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1 Introduction

Computer vision is among the most computationally intensive tasks: Estimates have been
made that a rate of execution several orders of magnitude higher than that currently available
will be needed to perform real-time image understanding [23]. The only way such computa-
tion rates are physically possible is by using massively parallel processors. The question this
research addresses is how to go about making architectural decisions for these types of ma-
chines on the subset of vision computations we refer to as spatially mapped computations.®
In particular, we describe a methodology, software system architecture, and preliminary re-
sults in the use of trace analysis of real program executions for the architectural evaluation
of massively parallel processor arrays.

Most previous vision architecture studies have been based on either mapping sample
algorithms to architectures (e.g. [5]), requirements analysis (e.g. [20]), or feedback from
benchmarks (e.g. [21]). The first two of these methods have served their purpose in making

‘first passes’ at machine architectures, but now need to be extended to yield more specific

and detailed results. Benchmarking efforts have also had their drawbacks:

1. Appropriate Workload. The benchmark test suites may not have accurately re-
flected the workload of a vision system. They have often been restricted to relatively
small computations and a set of well-known—but not necessarily representative—

algorithms. Recent efforts have gone a some way in changing this [24].

2. Flexibility versus Efficiency and Accuracy. The classic choice in architectural
evaluation is between extensive analysis of existing hardware (or of a detailed design)
and a usually less accurate analysis of a parameterized model. Previous benchmarks

have been of the former kind and thus have neither explored a large part of the ar-

! As there has been some confusion as to what is low-, intermediate- and high-level vision, we instead refer
to as spatially mapped those tasks that use pixel-PE mappings during a significant part of the computation.



chitectural design space, nor investigated the effects of varying multiple parameters

simultaneously.

3. Fairness versus Programmability. This is the problem of not allowing a test suite
to include codes that are inherently unsuitable for certain target architectures, while
maintaining the ability to port code to new designs with minimal effort. Benchmarks
have leaned towards the fairness side by being task oriented [16, 17, 24] and have
therefore depended on independent efforts by each architecture’s advocates to code the
test suite. This has again limited the performance measurements to specific machines

(or their designs).

We address the first problem by including applications in our test suite that are in
continual use in a machine vision research environment. These programs have significant
size and established utility. Flexibility while maintaining enough efficiency to explore a
signficant part of the design space is achieved by combining virtual machine emulation—
that is, behavioral simulation that generates traces of virtual machine code—with trace
driven simulation. The first part is orders of magnitude faster than detailed simulation,
while the second part allows for flexible analysis. To maintain fairness while still allowing
the search of a significant part of the design space, we use a combination of task oriented
specification and handcoding. The basic idea is to provide different versions of particular
sub-tasks to those architectures that require them, but to do this only when they are needed.

There are two primary results in this paper. The first is the software system architec-
ture for an evaluation environment that is flexible, efficient, fair, and programmable. The
second is experimental data with respect to memory hierarchy and virtual processor emu-
lation. The latter result is significant in that it demonstrates the efficacy of our approach
in evaluating detailed designs, and provides recommendations for architectural decisions for

future generation array processors.



2 The Architecture and Application Domains

2.1 The Architectural Design Space

The design space has two sets of components: the first is common to all the architectures
under investigation, while the second consists of those components that will be varied and
evaluated. We describe the common part first.

The architectures are all massively parallel arrays (MPAs) with a number of processing
elements on the order of the sizes of the input images. With current technology, this neces-
sitates SIMD control. PEs are all assumed to have a simple ALU, some registers, and some
memory. The processor arrays have inter-PE communication networks at least as powerful
as a nearest-neighbor mesh. Feedback from array to controller is provided by a global-OR
circuit.

We partition the ‘optional’ part of the architectural design space into features and pa-
rameters. The distinction was inspired by Snyder’s work [18] and is defined formally in [9].
Roughly speaking, a parameter is a component for which a reasonable compiler could be
expected to make algorithmic decisions without user input; the opposite is true of features.
In general, all components of serial processors are parameters. These include the number
of registers, the width of the datapath, the size of the cache, etc. These components are
parameters in MPAs as well; another MPA parameter is the number of PEs in the array.

In MPAs, to a much greater extent than in serial processors, there are also components
the presence or absence of which cause different algorithms to be optimal. For example,
we refer to the change of the inter-PE routing network from a broadcast mesh to a packet
switched hypercube as a change in architectural features. This is because, for several tasks
(e.g. connected components, convex hull), these networks will have different optimal al-

gorithms. See Figure 1 for an example of how various popular MPAs can be viewed as



Figure 1: Representation of three massively parallel arrays (MPAs) as collections of core and
optional architectural features.

