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Abstract

A technique is described for modelling the 6-dimensional contact space of an
assembly with narrow insertion clearances. A nominal assembly mating trajec-
tory s supplied a priori by a high-level planner, using assembly part models with
zero clearance at the sites of insertion. Augmented with small, user-specified
clearances, the local contact space surrounding any “problematic” configuration
in the nominal trajectory is analyzed and represented as an adjacency graph of
contact states. The contact states represent the zero- to five-dimensional facets
of contact space. The facets’ nonlinear surface representations permit a more
ezact characterization of contact space topology than described previously [7].
The vertices of a local contact space are calculated by intersecting 6-tuples of
primilive contact surfaces via the mullivariable Newton method, whose rapid
convergence to vertez configurations provides an efficient means of analyzing
local contact space topologies. Subtuples of the vertices’ primitive contacts give
rise to the adjacent, higher-dimensional facets of contact space, forming an
adjacency graph of contact states. As described in a companion paper [6], a
heuristic search of the adjacency graph yields a traversable sequence of contact
states.

1Preparation of this paper was supported by grant IRI-9208920 and CDA-8922572 from
the National Science Foundation.
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Figure 1. The critical points in a nominal trajectory.

1 Introduction

Fine-motion planning for assembly is concerned with the planning of jam-free
sliding motions to achieve a goal configuration or a set of spatial relation-
ships between the assembly parts. A fine-motion plan must accommodate
the uncertainty arising from limited precision in position sensing, robot con-
trol, and the assembly part models. In the two-phase approach to planning
with uncertainty, a nominal motion plan is first derived from kinematic con-
straints alone, and then modified to address the effects of sensing, control,
and model error. Together with a companion paper [6], the present paper is
concerned with the latter phase of the two-phase approach, in which a fine-
motion planner automatically synthesizes sliding trajectories within the local
contact spaces surrounding problematic configurations in the original nominal
trajectory. Here we address the representation of a local contact space, to
support the formation of fine-motion trajectories described in [6].

The two-phase approach to fine-motion planning differs fundamentally from
the LMT methods [9][16], which synthesize multistep, nominal trajectories in
a “single phase”, through the recursive backchaining of subgoal regions. The
LMT approach is both more rigorous and more complete than the “two-phase”
approach, whose reliance on an initial plan formed without uncertainty con-
siderations may restrict the set of fine-motion plans it can generate. On the
other hand, the LMT methods fail to utilize “obvious” geometric information
that can simplify the planning process, such as the symmetries of the assembly
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Figure 2. Introducing clearances to the part models.

parts. Moreover, the double-exponential complexity of the LMT approach (5]
has prevented its implementation outside of very restrictive domains.

In the current approach, a high-level assembly planner [15] first derives a
nominal trajectory from geometric constraints alone, using solid models whose
dimensions do not yet allow for clearances at the insertion sites. The critical
points in the nominal trajectory are then identified (see figure 1), indicating
the configurations where jamming and collisions are likely to occur. Narrow
insertion clearances are then introduced to the assembly part models, as speci-
fied by the designer of the parts (see figure 2). The small clearances give rise to
a local, 6-dimensional contact space around each critical point configuration.
To support the search for an appropriate sequence of contact state transitions
to safely maneuver the assembly past the problematic critical points, an ad-
jacency graph of contact states is constructed for each local contact space.
The analysis and construction of a local contact space is the subject of the
present paper. As described in [6], a heuristic search of the resulting contact
state graph yields a deterministic sequence of contact events involving the
formation or separation of one contact at a time.

1.1 Relationship to other methods

Although our fine-motion planning technique falls into the “two-phase” cate-
gory of fine-motion planning methods, it differs from methods in which uncer-
tainty is accommodated in the second phase by way of corrective compliance
[17][19][20]. In that approach, a single control strategy is designed to correct



deviations of the moving part from the nominal path, which is retained as the
command trajectory. The present approach replaces the nominal trajectory
with fine motions planned within the local contact spaces surrounding the
critical points in the original trajectory.

