Visualization Tools for
Real-time Search Algorithms

Yoshitaka Kuwata!l & Paul R. Cohen

Computer Science Technical Report 93-57

Abstract

Search methods are common mechanisms in problem solving. In many Al applications,
they are used with heuristic functions to prune the search space and improve performance. In
last three decades, much effort has been directed toward research on such heuristic functions
and search methods by AI community. As it is very hard to build theoretical models for heuristic
functions to predict their behavior, we can often only check their performance experimentally.

In practical applications, it is important to understand the search space and behavior of
heuristic functions, otherwise, we cannot figure out what's going on in actual applications and
cannot control them. These issues are critical, especially in the field of real-time problem
solving, in which applications have time constraints and are required to finish processing within
the given time interval.

In this report, visualization methods are introduced as tools to understand the search
spaces and behavior of heuristic functions. As examples of the usefulness of visualization
methods, A* and IDA* algorithms are represented in various forms. They can be used to debug
practical applications that use heuristic functions.

1 NTT Data Communications Systems, Development Section

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

1. Why Visualizations are Important in Al

Looking back on the history of science, observation tools often played a very
important role in scientific discovery. In the ages before the invention of the telescope,
for example, we could not observe planets in detail. Telescopes made it possible to
measure accurate positions of the planets, and that made it possible to find Kepler's
law, Newton's laws and so forth. The same story is told in other areas of science. The
microscope, X-ray, spectrum analyzer and other observation tools all contributed to the
progress of science. In other words, the history of science is also the history of the
engineering of observation tools.

The story is the same in computer science. Today, computers are used to
simulate a variety of problems in computer science; for example, computer simulations
of the execution queue of an operating system. Queuing theory provides some guidance
but the optimal queue length is often determined experimentally with computer
simulations. In this example, computers are used as tools to study theories in computer
science and they are also the target of study in computer science. When we develop
theories of computer science, we also need to develop observation tools for them. Again,
we cannot develop theories without observing phenomena.

In computer science, especially in artificial intelligence, the development of
observation tools seems not to have been very focused. This paper describes a collection
of visualization tools for search algorithms, because search algorithms are very common.
To apply search mechanisms for problem solving, the problem space must be defined as
a set of states, including an initial state and goal states, and a set of operators to move
from one state to the other states. A solution corresponds to a series of operations
moving from the initial state to a goal state.

We can analyze search algorithms theoretically or empirically. Theoretical
analyses are sometimes better than experimental ones, because we don't need to collect
data, and because the results are often more general. However, we usually need to rely
on heuristic functions to solve big and complex problems in realistic time. Heuristic
functions make analysis harder as they often don't have theoretical underpinning. In
the case of chess, for example, thousands of suggestions exist in the books, but they
don't have theoretical explanations. Instead, they came from humans' experiences and
inspirations. In such cases, we need to rely on experimental analysis of the heuristics.

By applying visualization tcols to search algorithms, we can observe phenomena
caused by heuristic functions. These tools are also useful for debugging, verification and
validation.

Search spaces are described in section 2 of this paper. Conventional techniques
such as search tree representations and depth-number of node representations, and
their advantages and disadvantages as visualizations are discussed in section 3. In
section 4, visualizations of heuristic function are described with examples from the

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Eight Puzzle. Time series and frequency analysis of search algorithms are discussed
with examples in section 5.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

2. Objects to Visualize in Search

2.1 Search Space

The most important thing in problem solving by search is to understand search
spaces themselves. They vary from problem to problem. For example, backgammon has

10% states in its search space and chess has a much bigger state space. The structure
of search spaces is also completely different in various problems. In chess, large
numbers of actions are possible in the first stage of the game but actions are limited in
the endgame. On the other hand, in shogi, which is a two-player game similar to chess
that allows reuse of dead pieces, the movements in the last stage aren't limited as in

chess.2 Therefore, the search spaces for the two games would be different, even though
these games look similar.

The simplest way to represent a search space is to count the number of states in
it. For example, we can compare two problems A and B, which have ten million states
and one million states, respectively. We expect to take 10 times longer to solve problem
A than to solve problem B. This is because we assumed problem A and B are equally
difficult; i.e., they have the same search space structure. But it is possible to define a
problem which has a bigger search space but is simpler to solve. Thus simple search
state count alone is not sufficient to characterize a search problem.

Which problem is bigger ?

Figure 2.1.1 Two Problems The number of possible states in problem A is much smaller
than in problem B. It takes more than 100 steps to reach the goal in problem A, but only 3
steps in problem B on average.

2.2 Shape of search space (Branching Factor and Depth)

Assuming we can represent problem spaces as search trees, the average
branching factor and depth of search tree are useful characterizations. The average
branching factor is the average number of successor states following each state. For

2 Although possible actions in the endgame are fewer than in the first stage, shogi has more possible
endgame actions than chess.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

example, in the Eight Puzzle, the number of successor nodes3 is either one, two, three or
four. When we solve the puzzle allowing cyclic actions4, the average branching factor is
about 2.6. On the other hand, it is 2.3 without cyclic actions. These numbers were
taken from actual execution traces of searches that have different successor functions.
It is often very difficult to calculate the theoretical branching factor. Thus experimental
values for branching factorS are often used. In general, the branching factor depends
upon the successor functions® in the search method.

