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ABSTRACT

REAL-TIME SYSTEMS:
WELL-TIMED SCHEDULING AND
SCHEDULING WITH PRECEDENCE CONSTRAINTS

FEBRUARY 1993
GORAN ZLOKAPA
B.S., UNIVERSITY OF SARAJEVO, BOsNIA-HERZEGOVINA
M.S., PH.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor John A. Stankovic

This dissertation attempts to bridge the gap between recent theoretical results
from Scheduling Theory, Queueing Theory, and Operations Research and actual
requirements of current and future real-time systems.

The first part develops a novel approach for the timely scheduling of dynam-
ically arriving tasks, and it is, primarily, designed for on-line schedulers of non-
deterministic complex real-time systems that perform in temporary or permanent
overloads. In these systems, to predict whether a task will complete by its deadline,
an on-line schedulability analysis has to be carried out. The quality of the analysis,
as well as its computational overheads, depends on when the analysis is performed
and how many tasks are involved. Our approach to schedulability analysis, called
Well-Timed Scheduling, is based on analytically derived control parameters. This
approach presents a framework for on-line real-time schedulers, and it lends itself
to use with different scheduling policies. Well-Timed Scheduling provides a me-
thodical approach to quantifiable guarantees of timing constraints with potentially
low scheduling overhead and high system performance. Using this approach, the
ready-to-execute tasks are scheduled at an “opportune” time, rather than at arrival

time or at dispatch time as in the traditional approaches. The analytical derivation



of the “opportune” time is based on recent theoretical results, and it is validated
through simulation. Aside from run-time benefits (e.g., low scheduling overheads),
Well-Timed Scheduling is useful as a design tool. It can, for example, be used to
determine the number of processors needed to achieve the required level of system’s
guaranteed performance for a given M/G/c real-time system.

In the second part of the dissertation, we develop off-line preprocessing algo-
rithms that enable effective and efficient on-line scheduling of task groups with
different contributing values, timing constraints, resource constraints, and arbitrary
precedence constraints. These algorithms derive new value densities that reflect how
valuable the individual tasks and their successors are. By utilizing these reflective
value densities, on-line schedulers are not required to examine the successors of
ready-to-execute tasks at run-time to select the best task to schedule next. This
approach greatly reduces the computational complexity of on-line schedulers, and
it extends the applicability range of existing on-line scheduling algorithms for inde-
pendent tasks to scheduling of task groups with arbitrary precedence constraints.
Due to the separation of value density preprocessing and deadline preprocessing, the
developed algorithms are equally applicable to real-time and non real-time systems.

The overall goal of this dissertation is the development of efficient and effective
scheduling methods for on-line scheduling of complex real-time systems in very
demanding non-deterministic environments, where the best-effort algorithms are

used to maximize the total accrued system value.
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CHAPTER 1

INTRODUCTION

Real-time systems are systems where the tasks must be both logically correct and
timely. In these systems, the tasks are typically assigned deadlines and/or periods
to complete their execution. Executing tasks beyond the given timing constraints
can result in both incorrect computation, and unstable and unpredictable behavior
of the entire system. Therefore, when tasks cannot meet their timing constraints, a
system must reject these tasks.

To achieve high system performance, besides the timing constraints, the system
must consider the relative importance of tasks when determining which tasks to
reject and which tasks to execute. This relative importance is usually given as a
time-value function that specifies the contributing value of a task to the system
upon its successful completion. However, the assignment of contributing values to
individual tasks is not required for all types of tasks found in real-time systems.

The critical tasks do not require explicit assignment of contributing values[43].
For these tasks, the value assignment is irrelevant because by definition, all critical
tasks must complete within given timing constraints, or catastrophic results might
occur. Critical tasks are usually the tasks vital for the overall system operation and
for the overall safety of the mission. The number of safety-critical tasks is very small
when compared to the total number of tasks in the system.

Besides critical tasks, the essential and non-essential tasks are commonly found
in real-time systems. Essential tasks are the tasks that carry the main function

of the mission, they have timing constraints, and they do not cause catastrophic
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results if not completed on time. However, missing a deadline of an essential task
might have a significant impact on the overall system performance.

The number of essential tasks can be very large. To cope with this poten-
tially large number of active tasks—caused by non-deterministic environments—a
dynamic, on-line scheduling approach is required.

Non-essential tasks, on the other hand, are, usually, treated as background tasks
that execute in spare time regardless of their timing constraints.