The method currently employed to construct a local contact space is re-
lated to that of Koutsou [13], who identified the vertices of global contact
space by enumerating 6-tuples of spatial relationships, which were combined
algebraically, using an extension of RAPT [18]. Our technique, however, in-
vokes the multivariable Newton method to solve for the vertex configurations.
The restriction of the assembly motion to a determinate sequence of states (as
we describe in [6]) was essential to the methods of Caine and his colleagues
[3][4], who wished to simplify the manual task of designing a force control
strategy that would satisfy each state’s jamming constraints. Our technique
relies on heuristics to select an appropriate sequence of contact states, whereas
Donald [8}, Laugier [14], and the authors [7] previously employed heuristics in
the formation of curvilinear trajectories. Finally, our iterative calculation of
piecewise-linear trajectory segments [6] is related to the flezible trajectorytech-
niques of gross motion planning [2][10], whereby an arbitrary trajectory is first
hypothesized, and then optimized through a gradient descent procedure.

2 Primitive Contacts

The introduction of clearances to the assembly part models gives rise to 6 de-
grees of freedom in the pose of the moving part relative to the stationary part.
Within each local C-space, the moving part’s pose is characterized as a point
vector X in ®°, consisting of a translational perturbation dx = [dz dy dz]T and
a rotational perturbation §x = [§z §y6z|T of the moving part away from the
C-space origin (the critical point configuration). The translational component
dx represents the homogeneous transformation

100 de
trans(de,dy,dz) = g (1) (1) :Z (1)
000 1

and the rotational component §x denotes roll-pitch-yaw angles of successive



rotations about the z, y, and z axes %:
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where the S; and C; denote the sine and cosine of éz;.

The local 6-dimensional configuration space surrounding a critical point is
bounded by 5-dimensional C-surfaces, which correspond to the primitive con-
tacts (PCs) that can occur near the critical point. For polyhedral objects, each
PC is a single-point contact involving either a convex vertex and a face, or two
convex edges. As shown in figure 2, the PCs that can occur in the presence of
insertion clearances are just the PCs that occur simultaneously between the
two parts prior to introducing clearances to their models. Moving part vertex
V, for example, lies on the border of stationary part face F' in the clearance-
free assembly, indicating the presence of the corresponding C-surfaces in the
contact space of the models that include clearances. The existence of a primi-
tive contact between edges E; and E, is similarly inferred by noting that their
line segments meet in the clearance-free models.

The C-surface of primitive contact PC; is characterized by a function f; :
8 - R. A moving part pose X lies on the C-surface of PC; if fi(X) = 0.
Each C-surface function f; is derived from the geometries of the assembly part
features involved, and the clearance between the two features. The geometry
of a vertex-face contact is illustrated in figure 3. Vector r represents the
position of vertex V relative to the moving part origin p, and clearance vector
dc represents the separation between the vertex and face G when the moving
part is positioned at the critical point. The geometries of face-vertex and
edge-edge contacts are shown in figures 4 and 5, respectively.

The C-surface equation of a PC is derived by asserting that a point on the
moving part feature and a point on the stationary part feature share the same
ordinate along the PC’s contact normal n.:

(p + dx + RPY (8x)r) - n. = (p +r+dc) - n. (3)

3The reverse order of rotations stems from the use of global, as opposed to successively
rotated, rotational axes.
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Figure 3. A vertex-face contact.

For vertex-face contacts, n. is just the outward normal n of the stationary face.
For face-vertex contacts, n. = —RPY(6x) n, while for edge-edge contacts,
n. is parallel to +RPY(6x) v x w. Equation 3 yields a transcendental C-
surface function f;(X), which is shown in Appendix I. The equation f;(X) =10
describes a 5-dimensional C-surface that locally divides R° into halfspaces
corresponding to “free space” and the forbidden zone, the subset of R® where
the assembly parts overlap. Adopting the convention that n. points away
from the stationary part feature, the poses X on the “free space” side of the
C-surface correspond to f;(X) > 0. The poses for which f;(X) < 0 lie on the
side of the forbidden zone.
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Figure 4. A face-vertex contact.
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Figure 5. An edge-edge contact.
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Figure 8. Primitive contact bounds.