Application

Description and Comments

DARPA IU Benchmark IT

Synthetic recognition task developed to evaluate complete
image understanding systems [24]. Uses the low-level
bottom-up and the intermediate-level processing components.

Weymouth-Overton Preprocessor

Information preserving image filter.
Uses edge-model curve fitting [14].

Fast Line Finder

Based on Burns’ algorithm [3]: segments image by
gradient orientation and fits line to resulting regions.

Depth From Motion

Computation dominated by correspondence-based matching [7].

Boldt’s Line Finder

Perceptual organization based. Iterative grouping algorithm [2].

Region Segmentation

Based on Nagin-Kohler system [1]. Combines histogram-based
image splitting and region merging techniques.

Table 1: Description of test suite programs



H Type of Computation ‘ Applications Where Used ‘ Test Suite Program Where Used H

Pixel and integer array operations | all applications all test suite programs
Floating point array operations image preprocessing Weymouth-Overton Preprocessor
motion DARPA 1IU Benchmark II
Window-based communication: edge detection all test suite programs
small windows image filtering
Window-based communication: corresponence problem Depth From Motion
large windows
Non-uniform communication grouping Boldt’s Line Finder
segmentation Fast Line Finder
Region Segmentation
Non-uniform reduction segmentation Region Segmentation
Use of non-trivial grouping Boldt’s Line Finder
data structures segmentation
Internal data movement all applications DARPA 1IU Benchmark II

and alignment

Table 2: Broad classes of array computation found in spatially mapped applications, the
particular application tasks in which they are used, and the test suite program where they
are represented.

collections of features.

2.2 The Test Suite

The primary purpose of any test suite is to reflect the workload likely to be encountered in
the domain being studied. We had two criteria in selecting the tasks.

The first was to make sure that the tasks, as a suite, contained a representative sample
of most of the types of computations found in the domain of spatially mapped computation.
This was done to ensure that designs are excercised fully: even if the weight of a particular
type of computation does not match that in a true workload, no significant architectural
weakness should go undetected.

The second criterion was to include applications currently in use. There are at least
three reasons for this: 1) the programs must be ‘big’ enough to realistically excercise the
memory hierarchy; 2) the ‘messy’ connecting code, e.g. moving and aligning data, that is

a significant part of most computations must be represented as such; and 3) small changes



in the proportion of expensive instructions (e.g. reduction) can cause a large change in
apparent performance. See Tables 1 and 2 for the test suite elements and the computations

they represent.

3 The Virtual Machine Evaluation Methodology

In this section we describe how we address the flexibility/efficiency issue in architectural
evaluation. In particular, we did not want to use a detailed simulator as that would be much
too slow to ever search more than a very small amount of the design space. Neither did we
want to lose much accuracy.

The basic idea is to use the principle of trace driven simulation: run a program on an
emulator, generate a trace, and analyze the trace with respect to architectural models to
derive performance results. Where our implementation differs from the common usage of
this technique is that the emulator does not need to resemble the target architecture in any
respect: it only needs to be able to run C++.

The test suite programs written in ICL are compiled into virtual machine code and
executed on a virtual machine simulator. The virtual machine model is that of the generic
MPA presented by the ICL programming language [4]. ICL is a C++ extension with similar
semantics to other data parallel programming languages. It is like C* [19], but with the
parallel data type restricted to two dimensions and called a Plane rather than a Shape.
ICL contains the standard C types for scalars and planes and the standard C operations for
scalar-scalar, scalar-plane, and plane-plane combinations. ICL also contains operations to
handle plane characterization (reductions), interplane data movement (permutes and scans),
and support reconfigurable mesh operations (region formation and PE broadcast).

By excluding target machine implementation details from the virtual machine model we

can separate the program execution (and trace generation) from most of the architectural



analysis. This has several benefits.

o The test suite programs can be executed efficiently and traces generated on any plat-
form that supports C++. The test suite code is run with similar efficiency as code
written especially for a serial processor. While this still yields the inherent slowdown
from simulating to simulated machines (perhaps a factor of 100-1000), it is approxi-

mately 100 times faster than running the ICL code on a detailed MPA simulator.

e Since the program traces are evaluated off-line, they can be generated much less fre-
quently, and only once to test any combination of components in the memory hierarchy,

PE internals, and most communication operations with data-independent performance.