The Spring Project at University of Massachusetts [43] has a long history of
investigating the scheduling problems involving critical and essential tasks in com-
plex, dynamic, and non-deterministic real-time environments. In this dissertation,
we focus on scheduling aspects of essential tasks in multiprocessor environment.
However, the presented concepts and algorithms are inherently applicable to non-
essential tasks as well.

.In the first half of the dissertation, we develop a methodological approach to
schedulability analysis named Well-Timed Scheduling. The outstanding features of
this approach are:

¢ The most opportune moment at which a task becomes considered schedulable

is an analytically derived parameter, named the punctual point.

e Well-Timed Scheduling presents a framework for on-line real-time schedulers,

and can be used as a design and as a run-time tool.
 Well-Timed Scheduling is applied to a wide range on M/G/c real-time systems.

The major benefits of utilizing Well-Timed Scheduling are excellent performance
and control of the system under temporary and permanent overloads, as well as
graceful degradation.

In the second half of the dissertation, we develop off-line preprocessing algo-

rithms that enable effective and efficient on-line scheduling of task groups with
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different contributing values, timing constraints, resource constraints, and arbitrary
precedence constraints. Specifically, we develop value density! propagation algo-
rithms which derive value densities that reflect the value densities of individual tasks
and their successors. By utilizing these reflective value densities, on-line schedulers
do not need to traverse the all task groups to select the best task to schedule next.
As a result, the on-line schedulers do not increase in computational complexity when
scheduling tasks with precedence constraints.

In short, the main theme of this dissertation is the development of scheduling
approaches that enable efficient and effective on-line scheduling real-time systems
that operate in highly dynamic and non-deterministic environments, and where
the issues of reliability, flexibility, and predictability are of utmost importance.
Specifically, the methods proposed in this dissertation improve efficiency of dynamic
scheduling algorithms used in real-time systems by reducing the number of tasks

considered in making scheduling decision.
1.1 Motivation

An example of a real-time application of the future that operates in very complex
and non-deterministic environment is the robot Dante? (named after the central
character of Dante’s classic The Divine Comedy: Inferno[3]). This spiderlike robot
was developed for the task of exploring the active volcano at Mount Erebus, in the
Antarctic. This project sponsored by NASA and the National Science Foundation
is a part of an extensive preparation for a much more complex mission to the planet
Mars—where robots will perform without human guidance for all but long term

tasks.

1A task’s value density is defined as its contributing value over its processing time.

2Dante is a result of the joined effort between Carnegie-Mellon University and New Mexico
Institute of Mining and Technology.
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On January 2, 1993, Dante started its trip down the side of the volcanic crater
connected by a fiber-optic umbilical cable [4]. Clearly, the site chosen for this
test is highly dynamic and non-deterministic, where the external environment can
potentially trigger a large number of essential tasks. For example, Dante has to stay
away from the lava lakes, and it has to avoid the flying rocks. The contributing
values and the timing éha.ra.cteristics of the tasks invoked depend not only on the
predefined mission objective but also on the environment’s behavior and Dante’s
physical characteristics. It is easy to envision that due to Dante’s maximum speed
of 3.3 feet per minute, its need to process the images and signals from the very active
environment, as well as the limitations of available processing power, a potentially
large number of complex tasks with very stringent timing constraints can be simul-
taneously invoked. To successfully cope with such requirements—with minimal or
no human guidance—it is necessary to provide methods that can efficiently deal
with a potentially large number of complex tasks. That is, it is necessary to provide
methods that do not use complex, high overhead mechanisms at run-time and that
provide sufficient preparatory work that will lead to efficient and effective use of
system’s resources.

Expected to perform in non-deterministic environments, real-time systems of
the future must continue to operate in temporary and permanent overloads, must
be capable of controlling the overall system performance, and must exhibit graceful
degradation capabilities. To achieve this, these systems must not only detect that
some task did not meet its deadline, but they also must foresee that an essential
task will not meet its deadline, signal it on time, and substitute it with one or more
contingency tasks. To identify that the task cannot meet its timing constraints, an
on-line schedulability analysis with an early warning feature is required. The early

recognition that the task will not meet its deadline should provide enough lead time
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for the timely invocation of contingency tasks, and system level planning activities

to adapt the system to a continuously changing environment.
1.2 Owur Approach

This dissertation presents our contribution to the problem of comprehensive
scheduling capabilities of real-time systems of future. There are two major parts of
this dissertation: (1) the Well-Timed Scheduling part, and (2) the scheduling with

precedence constraints.

