Embedding Linkages on
an Integer Lattice

Susan Landau

CMPSCI Technical Report 93-63
November, 1993

Embedding Linkages on an Integer Lattice

Susan Landau”
Department of Computer Science
University of Massachusetts
Ambherst, Mass. 01003

Abstract

This paper answers the following question: Given an “erector set”
linkage, what is the minimal ¢ one must adjust edges by to embed it
on an integer lattice? Each edge length may change by ¢, and angles
are not fixed, but collinearity must be preserved. We show that the
problem is A"P-complete, but that a restricted version can be done in
polynomial time.

1 Introduction

Using links and joints, one can build an “erector set” type linkage in which
angles are free to change, but lengths and collinearity properties are fixed.
A problem in computer-aided design [8] raised the question of when such a
linkage can be embedded in an integer lattice, assuming one is allowed to
shift lengths by ¢, but collinearity properties must be preserved. What is
the minimal € that will allow an embedding where each of the edges has its
endpoints on integer vertices in the lattice?

We show here that the question of whether a linkage can be embedded
on the integer lattice is AP-complete, an unhappy situation. But all is
not lost: for applications, it is quite reasonable to assume that lengths are
bounded, as are the number of “co-incident” polygons. With these caveats,
we show there is a polynomial time solution to the problem.

We note that the problem has some nice ties to number theory: the
linkage can be embedded only if each of its links can, and this can happen

*Supported by NSF grant CCR-9204630.

\[)

Vi

\/
5 v2

i

Figure 1: A Linkage with Eight Links and Seven Vertices.

if and only if each of the links has a length whose square can be written as
the sum of two squares. We explore these connections further in the paper.

This paper is organized as follows: §2 Embedding Fixed Length Linkages
and §3 What is the minimal €?.

2 Embedding Fixed Length Linkages

A linkage L is a set of connected links l,...,l,. By abuse of notation, the
lengths of each of the linkages will also be denoted by !,,...,[,. Each link
l; has two endpoints, ¢; and d;. An arbitrary number of links may share a
vertex. We say a linkage can be e-embedded on an integer lattice if there
is another linkage £’ such that for each link /; in £ there is a link !/ in L'
where |l; - l}| < € and £ and L' have the same topolgical structure, that
is, collinearity and adjacency structure of £ and L' are the same, and the
vertices of £’ lie on integer lattice points.

The problem we consider first is given a planar linkage £, find the mini-
mum ¢ such that £ can be e—embedded on an integer lattice, and find such
an embedding. We allow links to lie upon one another and to cross. In the
usual way, the size of the problem is the size of the input, ¥ log;.

In this section we handle a slightly simpler problem: we consider the
problem with a fixed e. We make the following observation:

Theorem 2.1 A linkage L with links of length 11,15, .. .,1,, can be embedded
on a two dimenstonal integer grid only if for each i = 1,...,n, there is an
integer n; such that \/n; € [l; — €,1; + €] and n; is ezpressible as the sum of
two squares.

Proof Obvious. ' |

We use the following well-known characterization as to which integers
can be written as the sum of two squares.

Theorem 2.2 (/5], pg. 299) A number n is the sum of two squares if and
only if all prime factors of n of the form 4m + 3 have even exponents in the
prime factorization of n.

For the remainder of this paper, the symbol p; shall denote a prime
congruent to 1 mod 4, and g; shall denote a prime congruent to 3 mod 4.
Let Na(n) be the number of distinct representations of n as the sum of two
squares; we count two representations as distinct even when they differ only
trivially, say by order, or by multiplication by -1. Then we have:

Theorem 2.3 ([5/, pg. 242) Suppose n = 2“Hp:‘Hq;". Then Ny(n) =
4I1(r; 4+ 1) if each of the s; is even, and O otherwise.

A natural question to ask is how large N(n) can be in comparison with
n? Then we have:

Theorem 2.4 ([5], pg. 270) Na(n) = O((logn)?) is false for every con-
stant A.

Theorem 2.5 ([5], pg. 270) The mazimum order for Ny(n) is 9TTaes

Finally, the average order of Nj(n) is also known:

Theorem 2.6 ([5], pg. 270) N’(1)+N’(?+"'+N’(") = w. More precisely,
N2(1) + N3(2) + ...+ Nz(n)n = mn + O(v/n).

