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Abstract!

This report summarizes progress in image understanding research at the University of
Massachusetts over the past year. Many of the individual efforts discussed in this paper are
further developed in other papers in this proceedings. The summary is organized into several
areas:

1. Mobile Robot Navigation

2. Motion Analysis

3. Interpretation of Static Scenes

4. Image Understanding Architecture
5. RADIUS Image Exploitation

The research program in computer vision at UMass has as one of its goals the integration of a
diverse set of research efforts into a system that is ultimately intended to achieve real-time image
interpretation in a variety of vision applications.

1. Mobile Robot Navigation
1.1. Automated Model Acquisition and Extension

The focus of the UMass mobile robot navigation project is robust landmark-based navigation,
with a focus on automated model acquisition ans model extension. Thus, for navigation in
unmodelled or sparsely modelled environments, our general scenario would involve the initial
acquisition of prominent visual features that can serve as landmarks. This initial phase of partial
model acquisition is necessary because there are few situations where a model of a complex
outdoor scene will be available a priori. Once a sparse model is available, then the vehicle
position and orientation (i.e. pose) can be recovered by recognizing landmarks. The model
extension phase involves tracking new unmodelled features (points and/or lines), and using the
landmarks and partial model to determine the camera pose for triangulation of the new features
and incorporation into the 3D model.

Most of the algorithms have been described in previous TUW proceedings and the general vision
literature [Beveridge 92, Kumar 92, Sawhney &2, 93]. These algorithms have been shown to be
very accurate in many indoor experiments using a camera mounted on a mobile robot and on a
moving robot arm. One new experiment that integrated several components involved the
detection of shallow structures - an aggregatation of line features that can be approximated in an
image sequence as a frontal planar surface. The 3D position of these features served as the
acquired model, with a depth error of less than 4%. As motion of the camera continues, the
model is extended with depth information on other tracked points to accuracies of less than 2%
error in depth.

1This research has been supporied in part by the Defense Advanced Research Projects Agency under TACOM contract number
DAAE07-91-C-R035, HDL contract number DAAL02-91-K-0047, and TEC contract number DACA76-92-C-0041, by the
National Science Foundation under grant CDA-8922572, IR1-9113690, and IR1-9208920, and by RADC under contract number
F30602-91-C-0037.



1.2. Status of the UMass Mobile Perception Laboratory (MPL)
1.2.1. Physical Description

The UMass Mobile PercetEtion Laboratory (MPL) is based on a significantly modified
HMMWYV. The design of the overall system includes actuators and encoders for the throttle,
steering column and brakes that closely match those being used by CMU, controlled by 68020's
in a 6u VME cage. The low-level control software for controlling speed and steering angle will
also be the same as that of CMU. The modifications and component installation is being
performed by RedZone, Inc., a Pittsburgh-based firm specializing in custom robotics, and was
completed at the beginning of February 1993.

Electrical power is supplied by a 10kW diesel generator, whose output is split into two SkW
circuits. The first circuit is conditioned and backed by a SkW uninterruptible power supply
(UPS) system, and is used to supply power to all sensitive electronic equipment. The second
circuit is not conditioned and is used to power the air conditioners. Both circuits are attached to
a shore-power hook-up that provide an alternative power source to the on-board generator.

The physical lay-out of equipment was designed to
1) provide for two on-board programmer stations,
2) minimize destructive modifications to the body of the vehicle, and

3) keep the center of gravity as far forward as as possible, in order to minimize stress on the
suspension system.

The first Programmer station is located in the HMMWYV's passenger seat, with a 17" color x-

terminal fixed to the metal platform between the passenger's and driver's seats. The second

programmer station is located behind and slightly above the driver, and includes a car seat,

%ur}tinfl brackets for both an SGI color terminal and a small SONY monitor for viewing raw
signals.

The back of the vehicle is filled with equipment. On the driver's side of the vehicle, behind the
second programmer station, is all equipment associated with providing power. On the
passenger's side there are four enclosed, air conditioned 19" computer frames for the on-board
computer systems. The first frame will hold the 6u VME cage for throttle, brake and steering
controllers and a second 6u VME cage for holding digitizers, image frame stores and a Datacube
MaxVideo20. The second computing frame will contain a 9u cage for the Silicon Graphics four-
node multiprocessor, as well as the SGI's disk drives, power supply and (removable) tape drive.
The third frame is reserved for the Image Understanding Architecture (IUA). The fourth frame is
for future additions, including video recorders for collecting data and recording experiments.
To%ether, the four frames take up the length of the vehicle's bed, as do the programmer station,
UPS cage and generator on the left side.