The outward normal to PC;’s C-surface, N;, and a formula for the PC’s
hyperplanar tangent surface, are expressed in Appendix II as functions of the
pose X. In section 3, the tangent hyperplanes of 6 PC surfaces are intersected
to yield a contact space vertex point in R8.

The 5-dimensional contact space facet associated with a PC may have bor-
ders corresponding to the finite extent of the assembly part surface features,
as well as borders arising from adjacent contacts. In figure 6, the contact in-
volving vertex V and face F is bounded by the convex edge shared by F and
its adjacent face G. The poses X € R® associated with the PC formed by V
and F are confined to the halfspace g(X) < 0, where g is just the C-surface
function for the contact between V and G. The V-against-G contact is called
a bounding contact of the V-against-F contact. In general, a primitive con-
tact PC; has some n; bounding contacts PC;;. Assuming the part faces of all
vertex-face and face-vertex contacts are convex, the half-
spaces g;(X) < 0 of a PC’s bounding contacts intersect to form a convex
region in R8. If a part face is concave, it is divided into convex faces prior to
the enumeration of the PCs.



Each PC’s facet in contact space, and the forbidden zone of overlapping
configurations behind the facet, are represented by point sets expressed in
terms of the C-surface functions f;(X). The forbidden zone F; of PC; is the
region of R® behind PC;’s C-surface and its bounding contacts:

Fi={Xe®|fX)<0, fi(X) < 0,j=1...n} (4)

The entire forbidden zone F surrounding a critical point’s local C-space is
formed by the union of all the PCs’ forbidden zones:

F =UF (5)

The point set S; in R® associated with a primitive contact PC; consists
of the portion of the contact’s C-surface that lies behind its border PCs’ C-
surfaces but not in the forbidden zone:

S = {X | f(X) =0, fii(X) <0,j=1...n;, X & F} (6)

Expressions (4), (5), and (6) are easily implemented as predicates, using the
C-surface functions f;(X) found in Appendix I. Expression (6) is utilized in
section 3 to verify that a vertex formed by the interection of 6 PCs lies in each
PC’s point set, which excludes overlapping configurations.

Since the forbidden zone is generally concave, a PC;’s point set S; is usually
concave as well and cannot be represented by a single intersection of halfspaces.
For the purpose of efficiently measuring the distance between a trajectory
segment and a PC’s point set [6], however, it is preferable to represent PCs
as convex sets, even if they overlap the forbidden zone. When calculating
distances between trajectory segments and “obstacle” PCs, a PC’s closest
point may then lie in the forbidden zone of a closer, intervening obstacle PC,
but the closer PC’s presence will overshadow the importance of the former
obstacle PC.

Ignoring the presence of the forbidden zone, PC; and its n; bounding con-
tacts PC;; define a convez point set

S ={X | i(X) =0, fi;(X) <0,j=1...n3} (7)

whose polytopic approximation typically requires only two or three hyperpla-
nar facets. As described in the companion paper [6], affine space representa-
tions of these facets are readily computed from the hyperplanar tangents of
PC; and its bounding contacts PC;;, which are formulated in Appendix II.

8
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3 Contact space topology

In this section, we describe the formation of an adjacency graph of contact
states to represent the topology of local contact space. The contact state
graph is constructed by a fine-motion planner to support the heuristic search
for a sequence of contact state transitions [6]. Figure 7 illustrates a small
portion of the adjacency graph for the square peg-in-hole assembly task.

