Associative, Multiassociative, and

Hybrid Processing*!
(Extended Abstract)

Martin C. Herbordt? Charles C. Weems

Department of Computer Science
University of Massachusetts

Abstract: Multiassociative processing is the simultaneous associative processing of sets
of elements. In the first part of this extended abstract, associative and multiassociative
processing are defined in three different ways: 1) in terms of their characteristic primitive
operations, 2) by the types of queries they are suited to answer, and 3) through their vir-
tual machine models and instruction sets. The second part consists of a comparison of the
performance of a generic, spatially-mapped, function on realizations of four different models
of computation: the RAM, PRAM, associative processing, and multiassociative processing.
For this class of functions, multiassociative processing is found to be superior in many cases
and associative processing superior in the rest. The final part of this extended abstract
contains the most significant and practical result: an analysis of the common set of function
instances for which hybrid associative/multiassociative processing is superior. In particu-
lar, static and dynamic methods are presented for determining optimal partitions of these

computations into associative and multiassociative phases.

*This paper also appears in the Proceedings of the 2nd Associative Processing and Applications Workshop.

tThis work was supported in part by the Defense Advanced Research Projects Agency under con-
tract DACAT6-89-C-0016, monitored by the U.S. Army Engineer Topographic Laboratory; under con-
tract DAALO02-91-K-0047, monitored by the U.S. Army Harry Diamond Laboratory; and by a CII grant
from the National Science Foundation (CDA-8922572). Authors’ address is Department of Computer
Science; University of Massachusetts; Amherst, Massachusetts 01003; NetAd : herbordt@cs.umass.edu,
weems@cs.umass.edu

!M.C. Herbordt is supported in part by an IBM Fellowship.

1 Introduction

Multiassociativity is an additional level of parallelism: it is a flexible methodology for solving
multiple problem instances simultaneously, and each using parallel/associative processing.
In its most general form, multiassociativity resembles nested parallelism [1] to depth 2.
However, it has the advantage of being based solely on primitives that can be implemented
efficiently (using available hardware with some software emulation), while yet being general
enough to be useful as both an algorithmic and a programming paradigm.

Multiassociative processing was introduced in [4] and has already found a place in the
spatially mapped phases of machine vision computation. The performance is especially good
for classes of problems that are characterized by the need for processing non-uniform, but
proximate, data sets. It is also likely that multiassociativity will find more applications
within machine vision, in other machine perception domains, and in for other tasks that use
spatially mapped data.

We begin this paper by presenting the globally and multiassociative models of compu-
tation. We then discuss a generic function that subsumes many tasks in spatially mapped
computation with respect to these associative processing paradigms, as well as to the stan-
dard serial and parallel computational models. We find the specific function instances for
which the different models have superior performance, when hybrid algorithms are of use,
and how this can be determined dynamically. We close with a brief description of some

sample algorithms.

2 Global and Multiassociativity

The prototypical associative memory operation consists of the controller broadcasting a key
to the cell array and then performing some action on those cells where a match occurs. The
actions typically consist of reading (or writing) some value from (or into) the cell; receiving a

response in the form of a SOME/NONE (global OR of the response tag bits) or a COUNT (of

tag bits); or selecting a single responder for further processing. For example, the controller

may execute the instruction, “How many cells have variable GREEN set to TRUE?” or “All
elements with BROWN set to TRUE set SKY to FALSE.” The basic associative operations

are summarized below (after [3, 13]).

1. Global broadcast/local compare/activity control

[\]

. Some/None of responders from array to controller
3. Count of responders from array to controller

4. Select a single responder

In multiassociative processing, we add the concept of a set, which we define as a col-
lection of elements that share some property. Set properties are typically either an a prior:
distinguishing characteristic of the elements, say that GREEN = TRUE, or an attribute of
the set itself, say, that it contains over 100 elements. The fundamental principle of multias-
sociativity is to replace some of the function of the controller with a subset (often a single

element) of the members of each set. The basic multiassociative operations are summarized
below (after [4]).

