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Abstract

Experimental trials of programs are sometimes aborted when resource bounds are exceeded.  The data from these
trials are called censored data.  This paper discusses the inferences that can be drawn from samples that include
censored data.  A key component of statistical inference, the sampling distribution, is generally not known for
censored samples.  However, the bootstrap procedure has been applied to estimate empirically the sampling
distributions of many statistics.  We show how to use the bootstrap to estimate the sampling distributions of the
difference of means of two censored samples, enabling many comparisons that were previously ad hoc, such as
the comparison of run times of algorithms when some run times exceed a limit.  The reader will see how to
extend the bootstrap to other tests with censored data.  We also describe a test due to Etzioni and Etzioni for the
difference of two censored samples.  We show that the bootstrap test is more powerful, primarily because it does
not make a strong guarantee that is a feature of the Etzioni's test.
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The Problem of Censored Data

The subject of this paper is how to measure and make inferences about the performance of a program
when trials of the program are occasionally aborted.  This happens when resource bounds are exceeded;
for example, when a program runs out of time or space before solving a problem.  Imagine running ten
trials of a search algorithm, recording the number of node expansions required to find a goal node if that
number is less than 5000 and abandoning the trial otherwise.  A hypothetical sample distribution of the
number of node expansions, n , is:

Trial 1 2 3 4 5 6 7 8 9 10
Nodes 287 610 545 400 123 5000 5000 601 483 250

Table 1.  A sample that includes two censored data.

Two of the trials were abandoned and the numbers we record in these cases (5000) are called censored
data.

Censored data present no problems for descriptive statements about the sample, but they make it
difficult to draw more general inferences.  Provided we limit ourselves to the sample we can say, for

example, that the mean number of nodes expanded in the previous ten trials is n = nii=1
10! 10( ) =1329.9.

If we are disinclined to include the censored data in the average1, then we can leave them out and simply
report the mean number of nodes expanded after the censored data are discarded:

n = nii"6,7
10! 8( ) = 412.375.

We run into problems, however, when we attempt to generalize sample results.  For example, it is
unclear how to infer the "population" mean number of nodes that would be expanded by the previous
algorithm if we ran other experiments with ten trials.  Statistical theory tells us how to make this
generalization if no data are censored: the best estimate of the population mean is the sample mean.  But
our sample includes censored data, and we should not infer that the population mean is 1329.9, because we
do not know how many nodes the censored trials might have expanded if we had let them run to
completion.  Nor should we infer that the population mean of uncensored trials is 412.375 because
statistical theory does not explain the relationship between the mean of a sample that includes censored
data and the mean of a population.  We can draw no conclusions that depend on inferring the population
mean; for example, we risk biased results if we try to infer that one algorithm expands significantly fewer
nodes than another [7].

This paper describes a general method for drawing inferences from samples that include censored data.
The method is an application of bootstrap resampling, a Monte Carlo technique for estimating sampling
distributions of statistics [2,6].  We present two tests—one to tell us whether the mean of a sample is
significantly different from a particular value, the other to determine whether two samples are significantly
different; the reader will easily see how to construct other tests, including tests that depend on statistics

1  In this example, the abandoned trials expanded more than ten times as many nodes as the others, which suggests
that they are somehow different and not really comparable with the others, and should be left out of the sample.
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other than the mean.  We compare our two-sample test to one designed by Etzioni and Etzioni [5], and we
show empirical power curves from which we conclude that our test is more powerful in many conditions.
Bootstrap resampling is well-known and our one-sample test is similar in some respects to Efron's
discussion of the sampling distribution of the trimmed mean [4].  The contributions of the paper are the
two-sample test and comparisons with Etzioni and Etzioni's test, and bringing the constituent techniques to
the attention of the AI community.

