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Abstract

A fine-motion planning technique s described for assemblies with narrow inser-
tion clearances. A fine-motion planner receives as input a nominal assembly
motion plan, computed from kinematic constraints alone. As described in a
companion paper [4], the planner constructs an adjacency graph for each local
contact space surrounding a problematic configuration in the nominal trajec-
tory. A heuristic search of the adjacency graph produces a sequence of contact
states that can be traversed in the presence of pose uncertainty, thus maneu-
vering the assembly past the problematic configuration. The rapid synthesis
of a fine-motion trajectory through the selected contact states is facilitated by
the nearly hyperpolyhedral nature of local contact space. The trajectory’s dis-
tance to contact space facets representing undesired contact state transitions
1s mazimized, and the resulting fine-motion plan is expressed as a sequence of
hybrid control strategy specifications. Fine-motion trajectories produced by this
technique have been successfully ezecuted by a Zebra-0 robot.

'With the exception of section 4 and related appendices, this paper appeared in the
Proceedings of the 1993 IASTED International Conference on Robotics and Manufacturing,
pp- 206-8.
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1 Introduction

In many assembly tasks, particularly those involving small clearances, the
set of feasible motions is centered around a single, nominal trajectory which
arises naturally from the geometries of parts [11][14]. Due to the limited
rotational freedom permitted by the narrow clearances, the local contact spaces
surrounding points along the nominal trajectory are nearly hyperpolyhedral,
providing simplified motion-planning domains in which to construct piecewise-
linear trajectories.

In our “two-phase” approach to fine-motion planning, a nominal trajectory
is supplied a priori by a high-level planner such as KA8 [11], which derives
trajectory configurations from geometric constraints alone, disregarding the
effects of uncertainty. The critical points are then identified in the nominal
trajectory, consisting of the problematic configurations where jamming and
collisions are likely to arise in the presence of uncertainty. Assuming the
insertion clearances are narrow, as is usually the case in industrial assembly,
each critical point configuration is surrounded by a local, 6-dimensional contact
space whose locally “flat” surfaces are well approximated by affine spaces. As
described in the companion paper [4], an adjacency graph of contact states
1s constructed for each local contact space to support the planning of contact
state transitions and fine-motion trajectories.

The present paper focuses on the planning of fine motions within a local
contact space. Fine-motion planning proceeds at two hierarchical levels: at
the higher level, a heuristic search of the adjacency graph of contact states
yields a traversable sequence of contact states, whose traversal may be viewed
as carefully maneuvering the assembly past the critical point in question with-
out sticking or jamming. Restricting the assembly to a single, predetermined
sequence of contact states mitigates the complexity of path planning. At the
lower level of planning, a piecewise-linear trajectory is generated within the
nearly hyperpolyhedral domain of the chosen contact states. The output of
the fine-motion planner consists of a sequence of hybrid control strategy spec-
ifications for traversing each selected state.

In the two-phase approach to fine-motion planning, uncertainty issues are
considered only after the initial creation of a nominal trajectory. This ap-
proach contrasts with the LMT methods [8][12], which synthesize multistep,
nominal trajectories in a “single phase”, through the recursive backchaining
of subgoal regions. Unfortunately, the double-exponential complexity of the
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Figure 1. Adjacency graph of contact states.

LMT approach [3] has prevented its implementation outside of very restrictive
domains. Our fine-motion planning technique differs from two phase methods
based on corrective compliance [13][15][16], where a control strategy is derived
to correct deviations of the moving part from the nominal trajectory. The
present approach replaces the nominal trajectory with fine motions planned
within the local contact spaces surrounding the critical points in the original
trajectory. Our restriction of the assembly motion to a determinate sequence
of contact states is also characteristic of the manual methods [2][16], whose
selection of a single sequence of contact states facilitates the manual derivation
of command trajectories, applied forces, and compliances. Whereas our tech-
nique relies on heuristics to select an appropriate sequence of contact states
within a graph representation of contact space, Donald [7], Laugier [10], and
the authors [6] previously employed heuristics at the lower planning level of
trajectory formation. Finally, our iterative refinement of the command trajec-
tory resembles the flezible trajectory techniques of gross motion planning [1],
in which the trajectory’s clearance with respect to environmental obstacles is
iteratively optimized.