1.2.1 Well-Timed Scheduling

Many real-time systems are still being built today under the misconception
that real-time computation is fast computing [54]. Furthermore, designers of these
systems sometimes assume that computation times and resource requirements are
too difficult to assess, so this information is not utilized in scheduling. Rather, a
myopic scheduling algorithm is used which simply selects the next task to run and
immediately executes it—based on some simple task characteristic such as deadline.
There is no understanding of the schedulability of the task or of the projected overall
performance for given system loads and tasks’ timing requirements. In other words,
for all but the simplest real-time systems it is often assumed that schedulability
analysis is too difficult.

However, schedulability analysis can be performed if task information is required
to be known a priori. Given tasks’ timing constraints, their computation time, re-
source requirements and other constraints, schedulability analysis can be performed
either off-line or on-line. For example, in the case of static priority schedulers, such
as rate-monotonic schedulers (31, 47], an off-line schedulability analysis that provides
a 100% guarantee is performed. This type of analysis is well suited to small, highly

periodic applications. On the other hand, assumptions and restrictions imposed
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by off-line approaches can lead to the creation of systems which are inflexible, not
expandable, and prone to overdesign.

As recently pointed out in [26], if today’s real-time systems are designed in
a simple and static manner, what good is a 100% guarantee if there is a high
probability that the assumptions and imposed restrictions, upon which the off-line
guarantee is based, will be violated? In other words, if the assumptions are likely
to be violated, a system using a static approach will not perform as designed, thus,
causing tasks to miss their deadlines. What is even worse, the control of the system
can be lost completely due to the kmited scheduling capabilities.

When constraints imposed by an off-line schedulability analysis are likely to be
violated, dynamic scheduling approaches are the solution. They offer a higher degree
of flexibility and can be made quite general. Very often, the objective of dynamic
algorithms is not to provide a 100% guarantee, but rather to maximize the system’s
accrued value.

Each task contributes some value to the system. Typically, a value is described
using a time-value function, which relates a task’s value to the timing requirements
[32, 7). In the case when all tasks have the same value, maximizing the accrued
value is the same as maximizing the number of completed tasks. Examples of such
algorithms can be found in [42] and [32].

The approach presented in [42] employs the notion of guarantee on a per task
basis. That is, in this approach, a newly arrived task is scheduled and accepted for
execution only if it can be guaranteed to complete by its deadline—exemplifying
the scheduling-at-arrival-time policy. On the other hand, by associating the notion
of guarantee with the approach presented in [32], for example, the scheduling-at-
dispatch-time is obtained.

Guaranteeing at dispatch time might be too late to take alternative actions,

while guaranteeing at arrival time can be unnecessarily too early. In spite of
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the applicability of both approaches to complex real-time systems, one of their
shortcomings is the lack of an analytical technique to quantify the overall guarantee.
That is, they lack the capability to calculate the probability of meeting all given
constraints rather than producing a simple guaranteed/not-guaranteed response on
a per task basis.

In the first half of the dissertation, we provide an analytical technique to quantify
the guarantees for dynamic real-time systems with on-line scheduling algorithms.
Furthermore, we present how to utilize the analytically obtained results in on-line
schedulers to obtain effective and efficient scheduling over a wide range of system

loads.

1.2.1.1 The Punctual Point

One of the primary concerns of on-line schedulers is their computational effi-
ciéncy. Our approach is driven by this concern. The efficiency of on-line schedulers is
increased by preventing the unnecessary scheduling (or rescheduling) of “irrelevant”
tasks—the tasks with very large laxities® that have no impact on the order of tasks
at the top of the schedule. Specifically, instead of scheduling tasks when they arrive
or when they are dispatched, tasks are scheduled somewhere in between. They are
scheduled at the so-called punctual point.

The main benefit of scheduling using the punctual points is the reduced schedul-
ing overhead when compared to scheduling-at-arrival-time. This is due to the
smaller number of “relevant” tasks (the tasks with laxities smaller than or equal
to the punctual point) that are scheduled at any given time. Clearly, when the

computational complexity of a scheduling algorithm is higher than the complexity of

3Task laxity, also known as task slack time, is the maximum time a task can be delayed before
its execution begins. In our model, we assume that for each task the worst case computation time
and the laxity are known at scheduling time; thus, an absolute task deadline is obtained from the
sum of arrival time, computation time, and laxity.
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maintaining the list of “relevant” tasks, the separation into “relevant” /“irrelevant”
tasks reduces the overall scheduling cost; that is, the scheduling becomes more
efficient.

Scheduling-at-opportune-time (that is at the punctual point) is more flexible,
more effective, and more tolerant to timing errors than scheduling-at-dispatch-time,
primarily, due to its early warning characteristics.

The punctual point as a control parameter of the scheduling overhead for on-line
real-time schedulers is the most prominent component of our Well-Timed Schedul-
ing.

