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Abstract

This paper describes how the notion of a reflective architecture can serve as a central
principle for building complex and flexible real-time systems, contributing to making them
more dependable. By identifying reflective information, exposing it to application code,
and retaining it at run time, a system is capable of providing predictable performance with
respect to timing constraints, of reacting in a flexible manner to changing dynamics in the
environment including faults, to be more robust to violations of initial assumptions, to bet-
ter evolve over time, and even for better monitoring, debugging, and understanding of the
system. Advantages of this approach are given and details on the specific implementation
of a reflective architecture are provided. Several open questions are also presented.
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1 Introduction

Building real-time systems for critical applications and showing that they meet functional,
fault, and timing requirements are complex tasks. At the heart of this complexity there exist
several opposing factors. These include:

e the desire for predictability versus the need for flexibility to handle non-deterministic
and complex environments, failures, and system evolution,

e the need for efficient performance and low cost versus understandability,

e the need for abstraction to handle complexity versus the need to include implementation
details in order to assess timing properties, and

e the need for autonomy (to better deal with faults and scaling) versus the need for coop-
eration (to achieve application semantics).

*This work has been supported, in part, by NSF under grants IRI 9208920 and CDA 8922572, by ONR under
grant N00014-92-J-1048, and by CNR-IEI under the PDCS project.



It is also a common understanding that we want integrated system-wide solutions so
that design, implementation, testing, monitoring, dependability, and validation (both func-
tional and timing) are all addressed. This paper argues that one good approach is a reflective
system architecture that exposes the correct meta-level information. Exactly what this in-
formation should be and how it should be supported will be the subject of research for many
years. However, in this paper we provide details on our current view of this information and
its implementation structures. Once a system has this information, it can be dynamically
altered as system conditions change (increasing the coverage of the system dynamically), or
as the system evolves over time, or is ported to another platform. In particular, the system
is built with the idea that it cannot know the environment completely, but must nevertheless
be dependable. With a reflective architecture the necessary flexibility for complex real-time
systems can be attained. Further, we argue that this powerful type of flexibility contributes to
many other things that are required including understandability, analyzability (and therefore
predictability), high performance, monitoring, debugging, and dependability'. Finally, we note
that much of what is discussed here has been implemented [18] and is now being used on a
robotic automated assembly application in complicated environments.

In Section 2 we briefly discuss the notion of reflective computing and present the state of
the art. In Section 3 we outline a methodology for complex real-time systems where reflection
is a central principle. In Section 4 we identify ingredients of such a reflective architecture and
provide details on its implementation. In Section 5 we summarize our contributions, the status
of the implementation, and identify required future work.

2 State of the Art — Reflection

Reflection is defined as the process of reasoning about and acting upon the system itself.
Part of this action may be altering the systems own structure from within. Normally, a
computation acts to solve a problem such as sorting a file or filtering important signals out of
radar returns. If, in addition, there is computation about the sorting process or filtering process
itself, then we have a meta-level structure and reflective possibilities. Consequently, if using a
reflective architecture, we can consider a system to have a computational part and a reflective
part. The reflective part is a self-representation of the system, exposing the system state and
semantics of the application. Such information can then be monitored, used in decision making
during system operation, and easily changed thereby supporting many flexibility features.
Much research is still required to identify what meta-level information is important including
timing and dependability information, how to represent it, and determining the performance
implications including predictability of the meta-level.

Reflection is not new and many systems have some reflective information in them. How-
ever, identifying reflection as a key architectural principle and exploiting it is less common.
Reflection has appeared in Al systems, e.g., within the context of rule based and logic based
languages [10, 17]. More recently it is being used in object-oriented languages and object-
oriented databases in order to increase their flexibility [5, 11]. Combining object oriented
programming with reflection seems to be very important since object oriented programming

In this paper we do not consider all aspects of dependability; we address reliability, availability, and safety,
but not security.



supports abstraction and good design and adding reflection supplies flexibility. Reflection also
has been touted as valuable to distributed systems for supporting transparency and flexibility
[22]. While reflection is not new, using reflection in real-time systems is new. In fact, the
only work we are aware of is our own work [19] that reported on a preliminary step in de-
veloping a reflective architecture for real-time systems. This paper extends that work with a
more complete identification of reflective information as a central principle, demonstrating its
implementation support in a functioning system, and extending it for adaptive fault tolerance.

