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during segmentations of images of outdoor scenes, reduces the number of communication
instructions by more than an order of magnitude over previous algorithms. In the process of
obtaining these results, we derive basic properties of coterie structures and present algorithms
for primitive operations such as information exchange and symmetry breaking within and

among structures.
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1 Introduction

A critical task in the analysis of sensory input is the reduction of the vast quantities of raw
data to a manageable size and into a format that enables further processing. That is, the pixel
data of one or multiple images are transformed into tokens representing edges, lines, corners,
curves, blobs, regions, surfaces, etc. A common step in this process is the segmentation of
the image into groups of pixels sharing some characteristics such as intensities in spectral
bands and/or their derivatives.

Segmentation is typically an iterative process, the critical step of which is the characteri-
zation of candidate regions by size, border length, and mean and median of constituent pixel
values. The problem thus has the following characteristics: it requires a large amount of
computation, especially reductions; the input data are spatially mapped; there are numerous
problem instances (regions to be characterized) enabling simultaneous parallel processing;
the computation is dominated by fine-grained communication; and the communication pat-
terns within each problem instance are non-uniform.

In this article we examine the particular problems of computing parallel prefix and re-
duction on sets of data mapped to non-uniform, contiguous aggregates of processing elements
(PEs) in a SIMD processor array with a reconfigurable mesh network [18, 31, 19, 21]. We
are specifically interested in the efficient computation of these function within all aggregates
simultaneously while only using a single thread of control. This model is important because
it represents an architecture in which it is possible for pixels to be mapped directly to unique
PEs, affording the maximum parallelism if the computation can be done efficiently, and low
communication overhead enabling excellent performance for fine grained communication.

In directly related work, Jenq and Sahni have published an O(log N) algorithm to com-
pute simultaneously either the area or the perimeter of all components of an image using a
reconfigurable mesh [14]. Beginning with individual pixels, the algorithm successively merges

rectangles until only one, the entire image, remains. The algorithm requires 128 broadcast



operations per iteration and log N iterations. Other communication networks for which non-
uniform region processing has been studied are mesh connected arrays [30, 32] and pyramid
processors [22]. Other work that has been done on vision computation using reconfigurable
meshes can be found in [17, 27, 11].

The algorithms presented here use a very different approach than that normally used
on a reconfigurable broadcast mesh: they are based on the concept of the coterie structure,
first introduced in [11]. Each region is processed using only those PEs to which the pixels
of the region have been mapped. Thus, although the underlying model is a reconfigurable
mesh, the algorithms operate on arbitrary connected subgraphs of the mesh. The basic
method is to use knowledge that PEs can obtain about the network configuration in constant
time to dynamically repartition the connected subgraphs into various coterie structures as
appropriate for the algorithm.

The primary theoretical results of this paper are that PRAM symmetry breaking and
graph contraction techniques can be applied to the coterie structures model to obtain an
optimal randomized reduction algorithm and near-optimal (within O(log* N)) deterministic
parallel prefix and reduction algorithms. The primary practical result is a reduction algo-
rithm that effectively runs in time equivalent to 7log n communication operations for a large
number of segmentations and with a surprisingly small variance. In the process of obtaining
these results, we develop the theory and practice of coterie structures: their definitions and
properties (such as symmetry breaking), how they are created and transformed, and how
they communicate.

The rest of this article is organized as follows. In the next section we introduce the idea
of coterie structures and some useful definitions. In Section 3, we present basic algorithms
dealing with communication, symmetry breaking, and transformation. There follow sections

on the theoretical and experimental results, respectively.



2 Preliminaries

2.1 Coterie Network

The coterie network [31] is related to other reconfigurable broadcast networks. Members of
this family of networks have two characteristics: they are describable using hypergraphs [1]
and they are dynamic. In particular, the time-t nxn Coterie Network graph C®) (t = 0,1,...)
has node-set Z2. Each node of C{!) is incident to precisely one coterie-hyperedge: the coterie-
hyperedge incident to node (3,7) of C{¥) is a subset S of Zp that 1) contains node (3,5) and
2) is connected in the sense that the induced subgraph of the n X n mesh on the set S is a

connected graph. Note that at each time ¢, the coterie-hyperedges partition the node-set Z?2

of Cl). The coterie-hyperedges of Ct) do not depend in any way on the coterie-hyperedges
of Clt=1),

The coterie network processor array is built on the coterie network graph. Each PE has
an input and output port connecting it to precisely one coterie, i.e. a (possibly irregularly
shaped) bus: PEs (¢,7) and (k,!) of the coterie network array are connected at time ¢ to
the same coterie (bus) just when nodes (4, ) and (k, 1) of the coterie network graph C{¥) are
incident to the same coterie-hyperedge. A coterie is a bus in the sense that, at any time, a
single incident PE can “talk” while all other incident PEs “listen.” The coterie network has
the additional feature that if multiple PEs “talk,” the listeners receive the bitwise logical
OR of those messages. For a more on hypergraphs and coteries, see [24].

In the physical implementation, each PE controls a set of four switches, N, S, E, W,
enabling the creation of coteries. These switches are set by loading the corresponding bits
of the mesh control register, which is viewed as local storage within each PE. Thus coterie
configurations can be loaded from memory or set from local data-dependent calculations.
See Figure 1.

In this article we also assume that nearest neighbor mesh connections are available for



Figure 1: A 5 x 5 coterie network with switches shown in “arbitrary” settings. Shaded areas
denote coteries (the sets of PEs sharing the same circuit).

local communication. These connections are not strictly necessary, either for algorithmic
correctness, or for asymptotic complexity. However, they are useful conceptually and rela-
tively inexpensive from a hardware point of view once the wires of the coterie network are

in place.

2.2 Multiassociativity

Multiassociativity is an algorithmic framework we have developed in order to process regions
in parallel. A sample application can be seen in Figure 2 where an outdoor image (a) has
been partially segmented (b). In multiassociative processing, the associative operations
(e.g. BroadcastQuery, LocalCompare, ResponseCount, and Some/NoneResponders) often
supported in hardware at the array level are efficiently implemented for coteries [11]. For
example, the well known associative algorithm SelectSingleResponder [9, 6] can be performed

simultaneously for each connected component using only a single global controller using the



following code.