These last two theorems lead one to suspect that the question of embed-
ding a linkage in an integer lattice is hard, and indeed, it is. We study a
simple linkage first.

The simplest kind of linkage is a series of link segments; we call such a
linkage a tree. Formally a linkage is a tree if it contains no cycles. Then we
have:

Lemma 2.7 A tree T=1t;...t, can be embedded if and only if each one of
its links can be embedded.

Theorem 2.8 Suppose the tree 'I'“= t; ...ty can be embedded on the integer
lattice, and suppose t? = 2""ij§;’ Meqg;i*. The number of distinct embed-
dings of S equals 4™I1; j(ri; + 1).

Proof The embedding of each link is independent of the embedding of
previous links. The number of possible embeddings of ¢; is 4II(r; + 1). The
result follows immediately. | |

This result means that checking whether a tree can be embedded can be
done in time O(Z R(¢;)), where R(¢;) is the time needed to compute whether
t; can be written as the sum of squares. At present, the fastest algorithm to
check this is exponential time. (Indeed the problem is likely to be hard: in
the appendix, we show that the problem of enumerating the representations
of n as the sum of two squares is polynomial time equivalent to factoring an
integer n with a bounded number of prime factors of the form 4k + 1, and
no prime factors of the form 4k + 3.)

But embedding a linkage is hard not only for number theoretic reasons.
Our intuition is that it is hard because of the complexity of interacting
polygons. In any case, we show that the question of embedding a general
linkage is N"P-complete. We do this via a series of lemmas.

The intuition behind the following three lemmas is that we are building
a gadget to check the truth value of a clause. Given a 3 — CAF formula
@ =C1 A ...AC, where each C; = l1; V ly; V l3;, and the {;;’s are literals,
we build a linkage £(p) with the property £(¢) is embeddable if and only if
@ is satisfiable. Think of the linkage being aligned on the z — y co-ordinate
plane, and lj; is on the line z = 1 as l;; being true, l;; is on the line ¢ = -1
as l;; being false.

Lemma 2.9 For each C; = l}; V ly; V l3;, where the lj;’s are literals, the
gadget G; with the central azis drawn on the y-azis can have the vertez M;
on the line z = 1 if and only if y; or l3; is on the line z = 1.

Proof Obvious. |

Lemma 2.10 With conditions as above, the gadget H; can be embedded on
the integer lattice. P; can be on the line z = 1 if and only if ly; V ly; is true.

Proof The first statement is clear. The second statement follows from the
fact that of necessity P; and M; have the same z value. [

|31.; __.‘ |

Figure 2: Gadget G, on the right, consists of the composition of the two
gadgets on the left.

Lemma 2.11 The gadget K; can be embedded on the integer lattice. The
point Q; can be on the line z = 1 if and only if C; evaluates to true.

Proof Obvious. |
Theorem 2.12 Linkages is strongly N'P-complete.

Proof We do this via reducing 3-Satisfiability to Linkages.

Let ¢ be a 3 — CNF formula with variables Z1,...,Tn, and clauses
Ci,...,Cr.

We construct the linkage as follows.

For each clause C; we will build a gadget K; with three variables corre-
sponding to the variables of C;. We will line these gadgets up underneath
one another, the bottom of K; connecting to the top of K;;. Furthermore,
note that the size of a'gadget for a clause is small. '

We will need to ensure that all appearances of a variable have the same
truth value; this we will do by connecting appearances of the same variable,
say in clause K; and K; with a straight rod. This will force all appearances
of the same variable to have the same z coordinate. Observe that we have
at most 3/2r rods, each of length no more than 6r.

/'.\\
\\
gl | / N Mg
1 11 N~
‘\ 1!
| 2
M ‘/ N
| Rt e -
1 ol S S
'21 N
[] "
1 Y’\,q
e, '
2 - I

3

1
73 Py
1 1
1 1
My

Figure 3: Gadget H; consists of the above combined with Gadget G;, where
points with the same label coincide.

Y]
. |
Q 1
1
’ # N,
1

T N ’I
'3

Figure 4: Gadget K;, consisting of the above combined with Gadget H;,
where points with the same label coincide.

P,

Finally, we add one more straight rod of length 6r with vertices Qy,...,Q»
on it. This will assure that all clauses are true simultaneously.