The depth of a search tree represents the length of a sequence of operations
required to reach the terminal nodes. When we assume a search tree is completely
balanced and has branching factor b and depth d, the number of nodes at level i is given

by b’ , therefore the total number of nodes in the tree n is given by the following
equation:

n=1+b+b? +b*+ ... +b°

d (2.2.1)
=3b
i=0

If we assume a tree has different branching factor bi at level i, equation (2.2.1)7
would be the following:

n=1+b1+b1-b2+b1-b2-bz+ -+ +bi-bz-ba---bd
g i
=1+ X 11b

i=1j=1

(2.2.2)

Equations (2.2.1) and (2.2.2) can be applied to a fully balanced tree only when
theoretical branching factors and search depth are known. However, it is possible to
determine the effective branching factor at level i (bi) experimentally by actually
searching. When we count the number of nodes at level i as ni and at level i+1 as ni +1,
the average effective branching factor at level : is defined by the following equation:

bi = ni+1 (2.2.3)
ni

The change in effective branching factor shows the change of the effective search
space which is defined as a result of the search space and of the heuristic function used
to prune nodes. For example, we would observe large b at shallow levels but small 5in

3 Successor nodes in a search tree represent possible successive states.

4 Cyclic actions are defined to generate the same states that appeared previously. For example, moving one
piece back and forth many times corresponds to a cyclic action. We know such actions would not help in
solving the puzzle.

S We refer to experimental branching factor as the "effective branching factor" in the rest of this paper.
6 Successor functions are functions that return successor nodes.
7 This equation still assumes the tree is balanced but has different branching factor at each level.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

deep levels in the search of games like chess and shogi. In such games, there are a huge
number of possible actions in the beginning stages but fewer at the end. Thus the
expected branching factor in search at each level will vary.

Note also that equation (2.2.3) gives only the average branching factor at a
certain level and dees not tell us whether the search tree is balanced. The height of
search trees is not necessarily the same at each branch in actual search, as one branch
can reach a dead end before another. In such cases, the number of terminal nodes at
level i will affect the calculation of branching factor at that level. Because terminal
nodes have no successor nodes, their branching factor is 0, which decreases the average
branching factor. When we are interested only in the nodes that have at least one
successor node, we should exclude terminal nodes from our calculations. One example
of the effect of terminal nodes on the average branching factor is shown as figure 2.1.2.

depth1

depth2 | I |
depth3

Figure 2.1.2 An example of an Unbalanced Tree In this tree, there is one node at
each depth which has 8 successor nodes while all others are terminal nodes (branching
factor = 0). The average branching factor at depth 2 and depth 3 is 1. Nodes which have 8
successor nodes contribute to increase the average branching factor.

This effect is also observed when we use a heuristic function to prune branches
from a search tree. The pruned nodes can be regarded as a terminal node, therefore, the
effective branching factors at each depth becomes smaller than the values given by the
successor function. This effect is also observed when we are forced to stop search at a
certain level. In this case, the observed branching factor at the lowest level would be
zero.

2.3 Pruning and Heuristics

When it is known that some parts of the search space are not worth searching,
the cost of search can be saved by excluding those areas from the solution space. For
example, in the search algorithms used to solve the Eight Puzzle, we don't need to
consider the previous state as a successor state, because it would cause meaningless

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

iterative actions. We know such actions would not help us solve the puzzle, therefore,
we can prune them.

It is common also to use heuristics to choose the best successor state earlier than
less worthy successors. If the problem is to find one acceptable solution, and not to
search all of the state space, choosing the best action first will help us find the solution
faster. Heuristics are used for two purposes:

1. to choose the best successor state
2. to omit subtrees where there is no need to search (pruning)

Visualizations must be capable of representing both of these purposes. For
example, we can use branching factor analysis directly to know the effect of pruning. As
the result of pruning, the average branching factor becomes smaller than the expected
value. On the other hand, we can indirectly observe the quality of the path the heuristic
function chooses from the sequence of heuristic values the function returns. In the case

of h functions in A* search, for example, if the function is chooses a good path to the
goal, the h value is expected to decrease.

A good visualization would represent these two purposes directly and separately.

2.4 Characteristics of search algorithms

As the goal of visualizations for search algorithms is to understand the
algorithms and to predict their behaviors, visualization tools must have the ability to ’
represent how search algorithms are working.

For example, depth-first search8 and breadth-first search® behave
differently. The former searches down to the deepest place first while the latter fully
explores the shallowest level of the search tree first. We can decompose the
characteristics of other search algorithms into depth-first components (deeper first) and
breadth-first components (broader first). Best-first searchl0 is a general strategy to
search the best possible successor node first. If the evaluation function of a best-first
search relies heavily on the cost of the path to reach the node, the search will be similar
to breadth-first search. By contrast, if the evaluation function emphasizes the
reachability of goals, the search would be similar to depth-first search. The
characteristics of best-first search depend on the evaluation function. In general, in
best-first search, we need to balance various cost factors in the evaluation function in a
task-specific manner.