Background: Sampling Distributions

Statistical tests are commonly tests of whether sample results are unusual.  Imagine we have two
search algorithms, A and B, and two samples of ten trials for each algorithm.  We want to know whether A
expands significantly more nodes than B.  A common way to answer the question is to subtract the sample
mean number of nodes expanded by A, nA, from the same statistic for B's sample, nB , and ask whether
nA # nB is unusually large or small, given the null hypothesis, H0:µ A = µB  that the population means of

the number of nodes expanded by A and B are equal.  If the sample result, nA # nB, is unusual we reject
the null hypothesis; we say µ A  is probably not equal to µB , or algorithm A expands a significantly
different number of nodes, on average, than algorithm B.  To say that a sample result is unusual, we must
know the sampling distribution of the result: the probability distribution of all possible sample results,
calculated from samples of a fixed size, given the null hypothesis, H0 .  For example, the sampling

distribution of nA # nB, given H0:µ A = µB , is the probability distribution of all possible values of

nA # nB that might be obtained by drawing samples of a fixed size from two populations with equal
means.  You can imagine what the sampling distribution looks like:  small differences are likely (because
H0  says the population means are equal) and large positive and negative differences are unlikely.  The

sampling distribution of nA # nB looks like a bell curve although it is not Gaussian.  Rather, the sampling
distribution of the difference of two means is a t distribution.   To see whether a sample result is unusual,
one simply converts it to a t statistic and sees where the statistic falls in the t distribution.  If the t statistic
falls in one of the tails of the distribution (as shown in Figure 1) then we know that the corresponding
sample result has a relatively low probability, and we reject the null hypothesis.

Statisticians showed long ago that the t distribution is the sampling distribution of the difference of
two means under the null hypothesis that the population means are equal, but no comparable results tell us
the sampling distribution if the samples contain censored data.  Moreover, for reasons discussed in [2,7], if
we ignore the censored data, we get biased sampling distributions.  Thus we cannot tell whether sample
results are unusual, nor can we test hypotheses, at least, not by conventional means.  The bootstrap
resampling technique provides a way to estimate the sampling distribution of any statistic, given only the
sample.  In particular, bootstrapping permits us to estimate the sampling distribution of unusual statistics
such as "the mean of all the sample values less than 5000," and, thus, the sampling distributions of
statistics from samples with censored data.
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Figure 1.  Sampling distributions and hypothesis testing.

The Bootstrap for a Censored One-sample Test of the Mean

We will illustrate the bootstrap method in the context of a one-sample test of the mean of a censored
sample.  More detailed discussions of the bootstrap (and related tests) can be found in [2,3,4,6].  In the
following example we want to test whether the mean number of nodes expanded by an algorithm is less
than 500.  The null hypothesis is H0:µ = 500 and we will reject H0  if the sample result is much lower

than would be expected by chance, given H0 .  Our sample is shown in Table 1, and our sample result is

the mean of the uncensored data, n<5000 = 412.375 (the subscript reminds us that we have the mean of the

data with values less than 5000).  Is this significantly lower than expected by chance under H0 ?  To find

out, we need to estimate the sampling distribution of n<5000 .  Recall that the sampling distribution is the

distribution of a statistic calculated from all possible samples of a fixed size drawn from a population.  We
want the distribution of n<5000  for all possible samples of ten items drawn from the population from which

we obtained our sample.  Unfortunately, we don't know anything about this population.   But Efron proved
that the best estimator of a population is a sample, leading to a remarkable procedure for constructing
sampling distributions.  Call the original sample S .  We will draw K  bootstrap samples R1... RK :

Procedure 1. Bootstrap Sampling for a One-sample Test

Repeat i = 1... K  times:
1. Draw a sample Ri  of size N  from S  by sampling with replacement as follows:

Repeat N  times: select a member of S  at random and add it to Ri

2. Calculate and record the value of n<5000 for Ri

Here are three bootstrap samples generated by this procedure:

1 2 3 4 5 6 7 8 9 10 n<5000

R1
610 601 610 483 483 610 287 5000 601 483 529.78

R2
5000 601 250 250 5000 545 601 545 400 5000 456.0

R3
250 287 400 400 123 545 601 250 545 545 394.6

After drawing a bootstrap sample Ri  from S  we calculate its n<5000  statistic.  For example, R1

contains nine values smaller than 5000 and their mean is 529.78, so n<5000 (R1) = 529.78.