One problem is that reflection is a term used somewhat differently in three different
areas: Al, object-oriented programming, and object-oriented databases. The differences emerge
from two issues: one, it is a matter of degree as to what is considered reflective and what
is considered computational; not always easy to identify, and two, some definitions require
reflection to be able to generate code at run time similar to how LISP has a duality between
code and data. In this paper we identify what we consider reflective and computational for
complex, dependable, real-time systems, and prohibit newly generated code because any such
dynamic code generation would be difficult to dynamically analyze with respect to timing and
dependability properties.

3 Methodology

While most of this paper deals with reflection, here we briefly present an overview of a design
methodology for complex real-time systems. We do this, in part, to emphasize that reflection
by itself is not sufficient to address the problems raised in the Introduction, and, in part, to
place what it does provide in perspective. Reflection can be used independently of the overall
design paradigm, e.g., it can be used with an object oriented design and implementation or
with a more classical procedure oriented design and implementation. Because of the obvious
advantages of an object oriented design at the functional level, we briefly discuss a vision of how
a complex real-time system could be developed under this approach. This would contribute
to dependability. However, significant performance questions still exist for object oriented
real-time systems. In particular, concurrency is not addressed well enough yet, overheads for
support of objects are still too high, and predictability of these run time structures has not been
established nor even seriously considered. Because of these reasons, in the actual prototype
system we have developed [12, 13, 18], we currently employ a procedure based design and
programming paradigm which is extended to integrate with reflection.

A wvision for the design of complex real-time systems might begin with using a concurrent
object oriented approach subject to the integrating theme that the system is reflective. The
object oriented aspects provides modularity, abstraction, information hiding, library modules
with different properties, etc. The hierarchies created within object classes can contain the
reflective information and proceed from more abstract levels down to specific implementations
where the implementations may have varying runtime costs and different fault semantics as
a function of the actual compliers, operating systems, and hardware used. In this way the
objects can encapsulate both the local timing and fault tolerance requirements. We believe
that the object oriented paradigm may provide the structure necessary to constrain builders of
critical applications, even when we allow a high degree of adaptability (supported by reflection).
See the Conclusions for a brief statement about open questions in this regard. System-wide



composition of objects to meet system-wide timing and fault requirements is still required and
can be facilitated by the reflective architecture as shown in Section 4.1. Concurrent objects
can be used to model the large numbers of concurrent activities found in complex real-time
systems. In addition, properties of objects which should be exposed to run time monitoring
and modification need to be specified.

Since the reflective paradigm should be used across all levels of the system, what infor-
mation is reflective will be somewhat application dependent. However, most complex real-time
systems will require features found in operating systems, so we can apply this architecture to
the operating system in a more generic manner than for higher level application code; we do
this in the remainder of this paper.

4 A Reflective Architecture

Can a flexible real-time system architecture be significantly different than a general timesharing
system architecture. It can, and, it must be, to handle the added complexity of time constraints,
flexible operation, and dependability. As the systems get large we can no longer hand craft
solutions, but require architectures that support algorithmic analysis along functional, time,
and dependability dimensions. This analysis can and should be done for a dynamic system,
as a completely static approach relies too much on a prior: identification of fault and load
hypotheses which are invariably wrong in complex, critical applications (See Section 4.1).

One problem we have in real-time systems is that the time dimension reaches across all
levels of abstraction. Reflection has an advantage here in that at design time, at programming
time, and at run time, one can reach across those layers. For example, if the programmer
knows that the system retains the task importance, worst case execution time as a function of
a system state, and fault semantics for use at run time, then that user may program policies
that make adaptive use of this information including exact execution time costs. This allows
for more efficient use of resources, all information can be dynamically altered, and new policies
added more easily, than a priori choosing one policy and mapping to a priority where all
information on how that priority was achieved is lost!

