PLEIADES:
An Object Management System
for Software Engineering Environments

Peri Tarr
Lori A. Clarke

CMPSCI Technical Report 93-64
July 1993

Software Development Laboratory
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

To apear in ACM SIGSOFT ’93: Proceedings of
the Symposium on the Foundations of Software
Engineering
Los Angeles CA, December 1993

This material is based upon work sponsored by the Defense Advanced Research Projects Agency under Grants #
MDA972-91-J-1009. The content does not necessarily reflect the position or the policy of the U.S. Government, and
no official endorsement should be inferred.

PLEIADES: An Object Management System for Software
| Engineering Environments*

Peri Tarr
Lori A. Clarke

Software Development Laboratory
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Abstract

Software engineering environments impose challenging requirements on the design and implemen-
tation of an object management system. Existing object management systems have been limited
in both the kinds of functionality they have provided and in the models of support they define.
This paper describes a system, called PLEIADES, which provides many of the object management
capabilities required to support software engineering environments.

1 Introduction

Software engineering environments support the process of producing and maintaining software
systems. One of the most common and pervasive activities of software developers is the creation
and manipulation of software objects that represent artifacts of the software development process,
such as requirements, specifications, designs, source code, test data, and analysis results. Objects
that are created during the software development process tend to be large, complex structures
with complex interrelationships to other objects. For example, design elements are related to the
requirements they satisfy, source code is related to the design it implements, test data are related
to the source code they test, and analysis results are related to the requirements, specifications,
designs, or source code that were analyzed. These objects must be maintained in a consistent state
for arbitrarily long periods of time, perhaps while being shared by different tools and being accessed
by multiple users.

A software engineering environment should therefore provide object management capabilities
that facilitate the definition, manipulation, and maintenance of complex objects and their inter-
relationships. Because of the complexity and diversity of software artifacts and the processes

*This work was sponsored by the Advanced Research Projects Agency under Grant # MDA972-91-J-1009.

that produce them, software engineering applications impose some challenging requirements on
the design of an object management system. Programming languages, file systems, and database
systems currently fail to satisfy these requirements. Recent work on database programming lan-
guages (e.g., [SHO90, Alag0, DCBM89, BMO*88, CDRS88]) and object-oriented database sys-
tems (e.g., [AH87, BBB+88, KBB+88, WBT92]) are attempting to overcome some of their lim-
itations, but to date, none of these efforts have sufficiently provided the capabilities needed to
support the spectrum of software engineering activities. Therefore, as part of the Arcadia project
[TBC*88, Kad92)], we have been trying to address these weaknesses to aid our own environment-
building efforts, especially with regard to support for process programming [Sut90] and software
analysis [CaSZ88, ROMA92, YTFB89).

This paper describes a prototype system, called PLEIADES (Programming Language Exten-
sions Integrated with Advanced Database Extended Semantics), which provides many of the object
management capabilities required to support software engineering environments. PLEIADES is a
database programming language in that it extends a programming language (in this case, Ada
[Uni83]) with capabilities associated with traditional databases. It does not provide these capabili-
ties in the traditional database style, however. Whereas database systems have commonly focused
on efficiency and a strict model of consistency, rejecting capabilities that violate these require-
ments, the PLEIADES system emphasizes functionality, flexibility, and ease of use. The result is an
interesting and powerful system.

The remainder of this paper is organized as follows. Section 2 provides a small but typical
example of a software engineering application to illustrate some of the object management needs
that such applications have. This example is used repeatedly throughout the remainder of the
paper to justify our requirements and to motivate our design decisions. Section 3 describes what we
believe are important requirements on object management systems imposed by software engineering
applications. Section 4 provides a brief overview of related work. A more detailed description of
related work is given in Section 5, where each of the major language features of PLEIADES is
described, justified, and contrasted with other approaches. Finally, Section 6 briefly describes our
experiences using PLEIADES and discusses our plans for future work.

2 Object Management in Software Engineering: An Example

To illustrate some typical object management needs of software engineering applications, we de-
scribe here a subset of the capabilities provided by some Arcadia tools [Bha91, Tar91, ROMA92].
These tools create and maintain four major data structures: abstract syntax trees (AST), control
flow graphs (CFG), definition and reference (def/ref) annotations, and dependency information
[PC90]. Each node in a CFG points to the root of the AST subgraph that elaborates the statement
associated with the CFG node. To facilitate analysis, def/ref information is derived from an AST
and associated with the appropriate node in the corresponding CFG. Based on the def/ref annota-
tions and the structure of the CFG, dependency information is associated with CFG nodes. The
dependency information used here are data dependence, control dependence, and syntactic depen-
dence. A node n is data dependent on a node m if and only if there is a definition of a variable v
at m that reaches a reference to v at node n. A node n is control dependent on a node m if and
only if there exists a path from m to n that does not include the immediate forward dominator
of m. A node n is syntactically dependent on a node m if and only if it is either control or data
dependent on node m.! A program fragment and the resulting AST, CFG, def/ref annotations,

1Only informal definitions are needed here. The interested reader should refer to {PC90).

1

oxt_stmt

Ref = (B,C}
= ext_stmt Def ={A})
+ IF ext_stmi R |
Ref = {A.D}
4 &P E= @ 2 Az [
A) (D oxt_stm = K
Ref = (A,D} /7
D L Def={D) /
= ext_stmt s Z
A% - o 1Y K
- Ref = D;
N (X £ ' : Def = {E

- AST Edges ——» CFG Edges
& 4 ASTICFG — — -= control dependencies
relationship ____...... - data dependencies eoe

Figure 1: Example of AST, CFG, Def/Ref Annotations, and Dependency Information.

and dependency information are shown in Figure 1.

Separate tools build each of these four data structures in turn. A front-end tool accepts source
code and creates an AST. A CFG builder uses the AST to create the corresponding CFG. The
def/ref annotator uses the AST to derive the definition and reference information that is associated
with each node of the CFG. The dependency builder uses both the CFG and the def/ref annotations
to construct dependency information. A developer might decide to change the source code either by
making a change to the actual source and resubmitting the code for reanalysis or by directly editing
a visual depiction of the AST or CFG. In either case, when such changes occur, each tool associated
with an affected data structure is notified so it can recompute the appropriate information.

Tools in the software engineering environment use these data structures to provide users (de-
velopers and/or maintainers) with information about the software system they are developing or
maintaining. For example, a data flow analysis tool might be employed to detect anomalous se-
quences of events [0092] using the CFG and def/ref annotations. A cross reference tool might use
def/ref annotations to answer users’ questions about a program under development, such as where
a variable is referenced or declared. A program maintenance tool could use dependency information
to determine which procedures would be affected if a particular statement was modified [LMH*+92).

3 Object Management Requirements

The above example can be used to illustrate some of the functionality that should be provided in
an object management system for software engineering environments, including high-level prim-
itive type constructors, navigational and associative access over the same structure, persistence,
consistency management, access control, concurrency control, resiliency, version control, configu-
ration management, name management, evolution, and distribution. In addition, it demonstrates
some “cross-cutting” requirements, which impose additional constraints on the ways in which the

functional requirements should be satisfied.

The current implementation of PLEIADES addresses the first four functional requirements listed
above and the cross-cutting requirements. Although the other functional requirements are not
yet implemented, we have attempted to anticipate and plan for the incremental inclusion of these
additional features. Both the functional and cross-cutting requirements are discussed below.