1. Within each set: broadcast by a subset/local compare/activity control

2. Within each set: Some/None of responders to a subset

3. Within each set: Count of responders to a subset

4. Within each set: select a single responder

5. Split/Merge sets

6. Transfer data between sets
The first four operations are analogous to their globally associative counterparts, but are
executed simultaneously in all selected sets. Of course sets are only useful if elements can
added and removed with some efficiency. This is dealt with in the last two operations

which together enable dynamic creation of sets and the implementation of divide-and-conquer

algorithms.

The following is a sample multiassociative instruction sequence:

1. Each set of elements with the same COLOR selects a
single element to be the accumulator.
2. Each set of elements with the same COLOR send a count of the
number of elements to their accumulator.
This sequence might be followed by a globally associative routine to obtain a histogram of
the largest sets:
While Count (SetAccumulator = TRUE A Count > 500 =0
1. SelectFirst(SetAccumulator = TRUE)
2. Read(Count)

3. Read(Color)
4. Write(FALSE — SetAccumulator)

In order to present a more formal description of global and multiassociativity, we define
assembly language level machine models for associative and multiassociative memory pro-
cessors. In both cases, the associative memory cells consist of some number of bits that are
not distinguished in terms of function: that is, any cell location can be referenced in any cell

operand.

The associative instruction consists of five fields as shown below:

1. OPCODE — Operations are: Compare Read Write Count SelectFirst
2. OPERAND 1 - Controller operand

3. OPERAND 2 - Cell operand

4. ACTIVITY — Indicates cells taking part in the computation

5. RESULT —I/0 for some instructions

Field 2 is a value generated by the controller and broadcast to the array. Fields 3-5 are
cell locations. As an example, the Compare instruction compares the data broadcast by the
controller as indicated by OPERAND 1 with the data given by OPERAND 2 in each cell
whose bit pointed to by ACTIVITY is on. If the data match, then the cell location in the

RESULT field is set to TRUE.

The multiassociative instruction word consists of seven fields:

1. OPCODE — Operations are: Compare Read Write Count SelectFirst

2. PARTITION - Partitions multiassociative memory

3. OPERAND 1 - Cell operand 1

4. OPERAND 2 - Cell operand 2

5. ACTIVITY 1 - Indicates cells taking part in the computation as operand 1
6. ACTIVITY 2 - Indicates cells taking part in the computation as operand 2
7. RESULT —I/0 for some instructions

In this case, all fields besides the OPCODE are cell locations. The PARTITION field divides
the memory into sets: cells with identical values are members of the same set. Two activity
fields are needed: one to indicate which cells are senders and one for the receivers. As
an example, the Compare instruction is now applied in parallel to each set as given by
the PARTITION location. Within each set, cells with ACTIVITY 1 turned on distribute
the values at location OPERAND 1 to cells with ACTIVITY 2 turned on. If there are
multiple writers, then the value becomes the bitwise logical OR of the send values. The
readers compare the received value with their own value at OPERAND 2 and set RESULT
according to whether there is a match.

Multiassociative processing extends the concept of multiassociative memory in the same
way that associative processing extends associative memory. Additional computing capa-
bility is added to each cell to enable the generation of symbolic tags to constrain further
processing. Rather than forcing an operand to be an existing value, it can be the result of
a complex computation. A simple example of associative processing is “All elements with
G > 128 and R < 128 and B < 128 set GREEN to TRUE.” An example of a more com-
plex multiassociative routine is “All elements with the same color that are contiguous form

connected components.”

