.) Also, we
know of no way to validate hand-crafted systems. Their performance, in terms of
cost and reliability, is unknown. Worst of all, if the domain changes, hand-crafted

systems have to be rebuilt from scratch.

1.3 The Schema Learning System

The Schema Learning System (SLS) addresses the strategy acquisition problem
by automatically learning special-purpose recognition strategies from training im-

ages. A teacher provides a training signal that indicates what should be found



in each training image. By comparing the teacher’s ground-truth information!
about a scene with the image data, SLS learns an accurate and efficient strategy for
recognizing an object or object class. This strategy is then available to application
programs such as autonomous vehicles or manufacturing robots any time they need
to recognize an instance of the object or object class. SLS is therefore a compile-time
(or “off-line” or “batch”) system that learns strategies in advance of the run-time
application that will use them, as shown in Figure 1.2.

Just as importantly, SLS predicts how well each strategy will perform, in terms of
the expected cost of recognition and the probability of success on novel test images.
These predictions can be used by application programs to allocate resources and
assign confidence measures to their percepts, based on the efficiency and reliability

of the recognition strategies that generate them.

1.3.1 Recognition Goals

More specifically, SLS learns strategies to satisfy recognition goals. One motiva-
tion for goal-directed vision is that biological vision systems are driven by the goals
and actions of an agent, so that, for example, a frog has special-purpose strategies
for finding prey and detecting threats [4]. More recently this idea has been revived
by others who argue that computer vision should be a purposive process by which
agents extract information from the world pertinent to their goals and actions [16, 2].
In SLS, a teacher provides recognition goals specifying the objects to be recognized,

along with their target representations and accuracy thresholds. For example, a

goal might be to recognize the position of a building to within 5% of the distance

'In practice, any training signal will contain small positional errors, but there is an assumption
that the errors in the training signal are significantly smaller than the tolerance thresholds in the
recognition goal (See Section 1.3.1 for a description of recognition goals).
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Figure 1.2: Top-level view of SLS architecture
from the camera to the object, or to identify the centroid of the image projection

of a tree, plus or minus one pixel. Whatever the recognition goal, SLS’s task is to

learn a robust and efficient strategy for satisfying it.

1.3.2 The Processing Model

SLS, like the schema system before it, models vision in terms of visual procedures
(VPs) and hypotheses. Visual procedures are algorithms from the computer vision
literature, such as region segmentation, line extraction or pose determination. VPs

are thus analogous to the Schema System’s knowledge sources? [33, 23] or Ullman’s

visual routines [64], in the sense that they are the procedural primitives used to

2Earlier versions of this work, such as Draper and Hanson [24], borrow their terminology from
the Schema System and refer to VPs as knowledge sources. The Schema System, of course,
borrowed its terminology from Hearsay-II [26].
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build larger strategies. Hypotheses are instances of intermediate-level representa-
tions of the image and/or 3D world, including regions, line segments, coordinate
transformations and object labels. At each step in the recognition process, a VP is
applied to one or more hypotheses and either 1) measures features of the hypothesis

or 2) generates new, higher-level hypotheses.

1.3.3 Recognition Graphs

Recognition strategies are represented by recognition graphs, which are a gener-
alization of decision trees to multiple levels of representation. Recognition graphs
control hypothesis generation as well as hypothesis verification, as shown in Fig-
ure 1.3. The underlying premise is that image data should not be matched directly
to object models. Instead, a sequence of more and more abstract descriptions of
the image data, represented as intermediate-level hypotheses, are built up under
constraints provided by the object model, until eventually goal-level hypotheses
are generated. Recognition graphs therefore model vision as a sequence of rep-
resentational transformations interleaved with hypothesis verifications. Each level
of the recognition graph corresponds to one type of intermediate-level hypothesis
(in blackboard terminology, one level of abstraction), and the decision tree at each
level controls how hypotheses of that type are verified. Verified hypotheses are
transformed into more abstract hypotheses, until eventually goal-level hypotheses

are generated. (Recognition graphs are described more thoroughly in Section 3.4.)
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Figure 1.3: A recognition graph. Levels of the graph are decision trees
that verify hypotheses using feature measurement procedures (FMPs).
Hypotheses that reach a subgoal are transformed to the next level of
representation by transformation procedures (TPs).



12

1.3.4 The Three Phases of SLS

SLS learns recognition graphs through a three step process of ezploration, learn-
ing from examples, and graph optimization. The exploration algorithm estimates
the costs and likelihoods associated with visual procedures by applying them to
training images. In the process, the exploration algorithm generates more and more
abstract hypotheses, eventually producing goal-level hypotheses for the learning-
from-examples algorithm to analyze. The learning-by-examples algorithm inspects
these examples and infers a generalized concept of how correct goal-level hypotheses
are generated from images through sequences of intermediate-level hypotheses.
Typically it will discover that in order to recognize an object reliably, several
(possibly redundant) methods of hypothesis generation must be used. Finally, the
graph optimization algorithm creates decision trees at each level of the recognition
graph that minimize the expected cost of verification. The final result is a multi-level
recognition graph representing an efficient and reliable strategy for identifying an
object or object class in terms of the specified goal (e.g. 2D or 3D, approximate or
exact).

In the next chapter, we review the history of goal-directed vision, paying special
attention to previous contributions in the area of learning. Chapter Three describes
the representations used by SLS to represent recognition strategies, goals and object
models in more detail, while Chapter Four focuses on the three steps (exploration,
learning from examples and graph optimization) for learning recognition strategies
from training images. Chapter Five presents a theoretical foundation for predicting
the reliability of recognition strategies, and also analyzes the computational com-

plexity of SLS’s learning algorithms. Chapter Six presents three demonstrations of
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SLS in action, learning recognition strategies that might be used by an autonomous
mobile robot, and Chapter Seven summarizes the contributions of SLS and outlines

the open research questions that remain.

1.3.5 Contributions

The primary contribution of SLS is that it automatically learns special-purpose
recognition strategies under supervision. There has been earlier work on learning
shape-based recognition strategies from CAD/CAM models under known lighting
conditions [37, 38, 18], and on learning to recognize two-dimensional objects from
features that can be measured directly in the image, assuming known prior prob-
abilities [19]. None of these systems, however, can do what SLS can do: learn to
recognize artificial or natural objects in complex images by integrating cues from
shape, color, context and other types of knowledge. SLS is able to achieve these
goals because it reasons across multiple levels of representation, and takes advantage
of the wealth of available computer vision procedures.

The second most important contribution of this work is the analysis of robustness
developed in Chapter Five. SLS is the first system capable of predicting the
reliability of strategies based on sound probabilistic arguments without making
unrealistic assumptions. SLS predicts the robustness of its strategies based not
on probability estimates from the user, but by analyzing how a recognition strategy
develops in response to new training images. This analysis, based on earlier work
by Valiant [66], makes it possible to gauge accurately the reliability of a learned

recognition strategy.
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At a more mundane, but still important, level, SLS is the first system to supply
a user (or application program) with an estimate of the expected cost of satisfying
a recognition goal. This information can be critical for planning and resource
allocation in robotic systems that rely on computer vision. Just as importantly,
if the library of visual procedures is incapable of robustly achieving a recognition
goal, SLS warns the user that the goal will not be met.

Finally, SLS gives a boost to the theory of goal-directed (purposive) vision,
which has been criticized by researchers who argue that the goal of computer vision
research is not just to create object recognition systems, but to put forth a coherent
and parsimonious theory of vision. These researchers claim that by modeling vision
as a loose (to be critical, ad-hoc) collection of special-purpose recognition systems,
proponents of goal-directed vision abandon that goal. SLS puts forth a counterclaim
by example, however; a claim that special-purpose recognition strategies do not
have to be ad-hoc or unstructured, that they can arise through predictable and
scientific mechanisms in response to a viewer’s environment. Indeed, the criticism
can be turned around: given that special-purpose strategies can be acquired through
experience, it seems unnecessary and unjustified to assume that all visual goals must

be met by a single general-purpose mechanism.

1.8.6 Limaitations

Having outlined the contributions of this thesis, we should also note some of the
significant problems that it does not address. First and foremost, this thesis does
not consider the problem of how to generate predictions from a viewer’s goals and

context. The object indexing problem remains open.
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Similarly, SLS does not solve the “Shape-from-X” problem. Some visual
procedures, particularly those that recover pose from monocular images, require a
model of the three-dimensional shape of an object. Since there is no known method
for learning the shape of an object from a set of unrelated, monocular views, a
shape model of the object must be included as part of the knowledge base if these
procedures are to be used. (Two-dimensional recognition in SLS does not require
shape models.) Tomasi and Kanade [60], Kumar and Hanson [42], and Thomas and
Oliensis [59], among others, have recently made significant advances in obtaining
structure from motion, leaving the possibility that in the future SLS might learn
3D recognition strategies without a-prior: shape models, if the training images are
provided as motion sequences. Alternatively, SLS could be used with stereo images
or with directly-sensed 3D data (e.g. LADAR? images) to learn 3D recognition
strategies. Nonetheless, in its current form SLS cannot recover the three-dimensional
pose of an object unless it is provided with a 3D model.

This work also does not consider the cooperative recognition of multiple objects.
Draper, et. al. [22, 23] show how concurrent strategies for recognizing distinct
objects can reduce the total cost of recognition by exchanging information; those
recognition strategies, however, were hand-written. SLS has not yet been generalized
to learn strategies that exhibit cooperative behavior.

Parallelism is another related but unexplored avenue of research. Not only can
multiple recognition strategies operate concurrently, but within each strategy many

hypotheses can be pursued at the same time. The recognition graph formalism

introduced by SLS supports and encourages this type of intra-strategy parallelism,

S3LADARSs, also known as laser RADARs, sense distance by measuring the time delay from
when a laser pulse is emitted until its reflection returns to the sensor.
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but parallelism introduces many systems-level issues, such as memory contention
and interprocess communication, that are not considered here.

Finally, this work is not presented as a model of human vision. Arbib [4, 5]
originally put forth a theory of goal-directed vision as a model of biological per-
ception, and we know of nothing in our extensions to his work that invalidate this
claim. Nonetheless, our work on SLS was motivated by the desire to build bigger
and more efficient machine vision systems, not by biological concerns. Consequently,
our learning algorithms were designed to produce accurate and efficient recognition
strategies, rather than strategies that conform to psychological or psychophysical

data.



CHAPTER 2

GOAL-DIRECTED VISION

In the last chapter, we described a goal-directed approach to vision in which
predictions trigger special-purpose recognition strategies. “Goal-directed vision”, in
fact, is an umbrella term meant to capture a pair of themes that are common to a
number of closely related paradigms. The theories of schema-based [4, 5], layered
[16, 17], purposive [2] and animate vision [8] all claim that vision exists to enable
behaviors. In addition, all of these theories model vision as a collection of special-
purpose strategies, rather than a single, monolithic recovery algorithm. Together,
these themes suggest the need for systems like the Schema Learning System (SLS)
that learn special-purpose recognition strategies for satisfying perceptual goals.

Although work on learning recognition strategies is relatively recent, researchers
have studied object recognition for years. Much of the work has focused on solving
subproblems, such as line extraction, graph matching and pose determination, but
there has been some work on building complete knowledge-based systems. These
systems can be categorized as blackboard systems, production rule systems, or
graph-based systems, and despite their differences, almost all of them reason across

multiple levels of representation to satisfy abstract recognition goals. SLS emulates
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these systems by learning recognition strategies that interleave instance verifica-
tion with representation transformations, thereby focusing attention on promising
hypotheses while bulding up more and more abstract descriptions of an image’.
Of course, SLS is not the first system to learn recognition strategies. Other
systems have learned strategies either by exploiting strong assumptions about
objects and lighting models [18, 38] or by learning to match low-level image features
directly to object models [19]. None of these systems, however, integrate existing
vision algorithms or reason across multiple levels of representation the way SLS does,
and as result none are able to recognize complex objects in their natural settings
the way SLS can.
2.1 Theories

According to the Encyclopedia of Artificial Intelligence, “the goal of an image
understanding system is to transform two dimensional data into a description of the
three dimensional spatiotemporal world.” ([62], pg. 389%) Such definitions reflect
the influence of Marr and the reconstructionist school of computer vision [44], which
holds that vision is the process of reconstructing the three dimensional geometry of a
scene from two dimensional images, essentially by inverting the geometry and physics

of optical perspective projection. Symbolic recognition is viewed as a secondary

process that follows and is dependent upon geometric reconstruction.

!Formally speaking, an a priori restriction on the solution space of an inference algorithm, or
an a priori preference for some solutions over others, is called an inductive bias [65], and SLS
is biased to learn recognition strategies that interleave instance verification with representation
transformation.

2 Although the citation is to the original source, we discovered this quote in the introductory
paragraph of Dana Ballard’s article on animate vision [8].
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There is, however, an alternate definition of computer vision, in which the goal is
to enable actions, generally by applying concurrent, special-purpose strategies. This
approach has roots in the psychology literature of the 1960’s and the cybernetics
literature of the 1940’s and ’50s (see Arbib [7] for a review). What is particularly
compelling about this approach, however, is that it keeps resurfacing in the computer
vision literature with different motivations. It first appeared in the early 1970’s in
the work of Arbib, who modeled perception in terms of action-oriented schemas [4, 5].
Several years later, Brooks proposed a layered approach with each layer integrating
perception and action as a solution to problems of real-time robotics [17]. Similar
ideas surfaced again in the work of Aloimonos, who was trying to circumvent the
practical difficulties of reconstructionist vision [2], and Ballard, who, like Arbib, was
modeling biological vision [8]. Partly as a result of this repeated convergence, the
notion of vision as a collection of concurrent, special-purpose strategies is once again

gaining popularity.

2.1.1 Schema Theory

Arbib’s theory of biological perception centers around the “action-perception
cycle”, in which the goal of perception is to enable actions, and the goal of many
actions, particularly eye movements and head movements, is to enable perception
[4]. By “actions”, Arbib had in mind what many others call behaviors. For example,
in frogs the percepts are food and foe, and the corresponding actions are to feed or
flee [6]. He also presented eye vergence as an example of an action whose goal is to

enable perception [4].
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Arbib argued that to implement the action-perception cycle, vision should be
modeled as a set of concurrent, special-purpose perceptual schemas, each of which
enables a particular behavior (or “motor schema”). The goal of these schemas is not
to produce a general-purpose model of the scene, but rather to acquire information
needed to enable a specific (possibly cognitive) action. In Arbib’s words, an “animal
perceives its environment to the extent that it is prepared to interact with that
environment” ([4], pg. 16, original italics). Action-oriented perception was Arbib’s
term to describe this concept.

Arbib’s schema theory distinguishes between perceptual schemas and motor
schemas. In simple animals such as frogs, this distinction is unnecessary, so Arbib
posits visuomotor schemas that integrate perception and action, such as a predator
schema that both detects threats and escapes from them. Such visuomotor schemas
are almost indistinguishable from the behaviors Brooks promoted several years later
[17] (see Section 2.1.2). For complex animals such as people, however, schema theory
separates perceptual schemas from motor schemas and introduces action-oriented
representations in between. “In complex systems, perception is oriented toward the
future as much as the present, ‘exploring’ features of the current environment which
may be incorporated in an ‘internal model’ of the world to guide future actions
more and more adaptively . . . we may expect perception to be less bound
to actions of the present and more involved with relational structures between
the environment and the model with no smmediate orientation to action.” ([4],
pg. 17, original italics.) Arbib’s schemas build models of their environment as a

way of linking current percepts to future actions. Unlike the 2%D sketches and

other representations of the Marr paradigm, however, Arbib’s models are tailored
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to meet the demands of specific motor schemas. The key difference is between
action-oriented representations designed to facilitate potential actions and geometric
representations designed to support the reconstruction of surfaces in a scene.

In the other half of the action-perception cycle, motor schemas such as eye
vergence enable perception. These schemas actively control sensors in a continuous,
dynamic environment, leading Arbib to stress the importance of control theory
in active perception [4]. He also stressed the importance of a control executive
to select among conflicting motor schemas by selecting a “locus of interaction”.
For our purposes here, however, Arbib’s contribution is in modeling vision as a
set of cooperating, special-purpose agents, each specialized to create an internal

representation geared toward actions or behaviors.

2.1.2 The Subsumption Architecture

Several years later Brooks argued for multiple, concurrent behaviors that
integrate perception and action [16]. Brooks’s proposal was motivated by his
analysis of failures in real-time robotics, in which he argued that most problems
result from functionally decomposing robotic systems into modules such as vision,
action, planning and knowledge representation. Each module is approached as an
independent process by researchers who are free to define the (sub)problem as they
like. This, Brooks argues, creates research results that can never be integrated into
a single, coherent system. “One needs a very long chain of modules to connect
perception to action. In order to test any of them they all must be built first. But
until realistic modules are built it is highly unlikely that we can predict exactly

what modules will be needed or what interfaces they will need.” ([17], pg. 9) As a



22

result, it is difficult, if not impossible, to engineer complete functionally decomposed
systems.

As an alternative, Brooks suggests decomposing robotic systems into layers,
where each layer is a complete autonomous system integrating perception and action.
The intuition is that complex real-time robots can be built up one behavior at a
time. The first layer is a very simple behavior, with only enough perceptual abilities
to support some very primitive action. The second layer, which subsumes the first,
adds a few more perceptual capabilities to support a slightly more complex behavior.
Slowly, more and more layers are added, incrementally building up more and more
complex behaviors, with each layer containing only those perceptual capabilities
needed to support the actions at that layer.

Interestingly, Brooks’s layers are almost indistinguishable from Arbib’s visuo-
motor schemas, right down to the analogy with simple biological vision systems
(frogs for Arbib, insects for Brooks). Brooks does suggest that conflicts between
actions can be resolved by the hierarchy of layers [16], whereas Arbib relies on
more complex arbiters, but both suggest concurrent, special-purpose systems that
integrate perception and action.

The major difference between Arbib’s schemas and Brooks’s subsumption archi-
tecture comes from Brooks’s claim of “intelligence without representation” [17]. Al-
though Arbib describes the behavior of amphibians in terms of visuomotor schemas,
he describes the more complex behavior of humans in terms of perceptual and motor
schemas, with perceptual schemas building action-oriented representations of the
environment that motor schemas consume. As a result, he describes perception not

in terms of actions but in terms of potential actions. Brooks, on the other hand,
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claims that no such intermediate representations are needed, and that perception

can be linked directly to action for complex behaviors as well as simple ones.

2.1.8 Purposive Vision

Recently, Aloimonos proposed the most straightforward definition for goal-

directed vision, which he called purposive®

vision [2]. “What is vision for?”, he
asks. “In the world of robots, vision is needed to make them capable of performing
various tasks while interacting with their environment.” ([2], pg. 816) Then, in a
paragraph that closely echoes Arbib, he claims that in purposive vision “one does
not look at a vision system as a collection of modules whose purpose is to reconstruct
the world and its properties and thus provide information for accomplishing various
tasks. Instead, one looks at a vision system as a collection of processes, each (or a
group) of which solves a particular visual task.” ([2], pg. 820)

What is interesting about Aloimonos’s article is that it presents a third moti-
vation for goal directed vision. He argues, in essence, that scene reconstruction is
too hard, both because we do not know how to reconstruct the geometry of many
scenes, and because when we can reconstruct a scene it is generally computationally
expensive. It is both conceptually and computationally easier to acquire the specific
information needed by the current task than to create a complete geometric model

of the scene. (Tsotsos argues more formally that neural constraints make object

identification without prior predictions computationally infeasible, at least as a

model of biological vision [61].) Since goal-directed vision is generally easier than

3The term purposive was also used by the cybernetics community in the nineteen-sixties to
describe behaviors and capabilities, including vision, that evolve or are learned to satisfy intrinsic
purposes (see, for example, von Foerster, et. al. [67]). Aloimonos’ use of the term is consistent
with these earlier references, although he is apparently unaware of them.
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reconstructionist vision, one should only expend the effort to reconstruct the three
dimensional geometry of scene when a complete three dimensional model is needed
to accomplish the current task.