1.2.2. Sensor Configuration

The vehicle's sensor package includes a Staget, which is a rotating stabilized platform bein
supplied to the UMass and CMU vehicles by TACOM. The UMass Staget is mounted on a leve
platform located at the center of the roof of the cab. We are planning to put two CCD color
cameras on the Staget, one with a wide angle lens and the other with a teleg oto lens. The first
will be used to locate landmarks in the larger scene, and the second will be used for landmark
matching and accurate pose refinement. The Staget will also contain a FLIR sensor. The
Staget's hardware is mounted above the driver's head in the enclosure originall occupied bgr the
HMMWV's NBC system. Forward of the Staget, at the edge of the cab's root, is a long (5" by
12" by 12") rectangular enclosure with a glass front and hinged roof for forward-looking stereo
cameras. '



1.2.3. Software Environment

MPL is an experimental laboratory for testing and integrating different approaches to problems
in autonomous navigation, including, but not limited to, landmark-based navigation, obstacle
detection and avoidance, model acquisition, and road following. It is therefore important that
MPL have a software environment where multiple visual modules, addressing different subtasks,
can be easily integrated, and where researchers can quickly experiment with different
combinations and parameterizations of those modules. At the same time, MPL's software
environment must be efficient enough to meet the demands of real-time navigation research.

The need to balance between flexibility and efficiency has led us to design a software
environment with two major components: the ISR3 in-memory data store, and a graphical
prggramming interface adapted from Khoros. ISR3 is the glue that binds independent visual
modules together [Draper 93a). It is an in-memory database that allows users to define structures
for storing visual data, such as images, lines and surfaces. ISR3 then serves as a buffer, so that,
for example, lines (Eroduced by one module can be used by another, even if the second module is
run later or on a different processor than the first. ISR3 also provides modules with efficient
spatial access routines for visual data, and protects data from being simultaneously modified by
two or more concurrent processes. The graphical programming interface allows programmers to
easily sequence modules and modify their parameters.

1.2.4. Navigation System

A preliminary version of a behaviour-based system for determining vehicle pose from known
landmarks has been designed. It is assumed that pose estimates and associated covariance (error)
estimates are returned from several subsystems (GPS, INS, Landmarks, and dead reckoning)
asynchronously. These estimates are continually combined via a Kalman filter into a single pose
estimate (and associated covariance matrix estimate) and stored in a vehicle state vector. The
vehicle pose error is continually monitored in a simple loop which branches to a behavior
selection strategy when the vehicle pose error exceeds a preset threshold.

The system also contains a video image frame buffer and STAGET control subsystem. This
system maintains image and pose temporal histories (time-stamped images and correslponding
pose estimates) in a fixed-length first-in last-out queue. This information is available to the
remainder of the system. The STAGET control interface permits the STAGET to be
repositioned relative to the vehicle and maintains information about the various STAGET

arameters and conditions, including information about the current lens aperture and focal

ength.

All the landmark matching and pose refinement algorithms have been tested extensively,

although to a _[g;eat extent only in indoor domains. A large J)ortion of the original LISP has been
orted to C. The plan for the coming year of research is to develop the following behaviors: road
ollowing, obstacle avoidance, landmark detection, landmark tracking, and model extension.

Initially, two types of landmark processing behavior will be specified. The first behavior for

landmark tracking assumes that a landmark (or set of landmarks) are currently being tracked via

the STAGET and all that is necessary is that the vehicle pose be recomputed from the tracked

landmarks. However, there are computational tradeoffs as a function of the speed of the vehicle,

?rnad the distance and number of landmarks. Thus, not all landmarks may be tracked frame by
me.

The second landmark navigation behavior assumes that no landmarks are currently being tracked
and therefore a new landmark must be acquired. This will involve access to a stored 3D model
of the camdpus environment (which initially has been constructed a priori) in order to control the
Staget and window on subimages via the Staget. However, the availability and density of
landmarks will vary significantly in different areas of the test environment, and therefore model
extension will be a necessary goal. Ultimately we seek to demonstrate that an accurate 3D model
of the environment can be acquired via exploration in a purely bottom-up manner, while carrying
out independent goal-orienu:tcil navigation tasks. :



1.3. Qualitative Navigation via Image-Based Homing

If the world changes or the robot fails to recognize a landmark, the robot's perception of the
world will not correspond to its current map of the world. However, there is ambiguity in
whether the errors are 1n its perception or its map, and if the latter, it must update its map.