Algorithm SelectSingleResponder
{Beginning with the high-order bit, transmit ID through}
{the Response register. If any PE has a 1 in that bit,}
{turn off activity in PEs with a 0 in that bit.}
FOR BitNum := PEIdLength - 1 DOWN TO 0 DO

Response := PEId[BitNum]

IF (Response = Some)

THEN Activity := Response

2.3 Coterie Structures

Advantages of the coterie network are support of one-to-many communication within coter-
ies, reconfigurability of the coteries, and propagation of information over long distances at
electrical speeds. Disadvantages are that a circuit can carry only one datum per communi-
cation step, and that partitions of the network are constrained by the underlying geometry.

The fundamental strategy in using the coterie network is to orchestrate the partitioning
of the array (or some previously determined subsets) into coteries such that the maximum
number of PEs needing to exchange information on any algorithm step can do so. To do
this efficiently in data dependent algorithms, each PE must determine in a small constant
number of time-steps what role it is to play in the next phase or operation of the algorithm:
whether it is a sender, receiver, or off; and how the section of the network controlled by that
PE should be configured. The key is using the information available locally to each PE, for
example: 1) the row and column ID, 2) the tag and the tags of the nearest neighbors, and
3) the OR of some bit of information in a given memory location of members of the coterie.

Note that there are significant differences between the coterie structures model and other
models (e.g. the PRAM and the data parallel model described by Hillis and Steele [12]).
In particular, pointer jumping is not a viable algorithmic paradigm as the model does not

support unit-time random access operations on non-local memory.



2.3.1 Node Classification

In coterie structure algorithms it is often convenient to classify PEs by whether a PE is an
interior or a perimeter point and how the switches are set. A PE has different capabilities
in controlling the flow of information through the network depending on its number of
connections to its nearest neighbors. We call a PE with 0 connections unconnected, 1 an
endpoint, 2 a through-point, 3 a T-junction, and 4 a cross.

We introduce some other terms that are used below. A closed switch that connects a
PE to a coterie (implying that the opposing PE has its switch closed as well) is a link. A
PE is a node if it is taking an active part in a computation, i.e. if it holds data and controls
links. It is a null node if it takes part in a computation only for algorithmic convenience; i.e.
the node itself is only carrying the identity element. And finally, it is sometimes useful for

a PE to carry no data, but to control links; we refer to these as helper nodes.

2.3.2 Coterie Classification

It is also useful to classify entire coteries into categories (we call coterie structures). As is
the case with data structures, certain algorithms are either available only on some coterie
structures, or have different complexity depending on the structure. As we shall see later,
an effective strategy is to partition a coterie that does not meet an algorithmic specification
into a number of coteries that do, and then to combine the results. Before describing such
algorithms, we first introduce the coterie structures that are used in the rest of this paper.
Coteries have already been defined, see Figure 2d for examples. Horizontal (or vertical)
lines are defined to be coteries where all the North and South (or East and West) switches
are open, see Figures 2e. A coterie is a chan if it 1s comprised of two endpoints joined by an
arbitrary number of (0 or more) through-points. A boundary component is always defined
with respect to a coterie: it is the subset of PEs having the property that at least one of

its eight nearest neighbors (we include diagonals here) is not a member of the same coterie.
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Figure 2: a) Image of a road scene b) segmentation of the image ¢) 32 x 32 sub-image of
segmentation. (d-h) represent coterie structures derived from sub-image: d) coteries corre-
sponding to regions, €) horizontal lines, f) boundary contours, g) singly vertically connected
contours, h) spanning trees.



Not all connections among those PEs are closed, however: in order for two PEs to have a
link, they must be mutually adjacent to at least one PE common from outside the region.
Figure 2f contains boundary components derived from the coteries in Figure 2d.

PEs are members of the same level of a coterie if they are in the same row (column).
PEs in the same level need not be in the same line. Singly mono-dimensionally connected
components come in two varieties, vertical and horizontal. An SVCC is a coterie where at
most one PE in each level has an up-link and one PE has a down-link (the same PE may
have both). See Figure 2g for examples.

A spanning tree of a coterie contains all PEs in the original structure, but where links
have been opened to remove all cycles. See Figure 2h for examples.

A coterie is a C-graph if all endpoints, T-junctions, and crosses, but not necessarily

through-points are nodes.

2.4 Parallel Prefix on Simple Coterie Structures

The literature describing the properties, algorithms, and applications of parallel prefix (also
known as scan) is vast; for a sample see [13, 16, 15, 3]. The definition is as follows: Given a
set [zy,...,z;] of n elements with each element assigned to a different processor and a binary
associative operator *, compute the n S;’s, where S; = z;*zy*. .. z;, leaving the ith prefix sum
in the 1th processor. Besides usefulness in its own right, parallel prefix algorithms are usually
also the best way of computing reductions, that is, operations identical to parallel prefix but
where the partial sums need not be saved. The parallel prefix operation requires 2logn
communication steps on a tree-connected parallel processor, but only log n are required for
a reconfigurable bus. Refer to Figure 3 for an illustration.

The parallel prefix algorithm for an n X m rectangle is also well known and follows almost

immediately from the line algorithm. It has three phases.

Algorithm Parallel Prefix Rectangle
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Figure 3: Three iterations and final result of parallel prefix on a line using the + operator.
The arrows represent the broadcast operation to elements of the coteries formed when the
switches are closed as indicated.

1. Partition the rectangle into m horizontal lines. Run parallel prefix on the lines.

2. Create a vertical line from the m right endpoints. Run parallel prefix on that line.

3. The endpoints update the lines beneath them.

Parallel prefix for a rectangle requires logn + logm + 1 communication and arithmetic op-
erations.

Somewhat surprisingly, parallel prefix on an SMCC is no more complex and only slightly
more complicated than parallel prefix on a rectangle. Again, begin by partitioning the
structure into lines and computing parallel prefix. The second phase is slightly more complex
because the right endpoints are not neatly aligned and therefore cannot be simply merged into
a vertical line. Instead, we have up to three different PEs in each row perform the functions
performed by the right endpoint PE in the rectangle algorithm: the right PE endpoint holds
and processes the information as before, but two possibly different PEs control the links to
the rows above and below respectively (up- and down-links). Recall from the definition of
SMCC that (except for the top and bottom rows), exactly one PE in each row controls the
up-link and one PE controls the down-link. These PEs recognize this fact in unit time by

looking at their mesh control registers. See Figure 4 for an SMCC with those PEs labelled.
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Figure 4: A singly vertically connected component (SVCC) with information-carrying, up-

and down-link PEs indicated.