Evaluation functions typically must be carefully tuned by experiment.
Decomposing search behavior into depth-first and breadth-first components is one way

8 Pseudo-code of depth-first search is shown in Appendix A.1.
9 Pseudo-code of breadth-first search is shown in Appendix A.1.
10 pseudo-code of best-first search is shown in Appendix A.1.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

to characterize and understand search algorithms. In this paper, various visualization
techniques are shown to accomplish this decomposition.

There are interactions between search algorithms and search spaces. Evaluation
functions that are carefully tuned to one particular problem will not always work well
for slightly different problems. For example, the right-hand method11, or left hand
method, are easy ways to solve simple maze problems. They are basically a depth-first
search. Figure 2.1.3 is a simple example of two maze problems, which illustrates an
interaction effect between search algorithms and search spaces. In case (A), the left-
hand method works better than the right-hand method; in case (B) the right-hand
method works better.

start start

. R
1L

Figure 2.1.3 Two Maze Problems One simple example of the interaction of algorithm
and search space. (A) is easily solved by left-hand method. On the other hand, in maze
(B), which is the mirror image of (A), left-hand method is not a good solution.

Igoal

Actual observations depend both on the characteristics of search and the search
spaces. A good visualization would represent them independently and help determine
the interaction effect between them.

11 Ope can solve simple mazes, which have no islands, by keeping one hand to the wall and walking around
the maze. "Right-hand" method refers to solving the problem by using the right-hand and turning around
the maze clockwise, and vice versa for "left-hand" method.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

3. Conventional Visualization tools
3.1 Search Trees, Graphs

It is very common to represent search spaces as trees12. In this representation,
nodes in the tree correspond to states in the search. Search goes from the root node of
the tree down to the leaf nodes — nodes which have no further successor nodes or which
are desired states. The path from the root to the leaf nodes traces the steps from the
start state to a goal state in the solution space. The following figure shows a tree
representation of a search space.

Figure 3.1.1 Example of Graph Representation of Search Tree Fully balanced tree
with branching factor b=2 and height of tree = 4. There are 31 total nodes in this tree,
including root node and leaf nodes.

In this representation, when we draw arcs as the same length and descendant
nodes as the same distance, we can easily see the search depth and search width as the
height and the width of the search tree, respectively.

It is also easy to show characteristics of search algorithms such as differences in
search order. For example, depth-first search will pick up one path and continue
searching down to the leaf node, which is a state the search algorithm was looking for,
or which has no successors. In the former case, the search algorithm has the option to
keep searching until it finds better solutions. To search further in the tree after
reaching the leaf node, the search algorithm needs to look up other branches in the
path. The simplest method is to search lowest alternative branches. This operation is
known as backtracking. Depth-first search would continue backtracking until it finds a
solution or searches all of the tree. The following figure shows the characteristics of
depth-first search using tree representations.

1210 general, a state space would be represented by general directed graphs. However, we can expand
these graph representations by duplicate subtrees in a tree representation.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

V|
i[2 :
3 7 ’10

\
HI_H5 "8-‘9

Figure 3.1.2 Depth-first Search in a Search Tree The order of search is labeled on
each of the branches. In this example, the search algorithm checks the leftmost branches
first, then goes to the right branches.

On the other hand, a breadth-first search algorithm searches the shallow level of
the tree first, then increases the level of search one by one. Figure 3.1.3 shows the
behavior of breadth-first search using the same representation as depth-first search.

R
V|4 5 e
L o |

Figure 3.1.3 Breadth-first Search in a Search Tree The order of search is labeled on
each of the branches. Breadth-first search checks nodes in the shallowest level first, then
searches progressively deeper levels.

These representations are very intuitive and easy to understand, but they are
useful mainly for small search spaces. When the tree becomes large, we cannot
represent all search states as nodes in the search tree. Part of this difficulty depends on
human perceptual capabilities. It is said to be hard for humans to handle more than 10
to 20 objects at once. The tree representation of the search space for a practical problem
could be more than ten million states. Even if we could recognize patterns in such a
large tree representation, we could not understand them in detail. To determine the
details of these patterns, we need to look closely at individual nodes and paths inside
the tree.

In the large tree in figure 3.1.4 (showing about two hundred nodes) we can
recognize that the top leftmost branch has many more nodes than other two branches.
However, we cannot determine the average branching factor of each branch from this
representation.

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Figure 3.1.4 Large Tree This figure is made by randomly pruning subtrees from a fully
balanced tree with b=6 and h=7. The resulting tree includes about 200 nodes.

This discussion is also valid for variations of tree representations such as ‘AND-
OR trees' and 'labeled trees.' They are very intuitive and easy to understand for small
search spaces. Thus they help us understand the basis of search spaces and algorithms,
but are less useful for analyzing large scale search spaces in detail.

3.2 Depth-number of node counts

The size of a search space is commonly represented as the number of nodes at
each level.

Theoretical Depth-Node Counts

Figure 3.2.1 plots node counts for a search tree. The number of nodes at each

level is given by b, where i is the depth of the search tree and b is the average
branching factor. Depth-node counts for three values of b are shown in this figure.

8000 |

#Node

6000 |
4000 |

2000 |

4 5 6 7 8 9 10
Depth

Figure 3.2.1 Node Count Representation of Search Trees This figure is based on
equation (2.2.1). The number of nodes at successive depths increases exponentially.