3.1 Functional Requirements

High-level type models: Tools that populate software engineering environments define and
manipulate large amounts of complex data. Certain classes of abstract data types recur throughout
software engineering environments: graphs, varying-length sequences, relations, and relationships.
Graph objects occur, for example, in the form of abstract syntax graphs, control flow graphs, and
dependence information graphs, as seen in Section 2. The representation of ordered lists of objects,
such as the sections of a document or the operands of an AST node, are easily captured through
the use of varying-length sequences. Finally, the objects defined within a software engineering
environment do not exist in isolation—they may be connected to other objects. For example,
control flow graphs are connected to the abstract syntax graphs from which they were created,
and dependence information is connected to the control flow graph from which it was derived.
Relationships are a natural type for representing these interconnections, and relations are useful
for gathering together related collections of relationships. In the above example, a collection of all
the def/ref annotations can be used to answer cross-reference type queries.

Persistence: Some of the objects created during software development may have to persist for
arbitrary periods of time (e.g., requirements specifications), while others may be transient (e.g., an
intermediate result of a computation). The determination of which objects should or should not
persist must rest with applications, since ultimately, only an application has enough information to
make this decision. A persistence model suitable for use in a software engineering environment must
therefore be flexible enough to support application control over the persistence of arbitrary objects
[WWFT88]. In our example, the AST, CFG, def/ref annotations, and dependence information
‘might all persist as long as the program being developed exists, whereas information about the
statements that were exercised on the last execution might be of transient interest.

An object management system should also provide a means of determining when objects are no
longer useful or meaningful so that they may be deleted. Again returning to our example, if the
abstract syntax graph contained syntax errors and was replaced by a syntactically correct graph,
the erroneous abstract syntax graph, and all the information derived from it, could be deleted.

Navigational and associative access: Different kinds of applications need to traverse struc-
tured data differently. For example, a data flow analysis tool that determines if any variables are
referenced before being defined would traverse a CFG navigationally by following the connections
from one node in the graph to another. An analysis tool that reports on all the locations where
a selected variable is referenced or defined needs to traverse the annotated CFG associatively by
querying the structure to determine all the nodes at which variables were defined or used. Some of
the objects created in software development environments tend to be traversed only navigationally
or only associatively, while others, like a CFG, may have to be traversed in both ways.

Consistency management: Defined in its most general sense, consistency management is the
process of keeping one or more entities in a state that satisfies some condition. For example, a CFG
for a module is consistent with respect to the AST for that module if the source code from which the
AST was created has not changed since the CFG was created. Consistency management comprises
definition of consistency conditions, identification of consistency violations, and reestablishment of
consistency following violations. Thus, consistency management is also a mechanism for supporting
reactive control, whereby an action is invoked when some state or event occurs.

In the context of software engineering applications, a consistency management mechanism must
be flexible enough to support complex consistency definitions, and to permit a range of consis-
tency violation-detection and reestablishment activities. For example, given the above consistency
definition for CFGs, one possible consistency management mechanism might identify the consis-
tency violation after it had already occurred, and then reestablish consistency by invoking the CFG
builder to recreate the CFG. For other kinds of objects, the violation of a consistency definition
may be considered erroneous and must first be detected and then corrected, either by undoing the
changes or performing some other corrective action, before proceeding. Further, different consis-
tency definitions, violation identification, and reestablishment mechanisms may be applicable to a
given object during different stages of development. For example, it may be acceptable to violate
the consistency constraint on the CFG object during software maintenance activities, but it should
not be possible to do so while the software is being released. Thus, a consistency management
mechanism for software engineering environments must facilitate the description of a wide variety
of consistency definition, violation detection, and reestablishment mechanisms.

3.2 Cross-Cutting Requirements

The functionality provided by PLEIADES can be implemented using current programming language
and/or current database capabilities, but not without extensive programming. For instance, the
higher-level types can be implemented in most programming languages using a variety of low-
level type constructors (e.g., with records, arrays, and pointers). However, a significant amount of
code is required to implement these classes of types using such low-level constructs. Further, the
development of these types is complicated and time-consuming, and it can be error-prone. Similar
arguments can be made about persistence, navigational and associative access, and consistency
management. Thus, an overriding concern in the design of PLEIADES is to provide a system
that greatly facilitates the job of software engineering environment builders. Ease of use and
flexibility are therefore important criteria that impacted our design decisions in attempting to
satisfy the functional requirements. Ease of use and flexibility are vague criteria, however, that we
have translated into more concrete requirements. These cross-cutting requirements, listed below,
impacted all aspects of the design of PLEIADES and help distinguish our approach from other similar
efforts.

Completeness: Computational completeness supports arbitrarily complex computations, while
type completeness provides the ability to apply any type constructor to any type, including ones
created with other type constructors, which facilitates the definition of complex, structured types.
Completeness in general maximizes descriptive ability.

First-class status: First-class status provides the ability to treat all objects uniformly. The
flexibility to pass a type or procedure as a parameter is an example of this requirement.

Identity: Object identity means that a given object can be referred to by multiple objects.
Identity provides the ability for a change to a shared object to become immediately visible to any
objects that refer to it. (Problems associated with the satisfaction of this requirement are discussed
in Section 5.4.)

Dynamic control: The software engineering process is laden with decision points that must
occur dynamically during the development or maintenance of an application. Thus, the flexibility
to exert dynamic control over object management capabilities (e.g., to decide which objects will
persist or when consistency definitions should be enforced) is important.

Meta-data: To make decisions dynamically, software engineering applications require informa-
tion about their run-time state or environment. Information about objects, types, and consistency
status are examples of the kinds of meta-data that may be required.

Generality and Heterogeneity: Previous research has demonstrated that different program-
ming languages, persistence models, transaction models, and concurrency control models are more
appropriate for supporting different kinds of applications and different phases of software develop-
ment (e.g., [TS93, Kad92, BK91, Sut91]). Our experience has led us to conclude that no single,
high-level model will adequately support the diverse needs of software development. Within each
of the functional areas of object management, different models are more appropriate for different
projects and at different stages of development.

It is therefore crucial for an object management system for software engineering environments
to be both general, so that it can facilitate the implementation of multiple models of support
for any provided functionality, and heterogeneous, so that it can enable alternative models and
implementation strategies to be used together in an integrated manner. In combination, support
for generality and heterogeneity in an object management system allows software engineers to
choose or readily develop the models and implementations that best satisfy their needs and to vary
these according to the demands of their projects.

4 Related Work

Object management needs have traditionally been satisfied through the use of capabilities provided
by programming languages, file systems, and database systems. As we will describe below, existing
systems have failed to provide many of the functionalities required to support software engineering
activities and to address the cross-cutting requirements.

Early efforts to support the object management needs of software engineering applications
can be categorized as either database and programming language approaches. The database ap-
proaches focused on using relational database systems, either alone or embedded in a programming
language, for object management (e.g., [MBW80, SFL83, Sch77, HK86]), while the programming
language-based work attempted to use file systems or low-level storage management systems to pro-
vide persistence of programming language structures (e.g., [ABC*83, ACO85, WWFT88, Car86)).
Database systems support persistence and coarse-grained concurrency control and consistency man-
agement, but they fail to satisfy the other functionality requirements and they do not address the
cross-cutting issues. In addition, even in those areas of functionality that they provide, their mod-
els of support are very restrictive (e.g., persistence and associative access apply only to relation or
set types, and instances of these types are always persistent). The programming language-based

6

approaches, on the other hand, provide persistence, high-level type models (though they provide
limited support for high-level types of the kind used so often in software engineering applications),
completeness, and identity, but they otherwise fail to address the need for broad-spectrum, flexible,
integrated object management support.