Figure 2. Primitive contact bounds.

2 Representing contact space

To support the heuristic search for a traversable sequence of contact states
within a local contact space, the multidimensional facets of the contact space
are enumerated and represented in an adjacency graph of contact states. A
portion of the contact state adjacency graph for the first critical point config-
uration of the square peg-in-hole assembly is shown in figure 1. The analysis
and construction of local contact spaces is described in detail in the companion
paper [4] and reviewed here briefly.

Within each local contact space, the moving part’s pose is characterized as
a perturbation vector X in R¢, comprised of a translational dx = [dz dy dz]T
and a rotation §x = [§z 6y §z]T. The local 6-dimensional C-space surrounding
a critical point is bounded by 5-dimensional C-surfaces, which correspond
to the primitive contacts (PCs) that can occur near the critical point. For
polyhedral objects, each PC is a single-point contact involving either a convex
vertex and a face, or two convex edges. The C-surface of primitive contact
PC; is characterized by a function f; : % — R. A moving part pose X lies on
the C-surface of PC; if f;(X) = 0. The poses for which f;(X) < 0 lie on the
side of the forbidden zone, wherein the assembly parts overlap. The derivation
of a PC function f;, and a formula for a PC’s hyperplanar tangent surface, are
found in [4] and Appendix I, respectively.

The 5-dimensional contact space facet associated with a PC may have bor-



FIPE dpidds

Figure 3. A C-state sequence. Figure 4. Obstacle PCs.

ders corresponding to the finite extent of the assembly part’s surface features.
In figure 2, the contact involving vertex V and face F is bounded by the convex
edge shared by F' and its adjacent face G. The poses X € R® associated with
the PC formed by V and F' are confined to the halfspace g(X) < 0, where g
1s just the C-surface function for V-against-G.

The point set S; in R® associated with a primitive contact PC; consists of
the portion of the contact’s C-surface that lies behind its bounding PCs’ C-
surfaces but not in the forbidden zone. When computing the distance between
a command trajectory segment and an “obstacle” PC (see section 3), it is
preferable to represent the PC as a convex set. PC;’s point set S; is generally
concave, however, owing to the concavity of the forbidden zone. Ignoring the
presence of the forbidden zone, PC; and its n; bounding contacts PC;; define
a convex point set

SZI = {X | fz(X) = 0, fU(X) < 0, _] = lnz} (1)

When calculating the distance between a trajectory segment and the point set
S’ of an obstacle PC, the PC’s closest point may actually lie in the forbidden
zone of a closer, intervening obstacle PC. Since we are typically concerned
with the distance to the closest obstacle PC, however, the correctness of more
distant PCs’ proximities is relatively unimportant.



3 Planning a fine-motion path

Fine-motion planning in local contact space takes place at two hierarchical lev-
els: the higher-level selection of an appropriate sequence of contact states, and
the lower-level formation of a piecewise-linear command trajectory through the
chosen contact states. At the higher level, a heuristic search of a contact state
adjacency graph (see figure 1) yields a traversable sequence of contact states.
The sequence begins at a designated start state, such as free space, and ends
at a suitable goal state, such as a 1- or 2-dimensional contact state shared by
the local contact space surrounding the next critical point. Figure 3 shows a
contact state sequence for the square peg-in-hole assembly.

In best-first search of the contact state adjacency graph, the relative merits
of alternative trajectories are embodied in a cost function, combining (1) the
number of contact state transitions, (2) the difficulty in distinguishing the
force signatures of the chosen contact states from likely “error states” outside
of the sequence, and (3) the danger that the assembly will deviate from the
selected path and encounter an obstacle PC (see figure 4). The latter criterion
depends on the quality of the command trajectory formed within the chosen
contact states.

