T3 T 7

—a T3 T3 T3

Reducing Noise in 3D Models Recovered
From a Sequence of 2D Images

J. Inigo Thomas

CMPSCI TR93-74

September 1993

This work was supported by the Advanced Research Projects Agency (via
TACOM) under contract number DAAE(07-91-C-RO35, and by the National
Science Foundation under grant number CDA-8922572.

REDUCING NOISE IN 3D MODELS RECOVERED FROM A
SEQUENCE OF 2D IMAGES

A Dissertation Presented

by

J. INIGO THOMAS

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DoOCTOR OF PHILOSOPHY

September 1993

Department of Computer Science

© Copyright by J. INIGO THOMAS 1993

All Rights Reserved

Dedicated to my wife Anne

~—3

REDUCING NOISE IN 3D MODELS RECOVERED FROM A
SEQUENCE OF 2D IMAGES

A Dissertation Presented

by

J. INIGO THOMAS

Approved as to style and content by:

Edward M. Riseman, Cgair

@ﬂ.w QQ#«)' Avatn—

Allen R. Hanson, Member

T A Olymsw

John A. Oliensis, Member

?‘(7{,1A1’ QCH/MAQL(/\

fRodenc A. Grup?nl Mefnber

%ewaaég\

Haluk Derin, Member

W. Richards Adrion, Department Chair
Department of Computer Science

3 T3 T3 "3

ACKNOWLEDGMENTS

I thank Ed Riseman for reading several drafts, painstakingly commenting on them,
advising me and challenging me. Many thanks to Al Hanson for his comments, mo-
tivation, support, and for setting high standards. I also thank Ed and Al for making
it possible for me to work in their excellently equipped, high-quality research labora-
tory. I thank John Oliensis very much for working closely with me, commenting on
innumerable drafts, and always having the time for me. I also thank Rod Grupen for
his valuable suggestions and ideas, and Prof. Derin for his comments and theoretical
insights.

I wish to specially thank Anne Vainikka, who I consider as an unofficial member
of my committee. Anne read almost every draft of the dissertation, with constructive
criticisms on style, language and logic of presentation. I also thank Sandy Poilatsek,
Brian Burns, Harpreet Sawhney, R. Manmatha, Lance Williams, Jan Koenderink
and Volker Aurich, for the many interesting discussions about Vision. Thanks to
the researchers at the UMass computer vision laboratory, especially Rabi Dutta,
Bruce Draper, Mark Snyder, Poornima Balasubramanyam, Chris Connolly, Teddy
Kumar, Rich Weiss, Zhongfei Zhang, Bob Collins, John Dolan, Ross Beveridge, Benny
Rochwerg, Gokhan Kutlu, Sumit Badal, Sashi Buluswar, Jonathan Lim, Yong-Qing
Cheng, Runsheng Wang, and Brian Pinette, for helping me enhance my knowledge
of various topics in computer vision.

I thank Harpreet Sawhney and Teddy Kumar for the image sequences and related
data used in Experiments I and II (Chapter 4). Thanks also to R. Manmatha and
R. Dutta for providing me with clarifying information on the image sequence used in

Experiment III. Special thanks to Teddy Kumar for making available his program for

pose estimation which was modified and used in Experiments IV and V. Thanks to
Jonathan Lim, who helped me with videos, displays, and system software. Thanks
also to Bob Heller for helping me with several computers, and answering many ques-
tions. Thanks are due to Bruce Draper for providing me with the code for Absolute
Orientation, to Harpreet Sawhney for providing me with the code for Relative Ori-
entation, to Ross Beveridge and Bob Collins for the matrix inversion routine, and
to Benny Rochwerg for the optical flow code. Special thanks to Kwan Liu, who is
converting the original LISP implementation to a C implementation. Many thanks
to Prof. Aurich who made vision-related computing hardware available to me during
my eight-month stay at the University of Disseldorf, and thanks to J. Weule for
helping me with the hardware. Special thanks to Laurie, Janet, and Val, for making
things go smoothly at UMass.

I thank my wife Anne for bearing with me during the many long, stressful periods,
and always being a source of support and love. Many thanks to my parents, especially
my mother, for teaching me the value of education and helping me all along, in spite
of the hardships that we faced. Thanks to my brother and sisters, and my friends,

especially those from my church, who have made this work possible.

vi

3 _3

3

3 1

3 _3

3

3

£

ABSTRACT

REDUCING NOISE IN 3D MODELS RECOVERED FROM A
SEQUENCE OF 2D IMAGES

SEPTEMBER 1993
J. INIGO THOMAS
B.E., COLLEGE OF ENGINEERING, MADRAS
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Edward M. Riseman

The goal of this dissertation is to develop a technique for constructing models of
a scene using camera images obtained by a moving robot. Such models are useful for
a navigating rooot, especially for positioning itself in the world, following paths and
avoiding obstacles. In order to construct a 3D model from images, the information
about the camera’s motion between viewpoints is needed. However, estimating the
camera’s motion turns out to be a major source of error in the constructed 3D model;
in all previous work on motion this motion error has been neglected. The main
contribution of this dissertation is isolating the motion error, estimating its effect,
and correcting for it using an incremental algorithm.