Later research attempted to address some of these limitations. These efforts can be divided into
database programming language and object-oriented database approaches. Database programming
languages have generally attempted to extend programming languages with some of the kinds of
functionality that are typically found in databases, such as set constructors, concurrency control,
associative access, and persistence (e.g., [SHO90, Coh88, Alag0, DCBM89, BMO*88, CDRS88)).
While database programming languages provide the computational completeriess of traditional
programming languages, they have tended to limit their support for persistence, associative access,
and concurrency control to a subset of types (usually sets) and have provided highly restricted
models of support. In addition, they frequently restrict the kinds of computations that can occur
over database objects (e.g., only those actions that can be specified with a non-complete query
language are permitted). Object-oriented database research, on the other hand, has attempted to
introduce notions of inheritance, subtyping, and object identity to database systems (e.g., [AH87,
Obj90a, Objs0b, BBB*88, KBB*88, WBT92, VD91]). These systems are showing promise, but
they have a number of shortcomings. First, they tend to be computationally restricted to enable
query optimization; those that do not have this restriction usually overcome it by embedding the
object-oriented database in a host language, which causes problems of impedance mismatch. Many
of these systems do not support consistency control. Finally, these systems tend to be limited in
their support for dynamism and in the generality of the functionality they provide.

5 Language Features to Support Object Management

The PLEIADES system has been developed to support our own efforts to build environments and
to explore the issues associated with object management. Although PLEIADES is currently imple-
mented as a set of extensions to Ada, the features it supports satisfy many of the requirements
presented in Section 3.1 and are of universal interest. In this section, we describe the major features
of PLEIADES. We also contrast these features with other approaches, and we discuss some current
limitations of the system.

5.1 Appropriate High-Level Primitive Types

As noted in Section 3.1, graph, varying-length sequence, relation, and relationship types are perva-
sive in software engineering environments. To support the definition of these types, PLEIADES de-
fines an extended set of type constructors that includes all of the “standard” programming language
type constructors (e.g., record and array), plus constructs for describing graphs, varying-length
sequences, relations, and relationships. In addition, PLEIADES defines a set of operations for cre-
ating and manipulating instances of these types just like any other built-in type, along with a
set of exceptions that these operations may raise. A programmer need only describe a type, and
PLEIADES automatically provides an abstract data type definition for that type.

The PLEIADES type model satisfies a number of the cross-cutting requirements. It supports
the definition of, for example, graphs of relations, and relationships between graphs or relations.
All types are first-class entities, and all instances of types have identity and are first-class entities.
A set of predefined operations provides certain kinds of meta-data. In defining the semantics of

each of the new type constructors, we have attempted to select a general model for each class of
abstract data type, and thus, to facilitate the definition of higher-level models. We describe these
type constructors and demonstrate their generality below.

5.1.1 Graphs

PLEIADES provides two type constructors to support graph type development: node and edge.

Nodes can have zero or more attributes, each of which can have any type. If the type of a
node’s attribute is itself a node type, then the value of that attribute will be a reference to another
node—that is, an implicit edge will exist. Operations to create and destroy nodes, to set and
retrieve values of node attributes, and to dynamically determine the type of a given node or any of
its attributes are provided for all node types.

While the node constructor alone is sufficient to permit the definition of directed graph types,
we have found that some applications require graphs that contain explicit edges; for example,
some applications, such as the CFG builder, must annotate the edges of a graph with edge-specific
information. Although it is possible to create a node that represents the edge, this is not as natural
as incorporating an edge type. Thus, PLEIADES supports the definition of ezplicit edge types as
well as implicit ones. Edges, like nodes, can be attributed. Applications can examine explicit edges
during graph traversals, or they can simply ignore explicit edges and traverse the graphs as though
they contained implicit edges. An application that does not care about edges or their annotations
therefore need not be aware of their existence.? Operations to create and destroy edges, to set and
retrieve values of edge attributes, to determine dynamically the type of a given edge or any of its
attributes, to obtain the source and target of an edge, and to traverse an edge are defined on all
edge types.

Attributes in both nodes and edges can have computed values, which are derived dynamically
from other values. For example, given the current date and a person’s birth date, the person’s
age can be computed automatically. PLEIADES permits the values of computed attributes to be
derived using any programmer-specified operation, and it allows the values of computed attributes
to be derived either lazily (upon demand) or eagerly (whenever any of the data from which the
attribute’s value is derived change), as the programmer chooses.

The PLEIADES model of graphs is quite general. The node and edge abstractions can be used
to define many different semantics for graphs, including directed, connected, and sets of nodes and
edges.

5.1.2 Sequences

PLEIADES introduces the sequence constructor to support the development of varying-length, or-
dered sequences of objects. Sequences are similar to arrays in that elements in a sequence can be
accessed by their position within the sequence. They are also similar to linked lists in that inserting
an element into a sequence causes all elements stored after the new element to be shifted; thus, for
example, inserting an element at position n causes the element that was formerly at that position to
move to position n + 1. Sequences grow and shrink dynamically, and thus, any number of elements
may be inserted into a given sequence. Operations to create, destroy, insert into, remove from,
retrieve from, and iterate over elements in a sequence are supported, as are operations to determine

*While the semantics of implicit edges are subsumed by those of explicit edges, we chose to provide the ability to
define implicit edges for reasons of completeness; indeed, it may be more natural to use implicit edges for some graph

types.

dynamically the types of a sequence and its elements. Sequences are type complete, so they can be
defined over any type of object, including sequences, nodes, edges, relations, and relationships.

5.1.3 Relationships and Relations

Relationships are N-ary connections between entities. In PLEIADES, the attributes of relationships
can have any type, including graphs, relations, and relationships. The values of relationship fields
can also be computed. Unlike traditional relational database models, instances of relationship types
are first-class objects with identity. Operations are provided to create and destroy relationships,
to set and retrieve values of their attributes, and to determine dynamically the type of a given
relationship or any of its attributes.?

Relations are unordered collections of relationships* or edges. In PLEIADES, relations are de-
fined over a single type of relationship or edge. Relations have multiset semantics—that is, the
same relationship or edge may occur multiple times in a given relation. Because relationships have
identity, the same relationship or edge may also occur in multiple relations. The relation abstrac-
tion also supports the definition of subrelations. A subrelation is a relation whose elements are
constrained to be a subset of those in another relation. We have found that a number of different
kinds of software engineering applications require the ability to represent and enforce subset and
superset semantics; in the example presented in Section 2, for instance, some kinds of program
dependence information are actually subsets of other kinds [PC90]. Thus, PLEIADES supports the
definition of subrelations to support such applications.

Instances of relation types are first-class objects with identity. This feature permits the explicit
representation of, for example, relationships between relations, and it permits the construction of
other types with relations as components.

Operations defined on relation types include ones to create, destroy, insert into, remove from,
retrieve from, iterate over, and query relations. Facilities are provided to obtain the difference
between two relations (i.e., the set of relationships or edges that occur in one relation but not the
other) and to compute the union and intersection of two relations. Dynamic information about the
type of a relation and its elements is available.

The relation abstraction supports the definition of indices for efficient querying and for ordered
iteration over relations. Indices can be any type, and they need not be unique. For indices whose
types are strings or discrete types, indices can be built without programmer intervention. For other
types of indices, programmers may optionally specify certain kinds of information about the type
to permit PLEIADES to construct efficient indices. Currently, PLEIADES permits programmers to
specify a hash function and/or ordering functions for a given type. It also allows programmers to
indicate whether index values are expected to be sparse or dense to guide PLEIADES’ selection of
an index data structure implementation.

Figure 2 shows some PLEIADES type definitions for the data structures depicted in Figure 1.
The nodes in the abstract syntax graph are represented by type AST_Node. The control flow graph
includes different kinds of nodes to represent different kinds of control structures; for example, type
CFG_If_Node represents conditional branches (e.g., “if” statements). The edges of CFG nodes may
have to be annotated, so they are represented as explicit, attributed edges (e.g., type If_Node_Edge).