3 Basic Coterie Structure Algorithms

The algorithms presented here will be used as primitives later. The complexity is assumed

to be O(1) unless otherwise indicated.
3.1 Communication and Symmetry Breaking

Task: Transfer of data between two adjacent coteries.

Algorithm: Assume that a protocol has been decided upon between two neighbors. The
PEs that are on the mutual borders of the communicating coteries close the switches toward
each other. With a circuit comprising both coteries thus formed, the PEs of the sending

coterie broadcast while the PEs of the receiving coterie listen. See Figure 5.

Task: Symmetry breaking (establishing precendence) between a pair of nodes in a coterie.

Randomized Algorithm: The nodes simultaneously broadcast a sequence of indepen-

11



Figure 5: Coteries close mutual switches to communicate

dently generated random bits and their complements until the bit one node broadcasts is
the complement of the bit the other node broadcast. Nodes can tell this has occurred by
comparing the broadcast results (the two ORs of the two pairs of signals) with the bits they
just broadcast. The node that generated the 1 is designated the sender and the other the
receiver.

Deterministic Algorithm: Nodes broadcast their IDs and IDs. After reading the two
bitwise ORs and comparing them with the values they broadcast, each obtains its opposite’s

ID. The node with the higher I D becomes the sender and the other the receiver.

Task: Two nodes within a coterie exchange information.
Algorithm: Precedence is established by using one of the symmetry breaking algorithms

immediately above. The task is completed with a pair of broadcasts.

Task: Each node in a C-graph exchanges information with all its neighbors.

Deterministic Algorithm: Recall that nodes are separated by chains of null nodes of
arbitrary length and that therefore, all nodes have links either to other nodes, or to chains
of PEs that have a node at the other end. The basic idea is to use the neighbor connections
to break the symmetry; otherwise it would be impossible to tell deterministically which pair
of nodes should communicate when. The cases where the length of the intermediate chain is

0, 1, and > 1 are handled separately (see Figure 6). In all three cases, the algorithm starts

12



with the nodes using the nearest neighbor connections to transfer copies of their information
to all the PEs toward which a link is established.

Case 1: Chain length = 0. The nearest neighbor move has already completed the transfer.
Case 2: Chain length = 1. The intermediate PE swaps the data from the two adjacent nodes
and transfers them to their destinations.

Case 3: Chain length > 1. The two node swap algorithm is used to transfer the data between
the two endpoints of the chain. Neighbor transfers complete the exhange.

Randomized Algorithm: We use a variation of the randomized symmetry breaking pro-
cedure presented above. It is assumed that nodes have a list of links to their neighboring
nodes. Nodes randomly close switches in the direction of one of the links, opening those in
all the other directions. Nodes then use one of the symmetry breaking procedures to check
whether the opposite node has done the same. The nodes that did not form a correspondence
with a neighbor again randomly select a link for another try. This continues for a constant
number of iterations during which a constant fraction of the nodes in the C-graph will have
established correspondence. Corresponding nodes exchange information and temporarily re-
move each other from their adjacency lists. This procedure continues until all nodes have

completed the information exchange with all their neighbors.

g@_{g oo ©

Figure 6: C-graph with nodes separated by chains of null nodes of varying length.

Task: O(1) coloring a chain.

Algorithm: When using the standard PRAM O(1) coloring algorithm [10] for constant

13



degree graphs, the number of colors is small when operating on an ordered structure, say a
list or rooted tree (see e.g. [5]), but exponential in the degree of the graph when not. The
basic idea then, is to use information available locally to nodes on the chain to create such
an ordering. Nodes obtain their neighbors’ I Ds which are compared with their own. Nodes
label themselves N\ 7, /"N, N, or *, depending on whether the ID “slope” is up or down
in each direction. Nodes exchange slope labels with their neighbors. The neighbor on each
link can have one of two possible labels: either the slope continues in the current direction
(e.g. / goes to ), or it can go to a local maximum or minimum (e.g.  goes to /N\).
Nodes that are N\ " and "\ cannot be adjacent to other nodes that have that same slope
label and so simply color themselves N\ and \. The remaining nodes form monotonic
ID sequences. These sequences, which now have direction information, can be colored using
the previously mentioned 6-color algorithm and then spliced together with the \ " and
"\ nodes to form an 8-colored chain. To reduce the number of colors to 6, the N\ " and
/"\\ nodes examine their neighbors’ colors and choose any of those remaining to be their
own. The 6-color PRAM list algorithm has O(log* N) complexity, as does the 6-color coterie

chain algorithm.

Task: Create Maximal Independent Set of nodes in a C-graph.
Deterministic Algorithm: Use the information exchange algorithm above to implement

the O(log® N) complexity MIS algorithm found in [10].

3.2 Minimum Partition of Coteries Into SVCCs

In this section we prove the somewhat surprising result that a minimum partition of a coterie

1 Besides the inherent usefulness of this

into SVCCs can be constructed in constant time.
result (see section 5), the significance is that the algorithm performs a complex function

using only information that can be determined locally by each PE in constant time.

1A simple algorithm for a non-minimum, but useful, partition is presented in [11].
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A requirement of an O(1) partitioning algorithm is to be able to determine (as yet
unspecified) properties independently of distances. We have such a tool in the F-G algorithm
(see below). In particular the following question can be answered in constant time: “For any
PE P with property F on a line, is there a PE @) with property G between P and either the
next PE with property F' (to either the left or right) or the end of the line?” We define such
a PE @ to be adjacent to PE P. If two adjacent PEs become members of the same coterie
by closing switches towards each other and opening switches away, then those PEs are said
to be merged.

Algorithm F-G

{For all PEs with property F, find out whether there}
{is a PE with property G between it and the next PE}
{to the left with property F, or the end of the line.}
SaveCoterieSettings()

Coterie[N,S] := OPEN

If (Tag = F) Coterie[E] := Open

If (Tag = G) Broadcast(TRUE)

If (Tag = F) G-AdjacentLeft := Coterielnput
RestoreCoterieSettings()

We start by observing that a greedy algorithm produces the desired partition: starting
at the top level, draw circles around each down-link. Then level by level, expand each circle

to include links at the lower levels while not letting the circles intersect. See Figure 7 for an

example.