It is clear that if the formula can be satisfied that the linkage is embed-
dable.

Suppose the linkage is embeddable. Call the side on which the rod con-
necting the Q’s “true.” This induces an assignment to the boolean variables,
and all occurrences of the same variable have the same assignment. Thus at
least one variable from each clause is “true,” and the formula is satisfiable.

Clearly the construction is in polynomial time. 1

This result should be compared with a theorem by Hopcroft, Joseph
and Whitesides [7]. They show that the ruler problem - the question of
whether a carpenter’s ruler consisting of a sequence of n links of integer

lengths, Iy, ...,1,, hinged together at the endpoints, and allowed to fold so
that angles of either 0° or 180° are formed, can be aligned so that its length
is k - is N'P—complete. Their proof was via a reduction from the Partition
problem. That problem is not strongly NP complete. In fact, it is shown via
dynamic programming that if the lengths are bounded, then the problem
can be done in polynomial time [7].

In our case, Theorem 2.12 shows that lengths have little to do with the
situation. However we can restrict linkages in two ways. The first restriction
is that the linkage must lie on an m X m integer grid. (This is equivalent
to saying all of the lengths [; must be small.) The second restriction is that
there are only a bounded number of polygons in the linkage. For many
applications that is a very reasonable assumption. With these restrictions,
testing whether the linkage can be embedded on the integer lattice can be
done in polynomial time. _

We begin by showing that the question of whether a polygon can be
embedded on an m x m grid can be answered in polynomial time. There are
potentially exponentially many embeddings, so this result is not obvious. A
result of Edmund Landau’s will help even further by giving a bound on the
number of ways each link can lie. Then:

Theorem 2.13 (E. Landax, [{] pg. 22) Ny(z) = b l“—‘ogz +0(_l:s=:)’ where
b=3My=3 (moaa)(1— g2~ 0.764....

Now we are ready to show how to test whether a polygon with bounded
edge lengths can be embedded on an m x m gird.

Theorem 2.14 Suppose a linkage L is a polygon P=l, . . .1,, with L =maz;{?.
Determining whether P can be embedded in an m x m integer grid can be
determined in O(m®nL) < O(m'n) steps.

Proof We will use the following algorithm to check if P=1{; ..., can be
embedded on the integer lattice.

input: . P=1;...l,; m;
output: yes (if polygon can be embedded on an m x m integer grid),
no otherwise.

Step 1: Check that each link ; < v2m. If not, the polygon cannot be

embedded. Next factor each length I? = 2%1I;p;T,qj*. Check that each

ik is even. If not, linkage cannot be embedded.
Step 2: For k,l € {0,...m} do:{{
Build an m + 1 x m + 1 array G¥ with a “1” in the (k,!) grid
point, and 0’s elswhere.
Fori=1,ton-1,do:

{Build an m +1 xm +1 array T which gets a 1 in the (s, ¢)
grid point if and only if there is a (u,v) in G¥ with (u,v) = 1 and (s,¢) is
reachable from (u,v) by I;. All other entries of T get 0's. G* — T.}

For i = n, T gets a 1 in the (k,!) entry if and only if there
is a (u,v) in G¥ with (u,v) = 1 and (k,) is reachable from (x, v). All other
entries of T get 0's. G¥ — T.}}

Step 3: If there is a (k,) entry of G* equal to 1, P can be embedded:
otherwise not.

We first prove correctness, then analyze running time.

Step 1 is a necessary condition for an embedding. The difference between
a “line” I ...l, and a polygon !, .. .1, is that the polygon must connect.

We make several observations. The linkage /;...l;;1, i # n can be
embedded “beginning” at (k,!) if and only if there is a grid point (u,v) such
that the linkage I, .../; can be embedded beginning at (k,!) and ending at
(u,v) and the link /;1; can be embedded beginning at (u,v) and ending at
(s,t). The last link of the polygon needs to connect to l;; the polygon can be
embedded “beginning” at (k,!) if and only if after the n** time step, there
is a pair (k,!) with G¥ having a “1” in the (k,) square.

Now we are ready to analyze the running time. The first step takes
O(I,-1 /) < O(L) time per link, thus O(nL) time in total. Let us consider the
running time of Step 2 for a single starting point (k, {).

At each computation of G¥, at most N,(I?) grid points are marked.