The fine-motion trajectory is defined by the sequential placement of goal
poses within the selected contact states. Each contact state associated with
the formation of a new contact is assigned an arbitrary goal pose G, which
together with its predecessor S, defines a linear trajectory segment L (see figure
5). The goal pose G is then iteratively modified to increase the trajectory
segment’s clearance with respect to the obstacle PCs adjacent to the traversed
state. The obstacle PCs are just the constituent PCs of the traversed state’s
adjacent, lower-dimensional “son” states, minus the PCs of the start and goal
states.

The trajectory segment’s proximity to each obstacle PC influences the esti-
mated likelihood that the desired contact state transition will fail, as embodied
in the following cost function:

1
> : , (2)
C — dist(L, S})
where proximity function dist(L, S!) becomes negative when the trajectory

segment overlaps the obstacle PC, and asymtote C is the overlap distance at
which the cost becomes infinite. Note that the closest obstacles are the most

cost(T) =




Figure 5. Measuring a trajectory’s distance to obstacle PCs.

significant. The method of steepest descent is employed to perturb the goal
pose along the goal state’s surface until a minimum is encountered.

In its simplest form, the trajectory refinement procedure requires that an
known ratio o, relates the expected degree of rotational uncertainty to trans-
lational uncertainty. To treat translational and rotational distance measure-
ments equitably, a linear transformation 7 : %® — R® is applied to contact
space, “stretching” its rotational component by a factor of o,.. As described in
Appendix II, the descriptors N;, D; of each PC; hyperplane are modified and
represented in the scaled contact space. The distance calculations described
below are then performed in the scaled contact space, where a unit of trans-
lational clearance with respect to an obstacle represents the same margin of
safety as a unit of rotational clearance. A more precise treatment of uncer-
tainty is presented in section 4, in which pose uncertainty is characterized by
hyperellipsoids and their forward-projections in contact space.

The distance from a trajectory segment to an obstacle contact PCy is com-



puted as the shortest distance from PCy’s point set Sj to the trajectory com-
ponents L, S, and G. As figure 5 shows schematically in 3 dimensions, Sj has
one 5-dimensional (shaded) facet associated with PCj itself and two border-
ing 4-dimensional facets arising from its bounding contacts PC4 and PCp.
Since the uncertain trajectory is confined to the traversed state’s C-surface,
the relevant obstacles are in fact the (darkened) portions of these facets that
intersect the traversed contact state.

Procedures for obtaining affine space approximations Ag, Ao, Aop for these
facets are described in Appendix III, where a function ASpace computes the
affine space of a contact state by intersecting its constituent PCs’ affine spaces.
The affine spaces for the obstacle facets in figure 5 are thus obtained:

Ay = ASpaceg(PCo, PCh)
Aoa = ASpaceg(PCo, PCa, PCy) (3)
Aop = ASpaceg(PCy, PCg, PCy)

The distance from an obstacle facet’s affine space to trajectory component L,
S, or G may be computed as described in Appendix IV, which presents a gen-
eral procedure for calculating the closest points, and the separating distance,
between two affine spaces. Referring once again to figure 5, the closest obstacle
facet to L’s interior is Agg or Agp, provided the measurement extends to a
point on L between S and G. The closest obstacle facet to G is Ag, provided
the measurement extends to a point on Ag between Apy and Agp. Otherwise,
the closest facet is Aga or Agp.

3.1 Hybrid control strategy specification

Once a command trajectory has been synthesized in local contact space, each
segment of the trajectory is expressed as a hybrid control strategy specifica-
tion. Every specification includes (1) a set of position-controlled axes, i.e., a
basis for the traversed state’s affine space, (2) a complementary set of force-
controlled axes, (3) the unit velocity of the moving part frame, as determined
by the start and goal point of the trajectory segment, and (4) the termina-
tion condition for the control strategy. The traversed state’s affine space is
just A = ASpaceg(PC, ... PC,), where PC; ... PC, are the PCs of the tra-
versed state. A basis for A’s complementary vector space provides the set of
force-controlled axes. At a minimum, the termination condition is just the
anticipated contact wrench, which is derived from the contact geometry of the

newly established PC.



Figure 6. Forward-projections of ellipsoidal uncertainty regions.