Due to its characteristics, Well-Timed Scheduling is useful both at design time
and at run-time. In the design phase, by knowing the system parameters, the
number of processors required to achieve a desired level of guaranteed performance
can be determined. Specifically, at design time, the number of processors can be
determined by calcula.t‘ing the punctual point that matches the given mean laxity
and produces the desired system performance. On the other hand, at run-time, the
punctual point can be dynamically adjusted to respond to changing system loads.

In summary, Well-Timed Scheduling does not enforce any particular scheduling
policy per se, it rather provides a framework for dynamic scheduling algorithms

based on a methodical approach to schedulability analysis.

1.2.2 Scheduling with Precedence Constraints

Beside independent tasks, complex real-time systems usually have tasks inter-
related by precedence constraints. This interrelation is commonly described by
a given directed graph where nodes present ‘tasks and arcs present the execution
dependences.

If a task group requires that all of its tasks must complete, the task group
is characterized as an atomic task group. These task groups must be scheduled

end-to-end; and once they have started execution, they can not be “unscheduled”. If
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the atomic task group is aborted—due to the arrival of more important task groups,
for example—all already executed tasks must be rolled back. Examples of such task
groups can be found in systems where monolithic processes are decomposed into.
tasks to provide more efficient resource use.

On the other hand, the non-atomic task groups have well-defined tasks that
execute within their own context, and do not require end-to-end scheduling. These
tasks inherently provide high level of parallelism, resource utilization, and do not
necessarily require roll back if severed (that is, if the execution of a task group,
starting from some task and including all its successors, is canceled). Examples of
such task groups are found in systems that support imprecise computations. The
contributed value of non-atomic task groups is the sum of contributing values of all
completed tasks, rather than the contributed value of the entire task group as for
atomic task groups.

~ In contrast to atomic task groups, non-atomic task groups are better suited
for dynamic, non-deterministic environments, where for a good system performance
very valuable tasks should not be rejected because some low value, but very long
task group started its execution. Non-atomic task groups provide more flexibility in
scheduling; they do not have any other interrelation constraints but the precedence
constraints; and they can be partially executed, i.e., severed.

Greater flexibility and the larger number of feasible schedules of non-atomic task
groups has its drawbacks—a potentially high scheduling complexity, for example.
Specifically, aside from focusing on the groups’ characteristics only (such as prece-
dence, resource, and timing constraints), a scheduler must anticipate the arrival of
more valuable tasks. It has to select not only the best task group but also the
best branch within the selected group. In this case, the scheduler must examine
all active task groups and all their branches just to schedule the next task. This

extensive search is necessary because in non-atomic task groups a very valuable task
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can easily be preceded by tasks with very low values. In this case, if a scheduler
does not examine each branch, a very valuable task might miss its deadline because
of the myopic scheduling approach that focuses only on the eligible set of tasks,
where eligible tasks are the tasks whose all predecessors have already been executed
or scheduled.

Clearly, the system value is maximized if a scheduler either traverses down the
unscheduled branches or if each task contains reflective parameters that describe
its successors. From the real-time perspective, the letter choice provides a better
solution. It is less computationally expensive, and it does not necessarily perform
worse than the former choice.

Recognizing this, we develop the off-line preprocessing algorithms that prepare
task groups for on-line schedulers that select a task to schedule next based on
the eligible set of tasks only. The advantages of this approach are multiple. The
scheduling algorithm has the computational complexity of the scheduling algorithm
for independent tasks. Already develoéed real-time scheduling algorithms for inde-
pendent tasks that are demonstrated as effective can be utilized to obtain a high
system performance.

Our preprocessing algorithms assign so-called reflective parameters to individual
tasks, based on given precedence constraints and initial task parameters. The
obtained reflective parameters embed the information about the tasks’ initial pa-
rameters and the initial parameters of their more valuable successors. If a task is
more valuable than its successors its reflective parameters are the same as its initial
parameters.

It is important to observe that the separation of value density preprocessing
from the other preprocessing procedures, such as deadline preprocessing, provides
an additional advantage of our approach. Due to this separation, our preprocessing

algorithms are applicable to both real-time and non real-time task groups.
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1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, an
analytical derivation of the punctual points for M/G/c systems is presented, and
validated through simulation. This is followed by the analysis of the effects of
the punctual points on the number of “relevant” (schedulable) tasks, and by the
analysis of the relation between the punctual points and laxities. Some specific
design considerations for M/M/c real-time systems are presented at the end of this
chapter.