SNote that relationships, which represent arbitrary “is-associated-with” connections, are semantically different
from edges, which specifically represent “is-part-of” relationships. Thus, for example, while edges can be traversed
implicitly or explicitly, relationships can be traversed only explicitly. Other semantic differences are described later.

*Relational database terminology defines relations as tables [Dat90]. We use the more generic term collection to
describe PLEIADES relations because of the semantic differences between the two relation models.

type CFG Statement_Node, CFG_If Node; type AST_Node;

type If_Node_Edge is type AST_Node_Sequence is

edge from CFG_f_Node sequence of AST_Node;

to CFG_Statement_Node type AST_Node is node
Edge_Information : Information_Type; Label : String;
end edge; Children : AST_Node_Sequence;
end node;

type CFG._f_Node is node

Then_Branch : If_ZNode_Edge; type AST_To_CFG_Relationship is relationship

Else_Branch : If_Node_Edge; AST_Source_Node : AST_Node;
end node; Associated.CFG_Node : CFG_Statement_Node;

end relationship;
type Statement_Kinds is (If.Stmt, For_Stmt, ...);
type AST_To_CFG_Relation is
type CFG_Statement_Node is node relation of AST_To_CFG_Relationship;
Kind_Of_Statement : Statement_Kinds;

end node;

Figure 2: Partial PLEIADES Type Definitions for Example in Figure 1.

Finally, the connection between nodes in the CFG and the AST nodes from which they are created
is represented with the relationship type AST_To_CFG_Relationship. Instances of this relationship
may be collected in a relation (type AST.To_CFG_Relation).

Related Work: Most conventional relational databases, programming languages, database pro-
gramming languages, and object-oriented databases are limited in their support for graph, sequence,
relation, and relationship types. Existing systems do not provide high-level constructors for defin-
ing graph types and require programmers to define graph abstractions using lower-level constructs,
which is, as noted earlier, a time-consuming and error-prone process that may result in code that
is difficult to understand and maintain. The Gras [Nag87] and IDL [Spe87] systems attempted to
address this limitation by providing support for the definition of graph types, but neither supports
the definition of attributed edges.

Support for varying-length ordered sequences of entities is also surprisingly limited in existing
systems. Relational database systems support varying-sized collections in the form of relations,
but these collections are not ordered. Applications can achieve the effect of ordered sequences by
defining a unique (key) index field, but the maintenance of this field is left to the application.
Further, since relations apply only to relationships, the definition of, for example, varying-length
integer arrays is not supported directly and must be simulated with appropriate relation definitions.
Programming languages generally support ordered sequences with array constructors or with linked
lists, but most popular languages (e.g., Ada [Uni83], C [KR90], C++ [Str86]) do not support
varying-length arrays directly—application code must simulate varying-length arrays using other
types. Object-oriented databases often provide array constructors (e.g., [AH87, WBT92]), but
these are generally limited in the same ways that programming language arrays are (two notable
exceptions are Gemstone [MSOP86], which provides an indexed set class, and EXTRA [VD91],
which provides an explicit varying-length array constructor that does not support insertion but
that does support tail expansion).

Finally, support for relations and relationships is highly variable among existing systems. Re-

10

lational databases do, of course, support both types of objects. The relational database model
of support is not appropriate for software engineering environments [Ber87]. In particular, the
fact that relations must be normalized (i.e., they may not have fields whose types are compound
objects) is a significant problem in the context of software development environments, where con-
nections between highly complex, structured objects, such as CFG and AST nodes, must exist.
Since the kinds of connections that can be represented in the relational model are limited, the
implementations of structured object types whose instances may participate in relationships are
correspondingly limited—such types must be implemented as relations. This leads to implemen-
tations that are less efficient, more difficult to understand and maintain, and that incur higher
impact of change. We have also found that the lack of identity in the semantics of relations and re-
lationships that database systems define is inappropriate in many software engineering applications,
where both types of objects may have to be shared by numerous other objects. Finally, though the
definition of subset semantics is possible in relational database systems, it requires varying amounts
of programmer intervention.

Programming languages do not typically support either relation or relationship constructors
directly. This shortcoming, in part, led to the development of database programming languages
[AB87)], which provide some form of relation and relationship constructor, but these types are
not always fully integrated into the languages—for example, some are not type-complete [Sut90,
Sch77, SFL83]. In addition, the models of relations and relationships that are provided usually have
the same restrictions as the relational database model. Object-oriented databases usually support
either relations or some sort of set constructor (e.g., [MSOP86, BBB*88, KBB+88, VD91, WBT92]).
Finally, we note that recent work on data structure precompilers to support software reuse [SBS93]
has suggested that the lack of a collection constructor in programming languages reduces the ability
to produce highly reusable software components. This work attempted to address this shortcoming,
in a system called PREDATOR, by extending the C language with the higher-level collection type
constructors list, array, and binary tree. The interfaces to the resulting abstract data types are
very similar to those of relational databases. PREDATOR’s collections are limited to collections of
C structs, however, and so they have many of the same limitations as database relations.

PLEIADES Limitations and Future Directions: At present, the PLEIADES type model has
some limitations that prevent it from satisfying some of the cross-cutting requirements stated in
Section 3.2. Because of Ada limitations, PLEIADES does not provide procedures and functions
as first-class types; these entities cannot, for example, be passed as arguments to operations and
they cannot be used as an operand of a type constructor. The PLEIADES type model also is not
currently fully type complete. In particular, it has some restrictions on the definition of relations—
as noted earlier, the relation constructor can be applied only to a relationship or edge type. In
addition, relations cannot be heterogeneous—they may contain instances of only a single type of
relationship or edge. We imposed this restriction initially because it is difficult to define queries
or support indices over truly heterogeneous relations, but as our research progresses, we hope to
be able to remove it. Finally, the query facilities provided on relations are currently limited—no
general-purpose query language has been incorporated.

5.2 Navigational and Associative Access

As discussed in Section 3.1, software engineering applications may want to traverse data structures
navigationally or associatively. PLEIADES therefore supports both navigational and associative
access.

11

If_Test : CFG_If Node;
Else_Branch_Node : If_Node_Edge;

Else_Branch_Node := Get_Edge (If_Test, Else_Branch);

(a) Navigational Access.

AST_If Node : AST_Node; - The root of the AST representation for the if-test
AST_To_CFG_Connections : AST_To_CFG_Relation; — A collection of relationships between corresponding
: — AST and CFG nodes
If_Node_Relationship : AST_To_.CFG_Relationship; - The relationship between the AST and CFG
— representations of the if-test

-- Associative Access:

If_Node_Relationship := Select_Tuple (AST_To_.CFG_Connections, Associated_CFG_Node, If_Test);
— Navigational Access:

AST_If Node := Get_Attribute (If_Node_Relationship, AST_Source_Node);

(b) Associative and Navigational Access.

Figure 3: PLEIADES Code to Accomplish Navigational and Associative Access to Instances of Types
Defined in Figure 2.

Navigational Access: In addition to the inherent support for navigational access that Ada
(and most programming languages) provides, PLEIADES provides navigational access to nodes,
edges, and relationships through the definition of operations to retrieve attribute values, and it
supports navigation over relations and sequences by providing iteration operations. Figure 3a
shows a PLEIADES code fragment that declares instances of the CFG_If_Node and If_Node_Edge
types, shown in Figure 2, and then performs a simple navigational traversal of the resulting CFG
if-node.