10

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Empirical Depth-node counts

It is also useful to apply the node count visualization to empirical data. The
following figure shows actual data from Eight Puzzle search using three different search
methods. One is pure depth-first search with a depth-bound, which corresponds to one

iteration of IDA* search with a constant 4 function. The other two are IDA* search13:
one uses a Manhattan distance function for # and the other uses a final position count
function for A.14

S 4000807 .
o
S sseee| pure depth-firstsearch — 5/
S 30000-
= | IDA*with oy
'E 25800 final position count
S 200807
< | IDA* with .

15888 Manhattan-distance

10809

5008

/] T T ! T T 1

T T
.06 20 40 6.8 8.0 100 128 14.0 16.0
Deptt

Figure 3.2.2 Empirical node counts from Eight Puzzle This figure shows the num-
ber of nodes expanded at each level of the search tree for three algorithms. As pure depth-
first search doesn't prune nodes at all, the curve from pure depth-first search shows the
total number of nodes at each level. By comparing with that curve, we can see how many
nodes are pruned by the other two algorithms. If the number of nodes at one level is the
same as pure depth-first search, then there is no pruning at that level.

The curve from pure depth-first search uses no pruning, therefore it represents
all of the nodes at each depth. This curve grows exponentially as we have shown in the
theoretical depth-node counts graph (figure 3.2.1).

Now we can check the effect of pruning by comparing pruned data with the pure
depth-first search curve. The other two curves are almost identical to the no-pruning
curve until depth = 9. This means the two algorithms expanded almost the same
number of nodes until depth = 9. The curve from IDA* with the final position count
function is different from no-pruning curve only from depth = 14, but IDA* with
Manhattan distance has a lower growth ratio than the no-pruning curve. This shows
that the former can prune nodes only at the deepest levels, but the latter can prune

13 pgeudo-code of IDA* search is shown in Appendix A.3.
14 These heuristic functions are described in Appendix A4 in detail.

11

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

nodes at shallow levels also. We cannot know why these functions are different, given
this representation, but we can know how they are different. We need to introduce
visualization of heuristics to know why these heuristic functions behave differently.

From equation (2.2.3) the average branching factor at each level for this data can
be calculated. The result is shown in figure 3.2.3.

*

\ pure depth-first search
A* with final position count

N
o
)

g
o
|

-
(&)
|

®
l

IDA* with Manhattan-distance

average branching factor

®
)

I | 1
686 280 406 6.6 80 108 1280 148 16.0
Deptt

Figure 3.2.3 Empirical branching factor at each level of the Eight Puzzle This
figure shows the empirically derived average branching factor for each algorithm.

If the tree is fully balanced and there is no pruning during search, the average
branching factor is expected to be constant at every level and the plot is expected to be a
flat line. In search without pruning, which is shown as pure depth-first search in the
figure, the average branching factor has some structure: small branching factors are
followed by large branching factors and vice versa. In the Eight Puzzle, the full search
tree is likely to have a small number of moves followed by a large number of moves, and
vice versa. For example, the center position has three possible moves that lead to states
which have only two legal moves.

Time Trace of Node Count

It is also useful to observe the behavior of various search methods in a node
count graph by plotting the history of searched nodes. Figure 3.2.4 represents the
expected history of node counts in depth-first search. In this graph, the number of
nodes at each level increases as time passes. Thus later curves are above earlier curves,
as more nodes are searched at each depth. The curve grows vertically from bottom to
top.

12

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

time /

/

Depth

Number of Nodes

Figure 3.2.4 Time Trace Representation in Node Count (general depth-first search)
This is the expected graph on time trace of node count in depth-first search. As time passes,
the number of nodes visited by depth-first search increases at each level.

An actual depth-first search for the Eight Puzzle, shown in figure 3.2.5, is pretty
much as expected. The number of nodes at each depth increases as time passes. If the
search tree is not balanced at all, the number of nodes shown in this figure wouldn't
increase proportional to time spent for search. We can conclude, then, that the search
tree in Eight Puzzle is balanced.

350F

Depth

Figure 3.2.5 Time Trace Representation in Node Count (Depth-first Search on the
Eight Puzzle) This graph was made from one instance of a time trace of depth-first search on
the Eight Puzzle. Each curve represents the number of nodes at each depth in every 80 nodes
expanded; i.e., the lowest curve is the plot of the first 80 nodes searched, the second lowest
curve is from the first 160 nodes, and so on. The envelopes of these curves grow exponentially
as the depth increases.

13

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

On the other hand, the graph of breadth-first search will be completely different
from depth-first search in a node count representation with history. The following
figure is an expected execution history of depth-first search. In this representation, the
breadth-first search progresses horizontally from left to right. This is because the
search moves from shallow levels to deeper levels progressively. If the search space is
the same as for depth-first search, the envelope of the curve is also the same
exponential curve as that of depth-first search.

time

Number of Nodes

Depth

Figure 3.2.6 Time Trace Representation in Node Count (general breadth-first search)
As time passes, the frontier of the search progresses from left to right horizontally. The
envelope of the curve reflects the search space and is the same with depth-first curve.