Motion error manifests itself in cross—correlations of errors between points in the
3D model. The algorithm developed in this dissertation weights an individual 3D
model by the inverse of its covariance matrix (which contains the cross—correlations),
reflecting the accuracy of the model. Such weighted 3D models - obtained as the
robot moves - are then combined.

The performance of the algorithm was compared against three algorithms which

vii

neglect the motion error: Horn's two-frame algorithm, a multi-frame blind averaging
algorithm, and a standard multi-frame Kalman Filtering algorithm. In three experi-
ments considered (involving a robot workcell sequence, an indoor lobby sequence, and
an outdoor rocket-field sequence), the algorithm consistently outperformed (by a fac-
tor of 2-3) the other three algorithms. In further experimentation, the constructed
3D model was used to determine the position of a robot with a accuracy of 2-3%.
The computational complexity of the algorithm is O(n3®) (for n points in the
model). In preliminary experiments, it was determined that reducing computational
time by ignoring parts of the covariance matrix does not appear promising, whereas
dividing larger 3D models into smaller subsets of points (while maintaining che fuil
covariance matrix for each subset) may turn out to speed up the algorithm without
sacrificing accuracy. Furthermore, it is estimated that constructing and updating a
model made up of 22 points takes only 1.8 seconds on a fast Silicon Graphics machine

(SGI) every time the robot moves.

viil

-3 3

3

3 3 _3

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTSot o e s, v

ABSTRACT vii

LIST OF TABLES s xiii

LIST OF FIGURES s, xvi
Chapter

1. INTRODUCTION, 1

1.1 Relevance of Motion o i 2

1.2 Applying Motion to Computer Vision 3

1.2.1 General Framework 4

1.2.2 General Assumptions 6

123 Defining SFM 7

1.3 General Problems with Two-Frame SFM 12

1.4 Multi-Frame Structure From Motion 14

1.5 Goals of the Dissertation 16

1.6 Outline of the Dissertation 18

2. REVIEW OF ALGORITHMS 20

2.1 Imtroduction 20

22 Options in SFM., 20

2.2.1 Representational Primitives 21

2.2.2 Dense vs. Sparse Models 22

2.2.3 Shape vs. Structure. 22

2.2.4 General vs. Constrained Camera Motion 23

2.2.5 Visual vs. Non-Visual Information 23

2.2.6 Computational Techniques 24

227 Input Data 24

2.3 Two-Frame SFM Algorithms
231 Optical Flow
232 Direct Methods,
2.3.3 Tracked Features

2.3.3.1 Advantages and Disadvantages
2.3.3.2 Essential Matrix Algorithms
2.3.3.3 Solution Techniques

2.4 Problems in Two-Frame SFM
2.4.1 Inherent Theoretical Restrictions
2.4.2 Practical Problems

2.5 Multi-Frame SFM Algorithms

26 BatchMethods
2.6.1 Uniform Rotation
2.6.2 Uniform Translation and Rotation.
263 Planar Motion
2.6.4 General Motion,

2.7 Incremental MFSFM
2.7.1 General Assumptions of Incremental MSFSM
2.7.2 Options in Incremental MFSFM

2.7.2.1 Representing the 3D Model Error

2.7.2.2 Transforming the Error Across Coordinate Systems .
2.7.3 Incremental Algorithms

2.7.3.1 Camera Restricted to Pure Translational Motion

2.7.3.2 Camera Restricted to Planar Motion

2.7.3.3 General Motion with Restricted Experiments

2.7.3.4 General Motion with Unrestricted Experiments . . .

3. A FRAMEWORK FOR MULTIFRAME STRUCTURE FROM
MOTION e e e e e e e e e

3.1 The Cross-Correlation-based Incremental Algorithm
3.1.1 The Steps of the Algorithm
3.12 The Error Modules

32 Thelndirect Error
3.2.1 Defining the Problem
3.2.2 a_;\ld,_: Motion error (OM) with respect to Image Error (81) . . .

3.2.2.1 The Components of the Motion M

3.2.2.2 Determining the AMatrix
3.2.2.2.1 The Two Translation Parameters.
3.2.2.2.2 The Three Rotation Parameters.
3.2.2.2.3 The Components of the A Matrix.
3.2.2.2.4 The Four Translation Derivatives of A. . . .
3.2.2.2.5 The Nine Rotational Derivatives of A.
3.2.2.2.6 The Twelve Mixed Derivatives of 4.

-

55
60
62
62
62
65
67
67
68
69
69
70
!