Associative Access: PLEIADES supports associative access over relations through a set of query
operations. Both relationships and edges can be placed in relations, so a combination of asso-
ciative and navigational access can be achieved over these types of objects. Figure 3b shows a
PLEIADES code fragment in which the AST node from which a given CFG node was created is
located. The relation is accessed associatively to find the relationship whose Associated_Edge_Node
attribute value is If_Test. This relationship is then accessed navigationally to retrieve the associated
AST node.

Related Work: Programming languages support navigational access as a matter of course (e.g.,
by following pointers or fields of records), but imperative programming languages do not directly
support associative access, and rule-based languages, such as Prolog [WP77], include only a limited
notion of associative access. Relational databases, on the other hand, provide associative access
(over relations), but they do not directly support navigational access—developers must implement
this capability using queries.

Both database programming languages and object-oriented databases have tended to include
a dichotomy between types that can be accessed associatively and types that can be accessed

12

navigationally—it would be difficult, for example, to define CFGs to achieve both associative and
navigational access in systems such as [Sut90, Coh88, BBB+88, WBT92]. Some systems, such as
[MSOP86, VD91], support set constructors over any type of object, which can be used to allow
a programmer to implement these semantics, but they do not directly support navigational and
associative over the same structures.

PLEIADES Limitations and Future Directions: While PLEIADES provides navigational ac-
cess over most of the types it supports, it only provides special support for accessing relations
associatively. In addition, it does not support the ability to move back and forth between as-
sociative and navigational access patterns dynamically, which is a capability that many software
engineering applications require. Applications must therefore anticipate that they will require both
access methods and create and maintain separate data structures themselves for use during asso-
ciative or navigational accesses. We plan to explore strategies for automatically supporting both
navigation and associative access over the same structures—e.g., internally transforming between
multiple representations of an object to optimize a particular access pattern, optimizing a single
representation, etc. We believe it is likely that different approaches will be more useful for different
classes of applications, and we hope to provide a framework in which developers can select the
strategy that best accommodates their needs. We will also explore the tradeoff between query op-
timizability and generality to determine the extent to which associative accesses can be optimized
in the presence of type and computational completeness.

5.3 Persistence

PLEIADEsS defines persistence to be a property of instances, and this property is orthogonal to
other properties of the instance [AB87]. Orthogonality means that the interfaces to persistent
objects are identical to those of non-persistent objects [WWFT88], so that, for example, queries
and concurrency control can occur over both persistent and transient objects. Applications can
dynamically select objects that should become persistent. PLEIADES defines operations on each
abstract data type to make instances persistent and to retrieve persistent objects.

The PLEIADES model of persistence is reachability-based—that is, any object that is reachable
from, or contained within, an object that becomes persistent itself becomes persistent [WWFT88].
Similarly, when a persistent object is retrieved from persistent storage, all of the objects reachable
from it become available with no additional application intervention.® Figure 4 demonstrates the
use of the PLEIADES persistence mechanism. The root of the abstract syntax graph, AST_Root,
becomes persistent after the call to Get_PID, as do all nodes reachable from it. When the root is
retrieved from the persistent store (using operation Get_NPR), the graph can be traversed using the
usual graph manipulation operations.

The reachability-based model of persistence has proven to be especially suitable for use in
software engineering environments, where many of the objects created are connected structures.
However, it is not always appropriate. In particular, we have found that a reachability definition
based on the “is part of” relationship sometimes causes more objects to become persistent than de-
sirable. Indeed, it is not difficult to see how the interconnectedness of objects in software engineering
environments could lead to a situation where making any object persistent results in a very large
number of other objects becoming persistent. Therefore, PLEIADES currently provides a mechanism

SPLEIADES logically retrieves the transitive closure of an object, but to minimize the cost of retrieving objects
that are not used, it does not physically retrieve any object until an application attempts to read that object.

13

— Make the root of an AST persistent:
AST_Root, AST_Retrieved_Root : AST_Node;
AST_Root_Persistent_ldentifier : PID;

.G-t;.t..PID (AST-Root, AST_Root_Persistent_ldentifier);

— Retrieve the root of the persistent AST later:
Get_NPR (AST_Root_Persistent_|dentifier, AST_Retrieved_Root);
Print (“Label of root is: " & Get_Attribute (AST_Retrieved_Root, Label));

— The transitive closure of AST_Root is now (logically) available for traversal.

Figure 4: Using the PLEIADES Persistence Interface.

at the type-definition level that allows the abstract data type developer to indicate which of the
subcomponents of a given type might not become persistent. Attributes that represent potential
“cut points” for reachability-based persistence are specified using relationships (where the attribute
and the object to which it is related are the fields of this relationship), which changes the “is part
of” relationship to “is associated with” [TWCS0]. Attributes specified as “associated with” do not
become persistent by reachability. Thus, applications gain dynamic control over the persistence of
these attributes. For example, although the code shown in Figure 4 will cause the entire abstract
syntax graph of Figure 1 to become persistent, neither the relationships between AST nodes and
CFG nodes nor any CFG nodes will become persistent—persistence has been limited by the use of
relationships between AST and CFG nodes instead of (explicit or implicit) edges. Of course, an
application that uses this abstract data type has the ability to make the “associated” subcompo-
nents of any instance persistent as well; for example, making the relation AST_To_CFG.Connections
(shown in Figure 3) persistent would cause all of the relationships between AST and CFG nodes
to become persistent by reachability, and in turn, all of the AST and CFG nodes that are related
(and their transitive closures) would also become persistent.

The PLEIADES model of persistence satisfies the requirement for generality in that it readily
supports other commonly used models of persistence. For example, models in which persistence is
determined by type (i.e., all instances of a given type become persistent; e.g., [RC87]) and where all
instances become persistent (e.g., [BMO*88]) are readily modeled using a persistence-by-instance
model—the “make persistent” operation is simply called from the appropriate “create object” oper-
ations. To achieve persistence-by-instance using either of these models is considerably more difficult,
however, since it requires an application to keep track of and destroy all the objects it does not
want to persist. Similarly, the PLEIADES model satisfies the requirement for dynamic control over
persistence. Finally, while reachability-based extent of persistence has proven to be appropriate for
many software engineering applications, PLEIADES supports the definition of alternate paradigms.

Related Work: Traditional programming languages are generally limited in the ways in which
they support persistence—they normally provide only a file abstraction, which requires a consider-
able amount of programmer effort to “flatten” structured data and save them in a file. Further, type
integrity cannot be enforced once objects have been saved to a file. Relational databases have just
the opposite problem—they make all relations (and only relations) persistent automatically and

14

provide applications with no control over what becomes persistent, thus violating the cross-cutting"
requirements for dynamism and completeness.

Database programming languages (e.g., [Sch77, Sut90, MBW80, RC87]) often provide persis-
tence only over database types, and therefore violate the completeness requirement in much the
same way that relational databases do. Some exceptions are [ABC*83, DCBM89, FJL*88], which
provide dynamic control over the persistence decision, but not over extent of persistence, and the
Ergo system [LPRS88], which provides static (but not dynamic) programmer control over extent of
persistence (i.e., the definition of a type must designate components as persistent or non-persistent).
Object-oriented databases, on the other hand, support persistence over a wider range of types.
Most object-oriented database systems either assume that all objects persist and do not provide
applications with control over which objects become persistent (e.g., [AH87, VD91, MSOPS86]),
tie persistence to types (e.g., [BBB*88]), or limit the types of objects that can be designated as
“top-level” persistent objects (e.g., [LLPS91]); one notable exception is [WBT92], which supports
dynamic persistence decision over any type of object, but again, this system does not support
control over extent of persistence.