Pinette [Pinette 91] has been developing a principled approach to automatic map construction
and maintenance. In place of the usual construction of a geometric map, snapshots of the world
at selected target locations along the route are stored as the robot's knowledge of that path. By
noting places where a set of memorized routes intersect, a topological "road map”of routes and
junctions are represented. To retrace a stored route, a qualitative homing algorithm based on
purely local visual servoing is employed to home between successive target locations along the
route. This homing algorithm uses no geometric model or positional information; rather, it
servos directly on the stored imaﬁc for a target location, choosing headings that reduce the
difference between features of the current bearings and those in the target snapshot. A
"consistency-filtering" algorithm has been developed for handling incorrectly matched landmark
features [Pinette 92]. It is shown that this algorithm guarantees reliable homing as long as more
than two-thirds of the landmarks are correctly identified.

A very robust implementation of a robot navigation system has been developed usin% image-
based homing with a spherical mirror for encoding a 360 degree view at each target location.
This navigation system has been implemented as part of an indoor manufacturing automation
application domain. It is not yet clear whether these techniques are directly applicable to
unconstrained outdoor domains and large-scale space.

2. Motion Analysis
2.1. Multi-Frame Structure from Motion

In robot navigation a model of the environment needs to be reconstructed for various
applications, including path planning, obstacle avoidance and determining where the robot is
located. Traditionally, the model was acquired using two images (two-frame Structure from
Motion) but the acquired models were unreliable and inaccurate. Generally, research has shifted
to using several frames (multi-frame Structure from Motion) instead of just two frames.
However, almost none of the reported multi-frame algorithms have produced accurate and stable
reconstructions for general robot motion. The main reason seems to be that the primary source
of error in the reconstruction - the error in the underlying motion - has been mostly 1gnored.
Intuitively, if a reconstruction of the scene is made up of points, this motion error atfects each
reconstructed point in a systematic way. For example, if the translation of the robot is erroneous
in a certain direction, all the reconstructed points would be shifted along the same direction.

Recently, Thomas [Thomas 93a,b] has mathematically isolated the effect of the motion error (as
correlations in the structure error) and has shown theoretically that including these correlations in
the computation can dramatically improve existing multi-frame Structure from Motion
technicgues. In several experiments on our indoor robot, the environmental depths of points from
15 to 50 feet away from the camera (and for which ground truth data was available) were
reconstructed with errors in the 1-3% range. In one further experiment, the multi-frame full-
correlation algorithm was first used to create a model (a set of points) of an indoor hallway from
several initial frames of image data. This model was then used to compute the pose of the robot
over subsequent frames using Kumar's Fose recovery algorithm. The estimated robot pose and
afxctual rgbot position in the hallway diftered by a maximum of three to four inches over a 12.8
oot path.

2.2. Recovering Affine Transforms from Image Sequences

Deformations due to relative motion between an observer and an object may be used to infer 3-D
structure. Up to first order these deformations can be written in terms of an affine transform.
The recovery of an affine approximation to image deformation has recently been the focus of a
large amount of research, and has found application in such disparate areas of computer vision as



image stabilization, optical flow computation and segmentation, structure from motion, stereo,
and texture, and obstacle avoidance.

Manmatha [Manmatha 93] has developed a technique for measuring the affine transform locally
between two image patches using weighted moments of brightness. Unlike previous methods,
this technique correctly handles the problem of finding the correspondence between deformed
image patches, as is necessary for a correct computation of the affine transform. It is capable of
determining affine transforms of arbitrary size, whereas most previous approaches are limited to
small transforms. It is first shown that the moments of image patches are related through
functions of affine transforms. Findin% the weighted moments is equivalent (for the purposes of
measuring the affine transform) to filtering the images with gaussians and derivatives of
gaussians. In the sgecial case where the affine transform can be written as a scale change and an
n-plane rotation, the zeroth and first moment equations are solved for the scale. In experiments
on synthetic and real images for this case, the scale was recovered robustly and shown to give
reliable depth estimates. Work is continuing on extending the basic techniques to the general
case.