The result of an actual breadth-first search on the Eight Puzzle is shown in
figure 3.2.7.

350}
@300
2
S 250}
200}
4150}

gloo-
2
50

|
(
|
|
|
l
|
|
4

2 4 6 8 10
Depth

Figure 3.2.7 Time Trace Representation in Node Count (Breadth-first Search
on Eight Puzzle) This graph was made from a time trace of breadth-first search on
the Eight Puzzle. Each curve represents the number of nodes at each depth.

14

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Other search algorithms mix breadth-first search and depth-first search. The
following figure shows best-first search applied to the same search tree as figures 3.2.4
and 3.2.5. If the evaluation function used in best-first search relies on depth, the search
is like depth-first search and the envelope grows vertically. If the function relies on
breadth, the search becomes like breadth-first search and curve grows horizontally. In
other words, the vertical growth of the curve represents depth-first components in the
search and the horizontal growth of the curve represents breadth-first components.

time

Number of Nodes

Depth

Figure 3.2.8 Time Trace Representation in Node Count (general best-first search)
General best-first search has a depth-first component (vertical growth) and a breadth-first
component (horizontal growth).

The result from IDA* search with Manhattan distance is shown in figure 3.2.9.
Each curve corresponds to an iteration of IDA* search; i.e., the leftmost curve, which
starts at depth 0 and reaches depth 3, is from the first iteration. The second leftmost
curve is from the second iteration, which expanded nodes to level 4, and so forth. The
eighth (last) iteration is shown as the top curve. In this case, a solution is found at the
eighth iteration at level 21. The search horizon progresses horizontally in the later
iteration of IDA* search. This fact shows that the heuristic function prunes many
branches in deeper parts of the search tree.

For comparison, a non-pruning algorithm is also shown in this figure as an
exponential curve. The search is very much like depth-first search (i.e., it grows rapidly
in the horizontal direction) but expands fewer nodes than pure depth-first search.
Especially in the last two iterations, the search progresses at more than ten levels at
once. This means that the heuristic function can help choose the right branch and avoid
searching bad paths.

15

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

a3
o O

N W s U,
o O O

Number of Nodes
o

[
o

Depth

Figure 3.2.9 Time Trace Representation in Node Count (IDA* Search with Manhattan
distance) One instance of a time trace of node count using IDA* search on the Eight Puzzle.

Figure 3.2.10 is another example from the puzzle with a different h function. In
this case, the left-hand side of the envelope of the time trace follows exactly the
exponential no-pruning curve, which means the algorithm expanded all nodes at each
level without pruning. From comparison with the previous figures, this graph also
shows this search includes more breadth-first components than the previous search
algorithm, as the envelope of the curve grows faster vertically than horizontally

(compare with figure 3.2.9). This means that the h function is not helping very much by
pruning nodes, and as a result, search cannot go deeper into the search tree until it
expands many more nodes at shallower depths.

1750

" 1500} No pruning

(]
'g 1250¢
2

18rd iteration

1000¢

750} 1st iteration

500¢

Number of

250¢

ot s " e

Depth

Figure 3.2.10 Time Trace Representation in Node Count (IDA* Search with final
position count) Another instance of a time trace in node count using IDA* search on the
Eight Puzzle. Note that the scale of the Y-axis is much bigger than in the previous two figures.

16

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

4. Visualization of Heuristics

4.1 Depth-Heuristic Function Representations

When heuristic functions are used for search, visualizations of the search give us
many useful ideas about how to evaluate them. In many cases, we don't have
theoretical expectations for heuristic functions. We need to determine how well they
perform empirically, for which we can rely on visualizations of them.

The depth-heuristic function representation is shown in the rest of this
subsection. Figure 4.1.1 was made from a history of search in solving the Eight Puzzle

problem. This figure is from one particular search. The X-axis represents h-value

(estimated h-value) given the current state, the Y-axis shows the depth of the current
state from the initial state, and the gray level at each point represents the number of
states at that level. The positions colored in black signify that no such state exists in

the search space. White stands for many nodes!5. In this figure, the / function was
used only to evaluate each state; it wasn't used during search to prune successor nodes.
Thus this figure represents the structure of the entire search space from the view of the

h function. For example, the h-value of the initial condition was 16. Then two nodes at

h-values 15 and 17 and level 2 are expanded, next h-values 14, 16, and 18 at level 3,
and so forth16, From this figure, we can observe that the number of successor nodes

increases as the search progresses. In particular, a huge number of nodes have h-
values around 17 (white place at I;=17, level=12). The nodes distribute almost
symmetrically with the center at h=16.

In the actual IDA* search that uses this 7 function, nodes are searched in order
of smaller (h+ g)-valuel?. Figure 4.1.2 is a visualization of search order using the same
h function as in 4.1.1. White diagonal arrows from the bottom right to top left show
groups of nodes which have the same (h+ g)-value. In the first iteration of IDA*
search, the nodes on the leftmost arrow are searched, because they have the same

(h+ g)-value as the initial threshold (16). In the second iteration, the threshold value
is set to 18 and nodes on the second leftmost arrow are also searched, along with the
nodes on the leftmost arrow. In each iteration of IDA* search, the search horizon
progresses one arrow toward the left, as more nodes are searched at deeper levels.