The trace is analyzed to derive performance with respect to the three primary architec-
tural components: memory hierarchy, internal PE datapath, and interPE communication,

as described below.

3.1 Evaluating the Datapath

A generic MPA datapath (i.e. PE ALU and other internals) has been specified and a pa-
rameterized microcode generator written for it. The microcode generator takes as input
the datapath design parameters and outputs the corresponding microcode for any of the
possible virtual-machine-instruction/operand-type combinations. See Table 3 for a list of
parameters. For simple ALUs, the time complexity of each virtual machine instruction is
then computed and tabulated and the virtual machine instruction trace evaluated by a series
of table lookups. For more complex ALUs, e.g. those with pipelining, further processing is
needed to determine the gaps that occur when the pipe is flushed or on memory delays. In
this case, the memory evaluation processing must be completed first to integrate the off-chip

memory references into the instruction trace.



H Option ‘ Parameters H

Number of register operands per cycle | 1,2,3

ALU Parameters Latency, Width (1,2,4,8,16,32,64)

Datapath Parameters Latency, Width (1,2,4,8,16,32,64,
and wider than ALU)

ALU supports bit types T/F

Both ADD and ADDC instructions T/F

Shift Register T/F, Latency, Width (16,32,64,128)

Multiplier T/F, Latency, Width (4,8,16,32,64)

Divider T/F, Latency, Width (16,32,64)

Barrel Shifter T/F, Latency, Width (32,64)

Leading One Detector T/F, Latency, Width (32, 64)

Floating Point Registers T/F, Width (32,64)

Floating Point Co-Processors T/F, Width (32,64), # of PEs sharing FP unit,
Load/Execution Latencies

Table 3: Options and their parameters in the datapath microcode generator.

3.2 Evaluating the Memory Hierarchy

The evaluation of the memory hierarchy can be divided into two components: the register
architecture, and the cache/memory architecture. The major difference is that registers
are explicitly managed, either statically by the compiler or dynamically by the controller,
while caches are managed transparently with supporting hardware. The performance of
both components is obviously affected by their access cycle times. However, there are also
significant differences.

The critical metric in evaluating the register architecture is the number of load and store
instructions required to execute a given program. The register performance depends on the
number and type of registers. The critical metric in evaluating the cache performance is the
hit rate; the important cache parameters are the cache size, block size, and associativity.
Other parameters in the evaluation of the memory hierarchy are the number of cache levels
(and parameters for each), and the bandwidth and latency between levels. The effects of

compiler optimization and controller support for dynamic allocation are also addressed, but



will be discussed elsewhere.

The basic problem in evaluating a potential memory hierarchy design is that the virtual
machine has a flat memory space with locations specified only by variable names and types:
the execution traces do not reference physical memory and register locations. This is a side
effect of being able to evaluate the traces with respect to any number of target machine
register/cache designs without having to rerun the simulations. It does mean, however,
that the physical memory, cache, and register behavior of the program execution must be
(re)constructed a posteriori.

The performance is derived by executing a series of trace transformations to extract

information implicitly contained therein. At a very high level, the general flow is as follows:
e Virtual machine tags are determined as being either static, dynamic, or temporary
variables.
e The variables are assigned virtual memory addresses.
o Registers are allocated and loads and stores inserted into the trace.

e The load/store trace is used for cache simulation using standard techniques [12].

3.3 Evaluating the Communication Network

Inter-PE communication operations with data independent performance—for most tar-
get architectures this includes nearest-neighbor moves—can be evaluated in the same way
as datapath operations. In dedicated routing networks, however, the communication per-
formance is often data dependent [13, 15]. For these, detailed simulation is necessary. We
have written parameterized simulators for both self-routing circuit-switched and combining
packet-switched networks. These subsume the MP1 and CM-2 routing networks, respec-

tively. The network simulation parameters are given in Table 4 and Table 5.

10



H Option ‘ Parameters H
Topology Butterfly, Omega, Baseline
Switch size in each level 2X2,...,nXmn
Number of switches per level 1,...,n/2
Redundancy per output port per level | 1,2,..., (switch size)?
Number of levels 1,...,log(n)

Latency per switch time
Latency per wire time
Startup Latency time
PEs per router port 1,...,n

Table 4: Options and their parameters for the circuit-switched router simulator.

H Option ‘ Parameters H
Number of dimensions | 1,...,log(n)
Path width 1,...,64
Queue size 1,...,
Latency per switch time
Latency per wire time
Startup Latency time
PEs per router port 1,...,n

Table 5: Options and their parameters for the packet-switched router simulator.