PLEIADES Limitations and Future Directions: PLEIADES does not yet satisfy the cross-
cutting requirement for completeness—the current implementation only automates the generation of
the persistence mechanism for graphs, sequences, relations, and relationships. We have anticipated
the inclusion of persistence for all types of objects, however, by implementing persistence through a
general persistence protocol. Supporting persistence for other types is achieved simply by providing
Get_PID and Get_NPR operations on the types, and we have done this manually for a number of
types. PLEIADES does not yet satisfy the requirement for dynamic control over extent of persistence
to the degree that we believe would be desirable. The current mechanism for limiting the extent
of persistence requires the abstract data type implementor to determine potential “cut points”
statically and to base the selection of type constructor on them, which does not always result
in the cleanest or most natural representation for a given abstract data type. We plan to extend
PLEIADES to permit applications to indicate dynamically that a subcomponent of a given persistent
object should not become persistent so that decisions about type definitions need not be affected by
persistence concerns. Finally, support for deletion semantics is currently limited to an unchecked
(and thus, unsafe) “destroy” operation. We plan to explore desirable semantics for identifying
objects that are no longer useful or meaningful (for example, a symbol table is not likely to be
useful once the module with which it was associated is destroyed) and appropriate implementation
strategies.

5.4 Consistency Management

As described earlier, object management support for software engineering must be able to detect
and react to a range of different kinds of violations of different consistency definitions. For example,
some violations must be precluded (e.g., type violations), while others may be allowed to occur and
rolled back if they are not eventually corrected, and still others may be allowed to occur and “rolled
forward” to a new state that satisfies the violated consistency definition.

Consistency definition is supported in PLEIADES by the specification of constraints. A constraint
is a Boolean operation that tests for the satisfaction of some condition.® Constraints are computa-
tionally complete, so any condition for consistency can be specified. Constraints are dynamically

®In relational database terminology, this is called a predicate.

15

and statically enforceable and relaxable, and they can be enforced or relaxed on a ‘per-instance
or per-type basis. PLEIADES provides operations to enforce and relax constraints over graph, se-
quence, relation, and relationship types. To enforce a constraint, an application must specify a
set of operations in which the constraint might be violated,” and an optional action that is to be
taken upon detection of the violation (by default, an exception is raised). Actions, like constraints,
are computationally complete, so any required action may occur in response to a constraint viola-
tion. Constraints are checked in any operation in which the application indicates that they may
be violated, and they can be checked as a precondition, postcondition, or both, depending on the
semantics the application requires. An application can test for the satisfaction of any constraint at
any time, whether or not the constraint is enforced. The PLEIADES model of dynamic enforcement
of constraints is based on [Sut90].

The PLEIADES consistency management model satisfies the cross-cutting requirement for gen-
erality—it supports the detection of consistency violations either before or after they have occurred
(as desired), and it supports the definition of a variety of consistency reestablishment mechanisms,
including violation preclusion, roll-forward, and roll-backward, so it facilitates multiple consistency
management mechanisms. It also satisfies the requirements for completeness and dynamism to
some extent—both constraint and action definition are computationally complete, and control over
enforcement of constraints and actions to be taken upon constraint violation can occur dynami-
cally. Finally, meta-data is provided in the form of operations that determine dynamically which
constraints are currently enforced on a given object.

Related Work: Traditional programming languages are very limited in the ways they support
consistency control. Strongly typed programming languages incorporate predefined notions of con-
sistency in terms of conformance to type definition, but the set of violations that can be detected
are usually restricted to criteria such as bounds checking and erroneous type usage, and they do
not include complex consistency definitions (e.g., well-formedness, up-to-date requirements, etc.).
In addition, programming languages typically support only preclusion semantics—they will pre-
vent consistency violations from occurring, but they do not support roll-forward or roll-backward
semantics without programmer intervention.

A class of programming languages has been developed to support constraint-based programming
(e.g., [Bor81, Ste80]). These languages support the solving of problems by defining and satisfying
sets of constraints; for example, given a set of mathematical equations that constrain the values
of variables in the equations, a constraint-based system could automatically determine solutions
that satisfy these constraints. PLEIADES is not a constraint-based programming system. While it
does support the definition of constraints, it does not attempt to solve sets of constraints—instead,
developers themselves specify constraints and actions to be taken upon constraint violation. The
ability to produce solutions to sets of constraints requires substantial domain-specific knowledge,
which is not available to an object management system that supports the full software life cycle.

Many relational database systems support the definition of constraints. Their constraint en-
forcement mechanism does not, however, satisfy most of the cross-cutting requirements. Relational
databases do not support application control over constraint enforcement or invocation of different
actions at different times—constraints are enforced at all times except during a transaction, when
all constraints are relaxed. Relational databases support only roll-back semantics—if constraints
are not satisfied at the end of a transaction, the effects of the transaction are undone.

"Note that because PLEIADES employs an abstract data type model, it is only possible to modify the state of an
object, and thus to violate an enforced constraint, by invoking an operation.

16

Many database programming languages and object-oriented databases either do not support
consistency management (e.g., [VD91, AHD90]), support limited consistency definitions, such as
referential integrity (e.g., [MSOP86]) or programming-language-style consistency definitions (e.g.,
[AH87]), or support consistency definitions over only a subset of types (typically collection types;
e.g., [Sut90, Coh88]). A few active database systems, such as [SSS88, BCVG86, LLPS91, BK90],
have included better support for constraint definition, but these systems have had a variety of
limitations (e.g., [BCVG86] does not support programmer-specified actions).

Consistency definition mechanisms in relational database, database programming language, and
object-oriented database systems fail to satisfy the cross-cutting requirement for first-class status of
constraints, which means, for example, that information cannot be associated with constraints, and
that information about the relationships between constraints cannot be encoded explicitly, making
these relationships difficult difficult to comprehend and maintain. A notable exception is HiPAC
[DBMS88], which defines rules to be first-class objects.

PLEIADES Limitations and Future Directions: The current implementation of PLEIADES does
not satisfy the cross-cutting requirement for first-class status for constraints because Ada does not
treat operations as first-class entities. PLEIADES also does not yet entirely satisfy the requirement
for dynamism and completeness. While control over constraint enforcement can occur dynamically,
constraint definition must occur statically—new constraints cannot be defined dynamically. Sim-
ilarly, while association of actions with constraints can be done dynamically, the definition of all
possible actions must be defined statically. Finally, the requirement for completeness has not yet
been satisfied, since consistency definitions can be enforced only over graph, sequence, relation, and
relationship types.

We have found that consistency management is complicated by the cross-cutting requirement
for object identity. The state of a shared object may affect that of any object that refers to it;
for example, the state of a set depends on the states of each of the elements contained within it,
and as those states change, the state of the set changes. When an object is sharable, it can be
manipulated independently of any objects that refer to it. This may lead to situations in which one
object that refers to another can enter an inconsistent state indirectly (i.e., even though none of the
operations defined on it have been invoked). We have been exploring mechanisms for addressing
this consistency management problem.

6 Conclusions and Future Work

PLEIADES provides a number of useful object management capabilities. Our approach to developing
this object management system has been to consider the demanding needs of software engineering
environments and to attempt to formulate both the functional and cross-cutting requirements
imposed by this domain. The result has been a system that provides many of the capabilities found
in a database system but provided in a style that has more of a programming language flavor.
PLEIADES provides an abstract data type model of object management, where object management
capabilities such as consistency constraints and persistence are provided as “inherited” operations
on any type. '

Although PLEIADES provides considerable benefit, there are many ways in which we intend
to improve the system. As noted in the previous section, there are some capabilities that do not
support our cross-cutting requirements as fully as we would like. We are currently exploring ways
to address these limitations. Also, as noted in Section 3, there are some areas of functionality that

17

we have yet to address. We have done preliminary investigation into most of these areas (e.g.,
[TS93]), and, in some cases, we have built independent prototypes [WCW88, Kor92]. Although
there is considerable interaction among the current and proposed capabilities, we feel relatively
confident that our current system design will readily support these extensions.