Building a real-time system based on a reflective architecture means that first we must
identify reflective information regarding the system. This information includes:

e importance of the task, group of tasks, and how tasks’ importance relates to each other
and to system modes,

e time requirements (not just simple deadlines and periods and not just priorities),

e time profiles such as the worst case execution times or formulas depicting the execution
time of the module,

e resource needs
e precedence constraints
e communication requirements

e objectives or goals of the system



e consistency and integrity constraints

e policies to guide system-wide scheduling (these policies contribute to availability and
safety; shown in section 4.1)

e fault tolerance requirements and policies to guide adaptive fault tolerance (these policies
contribute to reliability; shown in section 4.2)

e policies to guide tradeoff analyses

e performance monitoring information

Implementation structures in the operating system then retain this information and
primitives allow it to be dynamically changed. We have done this in the Spring kernel [18] by
defining sophisticated process control blocks where much of the above information is kept, and
other data structures that keep more system-wide information such as properties of groups of
processes. Therefore, when programming with real-time languages, in our case Spring-C and a
System Description Language (SDL) [12], we identify reflective information, provide reflective
information and write code that modifies it. Tools can use this information for analysis and
design knowing that such information is also available at run time. Below we provide more
specific examples of the reflective architecture for scheduling and fault tolerance.

4.1 Real-Time Scheduling

Most real-time kernels provide a fixed priority scheduling mechanism. This works when tasks’
priorities are fixed. However, in general, this mechanism is inadequate because many systems
require dynamic priorities and mapping a dynamic scheme onto a fixed priority mechanism can
be very inefficient and significant information can be lost in the process. In other words the
run time system has no information as to how the fixed priority was calculated, e.g., it might
have been some weighted formula that combined importance and deadline and resource needs.

Fixed priority scheduling is also incomplete because it deals only with the CPU resource.
Since we are interested in when a task completes we must consider all the resources that a
task requires. An integrated view of resource management should be part of the reflective
architecture interface including the ability to specifically identify the needed resources and
to reserve them for the (future) time when they will be needed. So, reservations of sets of
resources should be part of the architecture.

Fixed priority scheduling has missing functionality because it substitutes a single priority
number for possibly a set of issues such as the semantic value of completing the task, the timing
constraint of the task, and fault properties of the task. Further, a fixed priority ignores the
fact that semantic information is often dynamic, i.e., a function of the state of the system.

When using priority based scheduling, the analysis either assumes a static system and
shows that logically the system works (but assumption coverages are often unknown and if
something unexpected occurs, then the system is uncategorized), or assumes a completely
dynamic approach with average case performance; this is unacceptable for critical applications.

In order to deal with predictability versus flexibility, we propose the need for multi-level,
multi-dimensional scheduling algorithms that explicitly categorize the performance including



under system degradation or unexpected events. It is multi-level in the sense that we categorize
the tasks into critical (missing the deadline causes loss of life or total system failure), essential
(these tasks have hard deadlines and no value is accrued if the deadline is missed, but the
tasks are not critical), soft real-time (task values drop after the deadline but not to zero or
some negative number), and non-real-time (these tasks have no deadlines). Each category has
its own performance metric. Critical tasks must be shown to meet their deadlines and fault
requirements in the worst case based on the most intelligent assessment of environmental con-
ditions that we can make at deployment time, but in addition we must be able to dynamically
borrow processing power and resources from the other classes of work so as to understand how
much additional load and faults can be handled. This additional work could be categorized
as in the worst case, e.g., where all tasks run to worst case times, and as average case where
tasks execute to average execution times and where it is likely that even greater unexpected
loads can be handled. Of course, no one wants to run the system in these difficult loads, but,
if such loads exist the approach allows for categorization of what happens in excess load and
likelihood of being able to continue. This is in contrast to some static solutions where any
excess critical load is guaranteed to cause failure! It is also true that in many static designs
all tasks are equated to critical tasks thereby increasing the cost of the system or even making
it infeasible due to the combinatorial explosion of schedules that have to be accounted for
in large, complex, dynamic, environments. We have developed and analyzed an algorithm for
classes of tasks and where time can be borrowed from non critical tasks in a categorized manner
[4]. This permits a degree of safety because critical tasks are guaranteed, robustness because
unexpected events (of a certain class, i.e., excess load) are handled in a categorized manner,
and availability because the system gracefully degrades rather than failing catastrophically.
Details of the algorithm and its analysis are beyond the scope of this paper.