(We continue to use the term goal-directed rather than the more popular
purposive to avoid the implication that surface reconstruction is necessarily pur-
poseless. Robotic manipulation systems, for example, often require detailed surface
descriptions of the objects they are to grasp. More relevant to this thesis is the
observation that three dimensional models are useful for learning object recognition
strategies. Just because surface reconstruction is not needed for all tasks, or may

be too difficult for some tasks, does not make it a-prior: useless.)

2.1.4 Animate Vision

Most recently, Ballard has coined the term animate vision to describe active,
goal-directed systems that mimic biological vision. Once again, he argues for the
goal-directed premise that “vision is more readily understood in the context of the
visual behaviors that the system is engaged in, and that these behaviors may not
require elaborate categorical representations of the 3-D world.” ([8], pp. 57-58)
Ballard, however, focuses on motor behaviors for active vision, and in particular
on gaze control. He argues that appropriate sensor control strategies can both
reduce the computational cost of computer vision and improve its quality. Ballard
1s therefore concerned less with goal-directed vision per se than active vision. What

is interesting, however, is that he adopts a goal-directed framework for active vision.



25

2.1.5 Goal-directed Vision

Despite the differences between Arbib, Brooks, Aloimonos and Ballard, all agree
that vision should be modeled as a set of concurrent processes purposefully acquiring
information to enable specific actions. In order to study vision in the abstract,

therefore, without reference to particular actions or applications®

, we represent the
needs of potential actions as goals. These goals not only specify the object to be
recognized, they specify the type of information to be recovered and the accuracy
required. For example, depending on the application, a recognition goal might be to
recover the three dimensional pose of an object, its two dimensional image position,

or simply return a boolean value recording whether or not the object is in the field

of view.

2.2 Knowledge-directed Vision Systems

Although all of the theories above stress the importance of special-purpose
strategies for satisfying specific goals (or for satisfying the perceptual needs of
specific behaviors), none specify how goals should be satisfied. Our premise is that
recognition strategies should be learned, and it seems wise, given the complexity of
the problem, to bias the learning system toward methods that have been successful
in hand-crafted systems. Such systems can be classified according to their software
architecture as blackboard systems, production systems, or semantic nets, and for
all their differences, most proceed by integrating knowledge across multiple levels of

representation

4Brooks, of course, would argue that the very attempt to study vision apart from action is
misguided.
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2.2.1 Blackboard Systems

The blackboard architecture was first proposed by researchers working on au-
tomatic speech recognition who needed to integrate knowledge at different levels of
abstraction and to focus computational resources on promising hypotheses in order
to interpret 1D acoustic signals in real time [26]. Their solution was the blackboard
architecture, in which knowledge is encapsulated in independent procedural modules
called knowledge sources (KSs). Knowledge sources exchange information about
hypotheses through a central blackboard, which serves both to buffer data and to

insulate KSs from each other. A heuristic scheduler associated with the central

blackboard decides which knowledge source should be executed on each cycle,
invoking only those KSs which involve promising hypotheses. Reviews of blackboard
technology can be found in Nii [51] and Engelmore and Morgan [25].

Faced with many of the same problems that arise in speech recognition, many
vision researchers adopted the blackboard model. The Schema System used a
blackboard model to recognize common 2D views of 3D objects [33, 23]. Nagao and
Matsuyama designed a blackboard-based aerial photograph interpretation system
that reasoned about the size, shape, brightness, location, color and texture of
regions [49]. PSEIKI uses both the blackboard programming model and the Shafer-
Dempster theory of evidence to recognize 2D objects [3]. Some of the difficulties

and advantages of using blackboards for vision are discussed in Draper et. al. [22].

2.2.2 Production Systems

Production systems were developed by researchers with interests ranging from

x-ray crystallography to medical diagnosis. Like blackboard systems, production
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systems have a central data repository, this time called “active memory”. Knowledge
is organized as a set of “if-then” rules in which the consequent of a rule is added to
active memory when the condition of the rule is satisfied. The primary difference
between blackboard systems and production systems is the granularity of this
knowledge. Whereas knowledge sources are complex software modules that may
contain their own internal control programs, if-then rules are simple, declarative
statements. The power of a production system comes from combining hundreds or
even thousands of these rules in a single system, by matching the consequent of one

rule to the condition of another.

Production systems have been most widely used in computer vision for aerial
image interpretation. Ohta built the first such system in 1980 [52], and since then
larger systems have been built, most notably SPAM, with a knowledge base of
over five hundred production rules [46]. Production systems have also been used in
other visual domains [69], as components of larger systems [36], and for performing
recognition subtasks, such as image segmentation [50]. Although multiple levels of
representation are not inherent in the production rule framework, large production
systems for vision have tended to introduce them. Nagao and Matsuyama, for
example, reasoned at only one level of representation, but SPAM, which was a
much larger production system, divided processing into five phases, each of which

focused on a more abstract level of representation.

2.2.83 Semantic Networks

Finally, many vision systems are organized around semantic nets. (When the
nodes in a semantic net are themselves complex descriptions or “frames”, these

systems are often called frame systems.) In vision, the nodes in a network may
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represent physical objects, parts of physical objects or classes of physical objects,
while arcs represent relations such as part/subpart, specialization, and adjacency.
Unlike blackboards and production rules, semantic nets do not imply any particular
control structure; most semantic net systems are controlled by system-specific algo-
rithms. Freuder, for example, represented objects as nodes in a semantic network
linked by AND and OR nodes, where control alternated between top-down graph
expansion and bottom-up matching [29]. SIGMA divided processing into “high-
level” and “low-level” and used a semantic net to model hypothesis consistency,
spatial relationships and specialization at the high level [36]. MAPSEE used a
semantic network of object “schemas” to interpret images by constraint propagation
[30].

Recently semantic networks have been used to accommodate the additional
information needed for three dimensional reasoning. 3-D FORM is a frame-based
semantic network system for three-dimensional object recognition [68]; it is sim-
ilar to many 2D recognition systems in that objects are represented by frames
and connected into a hierarchy by IS-A and PART links, with INSTANCE links
connecting generic forms to object instances. It is different from these systems
in that the frames represent 3D objects that must be recognized from arbitrary
angles. The Contextual Vision System (CVS) was a frame-based system built at
SRI to emphasize the role of contextual relations in recognizing natural objects
[28]; it seems to have been supplanted at SRI by CONNER [58], a system that
mixes aspects of frame and blackboard systems to make maximal use of contextual
knowledge, thereby compensating for the incomplete geometric knowledge generally

available for natural objects such as rocks and trees.
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One of the most semantically structured types of network is the Bayesian net,
in which nodes represent probabilistic assertions and arcs represent dependencies.
SUCCESSOR recognizes three dimensional objects with a hierarchical Bayesian net,
with generalized cylinder representations at the highest level of representation and
directly measurable entities (ribbons® and edges) at the bottom [11]. Confidence in
a model at the top level is determined by matching elements at the lowest level and

propagating confidences upward through the Bayesian net.

2.2.4 Knowledge Base Construction

All of the goal-directed systems described above suffer from the same problem:
they rely on difficult to construct hand-crafted knowledge bases. Indeed, the
difficulty and expense of knowledge base construction has relegated goal-directed
vision to the laboratory, where the domain can be restricted to a few objects in
a controlled context. Artificial intelligence researchers have approached similar
knowledge-acquisition problems by interviewing experts, but since the visual process
in not open to a viewer’s introspection this scenario does not apply to computer
vision. Vision researchers have therefore concentrated instead on knowledge base
specification. The SPAM project developed a high-level language for describing
objects [47] and a series of tools designed to automate pieces of the knowledge
acquisition process [34]. The schema system divided both the interpretation process
and the knowledge base by object, increasing modularity and making the system
easier to modify [23]. Work in Japan has involved both automatic programming

efforts and higher-level languages for specifying image operations [45].

SRibbons are long, thin, homogeneous regions extracted from an image.
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2.3 Learning Recognition Strategies

Most previous work on learning recognition strategies has sought to compile
efficient strategies for matching CAD models to images. Goad built a system that
compiled efficient depth-first search strategies for matching CAD edges to image lines
by reasoning over the viewing sphere [31]. Goad realized that every correspondence
between a model edge and an image line restricts the space of possible viewpoints,
since every edge is visible from some points on the viewing sphere and occluded
from others. By reasoning about the current correspondence during depth-first
matching, Goad could calculate which unmatched model edges might be visible and
intelligently select the next edge to be matched. By compiling the choices into a
decision tree, he could create an efficient but object-specific matching strategy.

Ikeuchi refined this approach into two stages: an aspect classification phase,
which determines both the model to data correspondences and the approximate
viewpoint, and a pose determination phase for finding the “precise attitude” of the
object with respect to the viewer [37]. In the matching phase, Tkeuchi matched
model faces to surface orientations recovered from the data by photometric stereo.
Tkeuchi and Hong address the pose determination phase (which they call linear shape
change determination) by generating a program that calculates an approximate pose
by analyzing a “primal face” which is refined by iterative pose techniques applied to
edge correspondences [38]. How their method compares with a more straightforward
pose recovery algorithm such as Kumar and Hanson [42] is not known.

Camps et. al. take the same basic approach one step farther. They not only
assume a CAD object model, they assume known lighting conditions as well [18].

This allows their system, PREMIO, to predict not only what features of the model
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should be visible, but what features should be visually distinctive. (Aspect graphs
divide an object’s viewing sphere into generic views such that the same edges and
edge junctions are visible from all points within a view. For a review of aspect graph
technology, see Bowyer and Dyer [13].)

Unfortunately, all of these systems equate CAD shape recognition with object
recognition. Object recognition is much more. It includes recognizing object classes,
even though elements of a class may vary greatly in their shapes. It includes non-
rigid object recognition, and recognizing natural objects for which complete and
precise shape models may not be available. Most importantly, it includes recognizing
objects in context, with obscured features and unknown lighting conditions.

Rather than rely on CAD models, a few researchers have sought to learn
structural descriptions of objects and to use these descriptions for recognition. Win-
ston’s arch learner inferred structural descriptions in terms of relational predicates
between regions, although his algorithm assumed noise-free data and a benevolent
teacher [71]. Kodratoff and Lemerle-Loisel automatically learned decision trees for
identifying structural objects using an algorithm that tolerated noise in the training
data and did not assume well-ordered examples, but did assume that all negative
examples were near-misses [40].

Starting from more realistic data, Ming and Bhanu apply explanation-based
learning (EBL) and supervised clustering techniques to learn decision trees for
classifying targets [48]. Chen and Malgaonkar apply utility theory to construct
optimal decision trees for recognizing two dimensional objects, assuming all prior

probabilities are known [19]. Wixson and Ballard discuss a dynamic programming
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approach to learning recognition strategies for simulated one dimensional scenes
[72].

In general, these systems equate recognition with classification. They presume
low-level algorithms will separate object instances from the background clutter and
identify significant subparts, and that the task of the learning system is to learn to
classify these instances. SLS, on the other hand, not only learns to classify object
hypotheses, it learns to generate them from raw sensory data through chains of
intermediate representations. SLS therefore learns strategies that are on a par with

the hand-crafted strategies of the Schema System [23].



CHAPTER 3

SLS: REPRESENTATIONS

3.1 Introduction

Now we turn from a general discussion of object recognition and machine
learning to a description of a specific system. The Schema Learning System (SLS)
is a prototype system for learning to satisfy recognition goals by invoking controlled
sequences of visual procedures (VPs). In SLS, end-users — which may be intelligent
vehicles, manufacturing robots or any other system that needs to interpret images
— anticipate their recognition goals at compile-time. SLS learns strategies to satisfy
these goals reliably and efficiently, and later, at run-time, these strategies are
activated to satisfy (previously anticipated) goals as they arise (see Figure 1.2).

SLS is therefore a compile-time (or “training-time”) algorithm for learning visual
control strategies under supervision. The user, acting as a teacher, provides recogni-
tion goals and interpreted training images. SLS learns to satisfy the goals by building
recognition strategies that start with raw sensory data and build successively more
abstract hypotheses. Hypotheses are tested at each level of representation, and
verified hypotheses are used to generate new, more abstract hypotheses, eventually

generating goal-level hypotheses.
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The recognition strategies learned by SLS are both reliable and efficient. A
quantitative analysis of their reliability is deferred until Chapter Five, but for the
moment let it suffice that they interpret every training image successfully (if at
all possible), and will therefore be robust as long as the test images are drawn
from the same distribution as the training images. The strategies are efficient
because they minimize 1) the total number of hypotheses created (across all levels
of representation) and 2) the expected cost of verifying or rejecting hypotheses.
As a result, SLS’ strategies generally have the lowest expected cost of any reliable
strategy, given the goal and the available set of visual procedures in the library.

This chapter focuses on the representations used by SLS. It describes visual
procedures, hypotheses and object models in more detail than in Chapter 1 and
explains the recognition graph formalism for representing recognition strategies. The
next chapter (Chapter 4) describes the algorithms for learning recognition graphs
from examples, and Chapter 5 analyzes both the robustness of SLS’s strategies and

the complexity of SLS itself.

3.2 The Processing Model

SLS i1s similar to a blackboard system to the extent that it views recognition as
a process of applying visual procedures to hypotheses (see Section 2.2.1 for a brief
description of blackboard system technology). Hypotheses are representations of
the image or 3D world such as points, lines, regions or surfaces; visual procedures
are algorithms from the image understanding literature such as vanishing point

analysis [21] or geometric model matching [9]. Recognition strategies take the
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place of dynamic schedulers in traditional blackboard systems, selecting which visual
procedure(s) to apply at each step.

Therefore, recognition can be described as a branching sequence of VP invo-
cations. The sequence begins when data arrives, typically in the form of image
hypotheses'. Visual procedures are applied to images, producing low-level hypothe-
ses such as points, lines or regions. New VPs are then applied to these low-level
hypotheses, transforming them into more abstract hypotheses. Still more VPs
are applied to these hypotheses in a repeating cycle, until eventually goal-level

hypotheses are created.

3.2.1 Transformation Procedures (TPs)

Unlike most blackboard systems, however, SLS refines its processing model by
dividing visual procedures into two classes, transformation procedures (TPs) and
feature measurement procedures (FMPs)?. Transformation procedures transform old
hypotheses into new hypotheses at a higher level of representation. Examples include
vanishing point analysis, which creates surface orientation hypotheses from pencils
of image lines, and stereo line matching, which creates world (3D) line hypotheses
from pairs of image (2D) line hypotheses. Feature measurement procedures, by way
of comparison, measure properties of previously existing hypotheses.

Although TPs are described as transformation operators, the word ‘transforma-
tion’ should not be construed as implying a one-to-one mapping between old and

new hypotheses. TPs can combine information from multiple hypotheses and may

!Typically, but not necessarily. Active strategies may invoke procedures to acquire image data.

2Blackboard systems use the generic term knowledge source to refer to both transformation
procedures and feature measurement procedures.
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generate an arbitrary number of new hypotheses. Stereo matching, for example,
combines two image (2D) line hypotheses to generate a single world (3D) line
hypothesis. In addition, TPs do not consume their arguments, so multiple TPs
may be applied to a single hypothesis. Some readers may therefore find it helpful
to think of TPs as procedures that generate new hypotheses from old hypotheses,

rather than as transformation operators.

3.2.2  Feature Measurement Procedures (FMPs)

Feature measurement procedures (FMPs) calculate features of hypotheses, such
as planar surface orientations and region intensities®. During the recognition process,
many properties of a hypothesis may be uncalculated, so the set of known features
describing a hypothesis is referred to as its knowledge state. Applying a FMP to one
or more hypotheses computes a feature of those hypotheses, advancing them to new
knowledge states. The number of knowledge states is finite, since continuous features
are divided into discrete feature ranges. (Section 4.1.1 describes how continuous

features are divided.)

3.2.8 VP Declarations

One of the design criteria for SLS was that it should make as few assumptions
about the knowledge base as possible. SLS therefore estimates the costs and

reliabilities of the VPs empirically, instead of relying on human estimates. As

shown in Figure 3.1 _the knowledge base contains only enough syntactic information

3The terms feature, feature value, attribute, and property are used inconsistently in the image
understanding literature. In this and succeeding chapters we use the term ‘property’ to refer
to measurable hypothesis attributes such as color, and the term ‘feature’ to refer to discrete
measurements of those attributes, such as red.
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to allow SLS to apply VPs to training images. In particular, for every visual
procedure, the knowledge base specifies how many hypotheses are required as
(run-time) arguments, the level of representation of each argument, any prerequisite
features, and a lisp S-expression for invoking the VP. (Object models, if necessary,
are included in the S-expression.) In addition, TP declarations include the type of
hypothesis generated, while FMP declarations include the number of discrete ranges

into which a continuous feature should be divided.

In addition to the generic template, Figure 3.1 also shows three examples of
VP declarations. The first example is the vanishing point TP that creates surface
orientation hypotheses from pairs of pencils by analyzing perspective distortion
[21]. The next two examples show how logical dependencies are expressed in the
knowledge base. The projection FMP projects boundaries of wire-frame models as
image lines, given the pose of the object. The projected lines are stored in the pose
hypothesis for use by other VPs, and the FMP returns a symbol declaring whether
or not the object was in the field of view. The geometric matching FMP compares
projected line segments to data lines, and cannot be applied to pose hypothetheses
until after their projections has been computed. A prerequisite for applying the
geometric matching FMP to a pose hypothesis, therefore, is that the pose has been

projected and is within the camera’s field of view.

3.3 Object Models

Syntactically, object models are specified as compile-time parameters to visual
procedures, as mentioned above. Conceptually, however, object models should be

viewed as being composed of many partial descriptions of an object residing in the
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Figure 3.1: VP Declaration Templates. Each VP declaration in the
knowledge base includes enough syntactic information for SLS to apply
the VP to the training images. This includes the name of the VP, its com-
pile-time parameters, the number of run-time arguments (hypotheses),
the the level of representation (and any prerequisites) of each argument,
and either the number of discrete feature ranges (for a FMP) or the type
of hypothesis generated (for a TP).
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system’s (semi)permanent memory. Each partial description is available, both dur-
ing training and at run-time, to be used as arguments to visual procedures. Models
are currently implemented as compile-time parameters only because no mechanism
to matching model fragments to visual procedures has been implemented.

The partial nature of object models in SLS is emphasized in order to counteract
many of the common assumptions about models. The first false assumption is that
all models must be expressed in terms of a single representational system. In fact,
there is no reason why a building should not be represented by a wire-frame model
while a telephone pole is modeled as a generalized cylinder and a tree as a fractal
surface. Each representation simply enables different visual procedures, and any or
all of them can be in memory at one time.

Another false assumption is that models must be complete. In many solid
modeling systems, for example, to model an object you must specify every point,
line and surface that composes it. In practice, however, our knowledge about many
objects in incomplete. SLS will accept as a model any fragmentary description that
can be used by a visual procedure.

Finally, there should be no assumption that models are accurate. In practice any
model, no matter how it was acquired, will have some error. The proper question
about a model is not whether it is completely acurate, but whether it is accurate
enough to satisfy a recognition goal. SLS selects VPs based on their performance
on a particular task, and thereby indirectly selects the accurate and useful parts of
an object model. If inaccurate information is included in an object model, SLS will
build a strategy that does not depend on the erroneous information. As a result,
the performance of a strategy degrades gracefully as the quality of the object model

deteriorates.
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Graceful degradation is important in situations where the object models them-
selves are being learned, since any learning algorithm will make occasional mistakes.
In the experiments in Chapter Six, the colors and textures of objects were automati-
cally learned (by algorithms independent of SLS), and only the shapes and potential
contexts of objects were supplied by human knowledge engineers. As we speculated
in Section 1.3.6, recent advances in obtaining structure from motion may allow shape

models to be automatically acquired in the future as well.