2.3. Multi-Sensor Dextrous Manipulation

Grupen and Weiss [Grupen 93] have continued their work on a multi-sensor approach to
dextrous manipulation. The goal of this project is the integration of sensing and control for the
task of ﬁndin%la stable grasp configuration for an unknown object. A subgoal is the integration
of visual and haptic (proprioceptive) sensory data to incrementally build a model of the object.
This arproach uses knowledge of the task and the accuracy and completeness of the model to
control the sensing actions.

The system consists of a camera mounted on one robot and the Utah/MIT hand mounted on
another. The system calibration or identification problem involves computing the transformation
from the coordinate system defined by the manipulator robot to the coordinate system defined by
the camera robot. The pose determination algorithm of Kumar and Hanson [Kumar 92] has been
adapted for this purpose. As the manipulator robot moves, known feature points are tracked.
Given the kinematics of this robot, the pose of the camera with respect to the coordinate frame of
the manipulator robot are computed and incrementally refined using iterative, extended Kalman
filtering. Experiments were performed to demonstrate that the accuracrl of the filtering algorithm
was comparable to that of smoothing using a least squares fit with all of the data, yet the
computation time was much less. An additional feature of the method is that the kinematics of
the camera robot can be computed at the same time.

Grupen and Huber [Huber 92] have obtained 3D surface points from the Utah/MIT hand without
the use of tactile sensors. The measurements used are posture, velocities, and torques. This will
be integrated with the measurements obtained from the camera sensor.

2.4. Shape Recovery from Occluding Contours

Recovering the shape of an object from two views (e.g. stereo) fails at occluding contours of
smooth objects because the extremal contours are view dependent. For three or more views,
shape recovery is possible, and several algorithms have recently been developed for this purpose.
Szeliski and Weiss [Szeliski 93] have developed a new approach to the multiframe shape
recovery problem which does not depend on differential measurements in the image, which may
be noise sensitive. Instead, a linear smoother is used to optimally combine all of the
measurements available at the contours (and other edges) that are tracKed through the set of
images. This allows the extraction of a robust and dense estimate of surface shape and the
integration of shape information from both surface markings and occluding contours. };'he results
provide an extremely promising path for recovery of 3D shape models in an industrial setting
where the motion is known.

3. Interpretation of Static Scenes
3.1. Learning 3D Recognition Strategies

Most knowledge-directed vision systems are tailored to recognize a fixed set of objects within a
known context. Generally, the programmer or knowledge engineer who constructs them begins



with an intuitive notion of how each object might be recognized, a notion which is refined by

trial-and-error. Unfortunately, human engineering is not cost-effective for many real-world

applications. Moreover, there is no way to ensure the validity of hand-crafted systems. Worst of
1, when the domain is changed, the systems often have to be rebuilt from scratch.

The Schema Learning System (SLS) [Draper 92, 93b] automates the construction of knowledge-
directed recognition strategies. Starting from a knowledge base of visual procedures and object
models, SLS learns robust strategies for locating landmarks in images and recovering their
positions and orientations, if necessary. Each strategy is specialized to a landmark, takin
advantage of its most distinctive characteristics, whether in terms of color, shape, or contextu
relations, to quickly focus its attention on the landmark and recover its pose. Furthermore,
because SLS learns from experience by a strict generalization algorithm, it is possible to predict
po&h thle expected costs and the expected error rates (due to a lemma by Valiant) of the strategies
it develops.

3.2. Figural Completion from Principles of Perceptual Organization

Figural completion is the preattentive ability of the human visual system to build complete and
topologically valid representations of environmental surfaces from the fragmentary evidence
available in cluttered scenes. A description of a grouping system developed by Williams,
employing a two-stage process of coerr(xipletion h{pothcsis and combinatorial optimization,
appeared in a previous workshop proceedings [Williams 90]. Preliminary experimental results
were also reported. Since that time there has been significant pro%ress in two major areas. First,
the mathematical basis for the grouping constraints employed in the optimization stage has been
clearly elucidated. This has allowed a proof of the necessity and sufficiency of the grouping
constraints for scenes composed of flat embeddings of onentable surfaces with boundary.
Second, a more advanced grouping system which uses cubic Bezier sglines of least energy to
model the shape of perceptual completions has been implemented. The new system is
demonstrated on a number of figures from the visual psychology literature which are beyond the
capability of the old system.