11



One problem with this scheme i1s that data dependent communication has a very large
context, on the order of a mega-byte per operation. This amount of information is far too
great to carry along as part of the virtual machine execution trace. What we have done
instead is perform the router simulations during the initial program execution. Although
this does slow down the virtual machine execution, the cost of simulating these instructions
(e.g. global permutations) is significant only when they also dominate the cost of program

execution on the target machine itself.

4 System Architecture

In this section we discuss our overall system architecture and address the issue of fairness
while retaining programmability.

Architects of general purpose processors have established the benefits of using trace
driven simulation for architectural evaluation [8]. They have also determined that the crite-
rion for the effective use of this approach is the existence of a portable high-level language
for each of the designs being evaluated. Thus generic code for various benchmark suites such
as SPEC [19] and LINPACK [6] can run with comparable efficiency on all target platforms
for which a reasonable quality compiler exists.

The major difficulty that arises when transferring this method to the domain of massively
parallel processors is precisely the difficulty in retaining efficiency while porting code from one
processor to another. The reason is not just a question of the existence of a suitable language:
it 1s that algorithms optimal for one parallel architecture are likely to be sub-optimal for other
parallel architectures, even within a class of processors such as massively parallel arrays. It
is beyond the capability of the current generation of compilers to recognize that an algorithm
is inefficient for the target architecture, much less select or create an appropriate new one.

We recognize that this is a critical problem (and the reason for the task orientation of most

12



Constructor
Subsystem

Figure 2: ENPASSANT system architecture: highest level view.

Figure 3: ENPASSANT system architecture: block diagram.
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parallel vision benchmarks) and address it as follows: sections of the test programs that
require different algorithms for efficiency reasons will have them provided. This turns out to
be a reasonably small number for reasons that will be discussed below.

We now present an overview of the system architecture for ENPASSANT (ENvironment
for PArallel System Simulation ANalysis Tools), a framework for making architectural deci-
sions about massively parallel arrays. At the highest level, ENPASSANT is a black box that
takes as input application programs and an architectural specification and outputs perfor-
mance measures (see Figure 2). At a slightly lower level, ENPASSANT contains four major
components: the input constructor, the performance model constructor, the virtual machine

simulator and trace generator, and the trace analyzer (see Figure 3).

e The input constructor takes as input application programs written in ICL and out-

puts code executable by the virtual machine simulator.

e The virtual machine simulator runs the virtual machine code, and generates exe-

cution traces.

e The model constructor transforms the input architecture parameters into instruc-

tion, memory, and communication models for use by the trace analyzer.

e The trace analyzer inputs the virtual machine traces and the target machine models

and outputs performance measures.

Much of the functionality of model constructor and trace generator and analyzer has already
been described in the previous section. See Figure 4 and Figure 5 for details. The input
constructor will now be described further. See Figure 6 for its components and flow.
Certain virtual machine functions are not implemented directly in hardware on all target
architectures; examples are global reduction and the count responders feedback operation.

The execution of these instructions must therefore be emulated by operations that are sup-

14



Architectural
Feature
Selection

Figure 4: Trace Generation and Analysis Subsystem

Figure 5: Model Constructor Subsystem
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ported in hardware. To do this we have created the Operator Emulation Library (OEL)
that emulates operators not supported on a certain target machines with functions contain-
ing operators that are.

As we discussed earlier, certain tasks have different optimal algorithms depending on the
features present in the target architecture. For example, the preferred connected components
labelling code on the connection machine uses either pointer jumping or segmented grid scan
based algorithms [11], while that on the CAAPP uses multi-associative broadcast [10]. As we
have already stated, the use of the correct algorithm 1is critical in making fair architectural
comparisons. The Application Function Library (AFL) contains the various versions of these

functions.

NN

Figure 6: Input Constructor Subsystem

It may seem that the number of tasks in the AFL should be the product of the feature

space with the task space. However, the actual number is far fewer as many architectural

16



Low-level Processing

Label connected components

Compute the K-curvature

Extract the corners

Select components with three or more corners

Intermediate-level Processing

Select components with three or more corners

Find the convex hull of corners of each component

Compute angles between successive corners on hulls

Select corners with K-curvature and computed angles indicating right angle
Label components with three contiguous right angles as candidate rectangles
Compute size, orientation, position, and intensity of candidate rectangles

Table 6: Tasks of the DARPA IU Benchmark II that are used in the test suite program.

features only require distinct algorithms for a few tasks. These tasks are, in general, those
where global communication dominates. Even here, the same code is often optimal across
routing networks. For example, the critical task of summing pixels in regions during a
segmentation algorithm simply uses the global +Reduce function (and its emulations) for

most architectures.