3 A Generic Function Template

In order to discuss a real implementation of a subset of multiassociative processing, we restrict
our attention to a generic function of the type that frequently arises in spatially mapped

vision computation. This function will be used to compare global and multiassociative

Model Complexities of Basic Operators

Count ‘ Update ‘ Select
Serial O(N) O(N) O(|total number selected|)
Parallel O(log N) | O(log® N) O(log® N)
Associative O(]S) O(]S) O(|S|log N)
Multiassociative || O(log N) O(1) O(log N)

Table 1: Big-O complexities of basic operators on various computational models. |S| denotes
the number of sets into which the array has been partitioned. It is assumed that at least one
set has O(N) elements, which is the worst case for the parallel and multiassociative models.

processing with each other and with the familiar serial and parallel processing paradigms.
Pixels are mapped to PEs. Those that are contiguous and have certain values in common
are formed into regions. These regions are then processed using some number each of three
basic operators: SelectSubset, Characterize (often a Count of PEs within a component that
have a certain property), and UpdateSet. Depending on the task and the processing model,
some preprocessing might be helpful to set up communication paths. Examples of tasks

that use the generic function template are region-parallel versions of Count, Histogram,

FindMedian, FindMean, SelectConvexHull, and many others from computational geometry.

4 Performance of Basic Operators

In this section we use big-O notation to make broad comparisons. For the parallel and mul-
tiassociative cases, it is assumed that there is at least one set (region) with O(N) elements,
a likely occurence in practice. The results are summarized in Table 1.

Serial Processing Model: In the serial model, processing time depends not on the size
of the sets, but rather on the number of elements in the entire array that are involved in
each computation. SelectSubset requires O(|total elements selected|) operations, while the
other two operators require that all elements be examined and so have O(N) complexity.
Parallel Processing Model: In the parallel model we assume a controller, PE array with
N processors, and a global OR circuit. The best possible performance for combining routing

networks with a non-trivial number of processors is O(log N). We assume that all sets are

processed simultaneously. The best way to execute the generic function is to select a PE per
set to be the accumulator. Once this has been done, Count takes one combining communica-
tion operation, or O(log N). A region-parallel Update uses a similar propagation method as
a connected components labeling algorithm: it requires O(log N) communication operations
for a total complexity of O(log® N) [9]. Select uses Update log N times (using the algorithm
in [2]) and so has (log® N) complexity.

Global Associative Model: In this model sets are necessarily processed serially. The basic
operations have the following complexity per set: Select is O(log N), Count and Update are
O(1). If | S| is the number of sets, the total complexities are then O(|S|log N), O(|S]), and
O(|S|) respectively. The complexities are derived in [13].

Multiassociative Model: Here, as in the parallel model, sets are processed simultane-
ously. The Count and Select operations are each O(log N) while the update operation is
O(1). These values are justified by results in [8, 4, 7].

5 Performance of the Generic Function

If we are to assume bounded size arrays, the big-O results of the previous section cannot be
taken entirely at face value. But when taken together with empirical results (not included
here) two general conclusions can be made. The first is that multiassociative processing is
faster than parallel processing as long as Count operations do not dominate. The second is
that global associative processing is superior to both parallel and multiassociative processing
when |S| is small, but inferior when |S] is large.

To compare global and multiassociative models in greater detail, we must determine
the constants within the big-O and examine their performance as several parameters are
varied. These are the proportion of Counts, Updates, and Selects in the generic function
instantiation; the input image (upon which the number of sets depends); and the choice of
multiassociative Count algorithm. The last choice is significant because there exist several
algorithms that are not asymptotically optimal, but which are fast in practice.

We do not go into great detail here, but the following results give a flavor for the
relative performance of the models. Timings for the basic operators on a 256 x 256 CAAPP

Model Timimg of Basic Operators
Count ‘ Update ‘ Select
Associative 5|S| overhead, 5|5 2|S]
2|S| per Count
Multiassociative 5000 20 20

Table 2: Estimated times in microseconds for basic template function operations on a 256 x
256 CAAPP. |S| is the number of sets in the array. Multiassociative algorithms represented
are data independent.

are given in Table 2. Graphs giving the behavior of functions with different proportions
of operators are given in Figure 1. The multiassociative Count procedure used is a largely
data-independent implementation of the general communication operation [4] and thus gives

consistent, though suboptimal, performance.

6 Hybrid Algorithms

The generic function we have been examining computes a function F' for each of a number

of sets s; in an array. We make the following observations:

o If we apply the resources of the entire array, including those of the controller, to
compute F for any particular set s; of S, then a result will almost certainly be obtained

more quickly than if F' is computed using only those PEs to which s; is mapped.

o In the case where F is calculated multiassociatively for all s; of S, there is often a wide

variation in elapsed time for the different s;’s. Such a distribution is shown in Figure 2.