Lemma 1 The cardinality of the minimal set of SVCCs |S| in a coterie is equal to the

number of SVCCs that must be added with the addition of each new level.

Proof: Assume a coterie partition contains fewer SVCCs than the number that need to be
added at every level. Then one of the levels of the coterie would be partitioned into fewer
SVCCs than by the above method. But that would either leave vertical links unaccounted

for, or an SVCC with multiple vertical links. Both of these are contradictions. O
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--------------------

Figure 7: A coterie can be partitioned into a minimum set of SVCCs through a serial level-
by-level growth algorithm.

Lemma 2 To create a minimal set of SVCCs within a coterie, it suffices to create a mazimal

matching between adjacent up- and down-links and merge them together.

Proof: The maximal matching leaves the fewest possible leftover vertical links, requiring
that the fewest possible new SVCCs need to be created at that level. O

We now present the SVCC construction algorithm. First label the PEs with up- and
down-links as U and D. All other PEs are ignored. Next, partition the coterie into lines.
Within each line, create a maximal matching between adjacent U and D PEs, a sufficient
condition for creating a minimal partition of a coterie into SVCCs. This is a multi-step

process:

1. Each U (D) determines whether there are adjacent D (U) PEs to the left and/or right

using the F-G algorithm.

2. Each U (D) PE labels itself with a 0, 1, or 2 depending on the number of adjacent D (U)

PEs. We call those numbers the incidences of each PE.
3. The U (D) PEs send the number of incidences to their adjacent D (U) PEs, if any.

4. Each PE is labeled with an ordered triple composed of the number of incidences of the

left adjacent PE, its own incidences, and the incidences of the right adjacent PE.
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5. The value of the ordered triple is sufficient to determine whether each PE should open or
close its East and West switches to create the optimal partition for all but the (2,2,2) case.
PEs with (-,0,-) do nothing, with (*,1,*) merge with their one adjacent PE, with (1,2,1)
arbitrarily merge with either left of right adjacent PE, and with (2,2,1) or (1,2,2) merge with

the adjacent PE with one incidence.
6. PEs with (2,2,2) merge with adjacent PEs according to the procedure described below.

See Figure 8 for an illustration of the labeling of a single line. Before presenting the

(2,2,2) case, we show the correctness of what we have described so far.

Figure 8: A line of one level of a coterie with a) up-links, down-links, and incidences labeled,
and b) ordered triples of incidences of own and neighboring PEs.

Lemma 3 A U(D) PE can only form an SVCC with a single, adjacent, D (U) PE.

Proof: Assume not. Then either two or more D PEs must be in the SVCC at that level. If

the D PE is not adjacent, the line must be open circuited. Both are contradictions. O

Lemma 4 The U-D merges effected by the SVCC construction algorithm are correct for the

cases shown in step 5 (not the (2,2,2) case).

Proof: From Lemma 4 we know we need only insure that each PE merges with the correct,

adjacent PE. Cases (-,0,-), (*,1,*), and (1,2,1) are trivial: in the first nothing can be done,

17



in the second there is no choice, and in the third the choice does not matter. In the cases
(2,2,1) and (1,2,2), the PE should merge with the PE with one incidence: It is possible for
the PE with two incidences to find another PE with which to merge, while the PE with one
incidence has only this opportunity. O

The (2,2,2) case is critical: if the merger is not done correctly, the complexity of our
parallel prefix algorithm increases from O(log N + |S|) to O(N). We we formalize this fact

in the following lemma.

Lemma 5 If a PE P with label (2,2,2) is not guarenteed to merge with the correct PE, then
it is possible for an adversary to force the creation of an SVCC partition where |S| is O(N)

greater than optimal.

Proof: As previously, we are only concerned with U and D PEs. The neighborhood of the
line around P necessarily has the following form: a PE with one incidence, followed by a
series of PEs with two incidences, followed by a PE with one incidence (1,2,...,2,1). The
series of 2 incidence PEs can have either an even or an odd number elements. If odd, and all
the (2,2,2) PEs merge arbitrarily with either their right or left neighbors, then exactly one
PE is left over, the best possible result. In the even case, however, such a uniform merging
strategy leads to there being either zero or two left-over PEs. If no method existed to make
the correct decision, it would thus be possible for an adversary to create O(N) strings of
constant length which after partitioning would each leave 2 unmatched links. O

We now solve the (2,2,2) case. From Lemma 6 we know that we only need to worry
about the case where the series of PEs with 2 incidences is of even length. There are two
possibilities: the (2,2,1) PE at the right end of the 2,...,2 series is either a U or a D; the
(1,2,2) PE at the left end is always the opposite. In the first case, all (2,2,2) PEs that are U
should merge left, in the second case they should merge right.

A procedure for handling the (2,2,2) case follows. PEs that are (2,2,1) open their East

switches and PEs that are (1,2,2) open their West switches to form lines with the pattern

18



Figure 9: Four cases of merging adjacent PEs within strings (1,2,2,2,1). In a) and b), there

1T

are an odd number of (2,2,2) PEs and either the (1,2,2) or the (2,2,1) PE always remains
unmerged. In c) and d), there are an even number of (2,2,2) PEs. The merges must all go
in the correct direction or both (1,2,2) and (2,2,1) PEs will remain unmerged.

(1,2,...,2,1). The PE that are (2,2,1) and U broadcast a one, those that are (2,2,1) and
D broacast a zero. The procedure is repeated for the (1,2,2) PEs. The (2,2,2) PEs read
these values and have four cases: (0,0), (0,1), (1,0), and (1,1). In the (0,0) and (1,1) cases,
there are an odd number of U (D) PEs: these can thus merge arbitrarily (but uniformly)
with their left or right (right or left) adjacent D (U) PE. In the (0,1) case the D (U) PEs
merge right (left) and in the (1,0) case the D (U) PEs merge left (right). See Figure 9 for

an illustration of the four cases with the merges done correctly.

Lemma 6 The U-D merges effected by the SVCC construction algorithm are correct for the

cases where all elements of the triple are 2’s.

Proof: Follows from previous two paragraphs. O

Theorem 1 The SVCC construction algorithm partitions any coterie into a minimal set of

SVCCs in constant time.