3

2 .3

3

-3

3

3.2.2.3 Determining the Bmatrix 71
3.2.23.1 The Components of the Image Coordinates I. 72
3.2.23.2 The Components of the B Matrix. 72

3.2.2.3.3 The Two Coordinates of the First Image.. . 72
3.2.2.3.4 The Two Coordinates of the Second Image . 74
3.2.3 %VN%: 3D Model Error (dW) with respect to Motion Error (dM) 75

33 TheDirect Error 76

3.4 The Combined Effect of Direct and Indirect Errors 77
3.5 The Iterative Step: Fusing the New Two-frame 3D model with the

Old3Dmodel., 79

3.6 Theoretical Motivation for Using Cross—Correlations 81

3.6.1 The Meaning of Cross—correlations: The Two-Point Case . . . 81

3.6.2 The Effect of Cross-correlations in Kalman Filtering 83

4. EXPERIMENTAL RESULTS 86

4.1 Introduction 86

4.2 The Four Algorithms 86

4.2.1 The Two-Frame Algorithm 87

422 Blind Averaging e 87

4.2.3 Standard Kalman Filtering vs. the CC-based Algorithm . .. 88

4.3 Experiment I: Robot Workcell Sequence 90

4.3.1 The Image Sequence and Ground Truth 90

4.3.2 Input to the Algorithms 93

4.3.2.1 Tracked Image Coordinates 93

4.3.2.2 The Covariance of the Error 95

4.3.2.3 Guess of Interframe Camera Motion 95

4.32.4 ScaleoftheModel 96

4.3.3 Results of the Four Algorithms 98

4.3.3.1 Representation of the Results 98

4.3.3.2 Discussion of the Results 99

4.4 Experiment II: Indoor Robot Sequence 104

4.4.1 The Image Sequence and Ground Truth 104

4.4.2 Input to the Algorithms 107

4.4.3 Results of the Four Algorithms 108

4.4.3.1 Representation of the Results 108

4.43.2 Discussion of theResults 109

4.5 Experiment III: Outdoor Mabile Vehicle Sequence 113

4.5.1 The Image Sequence and Ground Truth 113

4.5.2 Input to the Algorithms 115

4.5.2.1 Tracked Image Coordinates 115

4.5.2.2 The Covariance of the Image Error 118

4.5.2.3 Guess of Interframe Camera Motion 118

4.5.2.4 Scaleof the Model 118

4.5.3 Results of the Four Algorithms 120
4.5.3.1 Representation ofthe Results 120
4.5.3.2 Discussion of the Results. 120
4.6 Application to Robot Navigation 129
4.7 Experiment IV: Simulated Model Acquisition and Model-Based Nav-
igation e 131
4.7.1 Simulating the Image Sequences 131
4.7.2 Acquiring the 3D Model 133
4.7.3 Determining the Position of the Robot 135
4.8 Experiment V: Real Model Acquisition and Model-Based Navigation 135
4.8.1 The Image Sequence 135
48.2 Acquiringthe3D Model 138
4.8.3 Determining the Position of the Robot 138
49 Conclusion 139
5. COMPUTATIONALISSUES 142
5.1 Imtroduction 142
5.2 Time Complexity of the Components 143
5.2.1 Theoretical Complexity 143
5.2.2 Actual Running Times 144
5.3 Reducing Running Time 146
5.3.1 Effect of Reducing Cross—correlations on Running Time 147
5.3.2 Effect of Reducing Cross—correlations on Accuracy. 153

5.3.2.1 Experiment A: Dropping Cross—correlations of Points 154
5.3.2.2 Experiment B: Dropping Cross—correlations of Points

in Multi-Frame Models 156
5.3.2.3 Experiment C: Dropping Cross—correlations of Coor-

dinates 157

5.4 Reducing the Sizeof the3D Model 160

5.5 Conclusion 164

6. CONCLUSION. it i s s, 166

6.1 Contributions of the Dissertation 166

6.2 Future Research Directions 168

A. KALMAN FILTERING TERMINOLOGY 172
APPENDICES

BIBLIOGRAPHY s, 174

xii

[|

-3

3

31 3 _ 3

T3

Table

2.1

2.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

LIST OF TABLES

Page
Batch MFSFM algorithms showing the number of motion variables
(general case: 6m — 1) and average accuracy computed from the re-
ported results (m denotes the number of camera movements). 40
Recursive MFSFM algorithms showing the number of elements used to
represent the 3D model error (general case: 9n?). 50

Box Sequence: The image coordinates of the 35 points in the first image 92
Box Sequence: Ground truth of tracked points 94
Camera Parameters 94

Box Sequence: The initial estimate and recovered two—frame values of

the interframe cameramotion a7

Box Sequence: Mean and standard deviation o of the 3D model error

in mm at each frame for the four algorithms. 99

Lobby Sequence: The image coordinates of the 29 points in the first

. R = T ... 106

Lobby Sequence: Ground truth of tracked points with respect to the

first camera position, in a camera—centered coordinate system. 107

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

417

Lobby Sequence: The camera parameters of the Sony AVC-D1 camera

that is mounted on the mobilerobot.