The first step in constructing the local contact space surrounding a critical
point is the enumeration of its vertices (0-dimensional facets). The vertices are
obtained by computing all of the legal moving part configurations determined
by 6-tuples of primitive contacts. This combinatorial method was employed
by Koutsou [13], who combined the spatial relationships of 6 PCs symbolically
to yield each vertex configuration. The current technique, however, obtains
the vertex configurations numerically, via the multivariable Newton method.

9
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Figure 8. Vertex calculation through iterative refinement.

The point of intersection V associated with the C-surfaces of 6 primitive
contacts PC},..., PCg is just the common root of the C-surface equations
fi(V) = 0, i = 1..6. Given an initial estimate of V, the multivariable Newton
method iteratively refines the estimate, converging rapidly to its true position.
For low-clearance assemblies, the vertices of contact space are never more than
a perturbation away from the origin, so the origin itself provides a suitable first
approximation.

As figure 8 shows in 2 dimensions, the initial estimate V; of the vertex point
where two C-surfaces intersect gives rise to two C-surface tangents, which in-
tersect at an improved vertex estimate Va. An initial estimate (e.g., the origin)
of the vertex is thus iteratively refined until its measurable modification ceases.
For 3-dimensional assemblies, the C-surface tangent equation for each of six
PC;s is obtained by parameterizing the tangent formula shown in Appendix

10
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Figure 9. Identifying nonspurious contact space vertices.

IT with the successively refined poses V. Each refined vertex approximation
V; is then obtained by simultaneous solution of the 6 PCs’ surface tangent
equations, yielding the point in %2 where the 6 C-surface tangents intersect.

If the C-surfaces of 6 primitive contacts PCy,..., PCp intersect at a single
point V in R®, then V corresponds to a contact space vertex iff it lies in the
point set S; of each of its associated PC;s. Computationally, this is verified
by testing whether V satisfies the predicate associated with each PC’s point
set expression (6), which excludes the forbidden zone. Figure 9 shows the
analogy in 2-dimensional contact space. Each candidate vertex is formed by
intersecting the C-surfaces of a pair of PCs. V; is found to be a legitimate
vertex, since it lies within the point sets of its constituent contacts PC, and
PCj. V3, on the other hand, lies in the forbidden zone, and V3 lies in the point
set of only one of its PCs.

Once the vertices of a local contact space have been identified and located,
the 1-dimensional edges of contact space are generated by enumerating the
5-tuples of PCs contained in the vertices’ 6-tuples. The 4-tuples of the edges’

11



PCs give rise to the 2-dimensional facets of contact space, and so on. Each new
and distinct contact state thus enumerated is placed in an adjacency graph
(see figure 7), together with arcs denoting whether a contact state’s set of PCs
is a subset of an adjacent “son” state’s set of PCs. Each arc in the graph
denotes the establishment or separation of a single contact.

4 Implementation and Discussion

The contact space analysis procedure described above, as well as the fine-
motion trajectory planner of [6], have been implemented on a Sun-4 worksta-
tion, in POPLOG (Pop-11 and Prolog) and C. CSG assembly part descriptions
are parsed in Prolog, and the geometric solid modeller ACIS provides surface
boundary descriptions of the parts, which serve to parameterize the primitive
contact formulae in Appendices I and II. Computations of a combinatorial na-
ture, such as the enumeration of 6-tuples of PCs performed to find the vertices
of contact space, are executed in Pop-11. Numerically-intensive computations,
such as the iterative refinement of vertex configurations described in section
3, are performed in C. Contact state adjacency graphs constructed through
this technique are searched by the fine-motion planner [6] to generate reliable
sequences of contact state transitions, together with command trajectories for
traversing the selected states. Fine-motion plans thus generated for a square
peg-in-hole assembly have been successfully executed by a Zebra-0 robot, with
the aid of a visual servoing facility.