Essential tasks, soft real-time tasks, and non-real-time tasks each have a probabilistic
performance metric, but these can be function of load. For example, in the absence of failures
and overloads it may be that 100% of essential tasks also make their deadline, but this degrades
as unexpected loads occur. Interesting approaches have been developed, including [16], where
dynamic arrivals are accounted for when doing static allocation of critical periodic tasks. Other
possibilities include bounding the performance such as discussed in [6, 8].

The algorithms are multi-dimensional [15] in that they must consider all resources needed
by a task, not just the cpu, and they must consider precedence constraints and communication
requirements, not just independent tasks. Providing algorithm support for this sophisticated
level of scheduling improves productivity and reduces errors compared to having a very primi-
tive priority mechanism and requiring the designer to map tasks to priorities accounting both
for worst cases blocking times over resources and interrupts. While the details of this type
of algorithm are again beyond the scope of this paper, what is important about it, is that it
dynamically uses reflective information about the tasks requirements (importance, deadline,
precedence constraints, resource requirements, fault semantics, etc.).

We also use scheduling in planning mode as opposed to myopic scheduling?. When tasks
arrive, the planning based scheduling algorithm uses the reflective information about active

*Myopic scheduling refers to those algorithms which only choose what the next task to execute should be.
At run time these algorithms do not have any concept of total load, nor whether any or all of the tasks are
likely to miss their deadlines.



tasks and creates a full schedule for the active tasks and predicts if one or more deadlines
will be missed. If deadlines would be missed, error handling can occur before the deadline is
missed, often simplifying error recovery. Further, because reflective information is available,
the decision as to how to handle the predicted timing failure can be made more intelligently and
as a function of the current state of the system as opposed to some a priori chosen policy. The
planning based scheduling with its inherent advantages is implemented in the Spring kernel
[18, 15] and a scheduling chip has been designed to reduce its run time overhead [3].

4.2 Fault Tolerance

Many real-time systems require adaptive fault tolerance [7] in order to operate in complex,
highly variable environments, to keep costs low (rather than a brute force static approach that
replicates everything regardless of environmental conditions), and so that redundancy and con-
trol can be tailored to the individual applications functions as it is required by those individual
functions. The reflective architecture is a suitable structure for adaptive fault tolerance. We
now briefly discuss some of the details of what constitutes our current view of a reflective
architecture for adaptive fault tolerance.

In particular, we have developed a framework and notation for software implemented,
adaptive fault tolerance in a real-time context, called FERT (Fault Tolerant Entity for Real-
Time) [2], which adheres to the reflective architecture approach. This work extends previous
fault tolerance work [1, 14, 9] in two main ways: by including in the notation features that
explicitly address real-time constraints, and by a flexible and adaptable control strategy for
managing redundancy. The reflective aspects of FERT can be divided into two parts: the
reflective information itself and the overall structure.

Information regarding timing constraints, importance of tasks (specified as values and
penalties), levels and types of redundancy, and adaptive control of redundancy are all part
of the reflective information. All this information is visible at design, implementation, and
runtime, allowing it to be dynamically updated and used by on-line policies. For design time,
the generic design notation can specify information such as whether n-copies and a voter,
or primary-backups, or imprecise computations are required, and to notify the scheduling
mechanisms (both off-line and on-line algorithms) of relative importance of tasks, their timing
requirements and their worst case and average case use of resources. This specification is
part of the reflective architecture which links the design to both off-line analysis and on-line
scheduling. Additionally, a FERT has its own structure which is exposed to all levels. The
structure consists of (1) ports through which all inputs and outputs pass, (2) application
modules which implement the functionality and voting or adjudication of the FERT, if needed,
and (3) a control which specifies how application modules interact with each other and with
the runtime system. The control part is meant to specify adaptive strategies that take into
account available resources, deadlines, importance, and observed faults.