Lobby Sequence: Mean percentage 3D model errors at each frame for
the four algorithms with standard deviations

Rocket-Field: The parameters of the camera mounted on the ALV.

Rocket-Field Sequence: Ground truth for the tracked image points
of the sequence in the camera—coordinate system at the first camera

Position e e e e

Rocket-Field Sequence: The image coordinates of the 22 points in the

eleventh image of thesequence

Rocket-Field Sequence: The ground truth, initial guesses and recov-

ered values of the interframe cameramotion

Rocket-Field Sequence: Mean percentage 3D model errors at each

frame for the four algorithms with standard deviations

Rocket-Field Sequence Frame 8: Ground Truth, Blind Average 3D
Model, and Blind Average Error

Rocket-Field Frame 9: Ground Truth, Two-Frame 3D Model, and

Two-Frame Error

Rocket-Field: Obtaining Blind Average (Frame 9) results from Trans-
formed Blind Average (from Frame 8).

108

112

113

116

117

119

123

124

.3

3

3

_3

|

3 3 _3 __3

3

3

4.18 Rocket-Field Final Frame: Ground Truth, CC-based 3D Model, and

CC-based 3D Model Error v

4.19 Simulated Model Acquisition and Model-Based Navigation: Ground

4.20

5.1

5.2

truth (first row) and recovered pose (second row) using the CC-based

model at each frame of the second stage of the experiment

Lobby Sequence: Ground truth (first row) and recovered pose (second

row) using the CC-based model

Running time for the four main components of the CC-based algorithm
in the case of the Rocket-Field Sequence. The theoretically time com-
plexity is indicated for convenience. The last column is the sum of the
times for the four components plus a small overhead. The high value
of 3D Error time for frames 10-11 is clearly an outlier, and possibly

due to an unusual overhead from memory paging.

Effect of Reducing the number of 3D points on the accuracy of the
resulting 3D model: mean percentage error for 3D models. This table

lists the values used to plot Figure 5.6.

Xv

145

163

Figure
1.1
1.2
1.3
1.4
3.1
3.2
4.1.

4.2

4.3

4.4
4.5

4.6

LIST OF FIGURES

Page
The Coplanarity Constraint in SFM 5
Problems with SFM.. 13
An Example of Incremental MFSFM o 15
The Paths of Error in Constructing a 3D model using SFM 17
The first iteration of the cross—correlation-based algorithm 56
An ith iteration of the cross—correlation~based algorithm 57
Rotating Box Image Sequence 91
Box Sequence: Reconstruction Error (in mm) for the four algorithms
compared in this experiment. 100
Box Sequence: Standard deviation of the error in the 3D models for
four algorithms. 101
Image Sequence 105

Lobby Sequence: Mean error in the 3D models for the four algorithms 110

Lobby Sequence: Standard Deviation of the error in the 3D models for
the four algorithms, 111

3

3

.3

3 3

3

3

13

NS |

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

5.1

5.2

5.3

Rocket-Field Image Sequence

Rocket-Field Sequence: Mean percentage error in the 3D models for
thefouralgorithms

Rocket-Field Sequence: Standard deviation of the pércentage error the
of 3D models for the four algorithms

Rocket-Field Sequence: Resulting Z coordinate of point 9 after blind

Simulated Model Acquisition and Model-Based Navigation: True 3D
Model of Building consisting of walls, stairwells, and a cooling tank (at
the top right-hand corner of the building)

Simulated Model Acquisition Experiment: Results of the acquired model.134

Simulated Model-Based Navigation: Results showing top view of the
true path and the recovered path

....................

Model-Based Navigation in the Lobby: Results showing top view of
the true path and the recoveredpath.

Partitioning the Covariance Matrix into submatrices for fast matrix

inversion

..................................

Running times for inverting covariance matrices of size 30 x 30, 48 x 48,

66 x66 and 84 x84

Experiment A: Effect of dropping cross—correlations of points on the

accuracyof the3Dmodels

137

140

149

152

5.4

5.6

Experiment B: Effect of dropping cross—correlations of points on the
accuracyof the3D models 158

Experiment C: Effect of dropping cross—correlations of coordinates on

the accuracy of the 3D models e e e e e e e e e e e 159

Effect of Reducing the number of 3D points on the accuracy of the
resulting3Dmodels L L. 162

xviil

—3

_.3

.3 3y _3 .3 _3 .3 3 3 -3 3 _3 12

CHAPTER 1

INTRODUCTION

Developing intelligent aut‘:onomous vehicles that navigate in arbitrary environ-
ments is a major application of computer vision research. The primary focus of such
research is to achieve navigational capabilities for robots — namely, the ability to
determine their location, to follow paths and to avoid obstacles — based on visual
sensory information. In order to navigate in its environment, an intelligent vehicle
often has an internal 3D model of its environment. By matching landmarks between
the internal model and the camera images, the vehicle keeps continuous track of its
position in the world. For such a task to be effective, an accurate 3D model of the
world is required. Developing a technique for constructing accurate 3D models based
on visual information is the primary goal of this dissertation. The 3D model that
is constructed could also provide information for identifying and avoiding potential
obstacles in the path of the robot.