The benefits of an integration of the Well-Timed Scheduling and real-time
scheduling algorithms is examined in Chapter 3. Specifically, two real-time schedul-
ing algorithms are developed and integrated with Well-Timed Scheduling. The first
algorithm is the DLVD ;':l.lgorithm that schedules the tasks in increasing deadline
order, and in the case of an infeasible schedule, it rejects a task with minimum value
density. The second algorithm is the RDS algorithm where a linear combination
of task’s value density, deadline, and earliest possible start time is used to select
a task to schedule next. In the case of an infeasible schedule, a selected task is
rejected. The presented integration analysis consists of four parts: (1) the analysis
of both real-time schedulers without the benefits of the Well-Timed Scheduling and
with negligibly small scheduling costs—a traditional applicatioﬁ with a minimal
scheduling cost, (2) the analysis of the effects of the increasing scheduling costs, and
still without the benefits of the Well-Timed Scheduling, (3) the effects of the Well-
Timed Scheduling with realistic scheduling costs, and finally, (4) the applicability
range and robustness analysis of the proposed integration. This chapter concludes
the Well-Timed Scheduling part of the dissertation.

Our approach to the problem of scheduling the tasks with precedence constraints
is presented in the remainder of the dissertation. The overall strategy, and the

development of two off-line preprocessing algorithms: (1) the VDP-R algorithm,
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developed for the rooted tree precedence constraints, and (2) the VDP-G algorithm,

developed for the arbitrary precedence constraints are presented in Chapter 4.

In Chapter 5, we experimentally evaluate the effects of the off-line derived
reflective parameters—applied to complex scheduling problem, such as problems
of scheduling arbitrary task groups with different contributing values, timing and
resource constraints in a multiprocessor environment. The evaluation is performed

along multiple dimensions, including tests for:

e a wide range of task group laxities,

¢ a number of system loads (ranging from moderate and high loads to heavy

overloads),
e different task group sizes,
o different number of application processors,

o three types of task groups: in-tree, out-tree, and task groups with arbitrary

precedence constraints,

e three types of value assignments: (1) a top-heavy assignment, where the source
tasks are the most valuable tasks and the terminal tasks are the least valuable

tasks, (2) a bottom-heavy assignment, a reverse of the top-heavy assignment,

and (3) a random value assignment,

o two types of time-value functions: a step value function, and a linearly dimin-

ishing value function, and finally,

o tasks are scheduled using: (1) initially assigned parameters, (2) the group
parameters, and (3) off-line derived reflective parameters.

The analysis of the simulation results consists of three parts: (1) the analysis

of systems with out-tree task groups, (2) the analysis of systems with in-tree task

groups, and (3) the analysis of systems with arbitrary task groups.
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The precedence constraints scheduling part is concluded by presenting the sum-
mary of general learnings and observed trends.
Chapter 6 summarizes the main contributions of the dissertation, and it outlines

the directions for future research.



CHAPTER 2

WELL-TIMED SCHEDULING: A FRAMEWORK
FOR DYNAMIC REAL-TIME SCHEDULERS

2.1 Introduction

Most of the systems that use an on-line schedulability analysis perform the
analysis on 2 task by task basis or by simulation. In the simplest form, an as-
sessment, whether a task will meet its deadline or not, is postponed until dispatch
time. One alternative is to attempt to plan the execution of a newly arrived task,
in conjunction with previously scheduled tasks as soon as the task arrives. Both
classes of scheduling algorithms—whether performing a simple form of feasibility
check at dispatch time, or a more elaborate guarantee at task arrival—avoid wasting
resources, and execute tasks in a non-preemptive fashion.

Typically, algorithms that perform scheduling-at-arrival-time are computation-
ally more expensive but, in return, they offer very high flexibility. These systems
employ a guarantee routine that checks feasibility of a schedule in order to ac-
commodate a newly arrived task, thus, intrinsically they provide a notion of early
warning for the tasks that cannot meet their timing constraints [65]. On the other
hand, scheduling-at-dispatch-time, while usually being very fast and simple is less
flexible and fails to provide a system view of the load; it announces task rejection
too late—either when its deadline has already expired or when its laxity becomes
negative while waiting for execution. Consequently, it does not provide sufficient
“lead” time for scheduling alternative actions when a task can not meet its timing

constraints. This indicates that support for negotiability, based on a priori available
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Scheduling-at-Dispatch-Time Scheduling-at-Arrival-Time

Well-Timed Scheduling

-  and

Figure 2.1 Approaches to Dynamic Scheduling Analysis.

knowledge of a task’s timing and other constraints, is inherent to early warning
schedulers, and not to scheduling-at-dispatch-time schedulers.