4 Fine-motion planning with uncertainty

In this section, the trajectory refinement process is augmented with a more
explicit analysis of uncertainty. Pose uncertainty is characterized as a hy-
perellipsoid € (hereafter called an “ellipsoid”) surrounding each succeessive
command pose in the fine-motion trajectory (see figure 6). In the presence
of velocity uncertainty, an uncertainty ellipsoid sweeps out a conic, forward-
projection volume ®. The trajectory refinement process is modified here to
maximize the clearance of ®, rather than the trajectory segment, with re-
spect to obstacle PCs. Forward-projections are mentioned by authors of the
LMT approach [8][10], who rely instead on back-projections and pre-images.
Backpropagation is more suitable for planning which allows a nondeterminis-
tic sequence of contact states. Since the contact space facets to be traversed
are known prior to uncertainty analysis in our approach, there is little to be
gained from backpropagation. As demonstrated in the following sections, the
construction of forward-projections based on ellipsoidal uncertainty models is
both topologically simple and computationally inexpensive.



Figure 7. Uncertainty ellipse and velocity cone.

4.1 Representing uncertainty

The uncertainty region surrounding a trajectory point S is characterized as
an ellipsoidal point set residing in the affine space of the trajectory point’s
contact state. The point set is bounded by an ellipsoid centered at S, with a
surface equation expressed in a coordinate frame whose axes C;...C,, form
a basis for the contact state’s vector space. The surface equation XTAX =1
expresses the n-dinensional ellipsoid in the coordinate frame of the contact
state. The symmetric, n X n matrix A may be diagonalized (or expressed a
priori as a diagonal matrix):

A= BDB" (4)

where the columns of B are the principle axes of the ellipsoid (the eigenvec-
tors of A), and diagonal matrix D holds the corresponding eigenvalues. Each
eigenvalue D;; = 1/r?, where r; is the radius corresponding to the ith principle
axis. In figure 7, for example, an uncertainty ellipse € lies in the affine space
of a 2-dimensional contact state, with basis vectors C; and C,. Centered at
trajectory point S, the ellipse has two principle axes B1, B,, which are defined
in Cq, C,-space.

Velocity uncertainty is characterized as a velocity cone ¢ whose ellipsoidal
base bounds the maximum lateral displacement along any direction U per-
pendicular to the unit command velocity V. As shown in figure 7, the rate
of increase in the uncertainty along translational axes X; is assumed to be



a constant p;, while the rate of increase along rotational axes X, is denoted
pr. The rate of increase in uncertainty along a general perpendicular U 1 V
is provided as a function »(U, V), which returns the maximum displacement
along U per unit command displacement along V. The ellipsoidal bases for
the velocity cones of all unit command velocities in C-space are represented
en masse as a single, 6-dimensional ellipsoid:

%Xf + %XZZ + %Xg + %XZ + %Xﬁ + %Xg =1 (5)

¢ ¢ ¢ = r r
The velocity cone base for a given command velocity V is the 5-dimensional
ellipsoid where the ellipsoid (5) intersects the 5-dimensional vector space or-
thogonal to V. For a general lateral displacement direction U | 'V, the rate of
uncertainty is calculated by determining the point on the ellipsoid of equation
(5) corresponding to direction U. From Appendix V, the point in question is

AuU, where
1
Au = 2 2 2 2 2 2 (6)
P L A L R

Finally, we assume that a unit of rotational velocity gives rise to o, times the
(translational and rotational) uncertainty arising from a unit of translational
uncertainty. Accordingly, the command velocity is “stretched” along the ro-
tational dimensions of C-space by a factor of o,, yielding a vector V' whose
length reflects the degree of uncertainty associated with V:

Vi

Vs

V3

o Vs (7)
o Vs

o Ve

In sum, the rate of increase in uncertainty along U associated with a command
velocity is estimated to be

v(U,V) = Ay V'] (8)

where Ay and V' are calculated as in equations (6) and (7).
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Figure 8. Cylindrical approximations of conic projections.