Proof: That the time is constant is immediate: there are no loops and no dependencies on

the number of PEs. The correctness follows from the preceding lemmas. O
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4 Algorithms Based on Graph Contraction

In this section we again show how techniques used in other models can be applied to coterie
structures. In particular, the communication and symmetry breaking algorithms of the pre-
vious section are integrated with PRAM contraction techniques (see [20, 26]) to produce an
O(log N) randomized reduction algorithm and O(log*N log N) deterministic parallel prefix
and reduction algorithms. Since the prefix algorithm follows almost immediately from the

reduction algorithm, only the latter is presented.

Algorithm REDUCE

While |nodes| > 1 do in parallel
Use MERGE to merge legal pairs of adjacent nodes
such that the resulting vertices have degree < d,45.

Phillips shows that, for bounded degree planar graphs, there are always a constant
fraction of nodes eligible for merger as long as d.; > the degree of the graph [26]. That a
constant fraction of nodes eligible for merger does so follows by arguments similar to those
used in the previous section. The While loop thus executes O(log N) times.

The MERGE procedure is more complicated when applied to coterie structures than
the equivalent PRAM algorithm. The reason is that in a distributed memory model, nodes
cannot simply be eliminated once their data have been combined: the wires associated with
the underlying PEs may still be needed to transmit information between the nodes remaining
in the computation. Since these leftover PEs always through-PEs, MERGE operates on a
C-graph.

The constraint that no node ever have degree > 4 creates a relatively small constant
number of merge cases that can be handled separately. This number is decreased by imposing
the convention that the node with smaller degree always transfer its data to the node with

larger degree. We examine five cases (see Figure 10), the others are analogous.
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. An arbitrary node merges with a node with degree 1 or 2. If the lower degree node is
dy, the higher degree node eliminates the link to that node. If it is ds, then the links

remain intact, although that node is removed.

. A d; node merges with another ds node with which it has one common neighbor. One
node is selected to send data, the other to receive. The receiver retains its link to the

common neighbor node while the sender removes it.

. A d3 node merges with another d3 node with which it has no common neighbors. The
resulting node has degree 4, but its functionality must be distributed over the two
original nodes. One node holds the data and controls two links, while the other, which

has now become a helper node, controls the other two links.

. A d; node with a helper node merges with a d;3 node with which it has one common
neighbor. The d; node is turned off and the link from the d; node to the common

neighbor is eliminated.

. Two d4 nodes with helpers and two common neighbors merge. One of the nodes (and

its helper) are turned off and its links to the common neighbors are removed.

For this list to be exhaustive (including analogous cases), it is necessary for the following

propositions to be true:

Proposition 1: Only nodes of degree 4 can ever need a helper PE.

Proposition 2: No node ever needs more than one helper PE.

The truth of these propositions follows from the fact that for nodes that are created using

the above procedures, the only possible configuration where a helper node can be introduced

is in case 3. That is because compound nodes (nodes with helpers) can only be created when

the node formed through merger has greater degree than either of the two constituents. We

observe that after a merger where the degree does not increase—between any node and a ds,

a d3 with one common neighbor, or a dy with two common neighbors—the merged node is
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Figure 10: Five cases of nodes merging on C-graphs. In all cases, A merges into B.

a through-PE with no need to control information flow.

Procedure MERGE
V nodes do in parallel
1. Find adjacent nodes and create a neighbor list.
2. Exhange neighbor lists with all neighbors.
3. V neighbor lists do sequentially
Eliminate duplicates, determine neighbors with which merger is legal.
4. Execute either the random or deterministic version of SELECT-MATCH-PAIRS.

5. Combine nodes according to the cases presented above.

Since all the nodes are guaranteed to have bounded degree, steps 1, 2, 3, and 5 are O(1).

Procedure DETERMINISTIC-SELECT-MATCH-PAIRS

1. Run the COTERIE-MIS algorithm from section 3.1.

2. Members of the MIS that are members of a legal merge pair choose a
merge partner. The partner breaks ties if it is multiply selected.

The complexity of COTERIE-MIS is O(log* N) which is also the complexity of the

algorithm.
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Procedure RANDOMIZED-SELECT-MATCH-PAIRS

While nodes in match pairs are unmatched and have an unmatched partner
Nodes in match pairs randomly select a match partner.
If the nodes agree, they declare themselves matched.

Since nodes have a constant probability of being matched during every iteration, the ex-
pected time of the algorithm is O(1). Therefore, step 4 of MERGE is O(1) if the randomized
algorithm match select algorithm is used, and O(log* N) in the deterministic case. Thus the
overall REDUCE complexities are O(log N) and O(log*N log N) respectively.

The complexity constant improves drastically if the coterie is known to be a tree. The

algorithm runs as follows:

Algorithm TREE-REDUCE
While |nodes| > 1 do in parallel
Use TREE-MERGE to merge legal pairs of adjacent nodes

where legal pairs have at least one node with degree 1 or 2.

Since trees have the property that at least half the nodes have degree 1 or 2, the While
loop executes O(log N) times. The fraction of nodes available for merger in the general
merge algorithm is likely to be substantially smaller.

Procedure TREE-MERGE
V nodes do in parallel

1. Find adjacent nodes and compute degree.
Exhange degree information with all neighbors.

2.
3. Execute either the random or deterministic version of TREE-SELECT-MATCH-PAIRS.
5.

Combine nodes according to case 1 presented above.

The tree version of randomized match pair selection is identical to the non-tree version.
In the deterministic case, however, we only need to run chain MIS, rather than the coterie
version.

Procedure TREE-DETERMINISTIC-SELECT-MATCH-PAIRS

1. Nodes adjacent to d; nodes select one of them for merger.

23



2. Nodes with degree 3 or 4 adjacent to dy nodes choose one
for merger iwth the d; node breaking ties.
3. Form chains of the contiguous remaining d, nodes. Members
of the MIS choose merger partners, with chosen nodes breaking ties.

The advantages of TREE-MERGE are that no neighbor lists need to be created, ex-
changed, or searched for duplicates; that symmetry breaking is much easier on a chain than
on a bounded degree planar graph; and that only case 1 of the actual node combining needs
to be executed. However, since we are not aware of any algorithm to create a spanning

tree out of arbitrary coteries that is itself not O(log N), TREE-REDUCE will likely only be

useful if multiple reductions on a coterie partition are to be computed.

5 Practical Algorithms and Experimental Results

In this section we investigate the performance of reduction algorithms on tasks arising during
the execution of a working segmentation system. This system has been used extensively in
image interpretation research in various image domains. We find that a combination of

array-based and multiassociative techniques yields the best performance in practice.