3.3. Perceptual Organization of Curvilinear Structure

During the past year, Dolan has continued his work on curvilinear grouping [Dolan 92]. A
SIMD imJ)lementation of the curvilinear grouping system has been develglped,_ along with a
simplified, distributed representation of curves for use in the CAAPP. The integration of
multiple f'ouping processes--in particular, curvilinear and area grouping -- is currently being
examined. Many of these ideas are being incorporated in a general grouping module for
KBVision, which will facilitate research and experimentation with many diverse forms of

grouping.
3.4. Stochastic Projective Geometry

The use of projective invariants for object recognition and scene reconstruction has been the
subject of intense interest in the image understanding community over the past few years.
Although classic projective geometry was developed with mathematically grecise objects in
mind, practical applications must deal with errorful measurements extracted from real image
sensors. A more robust form of projective geometry is needed, one that allows for possible
imprecision in its geometric primitives. In his Ph.D. thesis [Collins 93], Collins represents and
manipulates uncertain geometric objects using probability distributions in projlgctive space,
allowing valid geometric constructions to be carried out via statistical inference. The result is a
methodology for scene reconstruction based on the grinciples of projective geometry, yet also
dealing with uncertainty at a basic level. The effectiveness of this framework has been
demonstrated on several geometric problems, including the derivation of 3D line and plane
orientations from a single image using vanishing point analysis, the extraction of a planar patch
scene model using stereo line correspondences, and the reconstruction of planar surface structure
using multiple images taken from unknown viewpoints by uncalibrated cameras.

More specifically, Collins shows that projective N-space can be visualized as the surface of a
unit sphere in (N+1)-dimensional Euclidean space. Each point in projective space is represented
as a pair of opposing or antipodal points on the sphere, By the identification of projective space
with the unit sphere, antipodally symmetric probability- distributions on the sphere may be



interpreted as probability distributions over the points of projective space, and standard
constructions of projective geometry can then be augmented by statistical inferences on the
sphere. Probability densities defined in this way can also be used for representing uncertainty in
unit vectors, orientations, and the space of 3D rotations (via unit quaternions).

3.5. Shape from Shading

Oliensis' previous work on shape from shading [Oliensis 92] has been extended in a number of
ways. First, while our earlier work usually assumed that the illumination was from the direction
of the camera, the shape reconstruction algorithms and convergence proofs have been extended
more recently to the case of illumination from any direction |Oliensis 93a]. As before, these
algorithms are provably and monotonically convergent, and (in many cases) can be shown to
converge to the correct surface. Moreover, it has been shown that a whole family of algorithms
could be developed, and that all would give equivalent surface reconstructions. This is
convenient since some of the algorithms are better for theoretical analysis while others are more
efficient in practice. The uniqueness proofs for the surface given the shaded image, and the
corollary that regularization is not necessary for shape from shading, have also been extended.
Experimentation with these algorithms on synthetic and real images show that they are fast and
robust, taking less than 10 seconds on a DECstation 5000 for a 200 x 200 real image.

These algorithms still require that a small amount of information on the surface be provided,
namely: 1) a list of those singular points (the brightest ima%e points) corre%s&)ondmg to local
minima of the surface height (as opposed to the other possibilities of a local maximum or a
saddle point); and 2) the heights ofp these singular points. However, in a second extension of
previous work [Oliensis 93b], Oliensis has developed a new algorithm that is capable of
determining this information automatically, and thus can reconstruct a general surface from
shading with no a priori information on the surface. In experimental tests on complex synthetic
images, this algorithm has produced good surface reconstructions over most of the image. For
128 x128 images, the reconstruction takes less than 30 seconds on a DECstation 5000.
Moreover, the algorithm appears noise resistant, giving good reconstructions even in the extreme
case of an added pixel noise of 10%. It appears that it will also be possible to prove the
convergence of this algorithm to the correct surface in the limit of perfect resolution.

All algorithms thus far have assumed that the imaged surface was matte. Even with this
restriction, the algorithms are potentially useful in controlled industrial or research applications.
At UMass these algorithms will be Eorted to the robotics laboratory environment, and used in
combination with other means of shape sensing and recovery to aid in research in grasping
partially or unmodeled objects. Further extensions include adapting the current algorithms to the
realistic case of a partially specular surface. With this extension, shape from shading could
become practical for a variety of applications.