4.2 Computing forward-projection cross-sections

Assuming the velocity cone angle is small, a conic forward-projection may be
approximated by a cylindrical volume whose ellipsoidal radii remain the same
throughout the trajectory segment. As shown in figure 8, an uncertainty vol-
ume €g sweeps out a cylindrical forward-projection ®(, which approximates the
expanding ®¢ in figure 6. The uniformity of ®; along the command velocity,
as well as lateral uniformity achieved through scaling in section 4.3, simplifies
the task of measuring the forward-projection’s proximity to obstacles. As seen
in figure 8, the lateral expansion due to velocity uncertainty is nevertheless
acknowledged when recovering the dimensions of the ellipsoid projection €.
The cylindrical approximation of a forward-projection is represented by its

11



Figure 9. Computing the cross-section of a forward-projection.

cross-section €*, which sweeps out the cylindrical volume ®' along the com-
mand velocity. The cylindrical volume @ in figure 8, for example, is swept out
by cross section € (not to be confused with €’s nonperpendicular projection
€p onto the goal state). An ellipsoidal cross-section €* is computed as follows.
We consider the case of an (n + 1)-dimensional ellipsoid € projected through
an (n+ 1)-dimensional contact state, along command velocity V. As shown in
figure 9, the cross-section is obtained by projecting the ellipsoid onto an affine
space I' which is perpendicular to the command velocity. T' is defined by the
goal point G and a basis U;...U, for the subspace of the traversed state’s
vector space which is orthogonal to V. The projection onto I' is accomplished
by projecting surface points of € onto I' and recovering the ellipse determined
by the projected points. Defined in U, ... U,-space, the projected points X
are expressed as displacements relative to the goal point, which serves as €*’s

12



Figure 10. Scaling contact space to obtain uniform ellipsoid dimensions.

centroid. Recovery of €’’s surface equation XT A*X = 1 will require n+(%) coef-
ficients in its symmetric descriptor matrix A*, so we project surface points cor-
responding to lateral directions Uy, ..., U,,(U;4+U;)/2, (3,7 € 1...n,1 # j).
In the example of figure 9, where n = 2, the directions are just U, U,, and
(U;+U;)/2. The surface points X1, X5, X2, of € corresponding to these three
directions may be computed as shown in Appendix V. The projected points
X7, X5, X7,, parameterize three equations in the three projected ellipsoid co-
efficients:

XTAax: =1

X3t A X 1 (9)
XIZT A Xy, =1

In general n-space, the solution of n+(7}) equations in as many unknowns yields
the coefficients in an n X n matrix A*. Finally, A* is diagonalized to obtain
the principle axes B} and corresponding radii (expressed as eigenvalues 1/7;?)
of the ellipsoidal cross-section defined in U, ...U,-space: A* = B*D*B*T.
As required in section 4.3, we define a 6 X n matrix C* whose columns hold
U, ...U,, so that points defined in U, ... U, -space, such as X satisfying el-
lipsoid equation XT A*X = 1, may be transformed to global point C* X € RS,

13



4.3 Trajectory refinement

Trajectory refinement with ellipsoidal uncertainty regions proceeds as described
in section 3, except that the forward-projection’s clearance, instead of the tra-
jectory’s, is iteratively maximized. To facilitate the distance measurements, a
linear transformation 7" : % — R® is applied to contact space to make the
ellipsoidal cross-section €* of the cylindrical forward projection ®’ spherical
(see figure 10). To achieve uniformity of €’s radii r;...7,, we stretch con-
tact space along each of €*’s major axes, making the scaled radii match the
largest radius r;. Specifically, contact space is scaled along the jth major axis
by a factor of r;/r;, for j = 1...n. Since each major axis B} is defined in
U, ... U,-space, it must first be transformed to the global frame. Contact
space may be scaled along the global axes C* B} by the scaling factor r;/r;, as
described in Appendix II. Once the forward-projection’s cross-section is uni-
formly spherical with radius r;, its distance to an obstacle PC is just d — r;,
where d is the trajectory segment’s distance to the obstacle PC (see section
3). For distance measurements to the goal point G, the proximity vector W
is generally nonperpendicular to the velocity V, so the the measurement is

modified as d — r; /(1 — V - W).