You can see that sampling with replacement ensures that a datum in the original sample might be
selected several times for inclusion in a bootstrap sample; for example, 610 shows up three times in R1 ,
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but just once in S .  Similarly, items in S  might not be selected for inclusion in a bootstrap sample; for
example, 123 doesn't show up in R1 , and 5000 shows up just once instead of twice as in S .  Resampling
with replacement is justified in two rather different ways: First, if we resampled without replacement then
every bootstrap sample Ri  would be identical to S  and every value of n<5000  for Ri  would be identical to

the original sample result, n<5000  for S .  Clearly, this is no way to construct a sampling distribution of

n<5000 .  Second, resampling with replacement is tantamount to assuming that the population (which we do

not know) comprises the items in S , in the proportions that they appear in S , in essentially limitless
quantities.

To construct a sampling distribution for n<5000  we simply repeat Procedure 1 many times.  Figure 2

shows the sampling distribution of 1000 values of n<5000  calculated from bootstrap samples.  The mean of

this distribution is %boot = 412.75 and its standard deviation is &n = 60.1.
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Figure 2. The bootstrapped sampling distribution for n<5000 .

Now that we have a sampling distribution for n<5000 , it would appear to be simple to test our
hypotheses: H0 :%<5000 = 500,  H1:%<5000 < 500 . Our immediate inclination might be to compare the sample
result, n<5000 = 412.375, to the sampling distribution in Figure 2.  This is wrong.  Figure 2 is the

bootstrapped sampling distribution of n<5000 , not the sampling distribution of n<5000  under the null

hypothesis.  If Figure 2 is not the sampling distribution of n<5000  under H0 , then what is?  The question

can be answered only by assuming some relationship between the bootstrapped sampling distribution and
the null hypothesis sampling distribution.  For brevity, we will refer to these distributions as Sboot  and SHo,

respectively.  One common assumption is that SHo has the same shape but a different mean than Sboot .  In

this case, SHo is identical to the one in Figure 2 except it is shifted so its mean is 500 (because

H0:%<5000 = 500).  The mean of Sboot  is 412.75, so adding 500 " 412.75 = 87.25 to every value in Sboot

will shift it as desired.  This is called the shift method of attaining SHo.  It transpires that 86 values in SHo

are less than or equal to our sample result, n<5000 = 412.375, so the probability of attaining this result by

chance under H0  is .086.  Conventionally we adopt .05 as the probability required to reject the null

hypothesis, so in this case we fail to do so.  It is a simple matter to find a critical value for n<5000 , a value

sufficient to reject the null hypothesis.  All we must do is sort the values in SHo and find the 50th one,
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which happens to be 395.75.  In other words, if our sample result had been n<5000 ' 395.75 then we could

have rejected H0  with p '.05.

The Bootstrap for a Censored Two-sample Test of the Mean

Two-sample tests are common in experiments that compare performance; for example, we might test
whether one robot takes significantly longer to perform a task than another, and we might censor the data
for the trials in which one or the other robot became trapped in a cul-de-sac.  Sample data follow:

1 2 3 4 5 6 7 8 9 10
Robot A 300 290 600 5000 200 600 30 800 55 190
Robot B 400 280 5000 5000 300 820 120 5000 120 400

Table 2.  Hypothetical censored sample data for a comparison of two robots.

Trials 3 and 8 are singly-censored, which means that one or the other robot exceeded the time limit
(5000, again), and trial 4 is doubly-censored, that is, both robots exceeded the limit.