5 Case Study: Memory Hierarchy and Virtualization

In this section, we show the effects of virtualization on a CAAPP-like target machine (see [22]
for details) running the bottom-up and intermediate portions of the DARPA IU Benchmark.
The constituent tasks can be found in Table 6.

The graph in Figure 7 shows the effect of virtualization on the execution time. There are
two things to notice. The first is that the slope through the first four virtualization points
is greater than 1. This can be attributed to the ever greater proportion of time needed to
perform communication among virtual PEs. The second is the leap when the virtualization

factor goes to 16. The reason for this can be seen in Figure 8: for smaller virtualizations,
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most of the working set can fit into a register file of 100 bytes per PE.
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Figure 7: Plot of the execution time of the test program described in Table 6 as a function
of the PE virtualization factor. The register file size is 100 in each case.

The practical result given in Figure 8 is the minimal size of the register file for different
virtualization factors so that the memory fetches do not a dominate the total execution time.
The main memory access time is assumed to be 5 times that of an arithmetic operation. For
factor 1 and 2 virtualizations, only a relatively small register file of 25-30 bytes per PE is
needed. The small size is not surprising since most of the Plane types used by the benchmark
only require single byte storage. It is also apparent, however, that for larger virtualizations,
very little of the context remains after all of the virtualizations of a code segment have been

executed. Since the register file size cannot be increased indefinitely, the architectural answer
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is to interpose a level of cache into the design.

S
|_
c 90.0 I 0 [ virtualization = 1
;(_.2 & < virtualization = 2
o | * ¥ virtualization = 4
§<) 80.0 O O virtualization = 8
w A A virtualization = 16
8 700 |-
o
|_
S 60.0 |-
c
3
o H50.0 I
o
@
P 40.0 -
o
9o
) 30.0
%}
®
o 20.0 |-

10.0 I

0.0 | | | |

O 10 20 30 40 50 60 70 80 90 100
Register File Size in Bytes

Figure 8: Plot of the percentage of the total execution time spent on memory access as a
function of the size of the register file for different virtualization factors. Test program is
described in Table 6.

Figure 9 contains the hit rates of caches of various sizes on the memory reference traces
generated for Figure 8. For simplicity, the cache is assumed to be fully associative with a
block size of 8 bytes. As expected, the hit rate improves with the size of the cache. Also as
expected is the result that a smaller cache suffices for a smaller virtualization. Less obvious
is that the hit rate should decrease as the register file size increases. This is explained as
follows: the increased register file size reduces the absolute number of memory references,

thereby decreasing the locality of those that remain.

Another result from Figure 9 is that a cache size of 400 bytes per PE suffices to achieve
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a 90% hit rate even for a virtualization factor of 16. Figure 10 shows how balance is achieved

when a cache of that size is added to the design.
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Figure 10: Plot of the execution time of the test program described in Table 6 as a function
of the PE virtualization factor. The register file size this time has been decreased to 50, but

a 400 byte cache has been added.

6 Conclusion

In this article we have presented a software system architecture for use in evaluating massively
parallel arrays for spatially mapped computation. The system we have developed will enable
us to extend previous evaluation efforts by simultaneously addressing the issues of flexibility

of the design space, efficiency of the simulations, programmability of the test suite, and
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fairness to all target architectures within our domain. In particular:

o We are modeling the workload with a series of application tasks used in a real computer

vision research environment.

o We have addressed the problem of programmability of the test suite while maintaining
comparable efficiency on all target architectures in our design space by using operator
and application function libraries. The first is general purpose, consisting of emulations
of useful parallel constructs. The second is application specific and contains different

versions of critical sub-tasks.

e In order to achieve maximum flexibility in evaluating the design space while still allow-
ing efficient simulations, we have combined trace driven simulation methodology with

the emulation of the generic MPA presented by the ICL virtual machine model.

Another interesting result is the transformation process that is performed on the virtual
machine traces to reconstruct a posterior: register allocation and caching behavior. This
is an essential component in being able to run programs on a generic MPA emulator and
yet being able to tell what would have taken place had the program been run on any give
target architecture. Finally, we have demonstrated the usefulness of our system on the
critical problem of assessing memory architectures with respect to varying factors of processor

virtualization.
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