4.4 Recovering successive uncertainty ellipsoids

The uncertainty ellipsoid surrounding each trajectory point must be projected
onto the affine space of the subsequent contact state, where it will, in turn,
influence the refinement of the subsequent trajectory segment. As shown in
figure 11, however, a conic forward-projection onto an affine space A yields a
projected region whose centroid G’ does not coincide with the projected image
G of the cone’s apex S. In order to retain the goal point G of a trajectory
as the centroid of the projected region and avoid a more complicated recovery
of uncertainty ellipsoids, we approximate the ellipsoidal projection as follows.
The procedure used in section 4.2 to compute a cylindrical forward-projection’s
cross-section is now modified to project the cross-section onto the affine space
of the goal state. After recovering the resulting ellipsoid, the radii along its
principle axes are increased to represent the lateral expansion arising from
velocity uncertainty.

As in section 4.2, we consider the projection of an (n + 1)-dimensional
ellipsoid € through an (n + 1)-dimensional contact state. As illustrated in
figure 12, for example, an ellipsoid €p surrounding the starting point S of a

14



Figure 11. Migration of a conic projection’s centroid.

trajectory segment is projected onto the affine space of the next contact state
in the trajectory, yielding an ellipsoid €. The affine space of the goal state
is defined by the goal point G and a vector space whose basis is contained in
the columns of a 6 X n matrix C'. The same surface points X;, X5, X5, of €
are projected as in section 4.2. Their projections X7, X}, X, are expressed in
C"s column-space as displacements relative to the goal point. The projected
points parameterize three equations in the three coefficients of the ellipse €:

X;;A'X; =1
X TAX, =1 (10)
XllzTA’XIm =1

The diagonalization of A’ = B'D'B'T yields principle axes B} and B),
whose radii are extracted from eigenvalues 1/7/* and 1/r4?. As in section 4.2,
this procedure generalizes to the case of an n-dimensional goal state, where
n + (3) goal projected points are required to determine the n + (%) coeflicients
of symmetric matrix A'.

Finally, as shown in figure 12, the effects of velocity uncertainty are repre-
sented by enlarging the projected uncertainty region along its major axes. The
lateral deviation vector U, L V corresponding to major axis B; is obtained as

U, = CB, - (CB,-V)V (11)

1
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Figure 12. Recovering the projected uncertainty region.

and the velocity cone expands laterally along U! at a rate of »(U., V). The
total lateral expansion along U] throughout the trajectory segment is therefore

w = WULV) - |G—-§ (12)
and the radius r; along principle axis B} is accordingly increased by

v;
13

1—|CB; - V| (13)

Note that the typical nonperpendicularity of the major axis and the command

velocity is accommodated in equation (13), allowing the projected ellipsoid to
elongate along nonorthogonal projection planes.

A’l"i =

16



Appendix I

Given a fixed pose X, € R®, the outward normal N of a PC’s C-surface tangent
hyperplane is obtained by differentiating the PC’s surface function f(X) with
respect to the 6 components of the pose and normalizing the resulting vector.
of
X,
vi=| (14)

9f
0Xs / X=X,

and f
Vv
— 15
Vf] 1o
Taking f(Xog) as the PC’s approximate distance to Xy, the surface tangent is
approximated by the hyperplane

N-X =D (16)

where

D; = N; - Xo — fi(Xo) (17)

Appendix II

A linear scaling of 6-dimensional C-space may be specified by a 6-element
scaling vector ¢ and accomplished with a transformation 7 : % — R® which
maps each point X € R® to X' € R®, where X! = #X;, 1 = 1...6. The
transformation 7' maps a halfspace {X € R¢|N - X < D} to a new halfspace
{X € RN’ - X < D'} whose descriptors N’ and D’ are computed as follows.
Let

N; .
N*“c R Nfi== (i=1...6) (18)
ag;
Then
N' = N D' = DN-N' (19)
IN-| 7
To achieve a uniform expansion of C-space along its three rotational axes by

a factor of og, use scaling vector = [1 11 o, o, o.]T.
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Alternatively, a linear scaling of 6-dimensional C-space may be specified by
n < 6 scaling factors oy ...0, and n orthonormal axes U;...U, of 6-space.
We first augment the n scaling factors with 6,41 = -+ = 06 = 1 and the n
axes with 6 — n complementary axes U, ... Usg, so that U; ... Ug form an
orthonormal basis for 8. Then transformation 7' : 8 — R is defined

=1

Halfspaces are transformed as previously, except the normal N* of equation
(18) is now computed as follows.