3.4 Recognition Graphs

Interpretation strategies are represented in SLS as recognition graphs, which
are a generalization of decision trees to multiple levels of represention. Recognition
graphs control both hypothesis transformation and hypothesis verification, as shown
in Figure 3.2. The premise behind the formalism is that object recognition is a series
of small verification tasks interleaved with representational transformations. The
recognition process begins by verifying low-level hypotheses. Low-level hypotheses
that are verified (or at least not rejected) are then transformed into higher level
hypotheses, where the verification process is repeated. The cycle of verification
followed by transformation continues until goal-level hypotheses are generated and

verified.

The structure of the recognition graph reflects the verification/transformation
cycle. Levels of the graph corresponds to levels of representation, with the bottom
level representing images and the top level corresponding to user’s recognition goals.
Levels are connected by TPs that transform hypotheses at one level into hypotheses

at another. Verified goal-level hypotheses satisfy the user’s recognition goal.
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Figure 3.2: A recognition graph. Levels of the graph are decision trees
that verify hypotheses using feature measurement procedures (FMPs).
Hypotheses that reach a subgoal are transformed to the next level of
representation by transformation procedures (TPs).
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3.4.1 Decision Trees

Each level of the recognition graph is a decision tree directing how hypotheses at
that level are verified. Borrowed from the field of operations research, decision trees
are trees of alternating choice nodes and chance nodes designed to help managers
make decisions about actions with uncertain outcomes ([35], Chapter 15). Choice
nodes in a decision tree represent decisions over which the agent (typically a business
manager) has control; chance nodes represent events the agent cannot control but
whose likelihoods can be estimated. Using decision trees, managers estimate the
probabilities of potential consequence of a decision or series of decisions before
any action is taken. For example, a manager might consider investing in a new
manufacturing facility. If the investment is made and the product sells there will
be a profit, but there is some possibility that the product will not sell and the
investment will be lost. This scenario can be represented by a decision tree with a
choice node at the root representing the option to invest or not, and a chance node
representing whether or not the product sells. In Al terminology, decision trees can
be thought of as state-space representations similar to game trees with probabilistic
opponents.

(Readers familiar with Al-style decision trees such as ID3 [55] will note that the
choice nodes in such systems are omitted. These systems make all their choices while
learning, leaving only the chances nodes in the tree. SLS does the same, leaving
only one option at each choice node whenever possible. Nonetheless, it is convenient
to leave the choice nodes in the formalism, both for describing the optimization
algorithm that produces minimum-cost trees and for representing those situations

where optimal control choices cannot be made until run-time.)
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In SLS, decision trees represent the process of verifying or rejecting hypotheses.
Choice nodes in the tree are hypothesis knowledge states, represented by sets
of features, while chance nodes correspond to FMP invocations. The agent in
this scenario is the control program that decides which feature to calculate next
(i.e. which FMP to apply) based on the knowledge state of a hypothesis. The
uncontrollable events are FMP invocations that return discrete features according
to estimated distributions. Verification is a cycle in which the control strategy selects
a FMP, the FMP returns a feature, and the control strategy selects another FMP.
This cycle is represented in a decision tree as a progression from a choice node to
a chance node and on to a new choice node. Eventually the process leads to a leaf
node, corresponding to features that either verify or discredit a hypothesis.

Figure 3.3 shows a complete SLS-style decision tree. Hypotheses begin at the
start state with no computed feature values, leaving the control program to choose
which feature to compute. In the example shown in Figure 3.3 the choice is between
two FMPs, A & B. Whichever FMP is selected will return a feature, advancing
the hypothesis to a new knowledge state. (The reader may note that duplicate
knowledge states can be joined, since the same knowledge state results from applying

A and then B as B and then A. This converts SLS’s decision trees into directed

acyclic graphs, )

3.4.2 Decision Tree Optimization

Ultimately, the goal behind the decision tree formalism is not just to represent
options and outcomes, but to aid in decision making. SLS constructs efficient
verification strategies by determining at compile-time which options minimize the

expected cost of verification. By making these decisions at compile-time, SLS
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Figure 3.3: A Decision Tree. The squares indicate choice nodes, where
the agent chooses which action to take, and the circles indicate chance
nodes representing actions with probabilistic outcomes. In SLS, the agent
is the run-time control program, choice nodes are hypothesis knowledge
states corresponding to sets of discrete feature values, and chance nodes
are FMP invocations to determine feature values. (For efficiency, the

implementation joins duplicate nodes, creating a decision graph rather
than a decision tree.
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eliminates the need for complex dynamic scheduling and permits the run-time
control mechanism to be implemented as table-lookup.

SLS therefore decides at compile-time which FMP to apply from each hypothesis
knowledge state, producing decision trees with only one option at each choice node
(like the one in Figure 3.4). One of the options considered for each knowledge state
is to stop and either accept or reject the hypothesis as it is. For hypotheses below
the goal level of representation, the decision is equivalent to chosing whether or not
a hypothesis should be transformed to a higher level of representation. When SLS
learns to generate hypotheses it associates preconditions with each TP for selecting
which hypotheses should be transformed. The preconditions are hypothesis features,
and once the corresponding properties have been computed there is no reason to
apply more FMPs to a hypothesis. For example, in Figure 3.4 we assumed that the
preconditions for transforming a hypothesis were the features al (computed by FMP
A) and bl (computed by FMP B). Therefore, any hypothesis with feature values a2,
b2 or b3 can be rejected, since they cannot lead to a goal state. SLS selects which
feature to compute first by choosing the FMP that minimizes the expected cost of
recognition, based on the estimated costs and outcome probabilities associated with
each FMP. For example, in Figure 3.4, SLS decided that it was more efficient to
compute feature A first and then, if al was returned, compute feature B, rather
than computing B first and then, if bl was returned, computing A. (Section 4.3

describes the optimization algorithm in detail.)
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Figure 3.4: An SLS decision tree. SLS selects which FMP (if any) to
apply from each knowledge state at compile-time, producing decision
trees that have only one option at each choice node. The tree shown
here is the tree SLS might build in response to the situation depicted in
Figure 3.3, once it decided that only hypotheses with feature values al
and bl should be transformed to the next level of representation, and
that it was more efficient to compute feature A before feature B. Note
that if FMP A returns a2, then the hypothesis is rejected and no further
actions are taken.
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3.4.3 Multiple-argument FMPs

The compile-time control decisions made by SLS are conditioned on the knowl-
edge states of hypotheses. Stated informally, SLS decides “if a hypothesis reaches
knowledge state X, then take action Y”. To make these decisions, SLS needs to know
the possible actions from each knowledge state, their costs and the likelihoods of
their outcomes. When the actions are single-argument FMPs, their applicability can
be determined syntactically from the knowledge base and the costs and distributions
of outcomes can be estimated from the training data. When the actions are
multiple-argument FMPs, however, determining their applicability at compile-time

is more difficult.

The problem is that in order to invoke a multiple-argument FMP on a hy-
pothesis, other arguments must be available. For example, a spatial relation
FMP might test whether an object hypothesis is near (above, below, adjacent to)
another hypothesized object of a specified type. Such FMPs cannot be applied
to a hypothesis unless a second hypothesis of the appropriate type is available
at run-time. Unfortunately, when making a decision of the type “if a hypothesis
reaches knowledge state X...”, SLS cannot know whether a second hypothesis will be
available for a multiple-argument FMP (although it does estimate the probability of
another argument being available). Therefore when selecting which FMP to apply
from a given knowledge state, SLS chooses the FMP that minimizes the expected
cost, regardless of how many arguments it takes. If the selected FMP takes a single
argument, SLS knows that it can be executed at run-time and removes all other
options from the choice node. If the selected FMP requires multiple arguments,

however, SLS also selects a second choice, and if necessary a third choice, fourth



48

choice, and so on, in order to ensure that at least one of the options is executable
at run-time. In effect, SLS sorts the options at a knowledge state until it reaches
a single-argument FMP, and the run-time control mechanism is expected to apply

the highest-rated FMP whose arguments can be filled.

3.4.4 Decision Trees as Classifiers

Each level of a recognition graph can be viewed as a classifier for distinguishing
hypotheses that lead to good goal-level hypotheses from those that do not. An
unusual feature of these classifiers is that they are allowed to produce false positive
results but not false negatives, since verifying a poor hypothesis merely causes it
to be transformed to a higher level of representation and reverified, while rejecting
a valid hypothesis may cause the strategy as a whole to fail. As a general rule,
therefore, if the features in a knowledge base can distinguish good hypothesis from
bad ones, SLS will learn highly efficient strategies. If the features are not good
indicators of hypothesis reliability, on the other hand, SLS will learn a strategy that
pursues many hypotheses, in order to be sure of finding a good one.

The exception to this rule is at the goal level. Depending on the application,
rejecting a valid hypothesis may or may not be as damaging as verifying a false
one. Consequently, the best criterion function for training a goal-level classifier is
task-specific. The ideal goal-level classifier also depends on whether the recognition
goal is to find a single object or to find multiple members of a class of objects. If
the goal is to find a single item, no more than one hypothesis should be verified for

each image, but if the goal is to find elements of a class many hypotheses may be

correct.
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Goal-level classification is therefore unique. When a single hypothesis is re-
quired, run-time classifiers that compare hypotheses directly to each other and
select the best are used. SLS should then be viewed as a system for generating
goal-level hypotheses, which are then classified by another system (in Chapter Six,
a minimum-distance classifier is used for this purpose). When multiple goal-level
hypotheses may be correct, decision trees or other classifiers that do not compare

hypotheses directly to each other are more appropriate.

3.4.5 Capabilities and Limitations of Recognition Graphs

So far, object recognition has been described as a “bottom-up” process starting
with an image and ending with an abstract representation of an object. Although
we will continue to use bottom-up terminology, it should be noted that recognition
graphs can also represent “top-down” strategies and even mixed bottom-up and
top-down strategies. “Bottom-up” strategies are created from TPs that create more
abstract hypotheses from less abstract ones; top-down strategies are constructed
from TPs that reduce abstract hypotheses to more concrete ones. Many strategies
are mixed, using TPs that produce both more and less abstract hypotheses. The only
constraint enforced by SLS on recognition graphs is that the knowledge base should
not contain any loops, where hypotheses of type A are created from hypotheses of
type B and wvice-versa.

At the same time, recognition graphs are not capable of representing strategies
based on relative strengths of hypotheses. Traditional blackboard systems can use
heuristic schedulers that apply a knowledge source to the top N hypotheses at a

level of representation, but such strategies cannot be embeded in recognition graphs.
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Recognition graphs can represent strategies that apply VPs to hypotheses with
specific sets of features, but not to the N best hypotheses in an image. (This is
why a minimum distance classifier was introduced in the last section to enforce the
constraint that only one goal-level hypothesis by verified per image.)

In general, “N-best” control strategies are inappropriate for multiprocessors and
massively-parallel MIMD machines. To execute an “N-best” strategy, all hypotheses
of a given type must be generated, and all the processors must communicate in
order to compare the relative strengths of hypotheses. Only then can processing on
the best hypotheses continue. “N-best” strategies are well-suited to sequential or
lock-step parallel processing environments, but not multiprocessing. The recogni-
tion graph representation therefore does not support strategies that make control
decisions based on the relative strengths of hypotheses.

Instead, SLS’s strategies compare run-time hypotheses to training-time hy-
potheses. If training-time hypotheses with similar features led to correct goal-level
hypotheses, then a hypothesis is pursued further; if not, it is rejected. SLS strategies
base their control decisions not on the relative strengths of hypotheses from a single
image, but on the relative strength of run-time hypotheses when compared to the
larger pool of training hypotheses. By avoiding N-ary comparisons of run-time
hypotheses (but not the low-order comparisons computed by multiple-argument
VPs), SLS strategies avoid the synchronization delays and communication overhead

inherent in “N best” strategies.



CHAPTER 4

SLLS: ALGORITHMS

At the heart of SLS are algorithms that create recognition graphs from training
images. As shown in Figure 4.1, recognition graphs are created by a three step
process of ezploration, learning from examples, and optimization. Speaking in
general terms, the exploration algorithm generates examples of how correct, goal-
level hypotheses can be generated from images through sequences of intermediate
representations, and develops statistical characterizations of VPs. Generalizing from
these examples, the learning from examples (LFE) algorithm infers efficient methods
for generating goal-level hypotheses from images. Finally, the optimization algo-
rithm builds a decision tree for each level of intermediate hypotheses that minimizes
the expected cost of verification (or rejection). Together, these algorithms produce

recognition strategies that minimize the expected cost of satisfying recognition goals.

4.1 Exploration

The exploration algorithm applies visual procedures to training images and to
intermediate-level hypotheses generated from training images. It begins by applying
TPs to training images, producing intermediate hypotheses such as regions, lines,

and points. The properties of these hypotheses are measured by FMPs, after
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Figure 4.1: The Three Algorithms of SLS. This figure expands the
left-hand side of Figure 1.2 to show the sequence of algorithms in SLS.
The exploration algorithm creates examples of goal-level hypothesis gen-
eration and builds up statistical characterizations of TP performance.
The learning from examples algorithm selects TPs for transforming
hypotheses from one level of representation to the next and selects which
features indicate that a hypothesis should be transformed, and which sug-
gest that a hypothesis should be abandoned. The optimization algorithm
builds decision trees at each level of representation that minimize the
expected cost of verification.



53

which the hypotheses are transformed by TPs into still more abstract hypotheses.
Exploration continues in this way until the supply of hypotheses that can be
generated from training images is exhausted.

There are two reasons for exhaustively exploring the training images. The
first is to generate examples for the LFE algorithm. The training signal distin-
guishes correct goal-level hypotheses from incorrect ones, but it does not indicate
how goal-level hypotheses should be generated from images through sequences of
intermediate-level hypotheses. To learn how to generate goal-level hypotheses, SLS
needs examples of how hypotheses that match the training signal can be generated.
It also needs examples of intermediate-level hypotheses so that it can learn to
distinguish intermediate-level hypotheses that lead to correct goal-level hypotheses
from those that do not. Because the exploration algorithm exhaustively generates
all possible hypotheses from training images, some of the goal-level hypotheses it
generates will match the training signal, assuming there exists a strategy capable
of satisfying the recognition goal. The histories of how these correct goal-level
hypotheses were generated through sequences of intermediate hypotheses provide
examples of how a recognition goal can be satisfied.

The second reason for exploring images is to estimate the costs and benefits of
VPs in the knowledge base. In order to optimize the verification process, SLS has to
know the probability of a feature given a hypothesis, as well as the expected cost of
measuring that feature. Unfortunately, SLS’s knowledge base does not include any
information about the costs of FMPs or the probabilities of each discrete feature
value. SLS therefore has to build up a statistical characterization of the FMPs by

applying them to training images.



54

4.1.1  Discretizing Continuous Features

Once the training images have been explored, the exploration algorithm collects
and processes the data. The first step is to map continuous features into discrete
feature ranges. Occasionally, when the semantics of a feature are well understood,
continuous features are converted into discrete values according to an explicit
mapping in the knowledge base. More often, though, the relationships between
features and the recognition goal are not well understood, and the discrete feature
ranges are derived from the exploration data.

Ideally, a feature’s range should be divided so that the resulting discrete feature
values distinguish “good” hypotheses from “bad” ones. In the context of SLS, an
intermediate-level hypothesis is “good” if it leads to correct goal-level hypotheses
and “bad” otherwise. Good intermediate-level hypotheses are identified by finding
correct goal-level hypotheses and tracing back their origins to find the intermediate-
level hypotheses used to generate them. Intermediate-level hypotheses that lead
to correct goal-level hypotheses are labeled as “correct”, while others are labeled

“incorrect”.

Once hypotheses have been labeled as either correct or incorrect, SLS histograms
the correct hypotheses at each level of representation, and divides the histograms of
each property into overlapping ranges about the median. Each range is defined to
include a fixed percentage of the samples, as shown in the top half of Figure 4.2. For
some features, the optimal value is known to be either the minimum or maximum
value, in which case the ranges are asymmetric; each range contains the optimal
value plus a large enough delta to include a fixed percentage of the samples, as

shown in the bottom half of Figure 4.2.
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Figure 4.2: Discretizing Continuous Features. Feature ranges are deter-
mined by histograming correct hypotheses, and selecting ranges about
the median that include a fixed percentage of the samples. In the example
shown at the top, 50% of all positive samples fall in the range f1, and
75% fall in f2. (f3 is a range 5% larger than needed to cover all positive
samples; the extra 5% is a heuristic “fudge factor”.) If the optimal value
of a feature is known to be its minimum or maximum value, then the
ranges are calculated from the optimum value, as shown at the bottom.
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There are many other, more sophisticated, methods for dividing continuous
features into discrete ranges, and no claims for the optimality of this method are
made. (See Quinlan [55] for another approach.) One advantage of this method,
however, is that the resulting discrete values can be interpreted probabilistically. In
Figure 4.2, for example, the conditional probability of a correct hypotheses having
feature f1 is .5; similarly, the probability of f3 is 1.0. SLS does not currently use
this information, but it is helpful in trying to build an intuitive understanding of
strategies learned by SLS. Another advantage of the overlapping feature ranges is
that they bias the system toward reasoning about how close a feature value is to
the median or optimal value, rather than reasoning about arbitrary feature ranges.
Although this limits the range of possible strategies, it also biases the system in a

(generally) good direction, reducing the number of training images required.

4.1.2  Characterizing FMPs

Once the data has been discretized, it must be converted into a form that can
be used by the LFE and optimization algorithms. The LFE algorithm, in order to
learn efficient methods for transforming images into goal-level hypotheses, needs a
record of 1) the origin of every hypothesis generated during exploration, in terms of
the TP(s) that created it and lower-level hypotheses used as arguments, and 2) the
discrete features describing those hypotheses.

The optimization algorithm, on the other hand, needs statistical models of FMP
performance. Unfortunately, statistical models cannot be inferred directly from the
exploration data, because the probabilities and costs associated with features depend

on the quality of the hypotheses being measured. The exploration algorithm, which
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exhaustively explores the space of possible hypotheses, generates more hypotheses
of lesser quality than SLS’s run-time recognition strategy will. (After all, SLS’s
strategies explicitly minimize the number of false hypotheses generated.) The
exploration hypotheses are in essence drawn from a different statistical distribution
than the run-time hypotheses will be.

As a result, although FMP performance characterization is conceptually part
of the exploration algorithm, it is delayed until after the LFE algorithm has been
run. The results of learning from examples are used to prune the exploration data,
keeping those hypotheses that would be generated by the run-time strategy, and
removing those that are merely artifacts of exhaustive exploration.

Once the exploration data has been pruned, the remaining hypotheses are used
to characterize the performance of VPs. In particular, the exploration algorithm

estimates:

eExpected Cost (VP, F), the expected cost of applying a VP to a hypothesis with

the feature values F;

eFeature Likelihood (FMP, f1, F), the likelihood of a FMP returning feature

value f1 when applied to a hypothesis with feature values F.

In general, these values are estimated from applications of FMP to similar hy-
potheses during training. When an insufficient number of similar hypotheses (i.e.
hypotheses with feature values F) are generated during training, the dependency on

F is dropped and the values are estimated across all hypotheses.
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4.1.83 Making Ezxploration Efficient

Although SLS is designed to maximize run-time, rather than compile-time,
efficiency, there may be situations where exhaustively exploring the training data is
not feasible. In such cases, the cost of exploration can be heuristically reduced by
not exploring hypotheses that do not satisfy constraints derived from the goal-level
solution, For example, if the recognition goal is to recover the three dimensional
position of an object, any region hypotheses that do not overlap the object’s
projection can be rejected without being explored further. Similarly, points, lines,
planes, and other types of geometric hypotheses can be rejected if they fail to
overlap the correct solution or its projection. In this way, the combinatoric nature
of exploration is damped, but the positive examples needed by the LFE algorithm
are still generated.