The control part uses four generic primitives which we believe should be visible in a
reflective architecture supporting dependable computing:

e possible: asks whether a collection of tasks can be feasibly scheduled; multiple possible
requests can be issued in parallel; this allows dynamic analyzability with respect to
meeting timing constraints;



e exec: identifies a list of tasks that must be executed subject to various constraints;
typically used by the control when finally deciding what should execute given the results
of the possible queries

e unused: identifies resources which were planned to be used but no longer required, e.g.,
because the initial version of the task completed successfully and the backups are no
longer required; improves performance of the system

e output: finally commit the produced results

In summary, the reflective architecture for supporting adaptive fault tolerance permits
the designer to specify time, importance, redundancy and control information knowing that the
run time structure will retain this information, so that the adaptive control policies implementor
can use and modify such information. In particular, the interaction with the dynamic scheduler
permits more flexibility while preserving timing related predictability (defined in the sense given
in Section 4.1). Since the intent of this section is to focus on reflective architectures for fault
tolerance, we are brief and don’t discuss many other issues related to fault tolerance. Interested
readers should see [2].

4.3 Summary of Reflective Architecture

Current real-time systems platforms present inadequate, incomplete, and missing functionality
in their architectures including at the interface to scheduling and for fault tolerance. As a result
of these poor interfaces, critical real-time systems are difficult to design, maintain, analyze,
and understand. The systems tend to be inflexible and productivity is low. We need to raise
the level of functionality that the runtime platform provides to better provide portability,
productivity, and lower costs. The reflective architecture has potential in these areas.
Further, in order to support dependable real-time systems in complex and unfriendly
environments, the current goals, policies and state of the system must be available for dynamic
access and modification. However, the dynamics must be carefully controlled. Establishing
designs and solutions that engineer good tradeoffs among the opposing factors listed in the
Introduction will be difficult and the subject of research for many years. However, the reflective
architecture has many nice properties that provide a structure for engineering those tradeoffs.

5 Conclusions

In this paper we present a view of how complex real-time systems for critical applications
might be built based on a reflective architecture. We identify specific reflective information
and architectural designs for both real-time and fault tolerance requirements. The reflective
architecture enhances certain aspects of dependability by (i) addressing time constraints at
all levels of the system so that more accurate timing analysis can be done even early in the
design, (ii) facilitates the use of scheduling algorithms that are robust to violations in the
initial assumptions, (iii) supports planning based scheduling that allows detection of timing
errors early and application of state and time dependent recovery strategies, and (iv) supports
adaptive fault tolerance so that there is flexible management of redundancy subject to time
constraints.



While final verification that this approach will succeed in practice remains to be demon-
strated (i.e., it has not been used on real safety critical applications), we have demonstrated
many aspects of it in many ways. For example, a system description language (SDL) has been
designed and implemented [12] along with extensions to the programming language C, called
Spring-C. These languages provide specification of and access to reflective information. A
compiler [13] has been implemented that accumulate this information and make it part of the
runtime structures of the Spring kernel [18]. The kernel contains the planning based schedul-
ing algorithms referred to in section 4.1 [15], and to lower the overhead of on-line planning, a
hardware scheduling chip has been designed and is currently in production [3]. Many aspects
of the algorithms and implementation details have been studied and shown to be valuable both
via simulation [4, 15] and in an actual distributed testbed system composed of 3 multiprocessor
nodes (15 processors) [18]. The adaptive fault tolerance aspects of the reflective architecture
have not been implemented, and are still in the design stage [2].

In systems where flexibility and adaptability are supported, it is usually more difficult
to understand and control. Without good constraints and guidelines a designer could program
haphazardly making it almost impossible to analyze. Future work includes developing good
engineering tradeoffs between what is necessary for adaptability, but what is necessary for
analyzability. It is also necessary to embed the approach we discussed here in an overall design
methodology, such as object oriented programming, etc.
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