Apart from the task of robot navigation, the model of the environment obtained
by a moving camera can potentially be used in many other ways. A 3D model of
objects facilitates visually guided manipulation and grasping by dextrous robots. In
addition, deriving 3D models represents the final goal in tasks such as surveying,
cartography or photogrammetry. In the rapidly growing field of computer graphics
and virtual reality, accurate 3D models of objects and environments are important for

displaying objects easily from any position or orientation. Providing 3D models for

such purposes may turn out to be an important application of the approach developed
in this dissertation.

In a general situation, a single camera image does not contain enough information
to construct a 3D model of the environment. However, two or more images from
different locations typically provide enough information. Several approaches to con-
structing 3D models are being pursued at the University of Massachusetts (UMass) in
the Unmanned Ground Vehicle (UGV) research project. One approach involves using
stereo information from two cameras mounted at a fixed distance from each other on
the UGV. A second approach involves information obtained from a single moving
camera; the use of motion information is the focus.of the work in this dissertation as
well as several previous dissertations at the University of Massachusetts [2] [5] [55]
and (78]. A third approach is model-based extension of a partial model using pose

determination and feature tracking [52)].

1.1 Relevance of Motion

Humans perceive the world three—dimensionally through stereopsis ~ by combining
information from both eyes — as well as by combining the different views of the world
obtained by moving. Psychophysical experiments (such as the so—called random dot
experiments [61]) provide evidence that even when all the surfaces in the world are
painted with random black and white dots, monocularly viewing the world from two
or more different positions - as in a movie sequence - produces a powerful perception
of depth. That is, we have a strong perception of the spatial relationships in the world
even in the random dot experiments which are devoid of all cues except those due to
motion. The different views falling on even just a single retina, for example due to

the movement of the observer, provide a very good source of 3D information about

.3

3 3 3 3 _3 __13

3 _3

—-3

—3 3

the environment.! Furthermore, based on neurophysiological studies it is known that
motion cues and depth perception are closely linked. The same region of the visual
cortex is involved both in sensing objects in motion as well as in perceiving distances
to objects in the world [32].

In human vision, Gibson [31] was the first to analyze the characteristic changes
in the observed image due to relative motion between the observer and the 3D scene,
and to suggest how these characteristic changes might be used to infer information
about the environment. He showed that the change in the image is related both to
the distance between the observer and the object, and to the direction in which the
observer moves. For example, when the observer moves sideways (as in looking out a

train window) far away objects seem stationary whereas nearby objects seem to move

faster.

1.2 Applying Motion to Computer Vision

In computer vision, the basic observation that image changes are related to dis-
tances has been adapted to a computational procedure for determining a 3D model of
the environment using two or more images; this procedure infers 3D structure. When
the images from different viewpoints are acquired by moving the camera, the approach
is called Structure From Motion (SFM). Note that a difference between human vision
and computer vision is that humans typically process images falling continually on

the retina, whereas in computer vision the images are discretely sampled.

An approach related to SFM employs a stereo camera pair. In this case a 3D
model of the environment is constructed based on images obtained from two sepa-

rate cameras at a known distance apart. Constructing the model is similar to SFM

1Other visual cues such as information from shading and the effects of perspective are also used
by humans to perceive distances to objects. However, the perception of depth is in general strongest
when two or more views are available.

except that the relative position of the two camera views is assumed to be known
via calibration. An advantage of knowing the relative position of the cameras is that
this relative position need not calculated, which in SFM introduces additional error
(presumably more than the calibration error). However, an inherent problem with
stereo is the fixed distance (or baseline) between the cameras; the smaller the baseline
the less accurate the reconstruction of the environment (especially for distant points).
The problem of a fixed, short distance between the cameras can be solved if instead
of a fixed arrangement, one camera is moved from point to point. This is the case
of Structure from Motion, sometimes loosely referred to as extended stereo. Apart
from the fact that almost any pair of views of the scene can be obtained - in effect
by manipulating the distance between the cameras - SFM and stereo are logically
equivalent. Due to its flexibility we have chosen the SFM approach to reconstruct

the environment.?