51tis possible to use a 3D graph that shows the number of nodes on the Z-axis (instead of a 2D gray scale
graph). The gray scale representation is chosen for its intuitiveness of representation. In this figure, gray
level is determined by the number of nodes at each state and plotted on a logarithmic scale. (While the
most frequent state has more than 20,000 nodes, it is practically impossible for humans to distinguish more
than 10 gray levels simultaneously.)

16 1, this h-hat-function, the h-hat-value of the next state is one plus or one minus the current h-hat-value.
As the result of this property, the depth h-hat-function representation has a checkerboard appearance.

17 In this example, the depth from the root node was used as the g-value for IDA* search.

17

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

0 5 10 15 20
P H-hat-value

Figure 4.1.1 Example of Depth-Heuristic Function Visualization This figure is made
from one instance of search on the Eight Puzzle by using the Manhattan distance with the
blank space as # function. The X- and Y-axes represent i-value and depth respectively. Each
square in this plane represents the state corresponding to the values on the X-axis and the Y-
axis. For example, the square next to the top right corner shows the state that has 1=22 at

depth=12. The gray tone in each area represents the number of nodes at that state
(black=none, white=many).

P Depth

0 5 10 15 20
P> H-hat-value

Figure 4.1.2 Search order of Figure 4.1.1 White arrows in this figure show states which
have same (4 + ¢)-value. In the IDA* search algorithm, thresholds are set in each iteration,

then search is done up to the threshold value. The search progresses from the leftmost arrow
to right arrows in successive iterations.

18

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Figure 4.1.3 is the same search as in figures 4.1.1 and 4.1.2 but the plot shows

only actually searched nodes by using the / function for pruningl8. The path that
reached the first solution is shown by a jagged white arrow running from bottom right

to top left. In this example, two actions that increased the h-value were needed to
reach the solution. These two actions are represented by the jagged parts of the arrow,
and correspond to three iterations in IDA* search with threshold values 16, 18, and 20.

In IDA* search, the threshold value was set to 16 first because the h-value of the initial
condition is 16. The successors that had bigger (h+ g)-values were not expanded in the
first search iteration. Only nodes on the diagonal line from h =16 (nodes h=15/d=1 and

h=14/d=2) were searched in the first iteration. In the second iteration, the threshold
was set to 18 and IDA* searched to the nodes on the next diagonal line. In the third

iteration, the goal node was found at d=20 and h=0.

p Depth

0 5 10 15 20
P H-hat-value

Figure 4.1.3 Example of Depth-Heuristic Function Visualization (from the Eight Puzzle,
Manhattan distance with blank space) The same instance of depth-heuristic function shown in
figures 4.1.1 and 4.1.2, but nodes actually searched are shown in this figure. Note that the
nodes in the upper right of figure 4.1.1 are pruned and not searched. The white arrow shows a
path to one solution found in this search.

Note that the nodes above the diagonal line have higher (h+ g)-values than the
threshold value of the last iteration. The nodes shown above the line were expanded in
the last iteration of IDA* search, which recognized that these successors need not to be
searched. In this representation, we regard these nodes as searched, and they are
plotted in the same figure because they were actually expanded.

It is intuitive to observe the progress of the search as a sequence of depth-
heuristic function representations. Figure 4.1.4 is generated from the same instance of

18 Note that the scale of the Y-axis is different from figure 4.1.1 and 4.1.2, which makes the slope of the
search horizon line different. The slopes would be the same if we plotted them on the same scale.

19

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

the IDA* search shown in the previous figures. Each picture corresponds to one
iteration of IDA* search. In the first iteration, in the leftmost picture, only a small
portion of the space is searched. In the second iteration, the algorithm is allowed to
search the next diagonal line shown in figure 4.1.2 but does not reach the goal. The goal
is reached in the third iteration, shown in the rightmost picture.

Figure 4.1.4 Time Trace of Depth-Heuristic Function Visualization Each figure is a
snapshot of an iteration of IDA* search in the depth-heuristic function representation. The
leftmost figure is from the first iteration, the center from the second, the right from the third.

We can regard figure 4.1.1 as a search space representation from the view of the
heuristic function used for this problem solving, and figure 4.1.3 as the result of
pruning. The checkerboard pattern shown in these pictures results from the heuristic
function used to map the state in the problem space into heuristic values. Other
heuristic functions may map states in the search space into different values, and thus
into different patterns in depth-heuristic function representation. In other words, this
representation reflects both the structure of the search space and the heuristic function.
Figure 4.1.5 is another example from Eight Puzzle search, using the same initial
condition but a slightly different heuristic functionl9 to estimate the distance to the goal

state. The search space has basically the same shape as with the previous h function,
but because the values of successor states can be minus two, zero or plus two from the

values of the current state, h can have only even values and the state space becomes
evenly spaced vertical lines.

19 1n this example, the h-hat function used manhattan distance but didn't include the blank space in the
count.

20

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

12

10

P Depth

0 5 10 15 20 25
P H-hat-value

Figure 4.1.5 Example of Depth-Heuristic Function Visualization (from the Eight Puzzle,
Manhattan distance without the blank space) All of the nodes up to depth=12 in the search
tree are shown. The shape of the distribution of nodes is an inverted triangle similar the
previous search. The striping is a product of the # function used.