From these observations it follows that there may be some function/partition combi-
nations for which a hybrid of a globally associative algorithm Ag and a multiassociative

algorithm Aps may be preferable to either by itself.

Algorithm Hybrid-GENERIC
DO an optimal number (O) TIMES
1. Execute an iteration of Aj,.
DO UNTIL F' is done for all sets
2. Use GlobalSelectSingleResponder to select a set s; from S,
the set of sets for which Ay did not run to completion.

100000 —

[7)
e}
s
8 90000 e global associative: Counts = Selects = Updates = 10
8 —+ = multiassociative: Counts = Selects = Updates = 10
o -— global associative: Counts =0, Selects = Updates = 10
5 80000 |~ f——— multiassociative: Counts = 0, Selects = Updates = 10
£ . e
2 70000 - -7
= L -
'_ L . . ”
c . -
& 60000 |- .- -
= . -
§ . - g
X 50000 —: — e ——— e i e e et e e i i —
X 50000 3 ==
. . e
o 4
40000 |- o s
. . . ”
. ”
30000 e g
. ’ - g
. * -
20000 |- RS
- . P ”
L » e
10000 [~ 58
e
.’
e | L | L] A | M| | |

0
0 100 200 300 400 500 600 700 800 900 1000
Number of Sets

Figure 1: Plot of performance of global and multiassociative instantiations of the generic
function versus the number of sets in the image. Times from Table 2 are assumed. For refer-
ence, during the early stages of region-merging segmentation algorithms, there are commonly
several thousand regions (sets) to be processed.

3. Use Ag to process s;.
4. Remove s; from S.

We refer to the execution of the first loop as local removal and the second as global
removal. To get some intuition as to what O should be and how it can be determined
dynamically, we show graphically what happens to the distribution of the remaining sets
during local and global removal (see Figure 3). Global removal is roughly equivalent to
reducing the area under the graph by one unit per iteration; the graph of the expected new
distribution is generated by reducing the height of the graph at each point by a constant
fraction of the height at that point. Local removal is equivalent to moving the Y-axis to the
right one unit per iteration.

In general, the optimal value for O minimizes the following expression:

K+0 + /oodist(t)dt,
O

20 20

5 10 15 20 25 30 5 10 15 20 25 30

» 100 —

(@]

(@)

& 90

©

é 80 I~ Value of | Value of |

=)

Z 70+

R

~

'—

= 60

=

o 50|

@

E

< 40 |

[&]

@

w

£ 30

(2]

©

) 20

R

o

2 101

o

>

< 0] —]]]
0 10 20 30 40

Number of SVCCs per Set

Figure 2: This histogram, taken from work on a multiassociative count algorithm, shows the
fraction of sets that fall within given intervals of SVCC counts. The significance is that the
performance of the algorithm in a set is proportional to the number of SVCCs in that set.
The histogram shows that most sets tend to be well-behaved, but a significant fraction are
not.

Figure 3: Local and global removal have very different effects on the distribution of the
number of sets with certain values of I. I is the number of iterations of A left for the
processing of a particular set to be completed.

10

where K is the ratio of local to global removal execution times and dist(t) is the distribution
of the number of sets which require a certain number of iterations of local removal to run to
completion. The integral is the number of sets remaining after the local elimination phase
has been completed.

If the distribution is known a priori, then O can be found using the following procedure.
Find the minimum point ¢ between 0 and 7' (where T is the maximum non-zero value in the

distribution) such that the following condition holds:

()t < t' < T) l tt,dist(t)dt S K@ -1t

The fact that dist(t) is usually not known a prior:, plus the complexity of the algo-
rithm, make it impractical for dynamic use, however. But if the distribution decreases
monotonically, as has proved to be the case in practice, then the procedure can be simplified
substantially: the only ¢’ between t and T that needs to be checked is t itself.