The disadvantage of this heuristic is that negative examples are used in SLS 1)
by the LFE algorithm, to select the minimal cost DNF subterm (see Section 4.2.3),
and 2) to estimate the costs and probabilities associated with features. At the risk
of a less efficient strategy, both tasks can be accomplished by exploring only a subset
of negative hypotheses and extrapolating the results. However, we have not used
this heuristic, preferring instead to explore the training data exhaustively, because

its precise effects are hard to analyze.

4.2 Learning from Examples (LFE)

SLS’s learning from examples (LFE) algorithm analyses correct hypotheses
produced during exploration and infers from them an efficient scheme for generating

accurate goal-level hypotheses. The approach reflects the idea that recognition is a
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series of transformations interleaved with verifications. By looking at the histories
of how correct hypotheses develop, SLS learns how to generate goal-level hypotheses
from images through series of intermediate-level hypotheses. At the same time, it
learns which features of intermediate hypotheses indicate that a hypothesis should

be pursued, and which imply that a hypothesis should be abandoned.

4.2.1 Learning from Eramples

In the machine learning literature, the term learning from examples refers to
algorithms that learn rules for evaluating examples. Following the terminology in
the AI Handbook [20], learning from examples problems are defined in terms of
instance spaces and rule spaces. The instance space is the set of possible examples
or instances that might be encountered, either during training or testing. The
rule space is the set of possible inference rules for evaluating instances. In general
terms, learning from examples algorithms search rule spaces for the best methods
of evaluating instances.

In SLS’s LFE algorithm, the task is to generate correct goal-level hypotheses
from images through sequences of intermediate representations. Instances are strings
of hypotheses and TPs that transform images into correct goal-level hypotheses.
The rule space is composed of sets of features and TPs: the features determine
which hypotheses should be pursued at each level of representation, and the TPs
indicate how they should be transformed. The goal of the LFE algorithm is to select
sets of features (TP preconditions) and TPs that generate a correct hypothesis for
every object instance in the training set, while generating as few false hypotheses

as possible.
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4.2.2 Dependency Trees

Inside the LFE algorithm, instances of correct hypotheses are represented as
dependency trees. A dependency tree is an AND/OR tree recording the TPs
and intermediate-level hypotheses on which a goal-level hypothesis depends. For
example, a correct 3D pose hypothesis might have been generated by fitting a plane
to a set of 3D line segments. If so, the pose hypothesis is dependent on the plane
fitting TP and the 3D line segments, as well as the TPs and hypotheses needed to
generate the 3D line segments, as shown in Figure 4.3. In general, dependency is
recursive, with ‘AND’ nodes in the tree resulting from TPs that require multiple
arguments (and are therefore dependent on more than one hypothesis), and ‘OR’
nodes in the tree occurring when more than one TP redundantly generates the same
hypothesis.

Each dependency tree represents the different methods for generating a specific
hypothesis. In the example in Figure 4.3, pose-10 can be generated either by
applying the line-to-plane-fit TP or the point-to-plane-fit TP, but at least one of
the two is required. Furthermore, if the line-to-plane-fit TP is used, it must be
applied to 3D-lineset-1. Alternatively, if the point-to-plane-fit TP is used instead,
it must be applied to 3D-point-set-19.

Dependency trees like the one in Figure 4.3 apply to specific hypotheses gener-
ated during exploration. The first step in inferring a more generalized scheme for
transforming images into goal-level hypotheses is to generalize the dependency trees
by replacing hypotheses with their feature vectors, as shown in Figure 4.4. The
rationale for the substitution is that TPs have preconditions associated with them

that select the hypotheses to which they will be applied. If a TP needs to be applied
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Figure 4.3: An example of a dependency tree showing the different ways
that one correct pose hypothesis can be created during training.

to hypothesis H to ensure that a goal is met, then only features of H should be
considered as preconditions for the TP.

In general, a hypothesis is guaranteed to be created by any set of preconditioned
TPs that “satisfies” its dependency tree. A dependency tree DT is satisfied by a set
of TPs G (with affiliated preconditions P) if: 1) the root of DT is an AND node,
and every subtree of DT is satisfied; 2) the root of DT is an OR node, and at least
one subtree of DT is satisfied; or 3) the root of DT is a leaf node with TP g and

preconditions P such that g is in G and the preconditions of g either match or are

a superset of P.
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Figure 4.4: A generalized dependency tree created by replacing the
hypotheses in Figure 4.3 with their feature values.

4.2.83 LFE: A DNF-based Algorithm

The algorithm for finding optimal sets of TPs and preconditions is deceptively

simple:

1.Convert the generalized dependency tree of a correct goal-level hypothesis to dis-

junctive normal form (DNF)!.
2.For every other correct goal-level hypothesis:

(a)Convert its generalized dependency tree to DNF.

(b)“AND” together the new DNF expression with the previous DNF expression.

!The disjunctive normal form of a logical expression is an OR of ANDs of monomial expressions,
for example (4 A B)V (A AC).
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(c)Convert the resulting ‘AND’ tree to DNF2.

3.Select the conjunctive subterm that generates the fewest total hypotheses.

By the logic of the dependency relation, the TPs and preconditions in any conjunc-
tive subterm of the final DNF expression are sufficient to re-generate the correct
goal-level hypotheses from the training images. By selecting the minimal term, SLS
chooses the best method for generating correct hypotheses.

AND/OR dependency trees are converted to DNF by a standard algorithm that
first converts every subtree to DNF and then either merges the subterms, if the root
is an OR node, or takes the symbolic cross product® of the subterms, if the root
is an AND node. If a TP is ANDed with itself when taking the cross product, its

preconditions are the intersection of the preconditions of the two instances being

ANDed.

This basic algorithm is altered slightly to improve efficiency. Because SLS seeks
to find the minimal term (measured as the number of hypotheses generated) of the
DNF expression rather than every term, any conjunctive subterm that is a logical
superset of another can be pruned, reducing the total number of terms considered. A
second modification, which invalidates some of the analyses in Chapter 5, is to sort
the correct goal-level hypotheses according to the size of their dependency trees and

to iterate in step two from the simplest dependency trees to the most complicated.

This reduces the size of the interim DNF expressions without affecting the final

2Logically, this algorithm is equivalent to the simpler two-step process of ANDing all the
dependency trees together and converting the result to DNF. However, iteratively adding each
new dependency tree to an evolving expression simplifies the analyses in Chapter 5.

3Symbolic cross product: {4, B} x {C, D} = {AC, AD, BC, BD}.
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DNF expression; unfortunately, it will cause SLS to overestimate the robustness of

the resulting strategy (See Chapter 5).

4.2.4 The Minimum Hypothesis Count Heuristic

Before discussing graph optimization, we should consider briefly the question
of whether the TPs and preconditions selected by the LFE algorithm are optimal.
The algorithm just described is optimal in the sense that it produces sets of precon-
ditioned TPs that minimize the total number of hypotheses while still producing a
correct goal-level hypothesis for every instance in the training set. Furthermore, the
optimization algorithm discussed below produces optimal strategies for satisfying
the preconditions learned by LFE. The optimality of the overall recognition graph,
however, depends on the heuristic that the cost of recognition will be minimized by
reducing the total number of hypotheses generated.

This heuristic is based on the observation that, although a certain cost is
inherent in generating and verifying correct hypotheses, the efficiency of a strategy
is generally determined by how much time it spends pursuing false hypotheses.
Moreover, in practice, minimizing the total number of hypotheses works very well;
we have never noticed a strategy that generated more hypotheses than an alternative
strategy and yet was more efficient. Nonetheless, it is logically possible that the
most efficient strategy might not be the one that minimizes the total number of

hypotheses, in which case the strategy learned by SLS will be suboptimal.
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4.3 Graph Optimization

As was stated earlier, recognition graphs interleave verification and transforma-
tion, using FMPs to measure properties of hypotheses and TPs to transform them
to higher levels of representation. By building dependency trees from the training
samples, converting them to DNF and picking the minimal subterm, SLS learned
which TPs to use to transform hypotheses from one level to the next. Just as
important, it learned which preconditions a hypothesis must meet before it should
be transformed. These preconditions are the subgoals of the recognition process at
intermediate levels of representation.

The optimization algorithm optimizes hypothesis verification by building deci-
sion trees for each level of representation that minimize the expected cost of reaching
a subgoal or, conversely, of deciding that a hypothesis cannot satisfy a subgoal and
should be rejected. The decision trees are constructed by first building a graph
representing all possible sequences of FMP applications, and then optimizing the
graph by determining the options at each choice node that minimize the overall cost
of recognition, and removing all other options (although when multiple-argument
FMPs are used, several options may be left at a choice node, sorted in terms of
desirability; see Section 3.4.3). The final result is a decision tree at each level of

representation that minimizes the expected cost of verification.

4.3.1 Graph Layout

For each level of representation, a directed acyclic graph is constructed rep-
resenting all possible sequences of FMP applications. The graph starts from a

single knowledge state, corresponding to a newly generated hypothesis for which no
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features have been computed. The start state, like all knowledge states, is a choice
node in decision tree terminology, since a control program gets to choose which FMP
to apply to hypotheses in this state. FMP applications nodes are added for every
FMP that can be applied to a hypothesis in the start state. These FMP applications
lead to new knowledge states, which in turn have more FMP applications attached
to them, and so on. The expansion of the graph continues until it reaches either
a subgoal knowledge state or a knowledge state that is incompatible with every
remaining subgoal (i.e. a failure state).

For example, Figure 4.5 shows the initial graph for a level of representation with
two FMPs and a subgoal of {al,bl}. Graph construction begins with the start state
and expands by adding a chance state for each FMP. The FMPs lead to a total of
five new knowledge states, but three of them are failure states that are incompatible
with the subgoal {al,bl}. The other two states each have one more FMP to be
applied, leading to four more knowledge states, one of which is the subgoal state

and three of which are failure states.

4.3.1.1 Optimizing Control of Single-Argument FMPs

More formally, we refer to subgoal states and failure states as the terminal states
for each level of the recognition graph. The cost of promoting a hypothesis from
knowledge state n to a terminal state is called the Expected Decision Cost (EDC)

of knowledge state n, and the expected cost of reaching a terminal state from state

n_using FMP v* is the Expected Path Cost (EPC) of n and v. Since features

4y is an awkward abbreviation for a feature measurement procedure, but f will be used for

feature values and p would look like a probability value. Since FMPs are a subclass of VPs, v is
therefore used.
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Figure 4.5: An initial decision graph. Choice nodes, shown as rectangles,
correspond to knowledge states of a hypothesis. Chance nodes, shown as
ovals, represent FMP applications. Starting from an empty knowledge
state, the system adds a chance node corresponding to each FMP. Since
FMPs measure feature values, they lead to new knowledge states, where
new FMPs can be selected. The graph expands until it reaches either a
verification state, or a state that is incompatible with the features of a
verification state.
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are discrete, we denote the possible outcomes of a FMP v as a set R(v), and the

probability of a particular feature value f being returned as P(f|v,n), f € R(v).
The EDC’s of knowledge states can be calculated starting from the terminal

states and working backward through the recognition graph. Clearly, the EDC of a

subgoal or failure state is zero:
EDC(n) =0, n € {terminal states}.

If we limit ourselves to single-argument FMPs, the expected path cost of reaching

a terminal state from a FMP application node is:
EPC(n,v) )+ Y. (P(fln,v) x EDC(nU f))
fER(v)
where n is a knowledge state expressed as a set of feature values, n U f is the

knowledge state that results from FMP v returning feature value f, and C(v) is the

estimated cost of applying v.
The EDC of a knowledge state, then, is the smallest EPC of the FMPs that can

be executed from that state:

EDC(n) = min (EPC(n,v))

vEV P(n)

where VP(n) is the set of FMPs applicable at node n. The minimal-cost decision
tree is created by making a single pass through the directed acyclic graph, starting at
the terminal nodes are working backward toward the start state. At each knowledge
state, the pruning process calculates the EPC of every FMP that can be applied
from that state, and removes all FMP application nodes except the one with the

smallest EPC. The final result is the minimal-cost decision tree.
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Figure 4.6 shows the result of pruning the initial graph shown in Figure 4.5.
Starting at the terminal nodes and working backward, the first choice states the
pruning algorithm considers are al and bl. These states have only one option each,
however, so selecting the minimum-cost option has no effect. The next choice node
encountered is the start state , where there are two options, since the system can
choose to compute feature A or feature B. However, as depicted in Figure 4.5, the
expected cost (EPC) of verifying hypotheses if feature B is computed first is 1.53,
while the cost of verifying hypotheses by computing feature A first is only 1.4.
Consequently, the optimization algorithm prunes option B from the start node in

Figure 4.5, leaving the optimized decision tree shown in Figure 4.6.

O

Figure 4.6: A pruned decision graph. This Figure shows the graph
depicted in Figure 4.5 after it has been pruned by the graph optimization
algorithm. All actions which either do not lead to the subgoal state
or which are not on the most efficient path to the subgoal have been
removed.
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4.3.1.2 Optimizing Multiple-argument FMPs

The equations above made the simplifying assumption that all FMPs were
applied to individual hypotheses. The analysis gets more involved when we permit
multiple-argument FMPs, such as FMPs that measure spatial or other relations
between hypotheses. The problem is that the equations above implicitly assume
that if FMP v is an option at knowledge state n, then v can be applied to any
hypothesis reaching state n. It is always possible, for example, to measure the color
of a region hypothesis or the length of a line hypothesis. With multiple-argument
FMPs, however, this assumption is no longer valid, since whether or not a multiple-
argument FMP can be applied to a hypothesis at a knowledge state n depends on
whether the other arguments of the FMP can be filled (see Section 3.4.3).

As a result, we introduce a new term P,,,(v|n),v € VP(n), the probability
that v can be applied to a hypothesis in state n. (For single-argument FMPs,
Popp(v|n) = 1,Yv € VP(n).) In addition, because multiple-argument FMPs v may
be applied more than once to a hypotheses by varying the other arguments, we
must consider the possibility that a FMP may return a feature that had already
been computed (or equivalently, may return nothing), with the result that a FMP
application may not change a hypothesis’ knowledge state. Under these conditions,
we do not talk about the expected path cost of applying a FMP from a knowledge
state (i.e. EPC(n,v)), but rather the expected path cost of applying a FMP from
a knowledge state with a set of alternate FMPs V in reserve, in case v cannot be

applied or fails to calculate a new feature.
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Despite the changes, the EDC of a subgoal or failure state is still zero:
EDC(n,V) =0, VV;n € {terminal states}.

In addition, because a VP application may not advance a hypothesis to a new

knowledge state, we must consider the possibility of “running out” of FMPs:
EDC(n,0) =0, Vn.

However, the expected path cost of reaching a terminal state from a FMP

application node with V' other FMPs in reserve is now:

EPC(n,v,V) = Pup(vin) |C(k,v)+ > (P(fln,v) x EDC(nU f,VP(nU f)))
fE€R(v),f¢n

+ Y. (P(fln,v) x EDC(n,V))
fER(v),fen

+ (1 — Pypp(vin)) x EDC(n,V —v)

The EDC of a knowledge state is still the smallest EPC of the FMPs that can
be executed from that state. Minimizing the EDC of a knowledge state is no longer
sufficient, however, for generating the optimal strategy. The benefit of a FMP
application is the sum of the benefit it provides to each of its arguments, and the
most efficient decision tree is created by selecting the FMP at each knowledge state

with the highest ratio of total benefit to cost. We refer to this ratio as the gain of
a FMP:

Gain(v,n1,...,0m) = —C(v,n1, ..., nm)+Y_ Y. (P(flv,n1)EDC(n U F,) — EDC(n))

n .fan

where F,, is the set of feature values that might be returned by FMP v for argument

n.
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4.3.2  Estimating Total Cost

The equations above establish a mutually recursive definition of the expected
decision cost of a knowledge state. The EDC of a knowledge state is the EPC of
the optimal FMP application from the state; the EPC of a FMP application is the
expected cost of applying the FMP plus the expected EDC remaining after the FMP
has been applied. The recursion bottoms out at terminal nodes, whose EDC is zero.
Since every path through the object recognition graph ends at either a subgoal or a
failure node, the recursion is well defined.

Furthermore, the total cost of recognition can be estimated from the EDCs of
start states and the expected costs of the TPs selected by the LFE algorithm. The
EDC of the start state for a level of representation estimates the expected cost of
verifying or rejecting hypotheses at that level. By estimating the total number of
hypotheses generated at each level by the preconditioned TPs and multipying it by
the EDCs of the start states, the total cost of verification can be estimated. Since
the expected number of times a TP will be executed can also be estimated from
the LFE algorithm’s results, the total expected cost of recognition can be obtained

easily.

4.3.83 Making Optimization Efficient

As with exploration, a simple heuristic can be added to the graph optimization
algorithm to reduce the cost of learning. In this case, the heuristic rests on the
observation that many features are not a precondition to any TP. Consequently,

once the TP preconditions have been established by the LFE algorithm, FMPs that

do not produce a precondition to a visual procedure (FMP or TP) can be removed
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from the knowledge base, reducing the cost of graph optimization by reducing the
number of states in the initial graph and reducing the number of options at most
choice nodes. This heuristic has the disadvantage that it might lower the efficiency
of the resulting strategy, since a feature value that is not required as a precondition

could (in theory) still contribute to an efficient strategy if it is highly correlated to

other features®. We have never observed this phenomenon in practice, however, and

the experiments reported in upcoming chapters use this heuristic.

SRemember that the expected costs and outcome probabilities of VPs are conditioned on
hypothesis feature values.



CHAPTER 5

SLLS: ANALYSIS

SLS is a sequence of three algorithms — exploration, learning from examples
(LFE), and graph optimization — for building object-specific recognition strategies
from potentially unreliable visual procedures (VPs). The algorithms are designed to
create strategies that have a low expected cost but are nonetheless redundant enough
to be reliable. This chapter addresses the question of robustness by developing
a method for predicting a strategy’s statistical performance on test images from
its training history. In the process, we relate robustness to training set size and
knowledge base complexity by establishing an upper bound on the size of training
set needed to assure a desired level of robustness, given a knowledge base.

In addition, the discussion so far has focused on the strategies learned by SLS,
and has not considered the computational complexity of SLS itself. This is consistent
with the general philosophy of reducing the (run-time) cost of recognition rather
than the (compile-time) cost of learning. Nonetheless, to show that SLS is feasible
for realistic knowledge bases and training sets, so we analyze the complexity of
SLS and show it to be nearly linear in the number of training samples, at least in
practice. (In theory, the worst-case complexity of LFE is exponential in the size of

the training set.) On the other hand, the cost of SLS is exponentially related to
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certain measures of knowledge base complexity, and these measures in turn restrict

the types of knowledge bases to which SLS should be applied.

5.1 Robustness

Intuitively, a robust strategy is one that reliably recognizes objects in test
images. For the sake of analysis, however, we will concentrate on the subproblem of
how robustly a strategy generates goal-level hypotheses from images through chains
of intermediate-level hypotheses. For example, if the recognition goal is to locate a
building to within three feet of its actual position, what is the probability that at
least one correct hypothesis will be generated when presented with a picture of the
building? The analysis has to take into account the possibility of failure at any step
in the process, as well as any redundancy in the recognition strategy.

As was discussed in Section 3.4.4, the subsequent task of verifying or rejecting
goal-level hypotheses is generally performed by application-specific classifiers. When
the application task is to find a single object, as opposed to multiple instances of
a class of objects, minimum distance classifiers are often used. The robustness of

goal-level classification, however, is not addressed in this section.