5.1 A Segmentation System

Many segmentation systems are based either on image splitting guided by the analysis of
feature histograms [25, 23], or region merging based on local region properties constrained
by global criteria [4, 7, 29]. The system we have used to generate problem instances—the
Nagin-Kohler-Griffith-Beveridge system—combines these two approaches [2]. In the first
phase, spatially localized feature histograms are used to over-segment the image. That is,
sensitivity parameters are set so that all region boundaries with even a modest likelihood of
having semantic content are retained. In the second phase, a region merging algorithm is

applied to remove those boundaries least likely to be meaningful.
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The region merging phase begins by characterizing each region by the means and stan-
dard deviations of various spectral quantities, by its size, and by the lengths of its common
borders with adjacent regions. Based on these values, merge scores are calculated with re-
spect to the adjacent regions. Region pairs are merged if their merge score is both a local
maximum and surpasses a global threshold. After the merge is completed, the newly created
regions are again characterized and new merge scores calculated for region pairs. The process
is repeated until no merge scores surpass the global threshold.

The bulk of the computation occurs during the original region characterization; there-
after, characterizations are computed from the attributes of the constituent regions. We
therefore concentrate on the reduction of the regions of the oversegmented image.

The data set consists of 28 256 x 256 intensity images of which 13 are road scenes and
15 house scenes. Figure 11 shows a sample image from the road scene domain, the phase 1
output (oversegmented image), and the final segmentation. See [2] for more examples. The
oversegmented images have an average of 1900 regions with a standard deviation of 788. See

Figure 12 for details.

Figure 11: a) Sample image is Road Scene 16, b) over-segmentation of image, c) image after
region merge.
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5.2 SVCC-based Reduction Algorithms

We now present an SVCC-based reduction algorithm for arbitrary coteries that is the basis
for our practical algorithm. The parallel-prefix algorithm follows as before with little added
complexity.
Algorithm Local REDUCE
1. Partition the coterie into horizontal lines.
2. Reduce lines and leave the result in the right endpoint.
3. Partition the coterie into SVCCs.
4. Reduce SVCCs leaving the result in the bottom endpoint. The bottom
endpoints of the SVCCs in each region form a set S with cardinality |5].
DO UNTIL |S| = 0 for all coteries
6. Use SelectSingleResponder to select an element s from S.
7. s broadcasts its partial sum to the elements in S which

combine that value with their own.
8. s removes itself from S.

Steps 1 and 3 are constant time operations, while 2 and 4 require log n communication and
arithmetic operations.? In the DO loop (a phase we refer to a local removal), Step 6 uses an
O(log N) algorithm (although with a small constant), while Steps 7 and 8 are again constant
time operations. The overall complexity is therefore proportional to log N and depends
on the number of SVCCs |S| into which the worst behaved coterie has in the image been
partitioned. Since it is relatively easy to construct a coterie where |S| = O(N), we are left
with an O(N log N) algorithm.

Since we are invesigating practical algorithms in this section, a quantity more important
than the worst case of |S| is its size during real applications. Results are presented in
Figure 12. In summary, it is common for at least one region per image to be so badly
behaved as to make the above algorithm impractical: the DO loop would have to be executed
an average of 153 times and a value of 300 would not be unlikely. However, the number of

badly behaved regions per image is small (with an average of only 13 regions per image

2For the rest of this article, the algorithm used in step 3 is assumed to be the one in [11].
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having more than 10 SVCCs), signaling the possibility of large performance gains with a

relatively small amount of additional work.

Image number of | number of | avg SVCCs | max SVCCs count of regions this many SVCCs
Name regions SVCCs per reg. per reg. 1-10 | 11-20 | 21-30 | 31-40 | 41+
amroad0 1967 3159 1.61 198 1944 11 6 2 4
amroadl0 1949 3246 1.67 206 1933 6 2 2 6
amroad14 1017 1627 1.60 120 1007 2 3 1 4
amroadl5 1685 2654 1.58 202 1674 4 3 0 4
amroadl6 546 908 1.67 44 537 4 1 3 1
amroadl 1294 2271 1.76 302 1284 5 1 0 4
amroad25 2915 4672 1.61 276 2895 8 4 4 4
amroad?29 1352 2362 1.75 453 1341 8 0 0 3
amroad?2 2821 3780 1.34 50 2804 11 4 1 1
amroad33 1848 3012 1.63 268 1830 13 2 0 3
amroad34 1399 2178 1.56 286 1391 3 1 1 3
amroad3 2732 4006 1.47 61 2707 14 4 3 4
amroad5b 2195 3454 1.58 348 2185 3 3 2 2
avg road 1824.6 2871.5 1.60 216.5 1810.2 | 7.1 2.6 1.5 3.3
housel0 1176 1647 1.41 74 1168 5 1 0 2
housel4 1727 2276 1.32 48 1719 3 2 2 1
housel5 1291 1721 1.34 37 1284 2 3 2 0
housel6 1168 1555 1.34 48 1162 2 1 1 2
housel7 1451 1927 1.33 64 1442 6 0 1 2
housel9 861 1263 1.47 69 852 3 2 1 3
housel 1638 2252 1.38 158 1630 4 2 1 1
house20 1363 1848 1.36 47 1350 7 3 0 3
house2 2109 2923 1.39 82 2095 10 2 1 1
house3 1890 2628 1.40 106 1879 6 2 0 3
house4 2786 3838 1.38 313 2770 10 3 1 2
houseb 3715 5171 1.40 75 3692 9 6 1 7
house6 2442 3540 1.45 81 2420 15 2 1 4
house7 2067 3219 1.56 84 2043 11 7 2 4
house8 3796 4955 1.31 188 3786 8 1 0 1
avg house 1965.3 2717.5 1.38 98.3 1952.8 | 6.7 2.5 0.9 2.4
avg all 1900.0 2789.0 1.48 153.1 1887.6 | 6.9 2.5 1.2 2.8

Figure 12: Image statistics for the data set after completion of the oversegmentation phase.

For reference, the average number of regions per image is substantially greater than n, the
average maximum number of SVCCs per region is only slightly less than n, and the average
number of regions per image with more than 10 SVCCs 1s 13.4.