Tests of differences of means are commonly run two different ways.  We can find the mean times for
robots A and B, tA  and tB , and ask whether tA " tB is significantly different from zero, the value we
expect under the null hypothesis that the robots perform equally.  Or we can find the paired differences in
performance between robots A and B on trials 1, 2, ..., 10, and ask whether the mean of these differences is
significantly different from the value we expect under the null hypothesis.  (The test statistic in this case is

tAii=1
10( " tBi( ) 10.)  The first test is called a two-sample test and the second is a paired-sample test, and

they have different sampling distributions.  However, the sampling distribution for both tests is unknown if
the samples contain censored data.  We now present two bootstrap procedures for estimating the sampling
distribution of the difference of two means when the samples contain censored data, that is, a sampling
distribution for a two-sample test.  Later we will describe a paired-sample test (though not a test of means)
due to Etzioni and Etzioni.

For each procedure, let SA and SB  be the original samples of data from robots A and B, shown above.
Let NA and NB be the sizes of the samples, which need not be equal for the following procedures.  In
Procedure 2, we will draw K  bootstrap samples A1... AK :and B1... BK  as follows:

Procedure 2. Bootstrap Sampling for a Two-sample Test.

Repeat i = 1... K  times:
1. Draw a sample Ai  of size NA  from SA  by sampling with replacement as described earlier
2. Draw a sample Bi  of size NB  from SB by sampling with replacement

3. Calculate and record the value of ) i = tAi (<5000) " tBi (<5000), the difference of the means of the uncensored

data in Ai  and Bi .

In Procedure 3, we first combine SA  and SB into a single sample SA*B  and then draw K  bootstrap
samples A1... AK :and B1... BK  as follows:
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Procedure 3. Bootstrap Sampling with Randomization for a Two-sample Test.

Repeat i = 1... K  times:
1. Draw a sample Ai  of size NA  from SA*B  by sampling with replacement as described earlier

2. Draw a sample Bi  of size NB  from SA*B  by sampling with replacement

3. Calculate and record the value of ) i = tAi (<5000) " tBi (<5000), the difference of the means of the uncensored

data in Ai  and Bi .

The advantage of Procedure 3 is that the resulting distribution is the sampling distribution of the
differences of means under H0 , whereas the distribution yielded by Procedure 2 must be shifted as

described earlier to make it a sampling distribution under H0 .  Details of this distinction are found in [2]

but the basic intuition is that by sampling from SA*B in Procedure 3, we realize the implication of H0  that

a datum might as well have been produced by robot A as robot B.  Whichever procedure we use, we end
up with a sampling distribution to which we compare ) = tA(<5000) " tB(<5000) , the difference of the means of
the uncensored values in the original sample.  If the probability of ) = tA(<5000) " tB(<5000)  is less than .05 we

reject H0 .

The Sign Test of Etzioni and Etzioni

Before evaluating the bootstrap tests, we will describe a different approach to the problem of censored
data, due to Etzioni and Etzioni [5].  Theirs is a paired-sample test based on the sign test [1], so we will
call it the Etzioni Sign Test, or EST.   Briefly, if the samples for robots A and B contained no doubly-
censored data, we could ask which robot "won" each trial.  For example, on the first trial, robot A won
because it had the shortest execution time, whereas robot B won on the second trial.  Singly-censored data
present no problem because the winning robot is obviously the one with the uncensored (i.e., smaller)
execution time;  for example, robot A wins trial three.  Doubly-censored data, such as trial 4, is
problematic.  We cannot say which robot won.  Etzioni and Etzioni propose a conservative interpretation
of doubly-censored data:  they count it as evidence for the null hypothesis, H0 .  Imagine we are testing the

hypothesis that robot A is faster than robot B.  Then a "win" occurs when robot A completes a trial faster
than robot B (e.g., trials 1,3).  H0  is that robot A and robot B are equally fast, which is equivalent to

saying the expected number of wins is half the number of trials.  H0  will be rejected if the number of wins

is unusually high.  By counting each doubly-censored pair as a "loss," Etzioni and Etzioni provide the
following strong guarantee:  If we reject H0  given the censored samples, then we would also have rejected

H0  if the censored trials had been allowed to run to completion.