Well-Timed Scheduling is adaptive with respect to when the schedulability
analysis is performed. It does not require that scheduling be performed at the
earliest possible point (at task arrival time), or the latest possible point (at dispatch
time). Scheduling is performed at the most opportune moment, which is primarily
a function of the system load. This ensures that a scheduling decision is made
earlier than with scheduling-at-dispatch-time, but not necessarily as early as with
scheduling-at-arrival-time (see Figure 2.1). Consequently, “lead” time for alternative
actions is adjustable, and it is based on design and run-time parameters.

Controlling the number of schedulable tasks by using the timing constraints,
rather than by explicitly limiting the number of schedulable tasks, is a novel ap-
proach to achieving low scheduling overhead and high performance, for on-line
scheduling algorithms. OQur approach is especially beneficial for systems where
tasks have different contributing values. In these systems, rejecting a task without
considering it for scheduling might result in a large value lo.ss. This can easily
happen in approaches with fixed number of schedulable tasks. On the other hand,
our approach guarantees that every task is considered for scheduling when its laxity

reaches the most opportune moment, the punctual point.
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The approaches that use simulation to bound the number of scheduled tasks
are presented in [18, 22]. Both papers examine the performance of variants of
the Minimum Laxity First scheduling policy—the policy that has been shown to be
optimal, with respect to minimizing the long-term, steady-state fraction of lost jobs,
over all work-conserving non-preemptive policies [36, 37]. The analyzed scheduling
algorithms use a two part queue: the first part of the queue is a dispatch queue,
called @Q1(n), maintained in minimum laxity order, while the second part is a variant
of the FCFS queue. The laxity of a newly arrived task is compared with laxities
of n tasks in @:(n) and the task with the largest laxity is placed at the end of the
FCFS queue. When a task in @, is executed, the top task from FCFS queue
is enqueued in @;. Their analysis indicates that a performance within 5% of the
optimal (Minimum Laxity First) algorithm is achieved even for the small n, namely
for n = 5.

A more experimental and less theoretica.i approach to the control of scheduled
overhead, also based on bounding the number of scheduled tasks, is presented in
[19]. They propose two scheduling algorithms for Real-Time Database Systems
especially designed to handle overloaded situations. Namely, they develop the
Adaptive Earliest Deadline and Hierarchical Earliest Deadline algorithms. In this
approach, the overall queue is, again, divided into two parts, called the HIT queue
and the MISS queue. The number of scheduled tasks, located in the HIT queue, is
continuously adjusted according to the so-called HitRatio. As a result, this method
1s very adaptive, handles deadlines and values, and appears to be very practical.

However, the weakness of both of these approaches is the lack of analytical
methods to adjust the number of scheduled tasks. In both approaches, the parame-
ters that control the number of schedulable tasks are obtained through simulation;
and in both approaches a newly arrived task can miss its deadline before it gets

considered for execution. In contrast, in Well-Timed Scheduling, the mechanism
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that controls scheduling overhead—the punctual point—is derived analytically, and
it ensures that every arrived task will be considered for execution.

The rest of this chapter is organized as follows. An analytical derivation of the
punctual points for M/G/c systems is presented in Section 2.2. This is followed,
in Section 2.3, by a validation through simulation and the analysis of the effects
of the punctual points on the number of “relevant” tasks. Section 2.4 relates the
punctual points to the laxity values, and presents some specific design considerations

for M/M/c real-time systems. The conclusions is presented in Section 2.5.
2.2 Punctual Point Derivation

The punctual point is designed to prevent early scheduling of “irrelevant” tasks.
Any task that has a laxity larger than the punctual point is considered too early for
immediate scheduling, whereas tasks with laxities smaller than the punctual point
are subjected to scheduling. This approach is especially important for systems where
an overload is expected to occur, or for systems which are designed to perform in
overloaded environments!. In this paper, the term load has the same meaning as
in standard queueing theory: a load, p, also called traffic inteﬁsity, represents the
expected number of task arrivals per mean service time in the Limit.

The derivation of the punctual points is divided into two cases: (1) derivation
for loads less than 1, and (2) derivation for loads greater than 1. The second case
reduces to the first one by using a mapping procedure that pairs a given load ps > 1
with a load p; < 1. The idea behind the mapping is to find two loads whose task
loss ratios saturate at the same point. (Task loss ratio is defined as the ratio of tasks

that miss their deadlines to the total number of submitted tasks.)

1 An overload in real-time systems that operate in dynamic environments can occur due to the
failure of processor(s), the increased number of requested actions, or simply due to environment
changes. On the other hand, by assigning the values to the tasks according to their functionality
and importance, real-time systems can be designed to deal with overloads.
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Table 2.1 Punctual Points for 9 = 0.99, and 0.999 Probabilities.