4. Image Understanding Architecture (IUA) Overview

Work on the JUA [Weems, 1993] has advanced in three areas in the preceding year: compilers
and system software, hardware and architecture, and applications and algorithms. The IUA is a
tightly coupled, hetero‘geneous parallel processor being develo%ed by UMass, Hughes Research
Labs, and Amerinex Artificial Intelligence (AAI) under DARPA funding. It 1s intended to
support real-time knowledge-based vision applications and research by providing three distinct

arallel processors in a single architecture: a fine-grained SIMD/Multi-associative array for low-
evel vision, a medium-grained SPMD array for intermediate-level symbolic vision, and a coarse-
grained multiprocessor for high-level, knowledge-based processing. A proof of concept
prototype of the IUA was constructed under a previous effort and the current work is directed at
developing a second generation of the system with enhanced performance and the ability to be
fielded in the DARPA Unmanned Ground Vehicles (UGV) program.

4.1. TUA Compilers and System Software

AAI has completed development of the C++ class library for the low level of the IUA. The class
library defines a set of image plane types upon which parallel operations may be performed.
Work at AAI includes the incorporation of additional optimization code into the Gnu C++
compiler so that image planes are treated more like first-class objects in C++. An automated test
system has also been developed for the machine's microcode library, to facilitate regression



testing of new releases. For the intermediate-level processor, basic operating system support,
multitasking, and messaging have been implemented on a TMS320C30 Single Board Computer
(SBC), and recently these were transported to another SBC with two TMS320C40 processors
that are configured to simulate the intermediate level of the IUA. A debugger has also been
implemented for the intermediate level. Work is now under way to transport the KBVision™
system to the IUA.

UMass has implemented a version of the Apply language for the low-level processor of the
second generation IUA. The compiler generates code compatible with the C++ class library. It
permits us to easily import image processing operations written for the CMU Warp or Intel
1Warp machines.

4.2. JUA Hardware Status

The prototype IUA has been running at Hughes for most of the last year. Under the prototype
development contract, only a very simple controller was built to demonstrate the basic
functionality of the processor arrays. It was never intended that the prototype controller be fully
programmable. However, Hughes and Amerinex Al invested additional effort to develop
software that allows C++ code for the second generation to execute on the prototype hardware.
Because of the nature of the controller, instructions can only be issued at VME bus rates to the
array, which is significantly slower than the array can accept them. However, it does permit
demonstration of the functionality of the arrax hardware on real aiplications. Hughes has since
im_lplemented the low-level portion of the DARPA 1U Benchmark, an SDI application, and an
ATR application on the prototype.

The custom chips used in the [UA have been fabricated and are undergoing testing. Each chip
contains 256 bit-serial processors with on-chip cache, and has roughly 600,000 transistors. The
system's array control unit, backplane, and chassis have been built and tested. Processor and
memory boards are currently under construction. The 1/O subsystem for the machine has also
been designed, and will support the equivalent of 20 simultaneous sensor inputs at 512 X 512 X
8-bit resolution with automatic ma{zﬁm onto the processor virtualization scheme used for the
low level, with almost no latency. The I/O subsystem will also support the selection of multiple
regions of interest from an image. Hughes has indicated that the first machine should be
assembled by the end of February, 1993.

Work has already begun on the analysis and design for the third generation JUA. UMass has
developed a system for capturing traces of Erograms written in the C++ class library as they
execute on an abstract parallel machine. The traces are then fed to a simulation system that
models hardware architectures with different features and parameters. The system allows us to
gather real performance data for different architectural configurations, and to analyze the data
statistically. The performance data will then be contrasted with cost estimates for the different
configurations to produce a specification for the third generation IUA.

4.3. TUA Applications and Algorithms

The low-level processor of the TUA is a square mesh of processing elements, augmented with a
second (reconfigurable) mesh, called the Coterie Network . This network allows the mesh to be
partitioned, for example, into areas corresponding to regions in an image. One particularly
useful operation is the ability to enumerate elements within a partition or to summarize (reduce)
the information in a partition to a single value. The parallel prefix operation is the general form
of this type of operation. It is especially desirable to be able to carry out parallel prefix in all

artitions at once, i.e. to perform a multi-prefix operation [Herbordt, 1992f An algorithm has

een developed for multi-prefix that is significantly faster than alternatives using general purpose
routing in the mesh.

As recommended by the DARPA IU Benchmark Workshop participants, much of the benchmark
[Weems, 1988, 1990] has been recoded as a set of library routines which are called by the core of
the benchmark. We have also begun developing the second level benchmark, which will
incorporate tracking of moving objects over a sequence of images. The goal of the new
benchmark is to test system gerformance over a longer period of time so that, for example,
caches and page tables will be filled. The benchmark will ‘also explore I/O and real-time
capabilities of the systems under test, and involve more high-level processing.