The test statistic for EST is the number of wins, with doubly-censored data counting as losses.  The
sampling distribution of this test statistic is not known, but it is easy to show that comparing the test
statistic to a binomial distribution provides the aforementioned guarantee.  Imagine there are no doubly-
censored data.  N   trials could therefore produce between zero and N  wins, and if H0  is true, the

expected number of wins is N / 2 because H0  says robots A and B are equally likely to win a trial.  The

binomial distribution gives the probability of m  wins on N  trials for m = 0... N , given the probability
of a win, which under H0  is .5.  Thus the binomial is the sampling distribution for the number of wins—

the probability distribution of all sample results.  The probability of the sample result in Table 2—eight
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wins in ten trials—given the null hypothesis that the robots perform equally, is .0547, marginally
improbable enough to reject H0 .

EST does not take account of the magnitudes of differences between the robots.  For example, it is
surely important that when robot A was faster, it was a lot faster, whereas robot B was only a little faster in
trial 2.  Etzioni and Etzioni propose another test that uses magnitude information, but we will not study it
here in part because it relies on some assumptions about population distributions, whereas the bootstrap
tests and EST do not.

Evaluating the Performance of the Bootstrap Tests and EST

The tests were evaluated by constructing power curves for each.  The power of a test is the probability
that it will reject H0  when H0  is false, so, ideally, power should be 1.0.  Practically, power depends on

many factors, so the power of one or more tests is usually plotted against one of these factors.  A test with
a power curve that rises rapidly to 1.0 (or close to it) is preferred to a test with a slowly-rising curve,
because the former test is more powerful over more of the range of a factor than the latter test.  (See [2] for
details on power curves.)  The procedures for constructing power curves are somewhat involved, so the
casual reader may wish to skip to the next section where the results are discussed.  The discussion that
follows assumes for the sake of brevity some knowledge of statistics.

Let +A and +B(k )  be two population distributions.  +A is a uniform distribution2 in the range

0...500, so its mean and standard deviation are µ A = 250 and &A = (500 " 0)2 / 12 = 144.3.  +B(k )

is also a uniform distribution in the range k&A...500 + k&A.  For example, Figure 3 shows +B(.5) as a line

shifted half a standard deviation with respect to +A.  Let T  be a censoring threshold; if a sample contains
a datum di > T , that datum will be censored.  Imagine for now that T > max[+B ], so no data are

censored.  In this case, we could construct power curves for EST in a conventional manner:

To get the H0  sampling distribution we let k = 0 , so +B(0) = +A .  The standard error of the H0

sampling distribution is &H0
= N / 4 .  To get sampling distributions for alternative hypotheses Hk ,

which correspond to +A and +B(k )  being increasingly "pulled apart," we simply increase k .  Under H0 ,

the probability of a "win" is .5;  for example, the probability that robot A will complete a task before robot
B is .5.  Under an alternative hypothesis Hk >0, Pr(Win, Hk ) >.5, but it is easy to calculate.3  Thus, the

sampling distribution of the alternative hypothesis Hk  will be binomial with parameters N  and

Pr(Win, Hk ) .  For example, Figure 4 shows one null and two alternative sampling distributions for two

cases:  +B(.5) ,Pr(Win, H.5 ) =.716 and +B(1.0) ,Pr(Win, H1.0 ) =.932 .  We choose µ A + 1.65&H0
 as a

critical value for H0 , giving ! ,.05 (because the H0  sampling distribution is approximately normal for

large N ).  In the left pane of Figure 4, µ A + 1.65&H0
 is N / 2 + 1.65 25 / 4 = 16.625.  The shaded area

2 We chose uniform distributions because they made it easy to construct power curves.  We do not believe our
results depend on the choice but we will look at other population distibutions, such as the normal, in future.
3 Pr(Win, H0.5 ) = 2a + (b + c)2 / 2 , where a,b and c are fractions of the uniform distribution in Figure 3.
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of the alternative hypothesis distribution to the left of the critical value is - , the probability of not
rejecting H0  when we should, and the unshaded area of the H.5  distribution to the right of the cutoff is

1" - , the power of the test.  Clearly, when +B(1.0)  is shifted one standard deviation to the right of +A

(i.e., with a range 144.3...644.3), the power of the test is 1.0 (shown in the second pane of Fig. 4).