Now we know that No(?) = .764...71%%7; < ﬁi? < L. Thus the time

to compute a single G* is bounded by L. For each starting point (k,!),
we compute n G* arrays; this takes O(nL) steps. There are, of course,
m? different choices for the starting point; thus the entire computation is
bounded by O(m?nL) < O(m*n) steps since L = maz;l? < 2m?.]

Note: There are some symmetries one can take advantage to speed up
this computation (e.g., one needs only try one-quarter of the grid as a possi-
ble starting point). Furthermore, the linkage can be embedded in an m x m
grid only if the linkage can be embedded in a 2m x 2m grid starting at the
point (m,m). If one is concerned with embedding in an O(m x m) grid,

then one can check whether the polygon is embeddable in a 2m x 2m grid
in O(m?L) steps, by using the point (m,m) as a starting point.

In order to show how to embed a linkage in an m x m integer grid, it will
be helpful to view the linkage as a graph. Normally graphs have straight
edges only between a pair of vertices; in our case, the linkage may have an
internal vertex with links:

\Z

V3

V2
“
Figure 5: A Linkage with Eight Links and Seven Vertices.

where the edge with vertices v;, v, and v3 lie on a straight line. This is not
a serious problem.

A linkage is complex precisely because polygons may share an edge, or
set of edges; the question is how to place them on the grid so that all the
polygons can be embedded compatibly. In our next theorem, we will show
how to test whether a linkage with a bounded number of polygons can be
embedded in an m x m grid. We will build a depth-first spanning tree of
the linkage. The linkage may have more than two vertices on an edge; each
vertix v; which is internal to a link will be labelled v} in the depth-first
search tree.

Theorem 2.15 Suppose a linkage L= 1, .. .1, has at most e back edges per
biconnected component of the dfs tree of L. Let L =maz;l?. Determining
whether L can be embedded in an m x m integer grid can be determined in
O(nL*m?) < O(nm?*®) steps.

Proof We begin by building a dfs tree for £. Observe that to embed the
linkage, it suffices to consider the embeddings of each biconnected compo-
nent separately, for then the linkage can be viewed as a tree, which we know
is a much simpler question. The rest of the proof will consider the issue of
embedding biconnected components. '

We consider first embedding a single polygon. We use the algorithm of
Theorem 2.14. We need to do more work; we want to know where all the
links of the polygon can be placed if the head of I; is at (k,). That is easy
to compute.

For each beginning point (k,!), and each link /; in the polygon, we com-
pute the matrix G¥, which has a “1” in the (s,t) entry iff the links I; .. .{;
can have /; embedded at (k,[) and /; ending at (s,t). If there is a successful
embedding of the polygon I, ...l,, at the end of the algorithm, the matrix
G¥ has a “1” in the (k,) entry iff there is an embedding with link I, placed
at (k,!).

Next we run the algorithm “backwards” , beginning at G* and ending
at G¥, recomputing the G¥. An entry in G¥ will have a “1” in the (s,)
position if and only if

1. there is a grid point (u,v) with G¥ | having a 1 in the (u,v) position,
2. li4, can go from (u,v) to (s,t), and

3. G¥ has a 1 in the (s,t) ptgsition. (There is a “1” in the s,t position
of G¥ if there is a polygon with !y at (k,!) and [; at (s,t).)

In this way, we find where the links of the polygon P=1{,...l, can lie.

Now the situation grows more complicated. We need to check if the
polygon we have computed embeddings for can be compatibly embedded
with another polygon of the biconnected component. We can compute the
matrices G¥ for each of the other polygons; the question is how to combine
them. We make two observations:

o Each new “polygon” can be uniquely identified by its back edge in the
depth first traversal. This back edge is what “closes” the section of
the tree into a polygon.

e There are m? N5(L) choices for the way this back edge (u,v) may lie.
An alternative upper bound is m?.

To check if the new polygon has a compatible embedding with the link-
age, we identify the polygon by its back edge u,v. Then we repeat the
previous algorithm for all possible positions of (u,v), and check whether
any lead to an embedding. Thus what we do is travel the dfs tree, comput-
ing all possible embeddings of each of the associated back edges for of the

10

individual polygons. There are e of them. Hence we have a running time of
O(n(m?L)®) < O(nm?®) steps.
|

We can, of course, extend these results to higher dimensions. We start
with three dimensions. Theorem 2.1 generalizes in the obvious way to:

Theorem 2.16 A linkage L with links of length Iy, ..., 1, can be embedded
on a three dimensional integer grid only if for each i = 1,...,n, there is an
integer n; such that \/n; € [l; — €,1; + €], and n; can be written as the sum
of three squares.