1.2.1 General Framework

In order to understand the general framework of SFM we will first consider the
minimal case of deriving a 3D model based on just two views, obtained by moving the
camera once. This approach is referred to as Two-Frame SFM and was the earliest
instance of SFM to be considered in computer vision. Later in this chapter we will
discuss general problems with Two-Frame SFM.

Figure 1.1 depicts a typical scenario where an image from two different viewpoints
is obtained. The main point of the figure is to represent the crucial information used
in SFM (the symbols in this figure will be explained in more detailed in Section
1.2.3). Whenever the camera rotates and moves, the vector representing the move-

ment (translation T) and the two rays from each camera position to a point in the

2 A recent direction of research is binocular motion, which is the integration of stereo and motion
in an attempt to combine the advantages of both {8}.

13

3

3 3

-3 -3 _3 _3

3

3

—13

e

IMAGE 1 IMAGE 2

TRANSLATION T

Figure 1.1: The Coplanarity Constraint in SFM. The darkened rays from the two
camera locations to the corner of the door are coplanar with the translation vector
T. The coordinate system associated with the first camera position has an origin
O, and the three axes X;,Y; and Z,; the corresponding coordinate system in the
second camera position i1s .X,, Y2, Z, with origin O,. The point in the world has 3D
coordinates P, with respect to the first camera position, and P, with respect to the
second camera position.

world are on the same plane, i.e., the three rays are coplanar. This is referred to as
the coplanarity constraint and it can be used in the deduction of the 3D coordinates

of a point in the environment, given the two images.

1.2.2 General Assumptions

The following are standard assumptions in Two-Frame SFM:
1. The same 3D environment is observed in both images.

2. The two images are taken from different locations, by translating and rotating

the camera.

3. The image in the camera is formed through perspective projection and the focal

length of the camera is known.

The first assumption is often referred to as the rigidity assumption. It reflects
the fact that two images are adequate to determine a model of the environment oniy
if the environment does not change significantly from one image to the next. If the
two images depict different scenes, their information cannot be combined and a 3D
model cannot be constructed. The second assumption follows from the fact that 3D
reconstruction is possible only when more than one view is involved. In a variant of
assumption 2, the camera could be stationary while the visible environment moves
rigidly. The third assumption is a good approximation of how a typical camera obtains
the image; we will return to perspective projection in the next section.

The first assumption of a rigid environment is frequently violated in real-world
situations. There are two types of violations of rigidity, one of which can be accom-
modated by SFM with additional preprocessing, while the other may be impossible
to adequately deal with in SFM. The first type of violation involves the presence of

moving objects in the environment to be modelled. In such a case, the objects can be

_13

3

3

-3 _3

3

-3 3 _3 __3

isolated (i.e., segmented) and standard SFM can, in turn, be applied to each object
independently [3]. The second type of violation involves non-rigid deformation of the
environment such as dilation/contraction, shearing and warping (e.g. clouds, water,
a pulsating heart). Modifications of standard SFM have tried to account for small
violations of rigidity [6] by includﬁlg a single rigid/non-rigid parameter (cf. Chapter
2), but techniques that model various kinds of non-rigid deformations [65] fall outside
of the scope of standard SFM. Furthermore, the complicated type of deformations
(such as warping) occur only with some objects and hence will not be viewed as a

serious deficiency of standard SFM.

1.2.3 Defining SFM

In this section, the mathematical basis for reconstructing a 3D model of the en-
vironment from a pair of 2D images is established. For the sake of exposition, let us
consider a model consisting of selected 3D points (e.g. corners of buildings). Possi-
bilities for using features other than points are discussed in Chapter 2.

Since the camera moves from one image to the next, two possible camera coordi-
nate systems arise (as shown in Figure 1.1) in which the 3D model of the environment
could be represented. We shall assume that the frame of reference is the second camera
position; if necessary, it is straightforward to convert to the original camera position.
Specifically, the model will be represented in the 3D coordinate system formed by the
three orthogonal axes (X,Y,Z) with an origin O at the focal point of the camera.
The Z-axis is the direction of gaze and is perpendicular to the image, while the other
two axes (X,Y’) lie on a plane parallel to the image. The goal of SFM is to obtain
the 3D coordinates of each point in the model based on the 2D coordinates of the
point in the two images. This goal is achieved by utilizing the coplanarity constraint

(cf. Section 1.2.1).

Consider the problem of computing the 3D coordinates of an interesting feature
in the environment, such as the corner of an object. Let us refer to the coordinates
of the corner in the first image with respect to the axes (X,Y) as (z;,y;) and the
corresponding coordinates in the second image as (z,,y;); matching corresponding
points from one image to the next is termed the correspondence problem.® The image
coordinates are the result of projecting/mapping* the point in the world onto the
2D image plane. Since there is a precise relationship between the position of the 3D
point and its location in the image, we can use this fact to reconstruct the position of
the corner in the real world. The coordinates of this corner with respect to the first
camera position (i.e., image 1 in Figure 1.1) are referred to as (X;,Y;, Z;) and with
respect to the second camera position as (X3, Y3, Z,); the 3D model is a set of such
(X2,Y3, Z;) coordinates for each point. The relationship between the 2D coordinates

and any corresponding 3D point is given in the following equations:

2 = %‘ (1.1)
= }Z,_i (1.2)
T, = %:— (1.3)
Y2 = % (1.4)

3A matching procedure such as tracking is necessary in order to determine corresponding points
in the two images; the set of points constitutes the input to SFM (see Chapter 2 for more details).