0 500

72 572

a b c
+A

+B ( .5)

T

b c a

Figure 3.  Uniform distribution populations and the censoring threshold.

The only effect of the censoring threshold T  is to change the probability of a win for the null and
alternative hypotheses.  Under an alternative hypothesis +B(k )  is shifted above +A, so T  divides the

populations into three segments labelled a,b,c in Figure 3.  The probability of a win, that is, drawing a
pair of data dA < dB  from +A and +B(k ) , respectively, decreases as the censoring threshold decreases T .

Alternatively, the probability of a loss (which includes the probability of doubly-censored data) is

c b2 2( ) , which increases as T  decreases.

5 10 15 20 25

0.025
0.05
0.075
0.1

0.125
0.15
0.175

5 10 15 20 25

0.05

0.1

0.15

0.2

0.25

0.3H.5 H1
H0

H0

Pr(Win,.5) =.716 Pr(Win,1.0) =.932

µ A + 1.65&A

1" -

Figure 4.  Computing the power of EST (see text for explanation).

We can now describe how the power tests were conducted.  We assumed sample sizes of 25
throughout.

For EST:
• Loop over k = {.25, .5,  .75,  1.0,  2.0,  3.0}

;;;(i.e., shift +B(k ) increasingly right of  +A  )
• Loop over p = Pr(Win, Hk ) = {0,  .1,  ...  ,  1.0}

;;; (i.e., for each value of k , find a value of T  to give the desired value of Pr(Win, Hk )  )
• For a critical value c  that ensures ! ,.05, and a sample size N , the power of the test is the area
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of the Hk  distribution to the right of the critical value:

i
N( )

i=c

N

( pi (1" p)n" i

For the two-sample bootstrap test:
• Loop over k = {.25, .5,  .75,  1.0,  2.0,  3.0}

;;;(i.e., shift +B(k ) increasingly right of  +A  )
• Loop over p = Pr(Win, Hk ) = {0,  .1,  ...  ,  1.0}

;;; (i.e., for each value of k , find a value of T  to give the desired value of Pr(Win, Hk )  )
• Loop over x = {1,2,...,10}:
;;; (This is necessary to guard against the possibility that the results are biased by the sample from which

we bootstrap)
• Draw a sample Ax  of size N  from +A

• Draw a sample Bx  of size N  from +B(k )

• Derive a bootstrap sampling distribution for tA(<T ) " tB(<T ) , the difference of the means of the
values in Ax  and Bx   smaller than T , following Procedure 2, above.  This is the sampling
distribution for Hk :µ A " µ B = "k&A .

• Derive a bootstrap sampling distribution for H0 :µ A " µ B = 0  by Procedure 3 or by the shift
method (both described above)

• Determine c , the critical value that yields ! =.05 . Determine Px  the area under the sampling
distribution for Hk :µ A " µ B = "k&A  to the right of c .  This is the power of the bootstrap test.

• Average the values of Px  for each value of p  and k .