(e [0570.7]0.9]0.99]

Tp(0.99) [ 10 ] 16 | 50 | 374
Tp(0.999) | 12 | 22 | 70 | 396

2.2.1 Punctual Point Derivation for p < 1

The derivation of the punctual point for loads less than 1 is a simple and
straightforward procedure based on recent queueing theory results—specifically, on
the results for waiting time distribution in M/ G/c queueing systems.

The computation of the waiting time distribution of M /G/c queueing system, for
given load and given service time distribution, was first presented in [60]. (For more
details on the computation of the waiting time distribution refer to Appendix B.)
As an example, a complementary waiting time distribution for the M /M/1 system
is given in Figure 2.2. The graph presents the probability with which an incoming
task will wait for service more than a given time ¢, i.e., 1 — 9 = Prob{W, > t}. The
time obtained for any given probability v is called the punctual point, denoted as
Te(9).

The waiting time distributions, and thus the punctual points, are directly related
to real-time systems. When the minimum laxity of any task in a given real-time
system is at least as large as the punctual point Tp(), tasks will meet their deadlines
under the FCFS scheduling policy with probability 1. (The general interpretation
of the 9 probability is discussed in Section 2.4.)

- To illustrate how the increase of ¥ near the saturation point—the point that has
very low impact on the overall system performa.nce'—é.ﬁ'ects the Tp(¢), we analyze
the punctual points for the ¥ = 0.99 and 9 = 0.999 probabilities. Table 2.1 lists the
punctual points that are derived for moderate and heavy traffic intensities, i.e., for

p =0.5,0.7,0.9,0.99 loads. As shown in Table 2.1, when the load is p = 0.5, it is
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Figure 2.2 Complementary Waiting Time Distribution for p < 1.

enough to have the minimum laxity of 10ES? in order to guarantee that all deadlines
will be met with a probability of 99%. Further, when the load approaches p = 1, the
waiting time increases exponentially. For example, when p = 0.9, the punctual point
Tp(0.99) = 50ES while when p = 0.99, T(0.99) = 374. This implies that real-time
systems with increasing load and constant v probability of meeting deadlines must
increase the minimum laxity requirements, correspondingly (i.e., exponentially).

Another way to look at the data in Table 2.1 is to assume that the average
load is fixed and that the requirement for v probability changes from 3% = 0.99
to ¥ = 0.999. Here the increase in the minimum laxity requirements is relatively
stable. Specifically, for p = 0.5,0.7,0.9, the increase is circa 40%, while for p = 0.99,
it is only 5.9%.

%In this case, as in all following examples, the normalized expected service time is assumed
(ES = 1), and for brevity ES is omitted when giving the punctual points.
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This concludes the discussion of the punctual point for loads p < 1. The next

subsection describes the mapping procedure necessary to perform the punctual point

derivation for loads p > 1.

2.2.2 Punctual Point Derivation for p > 1

When the load is greater than one, the calculation of the punctual point using
the above given waiting time distribution is not feasible. The number of tasks in a
waiting area grows to infinity. To overcome this, we developed a unique mapping
procedure that successfully pairs loads py, > 1 with loads p; < 1. Once this mapping
is done, the actual punctual point is easily derived using the procedure described
in the previous subsection. The motivation and intuition behind our mapping
procedure is presented next. Firts, we discuss the existing analytical results for
M/M[1+ M + FCFS systems. Second, we present a new interpretation of the well
known results for M/G/c/K systems. Third, the actual description of the mapping
procedure is presented. The section is concluded by presenting another, simpler and
less accurate method for the derivation of the punctual points. The experimental

results that support the mapping method are presented in Section 2.3.
In [65], Zhao and Stankovic analyze the performance of FCFS and improved

FCFS real-time scheduling algorithms. They derive a useful expression for task loss
ratio, R, for the M/M/1+ M + FCFS real-time queueing system (thé system with
Poisson arrival times, exponential service times, single processor, exponential laxity

distribution and a FCFS scheduling policy). The task loss ratio R was shown to be:

1-p(1-R")
- R+ -
R=R (1 o) (2.1)

where R* is defined as o
J&© e~(uH)e=Fe™ gy
Jo emremtet 4y

and where [ is the mean laxity, p is the traffic intensity, A is the arrival rate and