5.1.1 Assumptions

Any analysis of an algorithm must make certain assumptions about the data.
In this case, the analysis rests on three assumptions about the knowledge base and

training set:

1.Deterministic VPs. The behavior of a visual procedure is fully determined by
the properties of its arguments. In particular, visual procedures have no hysteresis

and are not random.
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2.Knowledge base sufficiency. Every object instance can be recognized by some
sequence of VPs in the knowledge base. By definition, when this assumption is

violated there is no good recognition strategy.

3.Randomly selected training images. Training images are drawn at random
from the same image distribution as the test images. Although often violated in
practice, this assumption provides the theoretical basis for predicting a strategy’s

performance on test images from its performance on training images.

5.1.2 PAC Analysis

The set of hypotheses generated by a strategy for an image is determined by the
strategy’s TPs and their preconditions. Consequently, the robustness of a strategy
with regard to hypothesis generation is determined by SLS’s learning from examples
(LFE) algorithm. This algorithm learns from positive examples by proposing a
tightly constrained set of TPs and preconditions in response to the first training
image and then iteratively relaxing the preconditions or adding new TPs to account
for additional training samples. The algorithm eventually converges on a set of TPs
and preconditions that generates a goal-level hypothesis for every training sample,
while generating as few extra hypotheses as possible.

A method for formally analyzing algorithms that learn from positive examples
was introduced by Valiant as part of his work on probably almost correct (PAC)

learning [66]. Valiant proved (based on earlier work by Chernoff) that the probability
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of fewer than S successes in n independent Bernoulli trials, each with probability

h~! or greater, is less than A~!, where:
n < 2h(S +1nh). (5.1)

As an example of how Equation 5.1 might be used, Valiant considered the traditional
problem of selecting marbles from an urn. Assuming S distinct colors of marbles, the
probability that the (n + 1)th marble selected at random will be of a different color
from all of its n predecessors is less than h™!, by Equation 5.1. (Alert readers may
notice that the probability of seeing a new color drops each time a new color is seen,
but that it is always at least as high as the final probability, which is sufficient to
satisfy the lemma. In effect, the lemma overestimates the number of training samples
needed by assuming only that the probability of seeing a new color on the first sample
was at least as high as the probability on the last sample. The lemma applies because
the probability of seeing a new color decreases monotonically.) Significantly, the
probability bound A holds for any distribution of S colors.

Valiant notes in his proof that h~! is used in two separate probabilistic bounds.
Qualitatively speaking, the first (call it h;') addresses the possibility that the
randomly selected training samples may not be representative and therefore may
not include a frequently occurring sample type. The second probability (call it h;")
reflects the observation that if some colors are very rare, they will probably not be
seen during training, even though there is a finite probability that they may turn
up during testing. It is these double probabilities that give probably almost correct

learning its name: with probability h', the learned concept or strategy account

for all but k' of the samples in the underlying distribution, hence it will probably
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be almost correct. Moreover, there is no reason why h; has to be equal to h,.

Nonetheless, we will follow Valiant in setting hy = hy and using Equation 5.1.

5.1.3 Pre-training Analysis

In general, there are two reasons for wanting to analyze the robustness of a
strategy. The first is to estimate before training how many training samples might
be needed to achieve a given level of robustness. The second is to determine after
training the robustness of a particular strategy.

An upper bound on the number of training samples needed to guarantee a level
of robustness can be derived by a trivial application of Valiant’s lemma. To see how,
remember that LFE is a loop that expands the set of TP and TP preconditions to
account for each new training sample. The loop is initialized by converting the
dependency tree of a correct hypothesis to DNF. The dependency tree of each new
training sample is then converted into DNF, ANDed together with the previous DNF
expression, and re-converted back into DNF. After each iteration of the loop, the
DNF expression has the property that the TPs and TP preconditions in any of its
conjunctive subterms are sufficient to generate hypotheses for every training sample
seen so far. Once all the training samples have been included, the subterm that
generates the fewest total hypotheses is selected (see Section 4.2.3 for a complete
description of the LFE algorithm).

Let us consider an arbitrary conjunctive subterm M of the running DNF
expression. After any iteration, M is sufficient to generate the training samples
seen so far. M will be altered on the next iteration if and only if M fails to generate

a hypothesis for the next training sample, and if it is altered it will be generalized to



79

generate more hypotheses than before. Each training sample can therefore be viewed
as an independent trial of M. A bound on the training set size needed to achieve
robustness h follows as a straightforward application of Equation 5.1, where n is the
number of training samples, S is the number of possible conjunctive subterms, and
h~! is the probability that the strategy will fail.

We can conclude, therefore, that the probability that a recognition strategy will
fail to generate a correct hypothesis is nearly inversely proportional to the number of
training instances. A workable rule of thumb is that doubling the size of the training
set will halve the probability of failure under worst-case assumptions about the image
distribution and VP library. In addition, the maximum number of training samples
needed to achieve a given level of robustness can be determined by a syntactic
inspection of the knowledge base to discover S, without making any assumptions
about the distributions of hypotheses. Unfortunately, S is exponentially related to
the number of VPs in the knowledge base, so that while robustness increases linearly
with training set size, in the worst case it decreases exponentially with knowledge

base size.

5.1.4 Post-training Analysis

Fortunately, SLS strategies are more robust in practice than predicted by a
worst-case analysis. In effect, the analysis above accounts for the possibility that
the training samples might be completely dissimilar. Since hopefully this is not the
case, a more accurate estimate of a strategy’s robustness can be inferred from the
history of its training.

Once again we base our analysis on Valiant’s lemma. We let M be the minimal

conjunctive subterm selected at the end of the LFE algorithm, and we record during
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training how often a new training sample forced SLS to generalize M. If k — 1 such
failures occurred over m test samples, then there were fewer than k failures in n

independent trials of M, and by Valiant’s lemma:
n < 2h(k +1nh) (5.2)

where once again h™! is the probability that the strategy will fail.
Unfortunately, Equation 5.2 is not in a convenient form for determining the
robustness of a strategy A from the number of training samples n and the number of

failures during training k — 1. Doing some algebra (and substituting m for %) [43]:

m = h(k+Inh)

em — ekhehlnh
— ekhhh

= (eFR)
(M) = ()

Substituting ¢ for (em)e’c and y for (e*h), we get an equation of the form ¢ = yV.
Solving for y:

Inc=ylny (5.3)
Inlne = Iny+Inlny
~ (14+o0(1))lny

Iny ~ ———Inlne

1+ o(1)
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Substituting for lny from Equation 5.3 yields:

Ine 1
— &~ ——Inlne
y 1+ o(1)
1 ~ 1 Inl
nc y1 = o1) nlne
N (14 of1)) s
y = © Inlne
Resubstituting for ¢ and y we get:
In(e™)®
Lo~ (1 1
€ (1 +of ))lnln(em)
ek 1ln e™

Q

ekm
~ (140 ))ln ek +Inlnem
ekm
Implying that:
b~ (1+0(1)) - (5.4)
= © 2(k+1nn —1In2) '

Equation 5.4 estimates the robustness of a strategy from the size of its training set
and the number of “failures” during training, assuming only that n > 2(k + lnn —

In2) > 0.
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5.1.5 Implications of Post-training Analysis

Assuming that test images are selected from the same distribution as the
training set, equation 5.4 allows us to predict the probability of failure on novel test
images. By counting the number of training samples and how many times the final
conjunctive subterm was generalized (either by adding a new TP or removing a TP
precondition), we can determine an upper bound on the likelihood that a strategy
will fail to generate correct goal-level hypotheses. A tighter bound can be established
by dismissing the first N training samples, for any N selected a-priori, since SLS
generalizes rapidly over the first few training instances. Once the algorithm begins
to converge, the probabilities of failure change more slowly, and a more accurate
estimate of robustness can be determined. In the exercises in Chapter Six, when
twenty training images are used, the probabilities of failure are calculated from just
the last ten training samples.

Another, less obvious, benefit of Equation 5.4 is that it can be used to terminate
the training process, thereby overcoming one of the classic problems of learning from
positive examples. Algorithms such as LFE that learn from positive examples begin
with a very specific concept (or in LFE’s case, strategy) which they generalize as
needed to account for new samples. In the absence of noise, the training converges
on a concept when the concept is unchanged by new samples.

Unfortunately, noise exists. In the context of SLS, for example, a trainer might
accidently give an incorrect solution to a training image. If a positive-examples-
only learning algorithm is run on an infinite set of noisy training samples, it will
eventually over-generalize in order to include a mislabeled instance. Equation 5.4,

however, provides a termination condition for training. Once a strategy has achieved
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the desired level of robustness, training stops and the risk of over-generalization is

avoided.

5.2 Computational Complexity

In general, we are more concerned with the cost of recognition than the cost
of learning, since SLS is designed to optimize run-time rather than compile-time
performance. Nonetheless, we are interested in knowing the limits of SLS in terms
of the knowledge bases and training sets to which it can be applied. This requires
understanding how the complexity of SLS increases with training set size and
knowledge base complexity, and to this end we present a brief discussion of the

complexity of each of SLS’s three algorithms.

5.2.1 Knowledge Base Complexity

Before analyzing the compile-time complexity of SLS, some measures of knowl-
edge base complexity must be defined. Let KB be a knowledge base with [
levels of representation, in which the worst-case cost of a VP is ¢. Let T be
the maximum number of TPs at any level of abstraction, and B be the greatest
number of hypotheses that can be generated in a single call to a TP. Similarly,
let V be the maximum number of FMPs at any level of abstraction and F' be the
greatest number of discrete feature ranges for any property (FMPs are assumed to
compute continuous feature values that are mapped into overlapping discrete ranges
as described in Section 4.1.1).

The six terms l,¢,T,V,B and F provide an approximate model of the complexity

of a knowledge base. Four of the six terms (I,7,V and F) can be determined by
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a syntactic inspection of the knowledge base. The other two terms, the worst-case
VP cost ¢ and the hypothesis branching factor B, should be supplied by the user,
although imperfect estimates can be made by collecting data during exploration.
We also assume a partial ordering over the levels of representation KB such
that TPs transform hypotheses from lower levels of abstraction to higher ones’, and
draw a distinction between training images and training samples. Training images
are randomly selected from a domain and may include zero or more instances of
the object to be recognized, while training samples are instances of an object in a

training image for which the user provides a correct interpretation.

5.2.2 The Complexity of Fxploration

The exploration algorithm explores each training image independently, and its
complexity is therefore linear in the number of training images. The relationship
between the cost of exploration and the contents of the knowledge base, on the other
hand, is more subtle. Given the definitions in Section 5.2.1, and considering only
single argument TPs, the maximum number of hypotheses that can be generated
from a single image is less than (7' B)?, since there can be at most T'B hypotheses
at the lowest level of abstraction, followed by (T'B)? hypotheses at the next level of
abstraction, and so on, up to (T'B) for the highest level of abstraction. When two-
argument TPs are allowed, more hypotheses can be generated, since the worst-case
progression will see T'B hypotheses at the lowest level, forming (7'B)? hypothesis

pairs and generating (in the worst case) (T'B)? hypotheses at the second lowest level

of abstraction, followed by (7 B)" at the next. In general, with two-argument TPs

Without this assumption, there is no guarantee that the exploration algorithm will terminate.
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level m can have (T B)?"~! hypotheses, putting a cap of (TB)Zl for the total number
of hypotheses at the highest level of abstraction.

The number of hypotheses generated in turn bounds the total cost of exploration.
Since there are fewer than (TB)Zl hypotheses, there are fewer than ((TB)Zl)2

hypothesis pairs to which a TP or FMP can be applied. Since there are T' 4+ V

visual procedures with a maximum cost of ¢, the worst-case cost of exploration is:
O(c(T + V)(B*)?). (5.5)

One conclusion to draw from this analysis is that the number of levels of abstrac-
tion must be kept small. In practice this is not a problem, since most hierarchical
representation systems have a fixed number of levels, making ! a (typically small)
constant. Another conclusion is that the branching factor B should be kept small.
As was noted in Section 3.4.5, TPs that generate large numbers of hypotheses may
be well suited to massively-parallel SIMD processing, but they are not well suited
to the MIMD-style paradigm of SLS. In this regard, Equation 5.5 simply gives a
formal expression to an implicit assumption about the types of knowledge bases to
which SLS should be applied, namely those with small TP branching factors and

few levels of representation.

5.2.3 The Complexity of Learning From Eramples

At the heart of LFE is a routine for converting AND/OR trees to DNF, a routine
that is exponentially complex in the depth and branching factor of the AND/OR
tree. DNF conversion is used in LFE to 1) convert the dependency tree associated

with each training sample to DNF, and 2) combine samples by converting the “AND”
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of two DNF expressions into a new DNF expression. In the first case, the maximum
depth of the trees is [ (the number of levels of abstraction) and the branching factor
1s the maximum number of arguments to a TP, which is generally two. Since [ is
presumed to be a small constant, the expense of converting a training sample to
DNF is approximately constant, so the complexity of converting training samples to
DNF is approximately linear in the number of training samples. Combining training
samples, however, is the expensive part. The DNF expression from each sample
has a fixed height of two but a branching factor of 2!, leading to combined DNF
expressions (once all the training samples have been included) with 2% terms, where
t is the number of training samples. In the worst case, therefore, the complexity of

LFE is exponential in the number of training samples. (In addition, its complexity

is bounded from above by ( g ) , the maximum number of sets of TPs such that no
2

set 1s a subset of any other, a feature enforced by the pruning condition described
in Section 4.2.3.)

In practice, however, the cost of LFE does not increase exponentially with
training set size; indeed, the relationship is sub-linear. (See Section 6.3.7 and
Figure 6.12.) In essence, the worst-case analysis assumes that the DNF expressions
corresponding to the training samples have no conjunctive subterms in common,
so that the size of the cross-product of two DNF expressions is the product of the
size of the expressions. Typically, however, the DNF expressions have common
subterms, and therefore many of the terms in the cross-product can be pruned. As
a result, the cross-product is not much bigger than the original DNF expressions

(and in some cases it is smaller; see Figure 6.12). The complexity of LFE is therefore
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sub-linear in the number of training samples in practice. The practical implication
of the worst-case analysis is therefore limited to the observation that if the training
samples have nothing in common, LFE will do an exponential amount of work trying

to find commonalities.

5.2.4 The Complexity of Optimization

Graph optimization involves first constructing the graph of potential knowledge
states (as shown in Figure 4.5), and then pruning it to create the final, optimized
recognition graph (as shown in Figure 4.6). In laying out the graph, SLS must check
the preconditions of VPs against the feature values of each potential knowledge state,
resulting in a worst case complexity of O (K (T + V)), where K is the number of
potential knowledge states. During pruning, SLS must compute the EPC of up to
V FMP application nodes for each knowledge state and find the minimum; hence
the complexity of pruning is O(KV).

The cost of graph optimization therefore depends on V and K, the number of
potential knowledge states. K, however, is not an independent variable: it is a
function of V and F. In particular, if there are V features, each of which can be
uncalculated or assume one of F values?, there are O(F + 1)V possible knowledge

states at each level of abstraction. As a result, the worst-case cost of optimization

for a complete recognition graph is

2As described in Section 4.1.1, continuous ranges are divided into overlapping buckets about
the median. One consequence of this scheme is that there are only F sets of feature values a
hypothesis can acquire, even with multiple-argument FMPs.
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O(I(T + 2V)(F + 1)V).

As with exploration, the asymptotic complexity of graph optimization suggests
what types of knowledge bases should be avoided. In particular, it warns not to
approximate continuous reasoning by finely discretized features (thus making F'
very large) and to keep the number of FMP per level small (in practice, we have
used fewer than twenty features per level, and not more than fifty features across

all levels of representation).

5.2.5 Conclusions About Complezity

The general philosophy of SLS is to optimize strategies at compile-time in order
to maximize their run-time performance. We are therefore interested in the compile-
time complexity of SLS in terms of its asymptotic behavior, and have made no
attempt to assess the cost of steps that do not determine its asymptotic complexity.
Instead, we have focused on the critical steps and inferred that in practice the cost of
SLS is nearly linear in the number of training samples. SLS s therefore appropriate
for large sets of training images.

At the same time, the cost of SLS grows exponentially with several measures
of knowledge base complexity, most notably B? and FV. The number of levels of
abstraction [ is generally a small constant that does not grow as the knowledge base
grows, so B? can be thought of as B, the number of hypotheses created per TP
invocation, raised to a large power. By adding heuristics to the graph optimzation
algorithm (at a possible loss of efficiency but not robustness; see Section 4.3.3), the

dependency on V can be greatly reduced, so that the complexity of SLS can be
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approximated as a large polynomial of B and F. This can be further improved by
adding a heuristic to the exploration algorithm that effectively reduces the size of
B (again, at a possible loss of efficiency but not robustness; see Section 4.1.3).

SLS is therefore appropriate for knowledge bases with small numbers of discrete
feature values per property (i.e. small F) and visual procedures that selectively
generate hypotheses (i.e. small B). Given these two constraints, SLS can be applied
to knowledge bases with large numbers of visual procedures (both TPs and FMPs).
We conclude, therefore, that SLS should not be applied to knowledge bases that
mimic continuous reasoning through finely discretized features or that generate large
numbers of similar hypotheses (SIMD-style) with the aim of eliminating all but a
few. The types of knowledge bases that have typically been used for blackboard and
production systems, however, are appropriate for SLS, even if the knowledge bases

are large.



CHAPTER 6

DEMONSTRATIONS

6.1 Introduction

Our description of SLS is now almost complete. Recognition graphs are a formal-
ism for representing strategies that control the invocation of visual procedures (VPs).
Recognition graphs for satisfying specific recognition goals are learned through a
three step process of exploration, learning from examples and optimization. By
analyzing the learning process, the system is able to predict the expected costs of
the strategies it learns, and provide a probabilistic lower bound on the reliability
of those strategies. What remains is to give a convincing, practical demonstration,
showing that SLS is more than just representations, algorithms and theories. SLS
can learn strategies for recognizing objects in practical applications.

This chapter presents three examples of SLS learning recognition strategies
to satisfy the perceptual needs of an outdoor autonomous vehicle. The general
scenario, similar to the one presented by Fennema [27], imagines a vehicle starting
at a fixed location within a known environment. As the vehicle moves, it updates
its position by dead reckoning, an errorful mechanism that introduces more and
more uncertainty about the robot’s position over time. To combat this, the vehicle

periodically “looks around”, and matches what it sees to objects (i.e. landmarks)
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on its map. By triangulating between landmarks or, in some cases, by determining
the full 3D pose of a single landmark, the vehicle fixes its position in the global
coordinate frame of the map. In addition, if the vehicle finds an object that was not
on the initial map, it updates the map to include the new landmark.

The exercises in this chapter show SLS learning the types of recognition strate-
gies needed to support the perceptual needs of such an autonomous vehicle. In
the first exercise, SLS learns a strategy for finding the (2D) position of a tree
in images taken from an approximately known location, where the approximate
location corresponds to the vehicle’s estimated, but errorful, position. By finding
the image position of the tree, which is presumed to be on the map, the recognition
strategy constrains the possible positions and orientations of the vehicle. If another
landmark can be found, either in the same image or by rotating the camera, the
position and orientation of the vehicle can be determined by triangulation.

The second demonstration goes one step further, as SLS learns a strategy
for determining the 3D pose of a building, again from an approximately known
viewpoint. The principle demonstrated here is that SLS can learn to determine
the pose of an object relative to the camera (which, given a map, determines the
position of the vehicle) from a single, 2D image if enough information about the
shape of the object is known a-priors.

Finally, in the third exercise, SLS learns to recognize another, more complex
building from an arbitrary position on the ground plane. Such strategies are needed
when the vehicle gets lost, perhaps by failing to recognize several landmarks in
succession, or because an object is not on the initial map. In the latter case, the

map can be updated to include the new landmark.
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In addition to demonstrating that SLS can learn recognition strategies for
complex vision applications, these exercises are designed to show that SLS can
recognize both natural and man-made objects, can recognize them from either known
or unknown viewpoints, and can do so in either two dimensions or three. SLS is
therefore general enough to support a wide range of vision applications, including

but by no means limited to autonomous vehicles.