Figure 4.1.6 shows nodes actually searched with the heuristic function shown in
figure 4.1.5. This figure corresponds to figure 4.1.3. The path to reach the first solution
is shown by the white diagonal arrow.

P Depth

0 5 10 15 20

P H-hat-value

Figure 4.1.6 Example of Depth-Heuristic Function Visualization (from the Eight Puzzle,
Manhattan distance without the blank space) This figure shows the nodes actually expanded
in the search, which uses the # function shown in figure 4.1.5 for pruning.

By comparing figure 4.1.3 and 4.1.6, we can observe that the searched path in

figure 4.1.6 is much wider than in figure 4.1.3. In the ideal case, an h function should
return the exact estimation of the distance to the goal. Thus the path to the goal should
be a straight line from the bottom right to the top left corner, meaning the area

21

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

searched is minimal. The better the h function, the narrower the area shown in these

figures, in general. In figure 4.1.6, ten actions that increase h values are needed to
reach the goal state. These actions are represented byvertical and right-leaning line
segments in the white arrow. The goal was found in the eighth iteration of IDA* search

with this / function. Also the number of nodes searched with this function is about
twice as many as with the previous h function (figure 4.1.3).

An animated representation of this search, corresponding to figure 4.1.4, is

shown in figure 4.1.7. As it took eight iterations to reach the goal with this h function,
there are eight pictures in this figure. The first iteration is shown in the top left corner,
the second in the top second left, and so on.

Figure 4.1.7 Time Trace of Depth-Heuristic Function Visualization (from the Eight Puz-
zle, Manhattan distance without the blank space) The same representation as figure 4.1.4 but
with a different search algorithm. These figures are ordered from left to right and top to bottom.

As the search progresses, the frontier of the search moves toward the top left
corner, while at the same time, the trace becomes wider. Progress is significant in the

last two iterations, suggesting that the h function works better at deeper levels than in
shallow levels.

22

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

5. Time Series Representations

5.1 Time Domain Representations

When we record search depth as the history of search, we can observe the behav-
ior of search in the time domain, and we can apply time domain analysis techniques.

Figure 5.1.1 is an example from a time trace of general depth-first search. The
X-axis is the order of search, which corresponds to time if we assume constant time to
expand each node. The Y-axis is the depth of the searched node. In this example, the
algorithm searched down to depth = 7 and continued visiting nodes at depth 6 and 7
several hundred times. Big spikes in this representation mean big backtracks. For
example, a backtrack from depth 7 to depth 3 happened at time 130. Time 0 through
time 130 corresponds to a search of one branch from level 3 if the search is done in
depth-first order.

In the time trace of pure depth-first search, the distance between points in the
series at one level represents time to determine one subtree below that level.

50 100 150 200 250 300
Time

Figure 5.1.1 Time Trace of Depth-first Search The X- and Y- axes represent time and the
depth visited at that time. In depth-first search, algorithm picks up one branch and tries to
visit the deepest level of the branch first, then goes back and forth at the deeper levels. The
big spikes in this representation signifies the termination of searching a subtree, with a large
backtrack to the next subtree.

It is easy to see at which levels the algorithms spent time. For example, figure
5.1.2 represents the time trace of breadth-first search on the same search space as in
figure 5.1.1. Breadth-first search visits all nodes at shallower levels first. The time
spent at a level is proportional to the number of nodes at that level, so the shape of the
time trace is completely different between depth-first search and breadth-first search.
Depth-first algorithms have spiky time traces and breadth-first algorithms make stairs.

23

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

Depth
o;

50 iono 160 z00 Z80 300
e

Figure 5.1.2 Time Trace of Breadth-first Search

However, it is not so easy to find patterns in time traces for algorithms other
than pure breadth-first search and depth-first search. For example, figure 5.1.3 is the
time trace of IDA* search for the problem discussed in the previous sections. It is very
hard to tell much from this figure.

25¢
20}
15t

10}

0 50 100 150 200 _ 250 300
Figure 5.1.3 Time Trace of IDA* Search on Eight Puzzle
From the time trace of search algorithms we can get: 1) a rough idea of the
behavior of the search algorithms; it is especially useful for pure depth-first search or

breadth-first search, and 2) some idea of the frequency components of time trace; this is
needed for the design of a smoothing filter (described the following section).

24

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

5.2 Frequency Domain

Time domain analysis is straightforward and very intuitive. Although it cannot
distinguish two similar algorithms in detail, it is useful to see the search depth history.
As the next step, we can apply fourier transforms to view the time trace of search
algorithms in the frequency domain. By converting a sequence from the time domain
into the frequency domain, we can observe iterative actions in the search algorithms
more clearly. For example, visiting a node at depth 5, expanding three child nodes at
depth 6 and then returning to a node at depth 5 corresponds an iteration of interval 4.
If this happens often, it can produce a strong frequency component at frequency 1/4 Hz.
Frequency components represent backtracking in search. In general, low frequency
components represent large backtracks, which are likely to occur when returning to a
shallow level of the search tree, and high frequency components come from minor
backtracking at deeper levels.