4The underlying geometry involved in creating a camera’s image is typically assumed to be
perspective projection. Although this projection exactly represents an idealized pinhole camera, the
projection does not reflect minor distortions that arise in a camera due to combining several lenses,
or due to lens defects. We will ignore these effects, as is standard.

3 3 1 __3

3 13

3 3

41 3 _3

-1

3

—3 3

F T 3 T3 "~ 3 3

These equations result from assuming perspective projection (cf. footnote 4),
where f denotes the known focal length of the camera. For a single point, these
equations by themselves do not provide enough information to enable us to compute
the unknown variables (X3, Y3, Z;) since (X, Y}, Z,) are also unknown, resulting in six
unknown variables in four independent equations. However, if (X, Y], Z,) is known
in terms of (X, Y2, Z;), then a solution is possible. This will be the case if the motion
of the camera is known or estimated.

Before we proceed any further we need to establish the representation for the
camera’s movement. Any camera motion between two images can be represented by
a unique combination of a rotation R followed by a translation (or displacement) T.
The rotation R ~ which can be thought of as the rotation about three orthonormal axes
- requires at least three parameters for its representation. Similarly, the translation
T involves three parameters corresponding to the displacement along the three axes.
A general problem with SFM is that the three translation parameters cannot be
uniquely established due to an inherent scale ambiguity [95]. This ambiguity arises
since simultaneously scaling both the environment and the camera’s displacement
(translation) by the same factor does not change the image. Thus, the overall scale of
the 3D model and the magnitude of the camera’s translation cannot be determined
absolutely from visual information. The validity of this scale ambiguity is independent
of the number of images used. For the purposes of this discussion we will assume that
the magnitude of the translation is set to unity; this fixes the scale of the model as
well.

Using the camera’s motion, i.e., its rotation (R) and translation (T), the pair of

3D coordinates of a point in the two camera positions can now be related as follows:

X, X
Y, |=R| v |-T (1.5)
Z, Z,

\
\

10

Provided the camera motion is known, we can now solve for the value of (X5, Yz, Z).

In practice, however, the precise camera movement is usually not known due to me-
chanical issues and other problems. Nevertheless, the above equations can be used
if the camera motion is first estimated. A theoretical variant of this idea is to si-
multaneously solve for the value of the camera motion as well as the 3D coordinates.
In this discussion on SFM we will consider only one of the two possible alternatives.
The first alternative, which decomposes the goal of SFM into two simpler subgoals
(solving for camera motion and then calculating the 3D coordinates), will be consid-
ered instead of the second - i.e., simultaneously solving for the camera motion and
the 3D coordinates. Note that both alternatives involve non-linear searches to find
a solution. However, the first alternative involves a small, fixed-sized search (for the
five parameters of the camera motion) whereas the second alternative involves a large
search for 5 + 3n elements, where n is the number of 3D points in the model.

If we represent the 3D coordinates of the point in the first camera coordinate
system as P, and the 3D coordinates in the second camera coordinate system as P,
then Equation 1.5 — which relates the 3D coordinates from the first camera coordinate

system to the second - can be rewritten as:

Pz = R P1 - T (16)

Let us first determine the motion of the camera, namely, its rotation (R) and
translation (T). In order to simplify Equation 1.6, we take the scalar (dot) product
of both sides of the above equation with the term (R P, x P,). This term represents a
vector normal to the plane spanned by P, and P,. This normal will be perpendicular

to T if the three rays (P, P,, T) are indeed coplanar. Taking the dot product makes

this condition apparent:

3 31 1 _3

1

-3 __1

1

3

~ 3 _1 _3

U B |

3 T3 ™3

“TT4d T3 3 3 3 d ~— 3 "~ 3 E|

—3

11

T.(RP, x P;)=0 (1.7)

Equation 1.7 holds even if the vectors P, and P, are replaced by their unit di-
rection vectors P; and P,, where P, = P,/|P,| and P, = P,/|P;|. After the

replacement we get:

T-(RP, xP,)=0 (1.8)

This equation is commonly referred to as the Coplanarity Constraint [43] (cf.
Section 1.2.1), the Essential Matrix Constraint [95], or the Epipolar Constraint (104].
The equation captures the fact that the camera’s translation (T) is coplanar with
the pair of rays (P, Pg) from the two locations of the camera to the 3D point in the
environment.5

Once P; and P, (the unit directions) are written in terms of the known image
coordinates of the points in the two images, then only R and T will remain unknown

in the equation. The replacement is as follows:

p = _Euuf) (1.9)
i+
Pz _ (zzi Y2, f) (1.10)

Ve +ud +
The values of 151 and P, from equations 1.9 and 1.10 can now be substituted in
equation 1.8; the only unknowns in the resulting equation are the rotation (R) and

translation (T) of the camera, which was our original goal.