Rt =1

) (2.2)

p is the service rate, for all possible values of the unfinished work z. In (65], the

v j — D _._X ._..3
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Figure 2.3 Task Loss Ratios for Real-time Systems [65]

above expression is refined and given in the form of an incomplete gamma function.
However, notice that the above integrals can be directly solved by Gauss-Laguerre
quadrature®. For details of this numerical integration see Appendix C. Furthermore,
the boundaries for task loss ratio are given by two standard expressions. The worst

expected task loss ratio, assuming zero laxity, is given by

= P
Rworat 1+P'

The least possible task loss ratio, assuming laxities approaching infinity, is given by

0 fp<l
Rleaat={ 1— lfPZ]-

Figure 2.3 reproduces the results from [65] with a slight modification. The task

L
P

loss ratios are plotted for large laxities, such as [ = 10ES and [ = 100ES, rather
than for small laxities, such as | =0.1ES, ! = 1ES, and [ = 10ES which appeared

3The numerical integration of equation 2.2 gives an approximation of the solution. This is due
to the non-polynomial function of the given integrals; for example, F(z) = e~#2- te™ for the
integral in the denominator.
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in the original paper. Our intention is to illustrate that even for very large laxities
and with zero scheduling cost, the task loss ratio is relatively far from Rj.,,: for loads
around p = 1 (see curve for I = 100ES) Note that increase in processor speed mainly
influences the execution times of real-time tasks. On the other hand, deadlines are
usually driven by physical constraints of the process under control, and as such,
they are not influenced by the constantly increasing processing speeds. An increase
of computation power produces shorter worst case computation times, and thereby
increases laxities, creating more room for the applicability qf the fundamental results
for large laxities.

Analyzing the task loss ratio curves from Figure 2.3, it is clear that a system with
larger laxities has a smaller task loss ratio. This result is not surprising. However,
a closer observation shows that [ = 10ES and ! = 100ES curves converge at loads
p 2 2, at the high end, and at loads p < 0.02, at the low end. This indicates that for
loads after the convergence point, the I = 10ES system has the same loss ratio as
the [ = 100ES system, in spite of the fact that its laxity is one order of magnitude
smaller. Intuitively, it can be concluded that a system with larger laxities can be
treated as the system with lower laxities after the point of convergence, without a
significant decrease in overall performance. Loosely speaking, in the example with
laxities { = 100, if the load is p > 2 then an incoming task will not be subjected to
scheduling until its laxity drops to 10ES. That is, a task will be scheduled when
ifs laxity drops to the punctual point. Similarly, the punctual points for other loads
can be determined by determining the laxity values at which the task loss ratios,
for given laxity distributions, converge to Ricqa:.

To apply this idea beyond the M/M/1 + M + FCFS systems, we next present
the theoretical results for M/G/c/K queueing systems—the systems with finite

buffers. By giving a fresh look to these classical results, we pfovide the basis for

1
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Figure 2.4 K-size Distribution.

our mapping procedure. (For clarity of presentation, all relevant mathematics is
presented in Appendix C.)

Let us define 6 to be a user provided parameter that specifies the difference
between the task loss probability px and the least possible task loss ratio Rieqs, i.€.,
8 = pk — Riease- Using a fixed value of parameter § we can easily obtain a buffer
size distribution, over the entire range of loads. This distribution is referred to as
the K-size distribution, and it presents the smallest required buffer sizes such that
PK — Ricast < 6. An example for the M/M/2/ K queueing system, where the waiting
area size is plotted against the offered load, for four very demanding § values, namely
0%, 0.0001, 0.001, and 0.01, is given in Figure 2.4. (Note that K is the total number
of tasks in the system, and so, K — 2 is the number of tasks in the waiting area of
a two processor system.)

Intuitively, an interpretation of the K-size distribution indicates the following:
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® As the load approaches zero, the number of arrived tasks decreases, and with
it, the waiting area size needed to keep a task loss ratio within & distance from

Rieqst decreases, too.

® When load p — 17, a large waiting area size is needed to maintain a desired
performance. This is caused by a dramatic increase in task arrivals, and by the
fact that in the Ry, case all the tasks would be served. Thus, a large buffer

area is required to accommodate all incoming tasks.

¢ In the case of high overloads (p > 1), new tasks arrive faster than they can be

served. Thus, the waiting area is going to be “full” at all times. The larger the

load, the smaller buffer size is meeded.

The p > 1 case indicates that for increasing overloads a reduced waiting area
size is sufficient to always keep the system busy, and thus to perform as specified.
Maintaining the loss probability § distance, an almost mirror image of K-size dis-
tribution is created around p = 1, with a point of discontinuity at p = 1, where
K — .

By revisiting the results presented in Figure 2.3, we notice that in this case
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