6.2 Implementation Notes

For the demonstrations in this chapter, SLS was implemented in Common
Lisp for a TI Explorer II Lisp Machine, as was the library of visual procedures.
Hypotheses were tokens in ISR, a database system designed for computer vision
applications [15]. All pictures were taken with a 35mm camera and digitized on an
Optronix Colormation C4500 Digitizer /Photowriter.

The demonstrations are unfortunately limited by the inefficiency of the imple-
mentation. No effort was made to optimize either the visual procedures, which
account for most of the source code, or SLS itself. As a result, exploring a single
image can take on the order of two hours. The rest of SLS’s processing, including
all of the learning from examples and optimization procedures, takes approximately
another hour. It was therefore impossible, as a practical matter, to run experiments
with more than about twenty training images, particularly considering that lisp
machines have no batch processing facilities.

Training set size in turn limits the robustness of the strategies SLS can learn, as
proven in Chapter Five. This is particularly a problem in the third demonstration,

where the task is to learn the 3D pose of a complex object from an arbitrary
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viewpoint. Since the training set includes only a few examples from each generic
view, the resulting recognition strategies are less robust than those learned from

twenty examples of a single view.

6.3 Tree Recognition from an Approximately Known View-

point

In the first demonstration, SLS learns a strategy for recognizing a tree from an
approximately known viewpoint. The strategy is not required to recognize all trees,
but rather a specific tree that serves as a landmark, in this case the tree behind the
telephone pole in Figure 6.1. The goal of the strategy is to determine the image
position of the tree for triangulation, and in particular the horizontal coordinate of

the center of the tree.

6.3.1 Training Images

The training data is selected from a set of twenty-one images collected along a
hundred foot stretch of a footpath on the UMass campus. Figures 6.1 and 6.2 show
the first and last images of the sequence. The images were taken level to gravity
(+1°) and from approximately four feet above the ground, although the ground rises
and falls over the course of the sequence. The camera was also subjected to small
rotations in pan from one image to the next. As a result, the pose of the camera
has four degrees of freedom, with large variations in position in the ground plane

and smaller deviations in camera height and pan.
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Figure 6.1: The first of twenty-one training images. The images were
taken along a hundred-foot section of the path, with the camera level to
gravity.



95

Figure 6.2: The last of twenty-one training images. The pose of the
camera has four degrees of freedom, with large variations in position in
the XZ (ground) plane and small differences in camera height and pan.
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6.3.2 Recognition Goal

Since the conceptual goal is to find the center of the tree, the user must specify
a recognition goal that conveys this information. One possibility is to represent tree
projections as image regions, with the centroid of each region representing the center
of the tree. If the tree is partially obscured, however, the centroid of the region will
not correspond to the center of the tree. A better representation for determining
the center of a tree is to represent the boundary of a tree’s projection in the image
as a parabola, with the locus of the parabola corresponding to the center of the tree,
as in Figure 6.3. The selected recognition goal is therefore to generate and verify
parabola hypotheses whose locus is within three pixels of the projected center of the
tree. The training signal was the position of the center of the tree in each image, as

determined interactively by the user with a mouse.

6.3.3 Testing Methodology

Because of the relatively small size of the training set, SLS was tested with a
“leave one out” methodology, in which strategies are trained on twenty images and
tested on the twenty-first. The process is repeated twenty-one times, each time
with a different image “left out” of the training set and used as the test image.
Each trial tests whether a strategy learned over twenty training images satisfies the
recognition goal on the twenty-first. In addition to testing for robustness, the suite
of twenty-one trials also tests SLS’s ability to predict the reliability and average cost

of its strategies.
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Figure 6.3: Representing the 2D projection of a trees as a parabola in
the image. This figure shows a piece of the image in Figure 6.2, including
the landmark tree, with a parabola hypothesis representing the location
of the tree.
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6.3.4 The Knowledge Base

The two-dimensional tree recognition task has the simplest knowledge base
of the three exercises. Apart from the images themselves, only a handful of
visual procedures and three types of representations — regions, sets of regions, and
parabolas — are used. Figure 6.4 is an idealized depiction of the tree recognition
knowledge base. The lowest two levels contain sets of regions, with the bottom
level holding image segmentations and the second level storing sets of green, highly
textured regions. The third level holds region hypotheses that have been pieced
together from the sets of fragmented regions on level two, while the fourth level is
for smoothed regions. Finally the top (goal) level is for parabola hypotheses, which
may have been fit to either the rough regions on level three or the smoothed regions

on level four.

Although SLS is a learning system that is meant to eliminate any need to
“program” the knowledge base, there are two aspects of this knowledge base that
users should note. The first is that there may be several levels for a single type of
representation. In this knowledge base, for example, there are two levels of region
hypotheses and two levels of sets of regions. This allows the knowledge base to
include TPs that create new hypotheses of the same type as their arguments, without
sending the exploration algorithm into an infinite loop. (Recall that Section 5.2.1
requires that there exist a partial ordering of hypothesis levels such that all TPs
create higher level hypotheses from lower level ones.)

The second notable feature of the knowledge base is that sets of hypotheses
can be hypotheses themselves. One motivation for reasoning about sets is that sets

may have properties not possessed by any of their members. Although this is not
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Figure 6.4: The tree recognition knowledge base. Feature measurement
procedures (FMPs) are shown on the left hand side, while transformation
procedures (TPs) are shown on the right. Every VP is shown at the level
of representation of the hypotheses to which it can be applied.
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a factor in tree recognition, upcoming exercises will reason about pencils of lines,
which are sets of lines that meet at a common point of intersection. The so-called
“vanishing point” is a property of the set of lines that is not a property of any of the
individual line segments. The other reason for using sets, and the one of concern
here, is efficiency. Although it is possible to segment the image and reason about
every region independently, doing so would generate several hundred hypotheses. It
is far more efficient to reason about the segmentation as a single hypothesis, and

create TPs that select relevant regions from it.

6.3.5 Knowledge Base Complexity

In general terms, the recognition strategies SLS learns are inherent in its
knowledge base, much as Michelangelo’s sculptures were trapped in the rock. In
this case, the strategy will segment the image, extract regions whose color and
texture suggests foliage, group adjacent foliage regions into larger regions, smooth
the resulting regions and fit parabolas to them. Later demonstrations with more
complex knowledge bases will give SLS more options in terms of the strategies it

can learn.

Within even this simple knowledge base, however, are choices SLS must make to
develop a strategy, and these choices should be made based on experience with the
training images. The simplest and most straightforward choice is whether or not
to smooth regions. Once a recognition strategy has pieced the initial, fragmented
regions together, it can fit parabolas to the foliage boundary whether or not it
smooths it. Smoothing should be included in the final strategy only if it improves

efficiency or robustness.



101

In addition, several KSs in the knowledge base have compile-time parameters for
which the best values are unknown. For example, the morphological smoothing TP
takes a parameter indicating how much to smooth a region. The merging TP, which
pieces together fragmented regions into larger wholes, has a parameter describing
how far apart two regions can be and still be merged together. Instead of guessing
the best parameter values for these VPs, three plausible parameter values were
included in the knowledge base for each. SLS is required to choose among the
different parameterizations of the morphological smoothing and region merging TPs.
Including the option of not smoothing at all, the knowledge base contains twelve
sequences of parameterized TPs that can generate parabola hypotheses from images.

In addition to learning how to generate hypotheses, SLS must decide how to
verify them at each level of representation. In the tree recognition knowledge base,
region sets (segmentations and sets of green regions, i.e. the bottom two levels of
representation) have no measurable features'. Merged regions (i.e. sets of adjacent
regions selected by the minimum distance classifier) have a size, measured in pixels,
and smoothed regions have a compactness feature, measured as the perimeter to
area ratio. Both merged and smooth regions have features that measure the distance
from the region hypothesis to the nearest region in a segmentation hypothesis that
matches the color and texture of sky or grass. Parabola features measured by FMPs

are length, curvature, X and Y positions of the parabola center and the average

error (displacement) between the region boundary and the parabolic curve. SLS

!Clearly, features of region sets such as total size could have been included, but with only one
TP creating hypotheses at each of these levels, and with each both of these TPs creating only one
region set hypothesis per image, verification of region set hypotheses is not meaningful given the
TPs in the VP library.
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must learn how to quantize these feature into discrete ranges and what (if any)

discrete values are needed to verify hypotheses at each level of representation.

6.3.6 Training (An Example)

SLS is a broadly applicable system for learning strategies to satisfy arbitrary
recognition goals. This generality, however, makes it difficult to give extended
examples, since any example depends on a specific goal and knowledge base.
Now that we have described the recognition goal and knowledge base for the tree
recognition scenario, however, we can use this task as an example of SLS in action. In
the process, we will quickly review SLS’s algorithms, so readers who are comfortable

with the more abstract examples is previous chapters may wish to skip ahead to

Section 6.3.7.

6.3.6.1 Exploration

The exploration algorithm exhaustively applies VPs to training images, gener-
ating examples for the learning from examples (LFE) algorithm and statistics for
the graph optimization algorithm. For the knowledge base depicted in Figure 6.4,
it generates hypotheses by applying the region segmentation TP to training images,
producing region segmentations which are stored as region set hypotheses at the
segmentation level of representation. Next it invokes its classification TP, selecting
regions that are compatible with the expected color and texture of foliage and
storing them as a region set hypothesis of green regions at the next level of
representation. Then it applies all three parameterizations of the region merging
TP to the segmentation hypothesis, producing merged region hypotheses, and to

these results applies all three parameterizations of the morphological smoothing TP
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to produce smooth regions. Finally it applies the parabola-fitting TP to regions
at both the merged region and smooth region levels of representation, producing
parabola hypotheses.

While generating these hypotheses, the exploration algorithm also evaluates
their features with FMPs. As shown in Figure 6.4, segmentation and green region
hypotheses have no feature measurement procedures in the VP library, so no features
are computed for these hypotheses. Merged region hypotheses are therefore the first
hypotheses to have their features measured, with FMPs being invoked to calculate
the size, measured in pixels, of each merged region hypothesis, as well as the distance

to the nearest grass or sky region?

. Smooth regions are similarly tested for their
proximity to sky or grass, as well as compactness, which is measure of their perimeter
to area ratio. Parabola hypotheses have their length, curvature and X and Y centers
measured by FMPs, as well as the average error between the parabola and the region
boundary it approximates.

After every training image has been explore d, the exploration data is discretized
and summarized. Parabola (goal-level) features are discretized by selecting the
parabola hypotheses whose centers are within three pixels of the training signal and
histogramming their features. For every feature, one discrete value is assigned to the
range extending from slightly below the lowest value to slightly above the highest,

and another value to a range in the middle that includes half of the hypotheses,

as described in Section 4.1.1. Features for lower level hypotheses are computed the

same way using hypotheses from which correct goal-level hypotheses were generated.

2The FMPs for calculating distance to grass and sky are two-argument FMPs. They measure
the image distance from the merged region hypothesis to the nearest region in the segmentation
hypothesis that matches the expected color and texture of grass or sky.
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Visual procedures are summarized according to their average cost and, for FMPs,
the likelihoods of their discrete features. Average costs are computed for all visual
procedures, whether TPs or FMPs, and conditioned on discrete features whenever
possible. For example, if enough smoothed regions in the exploration data are
compact, then the average cost of fitting a parabola to a compact region is estimated.
For features that do not occur often enough for this average to be meaningful, the
cost of the parabola fitting TP is averaged across all hypotheses. Similarly, cost
estimates are conditioned on discrete features whenever enough samples of a feature
are encountered during training, and across all invocations of a FMP for infrequent

features.

6.3.6.2 Learning From Examples (LFE)

Once exploration is complete, the learning from examples (LFE) algorithm
selects which TPs to include in the recognition strategy and what if any feature
values should be required as preconditions to the TPs. The first step in this task
i1s to construct the dependency trees that indicate how each training sample was
generated.

For each image, the LFE algorithm collects the parabola hypotheses, like the
one in Figure 6.3, that match the tree’s position and makes them branches of a single
“or” node, as shown in Figure 6.5. The underlying intuition is that one parabola
that marks the position of the tree must be generated for every training image. Any
set of preconditioned TPs that generates at least one of the hypotheses in Figure 6.5
is said to satisfy the “or” tree.

Next the LFE algorithm addresses the question of how the parabola hypotheses

at the leaves of the tree in Figure 6.5 can be generated. Each parabola hypothesis
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Figure 6.5: The top level of a dependency tree for tree recognition. At
this point, the tree represents the simple statement that the tree in
the training image can be recognized by generating either hypothesis

parabola — 1 or hypothesis parabola — 7.
in the tree was created by applying a TP to a lower level region hypothesis, so

each hypothesis depends on a TP and a region hypothesis. This is depicted in
Figure 6.6, which shows the tree from Figure 6.5 expanded to include the next level
of dependencies. Note the “or” node under hypothesis parabola?. It indicates that
the same hypothesis is created by fitting a parabola to regionb or region, so that
either one is sufficient to generate parabolaT.

LFE continues to expand the tree by tracing the origins of the hypotheses at
the leaves until each hypothesis has been traced back to the image, as shown in
Figure 6.7. In this case there are no “and” nodes in the dependency tree, because
every TP in the knowledge base takes a single argument. TP’s that take two or
more hypotheses as arguments create “and” nodes, since all the arguments must be
generated for the TP to be applied.

Once a dependency tree has been built for a training image, LFE generalizes
the tree by replacing hypotheses with their feature values and interpreting the links
between TPs and hypotheses (now feature values) as “TP applied to hypothesis with

features X”. For example, the dependency tree in Figure 6.7 indicates that a correct
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Figure 6.6: The top two levels of a dependency tree for a single training
image, with hypotheses shown in boldface and transformation procedures
(TPs) shown in italics. The second level records, among other things,
that hypothesis parabola7? was generated from both regionb and region6, so

either is sufficient to recreate parabolaT.
hypothesis can be generated by applying the parabola fitting TP to hypothesis

regiond. Unfortunately, regionb is specific to the training image it describes, so
LFE generalizes from this example to infer that correct hypotheses may be created
by applying the parabola fitting TP to hypotheses with the same feature values as
region5, under the (sometimes false) assumption that hypotheses with the same
feature values behave similarly. Replacing hypotheses with their feature values
produces a tree like the one in Figure 6.8.

The next step is to convert the dependency tree to disjunctive normal form
(DNF). The dependency tree in Figure 6.8 outlines the alternative methods for

finding the (physical) tree in a training image, but not in a compact form. By
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Figure 6.7: A complete dependency tree for one example, showing how
correct parabola hypotheses can be generated from a training image.
(For efficiency, common subtrees can be joined, thereby turning the
dependency tree into a graph.)
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Figure 6.8: The generalized dependency tree, with image-specific hy-
potheses replaced by their feature vectors.
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converting the and/or dependency tree to DNF, we create a set of conjunctive
subterms, as shown in Figure 6.9. Each conjunctive subterm contains a set of TPs
which, if applied to hypotheses with the given feature values, will generate at least
one correct hypothesis for the training image. By “and”ing the DNF expressions
for the training images together and converting that to DNF, we obtain conjunctive
subterms that are sufficient to generate a correct hypothesis for every training image.

SLS then selects the conjunctive subterm that generates the fewest total hypotheses.

Figure 6.9: An example DNF expression. The expression shown is the
DNF form of the tree in Figure 6.8. Features are used as possible TP
preconditions, to select the hypotheses to which a TP should be applied.

6.3.6.3 Graph Optimization

The conjunctions of TPs and TP preconditions learned by the LFE algorithm
define subgoals at each level of representation. In the case of two dimensional tree
recognition, the parabola fitting TP is applied to smooth region hypotheses, so the

preconditions to the fitting TP form a subgoal for smooth region hypotheses. If we
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assume that the left-hand conjunction subterm is selected from Figure 6.9, then a
verification subgoal for the smooth region level of representation is to determine if
a region is near grass, near sky and relatively compact. By implication, any region
that is not near sky or grass or is not compact can be rejected.

The graph optimization algorithm begins to create a decision tree for smooth
regions by creating a start state, corresponding to a smooth region that has not
yet had any of its features measured. From this state, a control program has three
choices: invoke the compactness FMP, the region relation FMP parameterized for
grass regions, or the region relation FMP parameterized for sky. As a result, the
start state, which is a choice state, leads to three chance states corresponding to
the three options. FMP invocation states are chance states because their outcome
for any given hypothesis is unknown, although probabilities of each outcome can be
estimated. Each region either will or will not be near a grass region, either will or
will not be near a sky region, and will have one of three compactness values. Each
of these possibilities leads to a new knowledge state, where once again the control
program selects a FMP. Significantly, any time a FMP returns a value other than
one of the three preconditions, it leads to a knowledge state that is a reject state,
since it implies that the hypothesis can be rejected without any more features being
measured. Figure 6.10 shows the top two levels of the decision graph that results
from repeatedly expanding each knowledge state until a subgoal or reject state is

reached.

Having created a complete decision graph, SLS must now decide what decisions
to make at each choice node. Since the knowledge base for this demonstration
includes only single-argument FMPs, every FMP is assumed “ready to run” (see

Section 3.4.3), and SLS can choose a single FMP for each choice node. At each
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Figure 6.10: The first two levels of a smooth region decision tree, before
pruning. The square nodes indicate knowledge states, in which the
control program must choose which FMP to execute next. The circular
nodes indicate FMP applications, which return discrete feature values.
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node, the graph optimization algorithm selects the FMP that minimizes the expected
cost of reaching a terminal node, as explained in Section 4.3.1.1. For the example

considered here, the result could be the decision tree shown in Figure 6.11.

6.3.7 Reliability Results

The most basic question concerning SLS is whether the strategies it learns can be
trusted to satisfy recognition goals. As was mentioned earlier, in the tree recognition
task SLS was given the goal of learning to find the image position of a tree to within
an accuracy of three pixels. In twenty-one separate trials, SLS learned strategies for
generating parabolic tree hypotheses, using a minimum distance classifier to verify
goal-level hypotheses.

In each trial, SLS was trained on twenty images and tested on a single image.
In general, strategies learned by SLS generated good hypotheses in eighteen of the
twenty-one trials, for a success rate of 86%. The minimum distance classifier selected
a correct hypothesis from this pool of goal-level hypotheses in seventeen of the
eighteen cases for which correct hypotheses were generated. Overall, therefore, the
system was able to satisfy the recognition goal by generating and verifying a correct
goal-level hypothesis in seventeen of the twenty-one trials, or 81% of the time.

Table 6.3.7 summarizes the system’s performance. The first three rows record
SLS’s performance in generating goal-level hypotheses. For each trial, the top row
records the error in the best hypothesis generated, the second row shows how many
goal-level hypotheses were generated, and the third row records how many of those
goal-level hypotheses were correct to within the accuracy threshold of three pixels.
The last two rows include goal-level classification, and thus present the system as

an end-user would see it. The fourth row shows the error in the hypothesis selected
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Figure 6.11: One possible pruned decision tree for smooth regions. If
spatial features are more likely to veto region hypotheses than compact-
ness, or if they are cheaper to compute, then the tree in Figure 6.10
might be pruned to the decision tree shown here.
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as the best hypothesis by the minimum distance classifier, while the fifth row shows
the system’s confidence in its result in terms of the normalized euclidean distance

in feature space between the best hypothesis and the learned prototype.

6.3.7.1 Redundancy

The third row of Table 6.3.7 emphasizes the extent to which SLS learns
redundant strategies. The VPs in SLS’s library — indeed, the algorithms in any
computer vision toolkit — are prone to failure. To be robust, therefore, SLS must
learn strategies that are redundant, so that if some VPs fail, others will still recognize
the object. SLS minimizes redundancy in its strategies as much as possible while
still successfully recognizing the object in every training image.