One possibility is to add one or more SMCC reduction steps, i.e. to repeat steps 3 and 4

alternating between the vertical and the horizontal dimension. After all, if SVCC reduction

of endpoints eliminates a large fraction of the horizontal line accumulators, it seems likely

that SHCC reduction of SVCC accumulators could also be helpful.
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Algorithm SMCC REDUCE
1. Partition the coterie into horizontal lines.
2. Reduce lines and leave the result in the right endpoint.
DO I TIMES
3. Partition the coterie into SVCCs.
4.  Reduce the SVCCs leaving the result in the bottom endpoint.
5.  Partition the coterie into SHCCs.
6.  Reduce the SHCCs leaving the result in the right-most endpoint.
DO UNTIL |S| = 0 for all coteries
8.  Use SelectSingleResponder to select an element s from S.
9. s broadcasts its partial sum to the elements in S which
combine that value with their own.
10. s removes itself from S.

The distribution of |S| as a function of I (see Figure 13) shows that the return diminishes
rapidly. What happens is that some regions have a large number of SVCC-SHCC pairs that
contain each other’s accumulators. No progress was ever made after I reached 20.
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Number of SMCC Reductions (I * 2)

Number of Local Removals To Complete Computation

Figure 13: Graph of Max(|S|) versus I. The reduction in the number of times local removal
must be executed levels off after I = 2 (number of reductions = 4).

A more promising alternative is the hybrid algorithm in the following section.
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5.3 A Hybrid Reduction Algorithm

For any particular region r from the set of regions R, it is usually faster to execute reduc-
tion /prefix algorithms by applying the resources of the entire array to that problem instance
than it is to use only those PEs to which the region is mapped. There follows a simple

reduction algorithm based on array reduction procedures (which we call global removal).

Algorithm Global REDUCE

DO UNTIL |R| =0
1. Use GlobalSelectSingleResponder to select an arbitrary region » from R.
2. Use the resources of the array to reduce r.
3. Remove r from R.

Depending on the operation being used during the reduction, the complexity of step 2 can
range from O(log N) in the general case, down to O(1) when executing the CountSelecte-
dResponders operation with appropriate hardware support [28]. Similarly, step 1 can also
have complexity from O(1) using hardware described in [8] to O(log N) if only a global OR
circuit is available. In any case, the algorithm is efficient if and only if |R| is small. We have
seen, however, that the number of regions in an oversegmentation can be huge: in the case
where regions are relatively small, |R| = O(N).

The idea behind hybrid reduction is to combine the global algorithm with the local
removal operation used in the SMCC-based algorithm. After two reduction passes (steps
1-4), an as yet undetermined number of local removals is executed. Global removals are then
used to finish the reduction.

Algorithm Hybrid-REDUCE

1. Partition the coterie into horizontal lines.

2. Reduce lines and leave the result in the right endpoint.

3. Partition the coterie into SVCCs.

4. Reduce SVCCs leaving the result in the bottom endpoint. The bottom
endpoints of the SVCCs in each region form a set S with cardinality |5].

DO an optimal number (O) TIMES

6. Use SelectSingleResponder to select an element e from S.
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7. e broadcasts its partial sum to the elements in S which
combine that value with their own.

8. e removes itself from S. oo Value oS!
DO UNTIL |R| =0

9. Use GlobalSelectSingleResponder to select a region r from R.

10. Use a global reduction algorithm to reduce 7.

11. Host broadcasts result back to r.

12. r removes itself from R.

To get some intuition as to what O should be and how it can be determined dynamically,
we show graphically what happens to the distribution of remaining regions during local and
global removal (see Figure 14). Local removal is equivalent to moving the Y-axis to the right
one unit per iteration. Global removal is roughly equivalent to reducing the area under the
graph by one unit per iteration; the graph of the expected new distribution is generated by
reducing the height of the graph at each point by a constant fraction of the height at that

point.

Figure 14: Local and global removal have very different effects on the distribution of the
number of regions with certain values of |S|. Data shown is synthetic.

In general, the optimal value for O minimizes the following expression:

K+0 + /oodist(t) dt,
O

30



where K is the ratio of local to global removal execution times and dist(t) is the distribution
of the number of regions with certain values of |S|. The integral is the number of regions
remaining after the local elimination phase has been completed.

If the distribution is known a priori, then O can be found using the following procedure.
Find the minimum point ¢ between 0 and T' (where 7' is the maximum non-zero value in the

distribution) such that the following condition holds:
t’
V(i (<t <T) l dist(t)dt > K(t' —t)] .
¢

This procedure has been used to find optimal O’s for the data set; the results are presented
in Figure 15.

The fact that dist(t) is usually not known a priori, plus the complexity of the algo-
rithm, make it impractical for dynamic use, however. But if the distribution decreases
monotonically, as has proved to be the case in practice, then the procedure can be simplified
substantially: the only ¢’ between t and T that needs to be checked is t itself.

There are two methods for determining O in practice. We see from Figures 15 and 16
that for each ratio of global to local removal time, O has a relatively small variance. This
indicates that O can be fixed a prior:, perhaps once for each image domain. Alternatively, we
can use the monotonicity assumption: determining whether the local removal phase should
be terminated reduces to obtaining |R| after every (perhaps ith) iteration. This can be done

efficiently by using global count on the remaining region accumulators.

5.4 Performance and Comparison

In this section we examine how the Hybrid-REDUCE algorithm is likely to perform using
existing technology, and how its relative performance is likely to change with technological