Results

Pairs of sets of power curves are shown in Figure 5.  Each pair corresponds to one setting of k , which
is the number of standard deviations that +B(k )  is shifted right of +A (see Fig. 3).  The first graph in the

pair represents the effect on power of increasing Pr(Win, Hk ) , and the second represents the setting of T
that was used to produce the corresponding setting of Pr(Win, Hk ) .  Each graph contains three power

curves, one for the Etzioni sign test (EST) and two for the two-sample bootstrap test.  The bootstrap curves
correspond to the two methods for deriving the bootstrap sampling distribution for H0:µ A " µ B = 0 ,

described above.  For the bootstrap tests, the censoring threshold was constrained to be 10% more than the
lower bound of +B(k ) , to avoid getting bootstrap samples that contained no uncensored data.  The missing

points for the bootstrap tests are due to this constraint:  no legal value of the censoring threshold would
produce the desired Pr(Win, Hk ) .

Overall, the bootstrap test is more powerful than EST.  This is probably because the bootstrap test is
based on means (i.e., magnitude information) whereas EST is based on categorical data (i.e, whether a pair
of data is a win or a loss.)  Increasing k  increases the power of all the tests, which is not surprising
because increasing k  corresponds to shifting +B(k )  increasingly above +A.  Increasing the censoring

threshold (T ) increases the power of EST, but increasing T  does not increase the power of the bootstrap
tests monotonically.  In fact, for most values of k , the power of the bootstrap tests drops initially and then
rises as T  increases.  This is because T  is the upper limit of the range of uncensored data, so as T
decreases, so does the variance of the samples and of the bootstrap sampling distributions.  (One can see in
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Figure 4 that, in general, power increases as the variance of the sampling distributions decreases.)
Notably, the power of EST is often zero.  This happens when the distance between +B(k )  and +A,

combined with the censoring threshold, yields Pr(Win, Hk ) <.5, which means that the alternative

hypothesis sampling distribution is actually to the left of the null hypothesis distribution and power is
necessarily zero.  In practical terms, if the censoring threshold is set low enough to ensure that half the
pairs in a sample are doubly-censored, then the power of EST will be zero because EST treats doubly-
censored pairs as losses.  The bootstrap tests, in contrast, compare the means of the uncensored data, so
maintain some power even when most of the data are censored.  However, the bootstrap tests do not make
EST's strong guarantee:  if EST rejects H0  given a sample that includes doubly-censored data, it would

also have rejected H0  if the doubly-censored trials had been allowed to run to completion.  This guarantee

accounts for the loss of power when the number of doubly-censored data is large.

Practically, EST is conservative but not as powerful as the bootstrap tests.  If you want to be absolutely
sure that censoring does not bias your results, then you should use EST but set the censoring threshold
high enough to get a relatively small number of doubly-censored pairs.  On the other hand, although the
bootstrap tests do not offer EST's strong guarantee, they are more powerful over a wide range of censoring
thresholds.  Whereas EST ensures that you won't reject H0  when you should not, the bootstrap tests are

more likely than EST to reject H0  when you should.  A small additional advantage is that the bootstrap

tests do not require your data to be paired.  EST requires, for example, that in a trial robot A and robot B
each solve the same problem, or that they solve two problems similar enough to make the question, "which
one won this trial?" meaningful.  Because the bootstrap tests take means over trials, the pairing of
problems within trials is not required.  Finally, both EST and the bootstrap tests are distribution-free—they
make no assumptions about the distributions from which samples are drawn—unlike conventional methods
such as the t test.4

In conclusion, experimental comparisons of AI systems and algorithms are becoming more common,
so the problem of censored data—the bias it introduces into experimental results—is becoming more
pressing.  In many sciences, the problem is relatively minor because only small fractions of samples tend
to be censored.  But an AI researcher might inadvertently set a resource bound that censors half the data in
a sample, which would certainly bias the results.  Even if no sample data are censored, however, EST and
the bootstrap tests might be preferred to conventional tests because they make no assumptions and they are
just as easy to use.

4We assumed uniform population distributions only for the purpose of constructing power curves.  The tests do not
themselves rely on any assumptions about underlying populations.
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Figure 5.  Power curves for five pairs of uniform distribution populations separated by
.25, .5, .75, 1.0, and 2.0 standard deviations.
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