Iterative components observed in the frequency domain can be caused by
interactions between the structure of the search space and search algorithms. For
example, the time trace of depth-first search and breadth-first search can include
completely different frequency components even when applied to exactly the same
search space. Thus, frequency analysis cannot separate the structure of the search
space from characteristics of search algorithms.

In this subsection, the basis of the fourier transform is explained first. Then a
smoothing technique for practical analysis is reviewed. To illustrate frequency analysis
of search algorithms, we show frequency graphs for the Eight Puzzle and the traveling
salesperson problem, with their interpretations.

5.2.1 Fourier Transform
The fourier transform is a common technique to transform a function in the time
domain into the frequency domain. The basic idea is to regard an arbitrary wave form
as the addition of simple sine waves. The transform decomposes the wave into sine
waves, yielding the strength and phase of each decomposed sine wave. By adding all of
the decomposed sine waves, we can reconstruct the original wave form. This is called
the inverse fourier transform.

In the case where the original function is continuous, the following formulas are
applied to calculate the fourier transform and inverse fourier transform.

F(w)= TF(t)- 72"t qt FourierTransform
o (5.2.1)
f(t)= [F(w)-e*™'dw InverseFourierTransform

25

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

If the original function is in discrete form, equations (5.2.2) are used to calculate
the fourier transform and inverse fourier transform. They are basically equivalent to
the equations in (5.2.1) but assume a discrete number of wave forms.

N- .
F(j) =7:I_ 2,1f(t)-e‘2"’“”r FourierTransform
L k=0 _ (5.2.2)
f(k)= S'F (j)-&*™H'T InverseFourierTransform
j=0

Note that in the case of the discrete fourier transform, the highest frequency
depends upon the sample rate of the original function. If the sampling rate is 1 point
per second, the highest frequency is 1/2Hz. For a sampling rate of 10 points per second,
we can get a highest frequency of 5Hz20.

As we are going to apply the fourier transform to time traces of search
algorithms, we need to use the discrete fourier transform. Figure 5.2.1 shows a
frequency domain spectrum from the ncde-depth history of a depth-first search.

Strength
oa

a
o

o \».

0.2

o 26 &0 76 100 125 150
Index

Figure 5.2.1 Frequency Distribution of depth-first search in figure 5.1.1

In this frequency distribution graph, the X-axis represents frequency (or
interval) and the Y-axis represents relative strength. By simply applying equation
(5.2.2) to the discrete time series of search, the frequency components are calculated as
complex numbers. In this graph, the absolute values of each frequency component are
calculated first, then they are standardized by dividing by the maximum component
value. Note also that the zero frequency, which is referred to as D.C. level in electrical
engineering, is omitted because it represents simply the average node depth.

20 Sampling theory states that the theoretical highest frequency is half of the sampling rate.

26

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

In this example, 320 data points are used for the calculation. Thus 160 in the X-
axis corresponds to 160/320 = 0.5 Hz or interval 2. Similarly 107 in the middle of the X-
axis corresponds to iterations about interval 320/107 = 3, 80 is from interval 320/80 = 4,
and so on. Interval 4 is caused by the iterative search of 3 child nodes. For example,
depth-first search from a level 4 node followed by three leaf nodes, which is the
sequence of 4,5,5,5,4,5,5,5,... in the time trace, can cause frequency components at the
interval 4. In general in depth-first search, frequency components at interval i
correspond to search on the node which has i-1 child nodes.

As this example came from discrete numbers, the other interval components
between these values cannot technically exist, though they may exist in practice. They
are called harmonics and are caused by decomposing non-sine waves into sine waves in
the fourier transform.

The frequency distribution shown in figure 5.2.3 was generated from the time
trace of depth-first search on a fully balanced tree with b=3. There is a big clear peak at
about 75, which corresponds to interval 310/75 = 4 in this distribution. If the search
trees are balanced and have exactly the same branching factors in each level, frequency
distributions tend to have clear peaks, though they still have harmonics.

o 25 &0 75 100 1258 180
Index

Figure 5.2.3 Frequency Distribution of Depth-first Search on a Fully Balanced Tree

5.2.2 Smoothing Filter
In the fourier analysis of real search histories, noise in the original function
makes analysis difficult. We can apply a smoothing filter to the frequency distribution
to reduce noise and to make the distribution clear.

Although we can design any filter in practice, the most common is the mean
filter with a fixed window size. It works as a low-pass (high-cut) filter because the noise
is often in the high range of frequency distributions. Equation (5.2.3) is used as the
simple mean filter of window size 2.

27

Visualization Tools for Real-time Search Algorithms Kuwata & Cohen

MeanSmoothed[a(i)] = W - (5.2.3)

In general, the mean smoothing filter with window size w is described by the
following formula:

i+w/2
MeanSmoothed[a(i),w]= %:ﬁ %i) (5.2.4)
=j-w

Note here that applying a mean filter with window size 2 twice to a function f is
equivalent to applying a quarter-half-quarter filter to the function f once.

We can also design a high-pass filter or other filters, but for smoothing purposes,
only low-pass filters make sense.2l We should look for the filter that most clearly
reveals the frequency components.

It is important that smoothing filters not be applied to time domain data (before
f