It is well-known which integers may be written as the sum of three
squares.

Theorem 2.17 (5], pp. 310-311) An integer n can be written as the sum
of three squares if and only if n # 4*(8m + 7).

Corollary 2.18 Let L=1,...l, be a linkage with a bounded number of poly-
gons. Then determining whether L can be embedded on a three dimensional
m X m X m grid can be determined in polynomial time.

We leave dimensions four and higher as an exercise for the reader. Note:
Lagrange showed that every integer can be written as the sum of four squares
(5], pg. 369).

3 What is the Minimal ¢?

We begin with trees in two dimensions. By Theorem 2.1 and Lemma 2.7,.
a tree T'=t;...t, is embeddable whenever each of its links is the square
root of an integer that can be written as the sum of two squares. Clearly
each link s; of length s; = dyd,_, .. .dl.chiz ..., then each link is no more
than 1/2 away from the square root of a perfect square. Can it be as much
as 1/2 away from an integer which can be written as sum of two squares?
Can it be the case that there is an integer m such that there are no integers
between m? and (m + 1)? which can be written as the sum of two squares?

Theorem 3.1 (Bambah and Chowla, [2]) Let s; be the ith integer which can

be ezpressed as the sum of two squares. Then sy — s, = O(s,l./ 4).

11

This theorem will answer the case for embedding trees.

Theorem 3.2 Let T=t,...t, be a tree. Then the minimal ¢ such that T
can be e-embedded in the integer lattice can be determined in O((t,)%/4 +
oo ¥ (£0)%/4) steps.

Proof By Theorem 2.1, it suffices to consider each link separately. Suppose
link ¢ cannot be embedded. This means ¢?> cannot be expressed as the sum
of two squares.

Let t' be the integer closest to ¢2; we have |t/ — ¢2|] < 1/2. By Theorem
3.1, there is an integer r such that |[r —¢/| < O((¢')!/%) such that r can be ex-
pressed as the sum of two squares. It takes time O(tl/ %) to deterministically
test if ¢’ can be embedded (that is the time it takes to factor (¢')). Thus it
takes O(t*/*) time to find the closest integer to ¢ which can be expressed as
the sum of two squares. The minimal ¢ is the maximum of the epsilons. The
time to compute the minimal ¢ for the entire tree is O((£;)%/%+. ..+ (t,)3/4).
|

The problem of embedding a lingkage is N'P-complete, thus the best we
can realistically hope for is an exponential time algorithm for the problem.
The obvious algorithm of trying all possibiities is single exponential, so we
have no more to say about the problem of embedding arbitrary linkages.
However, there is a nice solution to linkages with a bounded number of
polygons limited to an m x m grid. There are two cases to consider, one
where an upper bound ¢ is given, the other not. They are handled similarly,
with the latter treated first.

We begin with the following generalization of Theorem 2.14:

Theorem 3.3 Suppose a linkage L is a polygon P=l; .. .l,,. Let L =maz;l?.
Determining the minimal € for which L can be e-embedded can be determined
in O(nm*logm) steps.

Proof We will do the same algorithm as we did for Theorem 2.14, but we
will do it many more times.

Without loss of generality, we can assume we are interested in computing
an € < cm for some constant 0 < ¢ < /2.

We do binary search to find the minimal € such that £ can be e-embedded.
Clearly £ can be embedded with € = v/2m. We check if £ can be embedded
with € = 3@ In this way, in O(logm) rounds, we will find the minimal ¢
by which the polynomial can be embedded, if there is one less than v/2m.

12

Suppose we are checking whether the polygon can be ¢;-embedded. We
create the array G* just as we did in the proof of Theorem 2.14, except that
we mark all the grid points reached by a linkage of length in the interval
-, li+ €]

How long does this procedure take? Although at each step of the algo-
rithm, there are potentially more grid points marked than in Theorem 2.14,
the marking algorithm still has the same upper bound as it did previously,
which is O(m?) per array. The only difference is that we may have to run
the entire algorithm as much as O(logm) times. Thus we get the running
time of O(nm*logm) steps.