There are two methods for determining O in practice. O can be computed off-line for
a data set known to be similar to that being processed. If the variance turns out to be
small, as has often proved to be the case, then O can be fixed a prior:, at least for that
domain. Alternatively, we can use the monotonicity assumption: determining whether the
local removal phase should be terminated reduces to obtaining |S| after every (perhaps
1th) iteration. This can be done efficiently by using global count on the remaining set

accumulators.

7 Sample Application Algorithms

These algorithms can be executed simultaneously in all sets using a single control thread.
Many more multiassociative algorithms can be found in [4].

Voronoi Diagram and Delauney Triangulation [12]. The brushfire method is used
to create Voronoi Diagrams within each set. These regions form subsets. Then, using
adjacent set communication (see Table 2), border PEs in each subset get the point addresses
of their neighbors. These are then selected one-by-one, and the adjacent point locations

collected. The Voronoi Diagram has complexity on the order of the furthest distance between

11

adjacent points. The Delauney Triagulation has a complexity of log N times the maximum
adjacent sets to any set in the Voronoi Diagram.

Spanning Tree. A variation of graph contraction [10, 11] is used. The algorithm takes
O(log(|vertices|) time.

References

[1] G.E. Blelloch and G.W. Sabot (1990): “Compiling Collection-Oriented Languages onto
Massively Parallel Computers,” Journal of Parallel and Distributed Computing, 8, pp.
119-134.

[2] A.D. Falkoff (1962): “Algorithms for Parallel Search Memories,” Journal of the ACM,
9 (4), pp. 488-511.

[3] C.C. Foster (1976): Content Addressable Parallel Processors, Van Nostrand Reinhold
Co. New York.

[4] M.C. Herbordt, C.C. Weems, M.J. Scudder (1992): “Non-Uniform Region Processing
on SIMD Arrays Using the Coterie Network,” Machine Vision and Applications, 5 (2),
pp. 105-125.

[6] M.C. Herbordt, C.C. Weems (1992): “Computing Reduction and Parallel Prefix Using
Coterie Structures,” Proceedings of the 4th Symposium on the Frontiers of Massively
Parallel Computation, pp. 141-149.

[6] M.C. Herbordt, J.C. Corbett, J. Spalding, C.C. Weems (1993): “Practical Algorithms
for Online Routing on Meshes and Meshes with Reconfigurable Buses,” To appear in
Journal of Parallel and Distributed Computing, 19 (1).

[7] M.C. Herbordt, C.C. Weems (1993): “Parallel-Prefix and Reduction Using Coterie
Structures,” submitted to IEEE Transactions on Pattern Analysis and Machine In-

telligence.

[8] J.-F. Jenq and S. Sahni (1991): “Reconfigurable Mesh Algorithms for the Area and
Perimter of Image Components,” Proceedings of the 1991 International Conference on

Parallel Processing, Vol. 111, pp. 280-281.

12

[10]

[11]

[12]

[13]

[14]

J.J. Little, G.E. Blelloch, T.A. Cass (1989): “Algorithmic Techniques for Computer
Vision on a Fine-Grained Parallel Machine,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, PAMI-11 (3), pp. 244-257.

G.L. Miller and J.H. Reif (1985): “Parallel Tree Contraction and its Applications,”
Proceedings of the 28th IEEE Symposium on the Foundations of Computer Science, pp.
478-489.

C.A. Phillips (1989): “Parallel Graph Contraction,” Proceedings of the 1st ACM Sym-

posium on Parallel Algorithms and Architectures, pp. 148-157

F.P. Preparata, M.I. Shamos (1985): Computational Geometry: An Introduction,

Springer-Verlag, New York.

C.C. Weems (1984): “Image Processing on a Content Addressable Array Parallel Pro-
cessor,” COINS TR 84-14 and Ph.D. Dissertation, University of Massachusetts.

C.C. Weems, S.P. Levitan, A.R. Hanson, E.M. Riseman, J.G. Nash, D.B. Shu (1989):
“The Image Understanding Architecture,” International Journal of Computer Vision,

2, pp. 251-282.

13