. U; (21)

Appendix III

The contact state S formed by n primitive contacts PC; ... PC,, has an asso-
ciated contact space facet of dimension 6 — n, provided that the PCs’ normals
N;...N,, are linearly independent. Given a pose X € R® about which to
linearize contact space, the facet of S may be approximated by an (6 — n)-
dimensional affine space, denoted by ASpacex(PC; ... PC,). This affine space
is described by a point P and a vector space basis V;...Vg_, in R® and
these descriptors may be computed as follows. For P, choose the point as-
sociated with any contact space vertex adjacent to S (i.e., a 0-dimensional
contact state whose 6 associated PCs contain PC; ... PC,). Let N;...N, be
C-surface tangent normals for PC; ... PC,, as computed in Appendix I. The
vector space basis V;...Ve_, L N;...N,, is readily computed by applying
the Gram-Schmidt procedure to Ny ...N,,U;...Ug_,, where U; ... Ug_,, are
6 — n standard axes in %%, each independent of N; ... N,,.

Appendix IV

Given a pair of affine spaces A;, A, in R® with respective point and basis
descriptors P, U;...U,,, and Py, V;...V,,,, calculate the the closest point
on A; to A, and the closest point on A, to Aq, as well as the shortest distance
from A; to A,, as follows. Let U;...U,,,Upypyr...U,, be an orthonormal

18



basis for span{U;...U,,,,V;...V,,}. Compute the proximity vector W
and the distance of separation d:

R=P, P, (22)

W =R — i(R-Ui) U; (23)
'W*

W= (24)

i=R-W (25)

Now let U;...Up,, V1... Ve be a basis for span{U; ... Uy, Vi... V.. },

with m}, < my. Then

!
my

P, + Z AU +dW = P, + Z A2V, (26)
=1 =1

for some A11...A1m,, A2t .. .)\Zm;. The term P; 4+ > A;U; is the closest

point on A; to A,, and the term P, + E?;zl A2;V; is the closest point on A, to
A;. (26) is a consistent system of 6 equations in m; + m}, < 6 unknowns, and
its solution parameterizes the closest points on the two affine spaces.

Appendix V

Given an ellipsoid whose principle axes correspond to the standard axes of
n-space:

6
Y DX} =1 (27)
=1

it 1s easy to show that the point X on the ellipsoid’s surface that corresponds
to the direction U is just AgU where

A = F——— (28)
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5 Implementation and Discussion

The fine-motion planning technique described above was implemented in Pop-
11, Prolog, and C running on a Sun-4 workstation. The planner has produced
trajectories for a square peg-in-hole assembly (e.g. see figure 3). The refine-
ment process is rapid, producing executable trajectories in a second or less.
Peg motions specified by the planner have been performed by a Zebra-Zero
robot. The robot operates in position-servo mode to execute command dis-
placements between goal points in contact space, as well as to displace along
the contact normals in order to achieve nominally specified bias forces. A vi-
sual servoing facility has also been employed to correct positioning errors at
each goal pose. Future work will explore the on-line acquisition of compliances
through associative reinforcement learning.

6 Conclusion

A methodology for synthesizing fine-motion plans in the contact space of
narrow-clearance assemblies was presented. Supplied with a nominal trajec-
tory computed a prior:, fine-motion planning proceeds within the local con-
tact spaces surrounding problematic trajectory sites where the assembly may
fail. The local contact space surrounding each critical point is searched for a
traversable sequence of contact states, and a command trajectory is synthe-
sized for traversing the selected states. Our technique has produced trajecto-
ries for a square peg-in-hole assembly which have been executed successfully
by a Zebra-0 robot.
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