advances. Throughout this subsection the operation is assumed to be CountSelected PEs,
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Image Name | Ratio of Local to Global Removal Execution Times
Name 1 |23 ]4]5 |6 ] 7]8]9]10
amroad0 24 |11 | 11 | 8 6 6 6 6 6 6
amroadl0 14 8 8 8 8 8 6 6 6 6
amroadl4 10 7 7 4 4 4 4 4 4 4
amroadlb 12 | 12 | 8 8 6 6 6 6 6 6
amroadl6 10 6 6 3 3 3 3 3 3 3
amroadl 11 9 8 6 5 5 5 5 5 5
amroad25 13 |11 |11 | 10 | 8 7 7 7 6 6
amroad29 15 9 9 7 5 5 5 5 4 4
amroad?2 15 | 13 | 13 | 8 7 6 6 6 6 5
amroad33 20 7 7 7 6 6 5 5 5 5
amroad34 12 7 7 7 6 5 5 4 4 4
amroad3 20 | 15 | 10 | 8 8 7 7 7 7 7
amroadb 12 |11 | 9 9 9 7 7 6 6 6
avg road 145197887263 |58 |56|54|53|5.2
housel0 9 9 9 5 5 5 5 5 4 4
housel4 10 | 10 | 8 6 6 5 4 4 4 4
houselb 11 6 5 5 5 5 5 5 5 5
housel6 12 |10 | 5 5 5 3 3 3 3 3
housel7 14 8 7 5 5 5 5 5 5 4
housel9 6 6 4 4 4 3 3 3 3 3
housel 10 | 10 | 5 5 5 4 4 4 4 4
house20 7 5 5 5 5 5 5 4 4 3
house2 13 |12 |12 | 6 6 6 6 6 5 5
house3 14 | 12 | 8 7 6 6 5 5 4 4
house4 18 7 6 6 6 5 5 5 5 5
houseb 12 |12 | 9 7 7 7 7 7 6 6
house6 15 | 15| 9 8 8 8 6 6 6 6
house? 15 [ 13 | 13 | 8 8 8 6 6 6 5
house8 17 9 9 9 9 9 6 6 6 6
avg house 122 1 9.7 |76 6.1 | 6.0 5650|5047 |45
avg all 13.319.782 |66 |6.2|57|53[52]|5.0]4.8

Figure 15: Optimal numbers of local removal operations (O) for different images and ratios
of local to global removal execution times (K).

32



the data to be 32 bit integers, and the array to consist of a 256 x 256 grid of PEs.

The relative performance of primitive operations on existing technology was obtained by
using results from the CAAPP prototype, a 64 x 64 array of bit-serial processing elements,
and through hardware simulation of the full size array. The instruction durations in machine
cycles are as follows: coterie communication instructions tgo; = 10, GlobalCount tge = 20,
and all other instruction, including ALU broadcast and PE arithmetic instructions, tpg = 1.
Since a single iteration of local and global removal take about 100 and 580 cycles respectively,
the ratio K = 6. We have used average case values for the local and global loop counts from
Figure 16: O = 4 and R = 17. These are justified because of the small variance of O.
Bookkeeping added up to less than 100 cycles and was ignored.

FirstTwoReductions = 2 xlogn * (32 x tce: + 64 * tpg) = 2624 cycles

SelectSingle Responder = log N * (tcot + 2 * tpE)

Local Removal = O * { BroadcastPartialSum = 32 * too = 3480 cycles
CombinePartial Sum = 64 x tpg

GlobalSelectSingle Responder = 3 xlog N * tpg
Global Removal = R x { GlobalCount = tgc = 2652 cycles
Broadcast Result = 32 x tpg

Significant is that the local and global removal phases—the parts of the computation that
are not asymptotically optimal—take a similar number of cycles as the reductions executed
during the first phase. This means that executing extra reductions as in the SMCC-Reduce
algorithm is not likely to improve performance.

Two likely changes in hardware performance will alter the relative performance of the
algorithms: the latency of the coterie network broadcast, and the path width of the coterie

network bus. The expression

(32

512 32
cycles = —(toot +2) + O(— + 16)(tcot +2) + R(70 + —)
w w w
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Ratio of Local to Global Removal Execution Times (K)
1 [ 2 ]3] 4] 5 |6 78] 9 ]10
avg of O 13.3 ] 9.7 | 82 6.6 | 6.2 5.7 | 5.3 52 | 5.0 | 4.8
Sigma of O | 4.0 28 | 24 1.7 1.6 1.6 1.2 1.2 1.1 1.2
avg of R 93 |13.4(16.7|21.7|23.6 | 25.8 |28.4|29.2|30.9 | 32.2
Sigmaof R | 36 | 4.7 | 49 | 62 | 71 | 69 |76 | 7.2 | 8.0 | 86

Figure 16: Average optimal values over the entire data set for local and global removal
operations (O and R) and their standard deviations for different ratios of local to global
removal execution times (K).

relates the performance of Hybrid-REDUCE to the two parameters, width = w and co-
terie communication latency = tco;. The loop counter values O and R are again obtained

empirically from Figure 16 where K is determined as follows:

(22 4 16)(2 + toor)

K =
70+ 2

The resultant changes in performance of the hybrid algorithm are illustrated in Figurel7.
The improvement due to increasing path-width levels off because SelectSingleResponder is
inherently bit-serial.

The range of coterie latency to PE instruction ratios was selected with the following
scenarios in mind. The curent ratio is about 10. An increase is likely as the VLSI process
improves, while the basic packaging configuration remains as it is. We estimate a factor of 3
maximum relative speedup here over the short term as the design improves, but no greater
since clock distribution problems for massively parallel arrays are significant. A decrease in
the ratio is likely in future generation machines when the entire array will fit on a wafer (or
chip). However, it is very unlikely that the coterie latency will ever be less than the global

signal propagation, bounding the minimum of the ratio at 1.
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Figure 17: Expected performance of Hybrid-REDUCE given changes in network latency and
path width.

6 Conclusion

We have presented a set of new computation techniques for solving problems on reconfig-
urable broadcast meshes. The method does not use either of the common approaches in this
area, i.e. data independent recursive splitting and merging of the original image, or using
the network to simulate one or more arithmetic components. Rather, for each subproblem,
we use only those PEs to which the pixels of the region have been mapped, and thus avoid
the need for remapping that sometimes arises in the latter approach.

We have shown how the coterie structures model can make up for the absence of an
efficient general distributed memory access capability through the orchestrated repartition
of the induced subgraphs. In this way, certain PRAM results were shown to hold for arbitrary
connected components of the reconfigurable mesh as well. We have also shown how to take
advantage of coterie broadcast to break symmetries and to obtain information independent

of distance.
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The algorithms presented are significant from both a theoretical and a practical point of
view. The former because they show the possible richness of this computational model, the
latter because they are likely to be the fastest available. In fact Hybrid-REDUCE runs within
a factor of four of the rectangle reduction algorithm and more than an order of magnitude
faster than previous methods. Perhaps the most significant result, however, is that we have
shown it is possible to create efficient algorithms “without leaving the coterie”; that irregular
graphs need not preclude good solutions for problems on reconfigurable broadcast networks.

We assume that the definitions, basic algorithms, and methodology will be useful in
solving many other multiassociative problems. Work is under way using the coterie struc-
tures model to solve problems from computational geometry. Other future work includes

generalizing the relationship between local and global associative processing.
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