Since the calculation of a local contact space’s vertices involves the enu-
meration of all 6-tuples of the PCs associated with the contact space, the
computation time is proportional to

(5) = w=orm ®

where n is the total number of PCs. As noted by Koutsou [13), it is useful to
restrict the dimensions of contact space when enumerating its vertices, in order
to limit the number of PCs and the resulting computation time. We have found
it convenient to limit the rotational component of contact space by imposing
positive tilts about the z, y, and z axes. For the square peg-in-hole contact
space partially illustrated in figure 7, these constraints reduce the number of
PCs from 32 to 9. The lack of constraining PCs produces a contact space

12



devoid of vertices, however, so three “virtual PCs” are added temporarily to
the existing PCs to represent the imposed rotational limits §z = —e¢, §y = —e¢,
and §z = —e, where 0 < € < 1. Contact states involving virtual PCs are
then filtered out of the resulting adjacency graph. For the square peg-in-hole
assembly with 31—2 inch clearances, the restricted contact space contains contact
states of dimension 1,2, 3,4, 5, numbering 2, 11, 24, 23, 9, respectively.

The authors propose to merge their model-based fine-motion planning tech-
nique with the on-line compliance acquisition approach of Gullapalli [11][12].
Concerned primarily with the spatial aspects of fine-motion planning, our
off-line planner’s modelling of contact space topology complements the force-
related capabilities of an on-line learning system, whose jamming-avoid-
ance skills are difficult to replicate off-line. In the proposed fusion of methods,
the fine-motion planner will produce a sequence of contact states in the con-
tact space of an assembly, as well as a piecewise-linear command trajectory
through the selected contact states. To accommodate the nonlinearities of
contact space and avoid jamming in the presence of noise and uncertainty, the
command trajectory will be augmented with a nonlinear compliant behavior,
acquired on-line through associative reinforcement learning. The fine-motion
planner’s decomposition of contact space into topologically distinct facets will
enable the learning system to devote separate neural networks to the different
contact states, whose characteristic contact geometries call for qualitatively
distinct compliances.

5 Conclusion

We have presented a method for analyzing local contact spaces for assemblies
with narrow insertion clearances. The primitive contacts of a local contact
space are characterized as bounded 5-dimensional surfaces, whose intersec-
tions in R comprise the lower-dimensional facets of contact space. The ver-
tices of contact space are calculated efficiently via the multivariable Newton
method, and the topology of contact space is represented by an adjacency
graph of contact states. The fine-motion planner described in the companion
paper [6] searches this adjacency graph for a traversable sequence of contact
state transitions, plotting a piecewise-linear trajectory in the selected states.
Fine-motion plans thus generated for a square peg-in-hole assembly have been
successfully executed by a Zebra-0 robot.

13



Appendix I
The primitive contact condition
(p + dx +RPY (6x)r) - n. = (p +r+dc) - n, (9)
may be written
(dx + RPY (6x)r) - n. — (r+de) - n. = 0 (10)

Expanding dx, éz, and RPY (6x) as in section 2, we obtain the primitive
contact function

f(X) = dznz + dyny + dznz +
IB+JD +IE -JF +Hn, —

(r + d¢) ' m
=0
(11)
where
I = Cyry+ SaSyry + CaSyr:
B = C;ng
J = S;r.—CzRy
D = S;ng
E = S.n,
F = Cmn,
H = S.CyR,+ C.Cyr. — Syro
(12)

14



Appendix II

The outward normal N of a primitive contact C-surface is obtained by differ-
entiating equation (11) with respect to the 6 components of the pose and then
normalizing the resulting vector.

( 3 )
n,
f= e (13)
VI = | AB + CD + AE + CF +Ghn,
HB + HE — In,
\ JB—ID + JE + IF ]
and of
N = Y 14
V7] (14)
where
A = C,S,r — So5,m
C = Cer;+ Sy
G = C,Cry— S.Cyr
(15)

Taking f;(X) as PC;’s approximate distance to X, the surface tangent is
approximated by the hyperplane

N;-X = D; (16)

where

D; =X -N; - fi(X) (17)

15
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