PLEIADES has been used in about half a dozen projects within the Arcadia consortium (e.g.,
[ROMAO2]), as well as by some industrial users (e.g., [LMH*92]). For the most part, users of the
system have been very pleased with the functionality of the system and its overall performance.

Acknowledgments: This work has benefited from the ideas and contributions of a number of people.
Jack Wileden and Alex Wolf were involved in the development of earlier versions of the type and persistence
models. Stan Sutton has provided useful comments on much of the work presented here, and we have
benefited from his ideas and research. Debra Richardson, Margaret Thompson, Owen O’Malley, Cindy
Tittle, and Stephanie Aha have provided us with feedback and suggestions for features that have enabled
PLEIADES to better support software engineering applications. Yidong Chen implemented PLEIADES and
helped solve a number of implementation problems. Rick Hudson, Stan Sutton, and the referees provided
useful feedback on an earlier draft of this paper. Finally, we would like to thank our Arcadia Consortinm
colleagues for years of feedback and ideas—many of the object management features PLEIADES supports
resulted from their experiences. ‘ ‘

References

[AB87] M. P. Atkinson and O.P. Buneman. Types and Persistence in Database Programming
Languages. ACM Computing Surveys, 19(2):105-190, June 1987.

[ABC*83] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, P.W. Cockshott, and R. Morrison. An
Approach to Persistent Programming. Computer Journal, 26(4):360-365, November
1983.

[ACO85] A. Albano, L. Cardelli, and R. Orsini. Galileo: A Strongly-Typed, Interactive Con-
ceptual Language. ACM Transactions on Database Systems, 10(2):230-260, 1985.

[AH8T) T. Andrews and C. Harris. Combining Language and Database Advances in an Object-
Oriented Development Environment. In Proceedings of the Object-Oriented Program-
ming Systems, Languages and Applications, pages 430-440, Orlando, FL, October
1987.

[AHDS0] T. Andrews, C. Harris, and J. Duhl. The ONTOS Object Database. Product Descrip-
tion, 1990.

[Ala90] S. Alagic. Persistent Metaobjects. In Proceedings of the Fourth International Workshop
on Persistent Object Systems, pages 31-42, Martha’s Vineyard, MA, September 1990.

[BBB*+88] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman, C. Lécluse,
P. Pfeffer, P. Richard, and F. Velez. The Design and Implementation of O;, an Object-
Oriented Database Systems. In Proceedings of the Second International Workshop on
Object-Oriented Database Systems, pages 1-22, Bad Miinster, Germany, 1988. Pub-
lished as Lecture Notes in Computer Science, 334.

18

[BCVGS6]

[Ber87]

[Bha91]
[BK90]
[BK91]

[BMO*88]

(Bor81]

[Car86]

[CaSZ88]

[CDRSS8]

[Coh88]

[Dat90]

[DBMSS]

A.P. Buchmann, R.S. Carrera, and M.A. Vazquez-Galindo. A Generalized Constraint
and Exception Handler for an Object-Oriented CAD-DBMS. In Proceedings of the
International Workshop on Object-Oriented Database Systems, pages 38—49, Asilomar,
Pacific Grove, CA, September 1986.

P.A. Bernstein. Database System Support for Software Engineering — An Extended
Abstract. In Proceedings of the Ninth International Conference on Software Engineer-
ing, pages 166-179, Monterey, CA, March 1987.

N. Bhachech. JRIS_To_.CFG User Manual. Arcadia Document UM-91-06, University
of Massachusetts, 1991.

N. Barghouti and G. Kaiser. Modelling Concurrency in Rule-Based Development En-
vironments. IEEE Ezpert, 5(6), December 1990.

N. Barghouti and G. Kaiser. Concurrency Control in Advanced Database Applications.
ACM Computing Surveys, pages 269-317, September 1991.

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, H. Williams, and
M. Williams. The Gemstone Data Management System. In Object-Oriented Concepts,
Databases, and Applications, W. Kim and F.H. Lochovsky, editors, pages 283-308.
Addison-Wesley, Reading, MA, 1988.

A. Borning. The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory. ACM Transactions on Programming Languages and Systems,
3(4):353-387, October 1981.

L. Cardelli. Amber, pages 21-47. Springer-Verlag, Berlin, 1986. AT&T Bell Laborato-
ries Technical Memorandum, 11271-840924- 10TM, 1984.

L.A. Clarke and D.J. Richardson and S.J. Zeil. TEAM: A Support Environment for
Testing, Evaluation, and Analysis. In Proceedings SIGSOFT ’88: Third Symposium on
Software Development Environment, pages 153-162, Cambridge MA, November 1988.

M.J. Carey, D.J. DeWitt, J.E. Richardson, and E.J. Shekita. Storage Management
for Objects in EXODUS. In Object-Oriented Concepts, Databases, and Applications,
W. Kim and F.H. Lochovsky, editors, pages 341-369. Addison-Wesley, Reading, MA,
1988.

D. Cohen. AP5 Manual. Univ. of Southern California, Information Sciences Institute,
March 1988.

C.J. Date. An Introduction to Database Systems. Addison-Wesley Publishing Company,
5 edition, 1990.

U. Dayal, A. Buchmann, and D. McCarthy. Rules Are Objects Too: A Knowledge
Model for an Active, Object-Oriented Database System. In Proceedings of the Second
International Workshop on Object-Oriented Database Systems, pages 129-143, Bad
Miinster, Germany, September 1988. Published as Lecture Notes in Computer Science,
334.

19

[DCBMS89] A. Dearle, R. Connor, F. Brown, and R. Morrison. Napier88—-A Database Program-

[FIL+88]

[HKS86]

[Kad92]

[KBB+88]

[Kor92]

[KR90]

[LLPS91]

[LMH*92]

[LPRSSS]

[MBWS0]

ming Language? In Proceedings of the Second International Workshop on Database
Programming Language, pages 179-195, Oregon, June 1989.

S. Ford, J. Joseph, D.E. Langworthy, D.F. Lively, G. Pathak, E.R. Perez, R.W. Peter-
son, D.M. Sparacin, S.M. Thatte, D.L. Wells, and S. Agarwala. ZEITGEIST: Database
Support for Object-Oriented Programming. In Proceedings of the Second International
Workshop on Object-Oriented Database Systems, pages 23-42, Bad Miinster, Germany,
September 1988. Published as Lecture Notes in Computer Science, 334.

S. Hudson and R. King. CACTIS: A Database System for Specifying Functionally-
Defined Data. In Proceedings of the International Workshop on Object-Oriented
Database Systems, pages 2637, Asilomar, Pacific Grove, CA, 1986.

R. Kadia. Issues Encountered in Building a Flexible Software Development Environ-
ment: Lessons from the Arcadia Project. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments (SDE5), pages 169-180, Tyson’s
Corner, VA, December 1992.

W. Kim, N. Ballou, J. Banerjee, H-T. Chou, J.F. Garza, and D. Woelk. Integrating an
Object-Oriented Programming System with a Database System. In Proceedings of the
Object-Oriented Programming Systems, Languages and Applications, San Diego, CA,
1988. Published as ACM SIGPLAN Notices, 23(11):142-152, November 1988.

Adrian Koren. Identifying Type Changes in a Collection of Evolving Types. Masters
project report, Computer Science Department, University of Massachusetts, Ambherst,
May 1992.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall, second
edition, 1990.