When learning to identify trees, SLS generally included all three parameteriza-
tions of the morphological smoothing TP, to ensure that at least one of them will
produce a smooth region with a distinct peak at the center of the tree. In thirteen of
the twenty-one trials, all three parameterizations produce quality regions, resulting
in three correct parabola hypotheses. In four trials, however, one of the smoothing
TPs failed to produce a region with a peak that the parabola fitting TP could
identify, so that only two correct hypotheses were produced for those trials. Even
more significantly, in trial eleven, two of the smoothing TPs failed, producing just

a single correct hypothesis and demonstrating that including three smoothing TPs

was necessary.

6.3.7.2 Generation Failures

Trials fourteen, nineteen and twenty, on the other hand, show that SLS’s

strategies can fail, despite their redundancy. In these three trials, and only in
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Table 6.1: Results of twenty-one trials of learning to recognize the image
position of a tree, with a minimum distance classifier for goal-level
verification. The top row of the table shows the error in the image
position (measured in pixels) of the best parabola hypothesis generated
for each trial. The second row is the number of goal-level hypotheses
produced by SLS’s strategy, and the third row records how many of
those hypotheses were within the accuracy threshold of the recognition
goal (three pixels). The fourth row shows the positional error (again
in pixels) of the hypothesis selected by the minimum distance classifier,
while the bottom row shows the normalized euclidean distance in feature
space between the best hypothesis and the object prototype learned by
the minimum distance classifier. The averages of each row are shown in
the last column.

Trial ‘ Best Hyp. ‘ Hyp. Count ‘ Corr. Count ‘ Sel. Hyp. ‘ Distance H

1 1.28 11 3 1.73 1.09
2 0.75 10 3 1.04 1.34
3 0.38 15 3 0.38 2.27
4 0.06 13 3 0.54 1.36
5 0.00 18 3 0.38 2.14
6 0.10 15 3 0.10 1.85
7 0.00 13 3 0.33 2.14
8 1.39 17 3 1.69 1.22
9 0.50 17 3 0.85 1.26
10 0.02 15 2 0.02 1.43
11 2.08 15 1 6.59 3.11
12 1.96 20 2 1.96 2.00
13 0.49 18 3 1.32 1.81
14 4.23 21 0 6.51 2.11
15 0.48 11 3 0.48 4.69
16 0.69 21 2 0.69 2.48
17 0.87 22 3 1.82 2.54
18 0.83 20 3 0.82 1.09
19 18.47 10 0 18.48 5.98
20 7.40 9 0 7.40 4.54
21 0.30 15 2 0.63 3.51
Avg. | 2.01 | 15.5 2.29 | 2.56 | 2.38 ||
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these three trials, SLS learned strategies that included just two smoothing TPs. An
a posterior: analysis shows that for three of the training images, only one of the
smoothing TPs leads to a correct hypothesis. (For all other training images, at
least two of the three versions of smoothing generate high-quality hypotheses.) As
a result, on the trials in which one of these images was left out of the training set,
the most efficient strategy for satisfying all of the examples included in the training
set was to use only the other two versions of smoothing in the strategy. Of course,
in a “leave one out” testing scheme, the image not included in the training set is

the one used for testing, so the learned strategy failed on these three tests.

6.3.7.3 Predicted Reliability

One way to evaluate the results in Table 6.3.7 is in comparison to the analytic
results in Chapter Five. That chapter gave a formula (Equation 5.4) establishing
an upper bound on the probability that a strategy would fail to generate a correct
hypothesis for a test image, based on how difficult the strategy was to learn given
the knowledge base and training images. Table 6.3.7.3 shows the number of times
during the last ten training images that a training sample was not satisfied by the
conjunctive subterm of TPs, and the robustness predicted by that performance. On
average, SLS predicts with 72% confidence that the probability of failure on a test
image is less than 28%. Since SLS’s strategies failed to generate a good hypothesis in
only three of twenty-one trials (14.2%), the observed probability of failure is clearly

less than the probabilistic upper bound, which is what one would expect.
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Table 6.2: Estimated probabilities of failure for twenty-one tree recog-
nition trials. The first row shows the number of times during the last
ten training images that the conjunctive subterm of TPs learned by the
LFE algorithm failed to satisfy the current training image. The second
row gives the PAC estimate of the probability of failure, according to
Equation 5.4. The interpretation of these probabilities is that with
confidence 1 — P, the probability of failing on a test image is less than P.

Trial | 1| 2| 3] 4| 5| 6| 7] 8| 9] 10| 11|
Failure Count 1‘ 3‘ 1‘ 2‘ 2‘ 0‘ 1‘ 2‘ 1‘ 2‘ 1H
Prob. of Failure | .26 | 46 | .26 | .36 | .36 | .16 | .26 | .36 | .26 | .36 | .26
Trial | 12| 13| 14| 15| 16| 17| 18| 19| 20 | 21 | Avg. ||
Failure Count 1] 1 ‘ 2 ‘ 1 ‘ 1 ‘ 1 ‘ 0 ‘ 2 ‘ 0 ‘ 0 ‘ 1.19 H
Prob. of Failure | .26 | .26 | .36 | .26 | .26 | .26 | .16 | .36 | .16 | .16 | .28

6.3.8 Efficiency Results

Table 6.3.7 addresses the robustness of the strategies learned by SLS, but not
their efficiency. Table 6.3 shows SLS’s expected run-time (in seconds, rounded
to the nearest whole second) for the strategy learned in each trial as well as the
actual run-time when the strategy was applied to a test image. On any given
trial, the discrepancy between the predicted and actual run-times is quite large.
On average, however, the predicted run-times are within one percent of the actual
run-times. This reflects the average-case nature of expected costs. The actual cost
of recognizing an object in an image depends critically on the contents of the image,
but as long as the training images are indicative of the test domain the average
cost of recognition can be estimated. Indeed, it is remarkable the predictions were
accurate to within one percent. Another indication that the expected costs are
accurate is that the expected cost exceeds the actual cost in eleven on twenty-one

trials, or almost exactly fifty percent of the time.
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Table 6.3: Timing results for the twenty-one tree recognition trials. The
first row shows the expected cost (in seconds, rounded to the nearest
whole second) of applying the strategy, as predicted by SLS. The second
row shows the actual cost. Although the difference between expected and
actual run-time for any given trial is quite high, the average expected
run-time matched the average actual run-time to within one percent.

trial | 1| 2| 3| 4] 5| 6| 7| 8| 9] 10] 11|
Exp. Cost ‘ 459 ‘ 463 ‘ 463 ‘ 440 ‘ 450 ‘ 463 ‘ 460 ‘ 452 ‘ 451 ‘ 458 ‘ 459 H
Act. Cost | 242 | 255 | 269 | 703 | 538 | 269 | 284 | 559 | 520 | 315 | 350
trial | 12| 13| 14| 15| 16| 17| 18] 19| 20| 21| Avg. |
Exp. Cost ‘ 454 | 454 | 701 ‘ 461 ‘ 444 ‘ 444 ‘ 445 ‘ 331 ‘ 335 ‘ 430 ‘ 453 H
Act. Cost | 436 | 420 | 824 | 301 | 627 | 626 | 649 | 211 | 567 | 626 | 457

Complexity of SLS

Finally, there is the cost of SLS itself. Chapter 5 showed by analysis that the
cost of SLS’s exploration algorithm is linear in the number of training images and
that the cost of the graph optimization algorithm is approximately constant in the
number of training images. As a result, the complexity of these two algorithms is
dominated by the complexity of the knowledge base, not the size of the training
set. The complexity of the LFE algorithm, on the other hand, was uncertain: a
worst-case analysis suggested that it could be exponentially expensive in the size of
the training set, if the number of terms in the DNF expression kept growing. At
the same time, it was argued that the worst-case analysis is misleading, that as long
as the training samples have some commonality among them the size of the DNF
expression would not explode. (See Section 5.2.3.)

The tree recognition exercise clearly supports the latter supposition. As the
first couple of training samples are presented to the LFE algorithm, the number of
terms in the DNF expression grows, representing the many combinations of ways

in which the first few examples can be generated. As more and more samples are
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added, however, the DNF expression converges to a few terms that represent more
general methods of generating training samples. In all but one case, the final DNF
expression contains just a single conjunctive subterm; in the one exceptional case,
it contained two. Figure 6.12 shows the number of terms in the DNF expression,
averaged across all twenty-one trials, after N training images have been presented.
(The order of the training images was randomized for each trial.) After the initial
bulge, it shows how the number of terms drops rather than grows as new training

images are presented.

6.4 Building Recognition from An Approximately Known

Viewpoint

In the second demonstration, SLS learns to recognize the Marcus Engineering
building, which is the red brick building immediately to the left of the tree in
Figures 6.1 and 6.2. This time, however, the goal is to determine the three-
dimensional location and orientation of the building relative to the camera, rather
than the image position of its projection. By finding the three-dimensional pose of
an object relative to the camera, recognition strategies can determine the position
of a mobile vehicle from a single landmark, rather than having to triangulate among
multiple landmarks, thus permitting landmark-based navigation in barren domains

with few landmarks, or in environments that are only partially modeled.

6.4.1 Training Images

The strategies for recognizing Marcus are learned from the same set of training

images that were described in Section 6.3.1, including the images in Figures 6.1
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Figure 6.12: The complexity of LFE during tree recognition. The graph
shows the number of terms in the DNF expression, on average, after N
training images. Although a worst-case analysis predicts that the size of
the DNF expression will grow exponentially with the number of training
images, in practice it grows sharply for a couple of images, after which
generalization causes the algorithm to converge on a few terms (in this
case, one).
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and 6.2. As discussed there, the images display four degrees of freedom, three that
involve the position of the building and a fourth that determines it orientation. As
before, SLS is tested by training it on twenty images and testing on a twenty-first,
a process that is repeated twenty-one times until every image has been used as the
test image.

The “ground truth” positions and orientations of the building were determined
by manually matching image points to model points and applying Kumar and
Hanson’s algorithm [41] to determine the building’s pose relative to the camera.
The training signal is therefore composed of errorful pose estimates, rather than
true positions. However, Kumar and Hanson’s results suggest that, with correct
correspondences, their algorithm produces pose estimates that are extremely accu-
rate when compared to the relatively lax error thresholds in the recognition goal (see
next section). The estimated poses can therefore reasonably be used as a training

signal.

6.4.2 Recognition Goal

The recognition goal for this exercise is to find the pose of Marcus Engineering
relative to the camera. Pose hypotheses are represented as rotation matrices with

translation vectors, in the traditional
P'=RP+T

representation, where R and T are the rotation matrix and translation vector that
transform a set of points P in the model’s coordinate system into a set of points P’
in the camera’s coordinate system. Unfortunately, errors expressed in terms of R

and 7 tend to be unintuitive, since if an object is rotated slightly about its center,
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this will be represented as a rotation about the focal point, counteracted by a large

translation®

. It is helpful, therefore, to express the error tolerances in a different
representation.

Since the pose of the building has only four degrees of freedom, the tolerance
thresholds in the recognition goal are expressed in terms of scale, image position,
and object angle. These parameters reflect the fact that the pose of the building can
be expressed as a vector from the focal point to any known point on the building,
plus a horizontal rotation about the known point. (Remember that the building has
no tilt or roll relative to the camera.) Errors in the positional vector are expressed as
an error in length, measured as a percent of the true camera-to-object distance, and
an error in position, measured as an angle (Since we are interested in the magnitude
of the orientation error, not its direction, this can be written as a scalar.) Errors

in the rotation of the object are also represented as an angle, this time about the

vertical axis.

The error thresholds for this exercise are that the position of the building must
be correct to within one degree of image angle and ten percent depth, and the
orientation of the building must be correct to within five degrees. These thresholds
require that the hypothesized pose be highly accurate with respect to the building’s
image position and reasonably accurate in the building’s orientation, but only
approximate in depth. Figure 6.13 shows an example of a pose that satisfies these
criteria, in this case the building pose identified by SLS’s strategy in the first of

twenty-one trials (see Section 6.4.4).

3The size of the counteracting translation is a function of both the extent of the rotation and
the distance from the object center to the focal point.
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Figure 6.13: A correct pose from one trial of the Marcus recognition
strategy. The pose shown here was generated and verified on the first
of twenty-one trials, and is off by 1.8% in depth, 4.79 degrees in the the
orientation of the building, and 0.16 degrees in the image location of the
building.
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6.4.3 The Knowledge Base

A knowledge base for three-dimensional recognition is considerably more com-
plex than a two-dimensional recognition knowledge base. As before, the knowledge
base includes visual procedures for generating and verifying region and region set
hypotheses, although parabola hypotheses are no longer needed. In their place, the
knowledge base uses image point and image line hypotheses, and sets thereof, which
better represent the structure of a building.

The knowledge base includes many visual procedures for extracting and grouping
two-dimensional representations such as points and lines. Lines can be extracted
using the edge-linking algorithm of Boldt and Weiss [12], and regions can be
extracted by the algorithm described in Beveridge, et. al. [10]. Regions that match
an expected color and texture can be selected from a region segmentation by a
multivariate decision tree, as described by Brodley and Utgoff [14]. (This algorithm
is included twice in the knowledge base with two different parameterizations, one
designed to select red brickface regions, the other highly textured window regions.)
Nearby regions can be grouped by a region merging TP, while another TP groups
lines that intersect a given region. Nearby lines that are parallel, collinear or
orthogonal can be grouped according to the relations defined by Reynolds and
Beveridge [56]. (All of the grouping VPs are implemented using the facilities of the
ISR database system [15].) Image points are extracted either by finding trihedral
junctions of lines, or by computing the convex hull of a pencil of lines.

In addition, new representations capable of supporting three-dimensional rea-
soning are introduced. Orientation hypotheses represent the orientation, but not

location, of a plane in space, while planar surface hypotheses specify both the
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orientation and location of a plane. Most importantly, transformation hypotheses
represent a coordinate transformation from one coordinate system to another, rep-
resented as a rotation matrix and a translation vector. Transformation hypotheses
determine the pose of a modeled object by giving the transformation from the object
model coordinate system to the camera coordinate system, and are the goal-level
hypotheses in this demonstration.

Three dimensional hypotheses are generated and manipulated by geometric
visual procedures. Collins and Weiss [21]| provide an efficient TP for grouping
line segments into pencils, which are sets of lines that meet at a common point
of intersection. Vanishing point analysis [21] infers the orientations of planes in
space by assuming that the image lines in a pencil are the projections of parallel
lines in space. Another approach to inferring the orientation of an object in space is
to find trihedral junctions of line segments first, and then use the perspective angle
equations of Kanatani [39] to infer the orientations of the planes, assuming the lines
form right angles, like the corner of a building.

The distance from an object to the camera can be estimated when the size of the
object is known. In the case of Marcus Engineering, a wire-frame model of the object
has been built from blueprints, as shown in Figure 6.14. Two parameterizations of
the scaling TP are available in the knowledge base, one that estimates distance
based on the apparent width of a window and the estimated angle of the building
face, and a second that estimates distance from the height of the building using a
direct inverse relationship of size to distance. (Note that since the images have zero
tilt, the orientation of the building face is not needed to estimate distance from the

building’s height). Of course, since any two points on the object model can serve
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as compile-time parameters to a scaling TP, many other parameterizations of the

scaling TP could be included in the knowledge base.

Figure 6.14: A wire-frame model of the Marcus Engineering Building,
copied from its blueprints.

6.4.4 Reliability Results

Table 6.4.4 summarizes the results of twenty-one trials of learning to recognize
the pose of Marcus Engineering from an approximately known viewpoint. The right
side of the table shows the errors in the best goal-level hypothesis generated, even
if this hypothesis was never verified, while the right side shows the errors in the
goal-level hypothesis verified by the minimum distance classifier. The verified pose
for trial number one, which is also the best pose generated for that trial, was shown
earlier in Figure 6.13.

Pose errors in Table 6.4.4 are measured in terms of the length and orientation
of a vector from the focal point to the corner of the building, and the rotation of
the building. More precisely, the error in the position of the building is measured
as 1) the error in the distance to the building, measured as a percentage of the true
distance, and 2) the image position of the building, measured by the angle between
the true vector from the focal point to the building corner and the estimated vector

(labeled “Im Pos” in Table 6.4.4). The error in the building’s orientation is measured
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as the angle in the horizontal plane between the estimated orientation of a building
face and its true orientation (labeled “Rot.” in Table 6.4.4).

The most striking feature of Table 6.4.4 is the result of trial sixteen. The strategy
learned by SLS in trial sixteen did not generate a single goal-level hypothesis,
either correct or incorrect, for the test image. An a posterior: analysis reveals
that in twenty of the twenty-one images, the corner of the building is marked by a
trihedral junction of image lines. In one image, however, noise eliminates one of the
three lines. As a result, when the image without the trihedral junction is removed
from the training set and used as the test image, SLS learns a strategy that relies
entirely on finding trihedral junctions. The strategy does not succeed in finding any
trihedral junctions in the test image, however, and therefore generates no goal-level
hypotheses. Ironically, in the other twenty trials, the training sets include the case
in which trihedral junctions fail, and therefore the other twenty strategies all include
redundancy to account for the possibility of trihedral failure, and this redundancy
is never needed for the test images to which they are applied.

Trial sixteen is the only case in which the strategy learned by SLS fails to
generate a correct goal-level hypothesis, giving it a higher success rate at generating
3D building hypotheses (95%) than 2D tree hypotheses (86%). This improvement
can be attributed to the geometric reasoning VPs, which in general are less ad hoc
and more reliable than the region-based VPs used in the previous exercise. In trials
fifteen and twenty, however, SLS verified the wrong hypothesis, giving it an over-all

success rate of 86%.
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Table 6.4: Results of twenty-one trials of learning to recognize the
pose of the Marcus Engineering Building. The left side of the table
shows the errors in the best goal-level hypothesis generated for each
trial, while the left side shows the errors in the hypothesis verified by
the minimum distance classifier. Errors are specified in terms of the
parameters discussed in Section 6.4.2, namely: 1) error in distance from
the object to the camera, expressed as a percentage of the true distance
from the object to the camera; 2) error in image position, measured in
degrees; and 3) error in the building’s orientation, measured in degrees.

Best Generated Pose Selected Pose
Trial | Dist. Rot. Im Pos || Dist. Rot. Im Pos
1 1.81 4.79 0.16 1.81 4.79 0.16
2 1.34 0.82 0.05 1.34 0.82 0.05
3 1.18 1.33 0.11 2.74 1.33 0.09
4 0.69 1.40 0.13 1.97 1.40 0.13
5 2.64 2.33 0.10 2.64 2.33 0.10
6 0.73 6.95 0.15 0.73 6.95 0.15
7 0.27 1.16 0.05 6.58 1.16 0.07
8 2.33 0.07 0.08 2.33 0.07 0.08
9 1.01 3.58 0.20 1.69 3.58 0.20
10 1.39 1.65 0.04 2.07 1.65 0.05
11 0.50 3.27 0.08 2.37 3.27 0.25
12 2.24 4.48 0.25 2.24 4.48 0.25
13 2.07 1.54 0.04 2.07 1.54 0.04
14 0.36 1.63 0.09 0.36 1.63 0.09
15 2.13 2.58 0.21 11.23 2.58 0.21
16 - - - - - -
17 4.44 6.21 0.13 4.44 6.21 0.13
18 1.07 1.75 0.09 1.77 1.76 0.16
19 0.41 3.83 0.07 1.07 3.83 0.07
20 0.92 2.50 0.03 14.64 2.50 0.03
21 1.18 4.95 0.13 2.26 4.95 0.13
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Table 6.5: Timing results for the twenty-one Marcus Engineering trials.
The first row shows the expected cost (in seconds, rounded to the nearest
whole second) of applying the strategy, as predicted by SLS. The second
row shows the actual cost.