Theorem 2.15 also generalizes easily.

Theorem 3.4 Suppose a linkage L= 1, ...l, with L =maz;l}. Suppose L
has at most e back edges per biconnected component of the dfs tree. Deter-
mining the minimal € for which L can be e-embedded in an m X m integer
grid can be done in O(nm?logm) steps.

Proof The proof is a quite natural combination of the ideas of Theorems
2.15 and 3.3. |

We observe that since sp41 — 8n = 0(3,1,/ %), the case with relative error
can be handled in a similar way.

Acknowledgements This problem was posed by Maharaj Mukherjee at
the Stony Brook Computational Geometry Workshop. Thanks also to Neil
Immerman, for helpful insights into A/P-completeness, and to Hendrik W.
Lenstra, Jr., for pointing out an error in an earlier version of this paper.

References

[1] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of Com-
puter Algorithms,, Addison Wesley, 1974.

{2] R.P. Bambah and S. Chowla, On Numbers which can be Expressed as
the Sum of Two Squares, Proc. Nat. Inst. Sci. India (1947), pp. 101-103.

(3] W. Bosma and M.P.M. van der Hulst, “Primality proving with cyclo-
tomy,” Proefschrift, Universiteit van Amsterdam, Amsterdam 1990.

13

(4] E. Grosswald, Representations of Integers as the Sums of Squares,
Springer- Verlag, 1985.

(5] G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, Oxford University Press, 1971.

[6] J. Hopcroft, D. Joseph, and S. Whitesides, “Movement Problems for 2-
Dimensional Linkages”, pp. 282-303, in Planning, Geometry and Com-
plexity,” by J. Schwartz, M. Sharir and J. Hopcroft, Ablex, 1987.

(7] J. Hopcroft, D. Joseph, and S. Whitesides, “On the Movement of Robot
Arms in 2-Dimensional Bounded Regions,” pp. 304-329, in Planning,
Geometry and Complexity,” by J. Schwartz, M. Sharir and J. Hopcroft,
Ablex, 1987.

(8] M. Mukherjee and G. Nagy, Collinearity Constraints on Spatial Subdi-
vision Algorithms with Finite Precision Arithmetic, Proceedings Fifth
International Symposium on Spatial Data Handling, pp. 425-431.

[9] R. Schoof, Elliptic Curves over Finite Fields and Computation of Square
Roots Mod P, Math. Comp. 44 (1985), pp. 483-494.

A Appendix
In this section, we show that:

Theorem A.1 Let n be a positive integer with a bounded number of prime
factors of the form 4k + 1, and no prime factors of the form 4k + 3. Then
the following problems are polynomial time equivalent:

1. Enumerating the representations of n as the sum of two squares.

2. Factoring n.

Proof We first observe that if n has a bounded number of prime factors
of the form 4k + 1 and no prime factors of the form 4k + 3, then the number
of representations of n as the sum of squares is polynomial in logn. This is
because if
n = 21 p%,
then
Nap(n) = 4IIZ (r; + 1) < 4((maxr;) + 1)%.

14

But the maximum r; is less than or equal to log 7, thus
Ny(n) < (logn +1)%.

Since d is bounded, the number of representations of n as a sum of squares
is polynomial in logn.

Now we prove that if (1) is polynomial time reducible to 2. Since we can
factor, the only issue is how to find a representation of each 4k + 1 prime p
as a sum of two squares, p = z% + y2. This way is easy due to a result of
Schoof [9], who gave a polynomial time algorithm for finding square roots
mod p. Thus one can quickly find an z such that z2 + 1 = 0 (mod p),
and therefore 2 + 1 = mp for some integer m. But then ged(z + 7, p) in
Z[i] gives an a + bi, where p = a® + b%. Hence, (1) can be reduced to (2) in
polynomial time.

We say two representations of n as the sum of two squares, a® + 5% =
c® + d®> = n are inequivalent, if a # tc,d,b # +d, +e, with ged(a,b) =
ged(c,d) = 1. Euler was the first to observe that two inequivalent represen-
tations of n as the sum of two squares leads to a factorization of n. A more
modern treatment is in Bosma’s thesis [3]; usjng the language of complexity,
he shows that the reduction is polynomial time. [

15