G. Lohman, B. Lindsay, H. Pirahesh, and K. Bernhard Schiefer. Extensions to Star-
burst: Objects, Types, Functions, and Rules. Communications of the ACM, 34(10):94-
109, October 1991.

J.P. Loyall, S.A. Mathisen, P.J. Hurley, J.S. Williamson, and L.A. Clarke. An Ad-
vanced System for the Verification and Validation of Real-Time Avionics Software. In
Proceedings of the Eleventh Digital Avionics Systems Conference, Seattle, WA, October
1992.

P. Lee, F. Pfenning, G. Rollins, and D. Scott. The Ergo Support System: An Integrated
Set of Tools for Prototyping Integrated Environments. In Proceedings of SIGSOFT ’88:
Third Symposium Software Development Environments, pages 25-34, Cambridge, MA,
November 1988.

J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. Some Features of the Taxis Data
Model. In Proceedings of the Sizth International Conference on Very Large Databases,
1980.

20

[MSOP86] D. Maier, J. Stein, A. Otis, and A. Purdy. Development of an Object-Oriented DBMS.
In Proceedings of the Object-Oriented Programming Systems, Languages and Applica-
tions, Portland, OR, 1986. Published as ACM SIGPLAN Notices, 21(11):472—482,
November 1986.

[Nag87] M. Nagl. A Software Development Environment Based on Graph Technology. Technical
Report 87-3, Aachen University of Technology, 1987.

[Obj90a] Object Design, Inc., Burlington, MA. An Introduction to ObjectStore, 1990.
[Objo0b] Objectivity, Inc., Menlo Park, CA. Objectivity Database System Overview, 1990.

(0092] K.M. Olender and L.J. Osterweil. Interprocedural Static Analysis of Sequencing Con-
straints. ACM Transactions on Software Engineering and Methodology, 1(1):21-52,
January 1992.

[PC90] H.A. Podgurski and L.A. Clarke. A Formal Model of Program Dependences and Its
Implications for Software Testing, Debugging, and Maintenance. Transactions on Soft-
ware Engineering, 16(9):965-979, September 1990.

[RC87] J.E. Richardson and M.J. Carey. Programming Constructs for Database System Im-
plementation in EXODUS. In Proceedings of ACM SIGMOD Conference, 1987.

[ROMA92] D.J. Richardson, T.O. O’Malley, C.T. Moore, and S.L. Aha. Developing and Integrat-
ing ProDAG in the Arcadia Environment. In Proceedings of the Fifth ACM SIGSOFT
Symposium on Software Development Environments, Tyson’s Corner VA, December
1992. Published as Software Engineering Notes, 17(5):109-119.

[SBS93] M. Sirkin, D. Batory, and V. Singhal. Software Components in a Data Structure Pre-
compiler. In Proceedings Fifteenth International Conference on Software Engineering,
pages 437-446, Baltimore, MD, May 1993.

[Sch77] J.W. Schmidt. Some High Level Language Constructs for Data of Type Relation. ACM
Transactions on Database Systems, 2(3):247-261, September 1977.

[SFL83] J.M. Smith, S. Fox, and T. Landers. ADAPLEX: Rationale and Reference Manual.
Technical Report CCA-83-8, Computer Corporation of America, Cambridge, MA,.
May 1983.

[SHO90] S.M. Sutton, Jr., D. Heimbigner, and L.J. Osterweil. Language Constructs for Manag-
ing Change in Process-Centered Environments. In Proceedings of ACM SIGSOFT ’90:
Fourth Symposium on Software Development Environments, pages 206-217, Irvine,
CA, December 1990.

[Spe87] Special Issue on the Interface Description Language IDL, November 1987. Published
as ACM SIGPLAN Notices, 22(11).

[SSS88] D. Stemple, A. Socorro, and T. Sheard. Formalizing Objects for Databases Using
ADABTPL. In Proceedings of the Second International Workshop on Object-Oriented
Database Systems, pages 110-128, Bad Miinster, Germany, September 1988. Published
as Lecture Notes in Computer Science, 334.

21

[Ste80)

[Str86)
[Sut90]

[Sut91]

[Tar91]

[TBC*88]

[TS93]

[TWC0]

[Uni83]

[VDo1]

[WBT92]

[WCW8S]

[WP77]

G.L. Steele. The Definition and Implementation of a Computer Programming Language
Based on Constraints. PhD thesis, Department of Electrical Engineering and Computer
Science, M.L.T., August 1980.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

S.M. Sutton, Jr. APPL/A: A Prototype Language for Software-Process Programming.
PhD thesis, University of Colorado, Boulder, CO, August 1990.

S.M. Sutton, Jr. A Flexible Consistency Model for Persistent Data in Software-Process
Programming Languages. In Implementing Persistent Object Bases — Principles and
Practice, A. Dearle, G.M. Shaw and S.B. Zdonik, editors, pages 305-318. Morgan
Kaufman, 1991.

P. Tarr. Language Processing Toolset Prerelease Notes. Arcadia Document UM-91-01,
University of Massachusetts, 1991.

R.N. Taylor, F.C. Belz, L.A. Clarke, L.J. Osterweil, R.W. Selby, J.C. Wileden, A.L.
Wolf, and M. Young. Foundations for the Arcadia Environment Architecture. In Pro-
ceedings of SIGSOFT88: Third Symposium on Software Development Environment,
pages 1-13, November 1988. Published as ACM SIGPLAN Notices 24(2) and as SIG-
SOFT Software Engineering Notes, 13(5) November 1988.

P. Tarr and S.M. Sutton, Jr. Programming Heterogeneous Transactions for Software
Development Environments. In Proceedings of the Fifteenth International Conference
on Software Engineering, pages 358-369, Baltimore, MD, May 1993.

P.L. Tarr, J.C. Wileden, and L.A. Clarke. Extending and Limiting PGraphite-style
Persistence. In Proceedings of the Fourth International Workshop on Persistent Object
Systems, pages 74-86, Martha'’s Vineyard, MA, August 1990.

United States Department of Defense, Washington DC. Reference Manual for the
Ada Programming Language, January 1983. Military Standard Ada Programming

Language.

S.L. Vandenberg and D.J. DeWitt. Algebraic Support for Complex Objects with Ar-
rays, Identity, and Inheritance. In Proceedings of the 1991 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 158— 167, Denver, CO, May 1991.

D.L. Wells, J.A. Blakeley, and C.W. Thompson. Architecture of an Open Object-
Oriented Database Management System. Computer, 25(10):74-82, October 1992.

A L. Wolf, L.A. Clarke, and J.C. Wileden. A Model of Visibility Control. IEEE
Transactions on Software Engineering, 14(4):512-520, April 1988.

D.H.D. Warren and L.M. Pereira. Prolog—The Language and Its Implementation
Compared to LISP. In Proceedings of the Symposium on Artificial Intelligence and
Programming Languages, pages 109-115, Rochester NY, August 1977. Published as
SIGPLAN Notices 12(8).

22

[WWFT88] J.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr. PGraphite: An Experi-

[YTFB89]

ment in Persistent Typed Object Management. In Proceedings Third ACM SIG-
SOFT/SIGPLAN Symposium on Practical Software Development Environments, pages
130-142, Boston MA, November 1988. Published as ACM SIGPLAN Notices, 24(2),
February 1989.

M. Young, R.N. Taylor, K. Forester, and D.J. Brodbeck. Integrated Concurrency Anal-
ysis in a Software Development Environment. In Proceedings of the ACM SIGSOFT
'89 Third Symposium on Software Testing, Analysis and Verification, pages 200-209,
Key West, FL, December 1989. Published as Software Engineering Notes, 14(8).

23