Trial | 1| 2| 3| 4| 5| 6| 7| 8] 9\ 11 ||
Exp. | 82.9[84.7[84.2] 786 |85.1[85.0]84.9[85.0]85.2 846
Act. | 107.3 | 88.4 | 79.4 | 113.7 | 88.9 | 74.8 | 66.2 | 71.7 | 72.6 74.5

Trial | 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| Avg |
Exp. [86.2 [ 85.1 | 85.4 [83.2]61.3[79.6[85.584.9[80.1|85.7] 83.0
Act. | 61.4 | 89.4 | 73.2 | 82.7 | 45.5 | 62.3 | 74.4 | 69.2 | 76.6 | 57.4 | 79.3
6.4.5 Timing

Although the knowledge base for three-dimensional recognition is more complex
than the two-dimensional knowledge base, and involves several more levels of repre-
sentation, SLS is still able to predict the expected cost of its strategies accurately.
Table 6.4.5 shows the expected cost for each strategy, as well as the actual cost when
the strategy was applied to a test image. While the variation in total time from one
trial to the next is quite high, the average is once again close to the expected cost,
with SLS overestimating the cost of its strategies by a mere 4.7 percent. Moreover,
an a-posterior: analysis shows that SLS was highly accurate in estimating how often
each visual procedure would be executed. SLS’s overestimates were caused by VPs

executing more quickly during testing than during exploration, due to variations in

paging.

6.5 Recognizing Buildings from an Unknown Viewpoint

The final demonstration shows SLS learning strategies for recognizing a complex
object from an unknown viewpoint. Despite its prevalence in the computer vision

literature, viewpoint-invariant recognition is not a common visual task. Contextual
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knowledge about objects and viewers typically constrains the space of possible view-
points, and even in this demonstration we will make a few contextual assumptions
consistent with images taken from an autonomous vehicle, for example assuming
that the camera is near the ground. Nonetheless, there are many situations where
the relationship between the viewer and an object is unknown, and viewpoint-
independent recognition strategies are needed. This demonstration was designed

to show that SLS can learn strategies for this less common situation, too.

6.5.1 Training Images

In many respects, the training images for the final demonstration are similar
to those of the earlier tests. The images are monocular, color images taken
perpendicular to gravity (i.e., with no tilt or roll) from a few feet above the
ground. But whereas the earlier images were taken from the same general area and
pointing in the same direction, the new images were taken from random locations
and orientations in a two hundred by three hundred foot quadrangle. The one
thing all ten images have in common is that they all include part of the Lederle
Graduate Research Center (LGRC), the L-shaped, multi-faceted building which
houses the University of Massachusetts Department of Computer Science. Because
of the differences in camera position and orientation from frame to frame, however,
and because of the narrowness of the field of view, the images contain diverse and
sometimes non-overlapping views of the building. Figures 6.15 and 6.16 show two

of the ten images.
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Figure 6.15: One of ten images of the Lederle Graduate Research Center
(LGRC). The images were taken from random positions in the courtyard

behind the building.
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Figure 6.16: Another image of the Lederle Graduate Research Center
(LGRC). Not only do the images of the LGRC view the building from
different angles and at different scales, they also image different parts of
building.
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6.5.2 Recognition Goal

The recognition goal for this demonstration was to recover the position and
orientation of the LGRC relative to the camera, plus or minus ten percent in scale,
one degree in image position and ten degrees in pan angle. Ground truth positions
for the LGRC were estimated by selecting correspondences between image points
and points on a wire-frame model of the LGRC extracted from its blueprints. Kumar
and Hanson’s algorithm [41] was then applied to the hand-selected correspondences
to establish estimates of the position and orientation of the LGRC in each image,
estimates which served as a training signal. Figure 6.17 shows a correct pose

hypothesis for the image shown in Figure 6.16, as generated in trial number nine.

6.5.3 The Knowledge Base

As one might expect, the knowledge base for recovering the pose of the LGRC
is similar to the knowledge base for recovering the pose of Marcus Engineering.
The LGRC knowledge base includes visual procedures for segmentation [10], region
classification [14], line extraction [12], grouping lines into pencils [21], vanishing
point analysis [21], perspective angle analysis [39], symbolic graph matching [63],
and determining distance from scale.

One difference is that visual procedures for reasoning about shape are param-
eterized using the wire-frame model of LGRC rather than Marcus. The other
major difference between the two knowledge bases is that the Marcus knowledge
base was built for a single view. Consequently, whenever a significant point in the
image is identified, it can be matched to the upper left corner of Marcus. In this

demonstration, on the other hand, there is no single point on the building that
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Figure 6.17: A correct pose from one trial of the LGRC recognition
strategy. The pose shown here was generated and verified on the ninth
trial, and is off by 5.93% in depth, 4.81 degrees in the the orientation of
the building, and 0.11 degrees in the image location of the building.
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is visible in all ten images. Instead, the knowledge base includes the coordinates
of three model points, corresponding to the left corner of LGRC, the top of the
stairwell and left corner of the housing for its air conditioning units, and tries to

match one of them in order to fix the image position of the building.

6.5.4 Reliability

As before, SLS was tested with a “leave-one-out” methodology, this time with
nine training images used on each of ten trials. Table 6.5.4 summarizes the results.
As one would expect with only nine training samples for a complex task, the
strategies learned by SLS prove less robust than in earlier demonstrations. In fact,
if we assume that recognizing the LGRC is approximately as difficult as recognizing
Marcus, then the results in Table 6.5.4 can be viewed as supporting the prediction
in Section 5.1.3 that robustness is inversely related to training set size, since halving
the number of training images doubled the rate of failure.

Of course, the major impetus behind this demonstration was to show that SLS
can learn to recognize objects from unknown, as well as known, viewpoints. The
images in the test set not only view the LGRC from different angles, but some
of them are of non-overlapping parts of the building. Nonetheless, SLS learns to
recognize the LGRC partly by relying on VPs such as vanishing point analysis that
are not view dependent, and partly by exploiting redundancy. In effect, SLS learns
strategies that compensate for the multiple views by using one set of techniques to
find the left-hand corner of the building, another set to find the stairwell, and yet
a third set of techniques to find the right edge of the building. In fact, given that
it has only a few examples of each view, it is remarkable that SLS did as well as

it did, generating correct hypotheses in five of the ten trials (50%), and verifying
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Table 6.6: Results of ten trials of learning to recognize the pose of the
Lederle Graduate Research Center (LGRC) from an unknown viewpoint.
The right side of the table shows the errors in the best pose hypothesis
generated, whether or not this hypothesis was verified by the minimum
distance classifier. The left side of the table shows the errors in the
verified hypothesis returned to the user by SLS. Errors are measured the
same way as in Table 6.4.4 and discussed in Section 6.4.2.

Best Generated Pose Selected Pose
Trial | Dist. Pan Im Pos | Dist. Pan Im Pos
1 3.06 2.12 0.98 53.01 2.12 27.31
2 32.02 8.17 17.37 32.02 8.17 17.37
3 _ _ _ _ _ _
4 2.52 4.08 0.12 5.32 4.08 0.12
5 _ _ _ _ _ _
6 1.04 5.83 0.17 1.04 5.83 0.17
7 _ _ _ _ _ _
8 8.22 8.72 4.42 12.96 8.72 2.93
9 5.93 4.81 0.11 5.93 4.81 0.11
10 3.24 6.93 0.15 3.24 6.93 0.15

a correct hypothesis in four trials (40%). If we look at Table 6.5.4, we see from
the analytic bounds that SLS could have done much worse, succeeding only 23%
of the time, although we caution the readers that the estimates in Table 6.5.4 are

especially pessimistic because of the small number of training images.

6.5.5 Timing

The lack of a sufficient training set impacts SLS’s ability to predict the cost of its
strategies as much as its limits its ability to produce robust strategies. Table 6.5.5
shows the expected and actual times for each trial, and unlike in previous trials
the expected costs vary greatly from trial to trial. (In the earlier exercises, only
the actual costs varied.) This is symptomatic of a learning strtaegy that has not
yet converged on a consistent recognition strategy. Indeed, the expected cost of the

learned strategies varies by almost a factor of two demonstrating that the strategy
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Table 6.7: Estimated probabilities of failure for the twenty-one tree
recognition trials. The first row shows the number of times during the
last six training images that the conjunctive subterm of TPs learned
by the LFE algorithm failed to satisfy the current training image. The
second row gives the PAC estimate of the probability of failure, as given
in Equation 5.4. The interpretation of these probabilities is that with
confidence 1 — P, the probability of failing on a test image is less than P.
The probabilities are especially pessimistic because they were computed
over only six training images.

Trial 1| 2\ 3\ 4\ 5| 6] 7| 8\ 9\10\Ang
Failure Count 5 4 4 2 .
Prob. of Failure | .99 .82 | .82 | .49 .99 .77

Table 6.8: Timing results for the ten LGRC trials. The first row shows
the expected cost (in seconds, rounded to the nearest whole second) of
applying the strategy, as predicted by SLS. The second row shows the
actual cost. The large variations in expected cost from one trial to the
next are symptomatic of a learning algorithm that has not yet converged
on a strategy after only nine training samples, and therefore produces
very different strategies from one trial to the next.

Trial | 1| 2| 3| 4| 5]

Exp. | 175.6 [ 178.3 | 120.2 | 223.7 | 232.9

Act. | 195.0 | 168.4 | 155.8 | 133.7 | 80.7
Trial | 6| 7| 8| 9] 10| Avg |

Act. | 190.2 | 189.2 | 95.7 | 315.8 | 150.3 | 167.5

learned in one trial might be quite different from the strategy learned in another. It

Exp. ‘ 175.8 ‘ 279.2 ‘ 185.8 | 225.3 ‘ 180.0 ‘ 197.7 H

is not surprising, therefore, that the average actual cost is 15.3% below the average

predicted cost across the ten trials.

6.6 Summary of Demonstrations

The demonstrations of two-dimensional and three-dimensional recognition from

known and unknown viewpoints presented in this chapter are meant to convince the
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reader that SLS is more than a theoretical system, appropriate for recognizing ab-
stract objects in synthetic images. SLS can learn practical recognition strategies for
finding known objects in complex images. At the same time, these demonstrations
are not intended as definitive experiments for testing the strengths and weaknesses
of the system. SLS clearly needs to be tested on larger training sets, with more
visual procedures, and under a wider variety of conditions. The tests in this chapter
demonstrate SLS in action, but do not probe its limits.

Unfortunately, we do not currently have the facilities for thoroughly testing
SLS. In order to run exhaustive experiments, we need to collect large sets of images
quickly and cheaply, and to generate training signals for those images. We also need
the computational resources and disk space to be able to process and store hundreds
of images.

We hope to have many of these capabilities in the near future. As part of the
DARPA unmanned ground vehicles (UGV) program, we will soon have access to
a mobile perception laboratory (MPL) capable of quickly collecting large sets of
images. (Storing images will still be a problem, but if they can be collected quickly
enough they may not have to be stored.) The most computationally complex VPs
in SLS’s library are being rewritten in C as part of the UGV project, and SLS itself
will be rewritten in C under a grant from Rome Labs. Combined with the greater
computational power of the MPL, this should allow us to process greater numbers of
images than ever before. If the algorithms for determining the position of the MPL
work as predicted, we may also be able to generate training signals automatically.

As a result, we hope to perform more thorough experiments with SLS in the future,
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and to develop it further (see next chapter). Nonetheless, for the time being we are

limited to demonstrating its abilities on small training sets.



CHAPTER 7

CONCLUSIONS

Work on the Schema Learning System was initially motivated by the needs of
its predecessor, the Schema System [22, 23]. The Schema System used appearance
models and object relations to interpret complex natural scenes, and demonstrated
how concurrent, special-purpose processes can cooperatively interpret images by
exchanging tentative hypotheses. Unfortunately, it took so many hours of human
labor to develop each schema that the Schema System was essentially limited to toy
domains. As members of the Schema System research team, we were all too acutely
aware of the cost of generating schemas and the limitations that implied.

Faced with a similar dilemma, researchers on the SPAM project [47, 34] and in
Japan [45] sought to reduce the cost of knowledge base construction by building
better tools and programming languages. In essence, they tried to finesse the
knowledge acquisition problem by developing better software engineering tools to
aid the human knowledge engineer.

We decided on a different approach. Rather than increase the speed with which
knowledge engineers can craft a knowledge base, we decided to take the humans “out
of the loop”, by building systems that automatically learn to recognize objects. This
approach depends on conceptualizing vision as a set of evolving skills rather than a

single, fixed matching process. Each viewer, according to this paradigm, develops
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recognition strategies in response to its environment, optimizing and refining those
visual skills that are used most often. An interesting consequence is that the
perceptual history of a viewer is critical in determining how (and how well) it sees,
as shown by the robustness analysis in Chapter 5.

For motivation, we imagined household robots whose visual systems develop like
that of a young child. When users first bring their robot home they must take it
for walks, naming the objects it encounters along the way. After a while, it begins
to recognize many common objects, and pesters its owner (“what’s that?”) only
when it comes across objects it does not recognize. Eventually it matures to the
point that it recognizes most of the objects in the house, and it is ready to perform

chores.

Of course, it would be arrogant, not to mention misleading, to imply that SLS as
described here meets this goal. SLS is just a small step on which others, hopefully,
will build. It would be nearly as arrogant to imply that SLS was, in any meaningful
sense, “finished”. This thesis argues for the importance of learning recognition
strategies from libraries of visual procedures and presents one system for solving
this problem, but there is still much work to be done on learning in vision before
household robots like the one mentioned above become a reality. This chapter is
therefore more of a pause, a chance to review the contributions of SLS and highlight

interesting research topics, than a conclusion.

7.1 Contributions (So Far)

This work describes a complete and implemented system for learning object
recognition strategies. Unfortunately, the ideas underlying this system are some-

times obscured by the details of the data structures and algorithms themselves.
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One of SLS’s main contributions is in its formulation of the problem of learning
recognition strategies. Up until now, systems that combine learning and vision have
either exploited a single learning technique, such as neural nets (e.g. ALVINN [54]),
or else optimized strategies for exploiting a single vision technique, such a graph
matching (e.g. Goad [31]). As a result, these systems have not taken advantage of

the wealth of vision representations and algorithms developed over the last twenty

years.

SLS, on the other hand, learns strategies for controlling libraries of visual
routines and representations, integrating other researcher’s results at the level of
an automatic programming system. Whereas other systems try to replace twenty
years of vision research, SLS exploits it.

Of course, SLS is not the first system to model vision in terms of visual
procedures and hypotheses. The Schema System is just one of many earlier systems
that applied blackboard technology to the task of computer vision. But these
systems were ad-hoc and relied on humans to supply control heuristics, whereas
SLS automatically learns strategies for integrating visual procedures into coherent
strategies. Just as importantly, the principles by which SLS develops its strategies
can be explicitly and scientifically analyzed, unlike the hand-built strategies of earlier
systems.

SLS’s second major contribution is in modeling vision as a sequence of alternat-
ing transformation and verification tasks. This idea is really just an application of
the old generate-and-test paradigm to multiple levels of representation, but it can
be viewed as an organizing principle for exploiting machine learning in computer
vision. In terms of control, representational transformations are discrete steps that

must be taken in sequence in order to match image data to abstract object models.
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Symbolic (often logic-based) machine learning techniques are well-suited to this
task. Verification, on the other hand, is a filtering problem® that can be solved by
many methods, including neural networks, decision trees and traditional Bayesian
classifiers. SLS was implemented with a DNF-based algorithm for selecting trans-
formational procedures and univariate decision trees for verifying intermediate-level
hypotheses, but the use of other symbolic inference and/or classification algorithms
should be explored within the alternating transformation and verification model.
SLS’s third major contribution lies in relating probably almost correct (PAC)
analysis to complex recognition strategies. Omne of the criticisms of knowledge
based systems, whether learned or hand coded, has always been that they are
unscientific, in part because there was no formal way to evaluate them. Valiant’s
PAC analysis [66], however, provides a quantitative theory for analyzing SLS’s
strategies. Indeed, this analysis is more solidly grounded in probability theory
than many other “formal” probabilistic systems which make unrealistic assumptions
about either feature independence or normally distributed background noise.
Finally, as demonstrated in Chapter Six, SLS works on real data, and as such
1s a proof of concept for learning recognition strategies. Clearly, a great deal more
testing will be needed before it can be fielded as a practical system. Nonetheless, it

shows that its algorithms and representations do work, at least on small sets of real

!Verification can also be described as a two-class classification problem with one-sided errors.
The one-sided errors are important because verifying a invalid hypothesis will only cause the system
to generate a higher-level hypothesis that will be rejected at the next level of representation. As
such, it is inefficient but does not cause an error. False negatives, on the other hand, cause the
system to reject a valid hypothesis, a mistake from which it cannot recover.
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7.2 Topics for Future Research

In some sense, it 1s difficult to discuss topics for future research without rehashing
the entire system, since most aspects of the system could be improved. There
are, however, a number of areas where additional research might produce the most

significant results. We will simply list them here:

eStructure from X. (Model Acquisition) To infer the 3D positions and orienta-
tions of objects from monocular images, many of the visual procedures in the SLS
library require a model of an object’s (3D) shape, as originally shown in Figure 1.2.
Currently, these models must be supplied as part of a knowledge base. However, as
better algorithms become available for inferring structure from motion, stereo and
other sources, it becomes possible to expand SLS into a system that first acquires

object models and then applies them to learning recognition strategies.

eIntegrating Geometry and Learning. In the final demonstration, SLS learned
to recognize an object from arbitrary viewpoints, without explicitly reasoning about
geometry. A method for including knowledge about perspective projection and visi-
bility constraints in the learning process, without adopting a single representational
system as in Goad [31], Ikeuchi [37] or Camps, et. al. [18], might significantly lower
the number of training images needed to learn to recognize objects from arbitrary

viewpoints.

eLearning VP parameters. SLS was designed to eliminate the knowledge engineer-
ing task by automatically learning recognition strategies. Unfortunately, a certain
amount of knowledge engineering remains, since VP parameters must be included

as part of the VP library. If SLS could learn to parameterize VPs, the same VP



145

library could be used for all recognition tasks. Parameter learning, combined with
a system for infering structure (as discussed above), would eliminate the remaining
vestiges of knowledge engineering from the learning process, and create a system

that could learn to see merely by being shown examples.

eExploiting Continuous Features. In its current form, SLS’s decision tree
classifiers reason about discrete features only. Unfortunately, a lot of information
is thrown away when continuous features are divided into discrete ranges, so it
would be better if SLS reasoned about continuous features. Several techniques
are available for learning to classify continuous-featured instances, including linear
machine decision trees [14] and neural networks [57]. Replacing SLS’s discrete
classifiers with one of these techniques should produce strategies that are both more

reliable and more efficient.

eIncremental Learning. SLS learns recognition strategies in “batch mode”,
meaning that all training instances are presented to SLS together, as a single set. If
SLS were modified to learn incrementally, however, it could develop strategies from
an initial set of training instances, and then refine them as more training samples
became available. Unfortunately, it is not clear whether SLS can be converted to
an incremental algorithm. The learning from examples algorithm used by SLS is
already incremental, in as much as it keeps a running DNF expression which it
modifies with each new sample, and incremental classifiers have been available for
years. The problem comes with the two stage nature of SLS, which first learns to
transform hypotheses and then how to verify them. The verification problem at each
level of representation is defined in terms of the current set of TP preconditions.

When these preconditions change, the classifiers have to be retrained from scratch,
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since samples that used to be positive examples may now be negative examples and
vice-versa. How to construct an incremental algorithm that closely approximates

the multi-stage algorithm used in SLS therefore remains an open question.
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