UMass has developed a parallel algorithm for the JUA that computes a dense depth map for a
scene from a pair of images taken by a moving sensor [Dutta 93]." The algorithm has an average
error of about 8 percent 1n depth, as computed from randomly sampling points corresponding to
objects in the scene with known distances from 21 to 76 feet from the camera. The experiments
were done with fairly large displacements (four feet of forward motion between the images) so
that a large (41 X 41 pixel) search window was required to establish correspondences, resulting
in 1681 image-to-image correlations being performed. In simulations of the second generation
IUA, it was determined that the execution time will be about 0.54 seconds, of which 0.53
seconds is taken up solely by the correlations. We are thus looking into am)roa_ches in which an
estimate of the motion is available or in which a series of frames with smaller displacements can
be used (allowing the search window to be constrained).

4.4. Line Extraction

UMass has also developed a parallel algorithm for extracting straight lines from an image. Using
the second generation IUA simulator, the algorithm executes in as little as 31 milliseconds for
images that map to the array with a 1:1 virtualization ratio. We are currently evaluating the
quality of the results, but a preliminary examination indicates that the algorithm gives very
consistent lines over sequences of images, which is an important attribute in the support of
algorithms that use line tracking.

S. Image Exploitation under RADIUS

UMass is developing mechanisms for site model acquisition, extension and refinement [Collins
93a] based on technology that has already proven effective in the mobile robotics domain..
Automatically acquiring the initial 3D site models from scratch is a challenging problem that will
be the focus of future research. Our current work assumes that a partial model of the site is
provided apriori by the image analyst. Our model-based refinement and extension algorithms are
then applied to automatically correct inaccuracies in the initial site models, and extend them to
include previously unmodeled cultural features (buildings, roads, etc.) based on information from
new images.

Rather than building a turn-key system, UMass will be deliven'nig a set of modules for
performing specific tasks of direct benefit to the image analyst. The following is a list of the
early deliverable modules that are currently being evaluated on the model board test imagery
supplied to the research community.

1. Feature Extraction Module. This module condenses the vast amount of information in each
image into a manezzFeable set of symbolic descriptions. Two straight line extraction algorithms
are being evaluated: the Burns ala§orithm based on fitting planar patches to the underlying image
intensity surface, and the Boldt algorithm for hierarchical geometric edge grouping. Also under
development are routines for extracting curved lines, and for locating (firhecﬁ'al and trihedral
junctions to subpixel accuracy.

2. Model Matching Module. Given the approximate pose (location and orientation) of the
sensor, a partial 3D wireframe site model, and a set of extracted straight lines, the best match of
the projected 3D model to the line data will be found using a novel model matching algorithm
due to Beveridge.

3. Model Extension Module. Given a partial model and a set of model-data feature
correspondences over multiple images, the site model will be extended to include further
unmodeled features. Two techniques are beinﬁ evaluated. The first is based on recovering the
camera pose using a robust pose estimation technique due to Kumar. This algorithm is effective
even when significant numbers of feature correspondences are in error. sinf the computed
Fosc for multiple images from multiple viewpoints, the 3D positions of unmodelled features are
ound by triangulation. A second approach is based on direct estimation of the 3D to 2D
projective transformation relating model features to image features. The benefits of this
approach are that multiframe triangulation can still be performed without first solving for camera
pose, and without relying on accurate knowledge of the internal camera parameters. )

4. Vanishing Point Module. Vanishing point analgrsis is a flexible tool for geometric reasoning in
cultural domains. Among its many uses are the determination of 3D line and plane orientations,



refinement of extracted linear features based on convergence constraints, pose estimation, and
camera calibration. An efficient vanishing point detection and estimation algorithm due to
Collins and Weiss is being evaluated.

In addition to developing new techniques for automatically acquiring initial site models, new
research will investigate statistical techniques for applying projective invariants to the modeling
i)rocess to accurately derive structure without explicit camera models or knowledge of viewpoint.

nitial experiments in this direction have yielded promising results. Other encouraiing results
have been obtained regarding the difficult problem of image to image registration. A technique
based on vanishing point analysis [Collins93b] allows an oblique aerial view to be rectified
(unwarped) to present a simulated vertical view, allowing full perspective aerial images to be
registered with a computationally tractable affine matching approach.
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