This equation also reflects the scale ambiguity in SFM discussed earlier which dictates that the
magnitude of the translation cannot be established with just image information. If we replace T by,
say, 3T (i.e. scale T by half) in equation 1.8, this scale change (%) gets factored out.

12

Although we have arrived at an equation relating the unknown camera motion to
the known image coordinates, it turns out that a single equation is insufficient because
R and T involve a total of five parameters. However, using five points gives rise to
five equations which in general are enough to compute the five parameters of the
camera motion, except for some finite ambiguities discussed in Chapter 2. Even the
ambiguities can in general be resolved by using a larger number of points. Different
solutions have been used to solve the system of equations for the camera motion
that arise from tracking five or more points; various techniques will be discussed in
Chapter 2.

Once the camera motion is computed, the 3D coordinates of the point can be

determined. Equation 1.6 can now be rewritten as follows (using vector algebra; cf.

Horn [43]):

(TxRP,) - (RP, xP,)
IRPI stziz

This equation provides the 3D coordinates of a point in the environment com-

P, = P, (1.11)

pletely in terms of the known image coordinates and in terms of the estimated camera

motion. Recall that calculating the 3D coordinates of points in the environment is

the final goal of SFM.

1.3 General Problems with Two-Frame SFM

We have considered an idealized situation until now in order to discuss the general
framework of Two-Frame SFM. However, SFM is faced with many theoretical limi-
tations as well as practical problems. One problem with SFM is that the input does
not always lead to an unambiguous estimation of camera motion. For example, Adiv

3] depicts the image displacement of points (or the change in images) under certain

1 3

—3 3

-1 __1

1

e

=)

\.‘————_——-__,-/-
N —— T —— T i

T TR—] S L —— gt

——— — a—— — ———

_———‘__——0——-—%\\

13

Figure 1.2: Problems with SFM. The changes in the image represented by arrows are
almost the same all over the image even though the camera rotated in one case and
translated in the other case. This figure is adapted from Adiv [3].

14

types of rotational and translational motion, and shows that the image displacement
is similar - for most parts of the image - regardless of the type of motion (cf. Figure
1.2). Furthermore, problems arise due to low image resolution and various kinds of
noise that corrupts the image measurements. Two-Frame SFM is therefore inaccurate

" due to these and other reasons which are discussed in detail in the following chapter.

1.4 Multi-Frame Structure From Motion

It makes intuitive sense that use of additional images should yield more accurate
3D models of the environment than using just two images, since information from
different views can be used to reduce the effect of noise. We shall see in Chapter 2
how using only two images produces inaccurate 3D models. We will then discuss how
to use more than two image frames to construct the 3D model; such methods are
called Multi-Frame Structure from Motion (MFSFM).

If information from more than two images - say, ten images - is available, the
information from all ten images can be processed at once (so—called batch methods)
or incrementally, one image at a time (incremental methods). Batch methods suffer
from the difficulty of a very large number of variables based on the large amount of
information processed at one time. Consequently, batch methods are not suitable
for real time processing; they also typically require more storage/memory in order
to store all the previous information until processing is begun. For example, they
are not suited for tasks involving a mobile robot, where the results are needed on-
line, as opposed to later when the scene may have changed. In this dissertation the
incremental approach will be adopted.

A technique for processing information from images incrementally to update a
3D model of the environment is depicted in Figure 1.3. Details of this particular

incremental MFSFM algorithm will be developed in the following chapiers and it will

S

1

3

1 __3 __3

.3

=N
iy

~

i

BN

3D MODEL

UPDATED
MODEL

N

3D MODEL

UPDATED
MODEL

N

3D MODEL

N

Figure 1.3: An Example of Incremental MFSFM. A model obtained from every pair
of consecutive images is used to update the original model. See Chapter 3 for details
of the particular algorithm developed here under this incremental approach.

16

be compared to other algorithms. In evaluating MFSFM approaches, it is important
to note that intelligent updating or refining of the 3D model will occur only if a
reasonable idea of the error in the 3D model is known. Otherwise, the 3D model
will be blindly modified with new information, giving equal importance to both its
accurate and inaccurate components. Much of the work in incremental MFSFM
revolves around being able to compute a reliable estimate of the error in the 3D

model so that it can be refined over time.

The origin of error in SFM is the error in the 2D image coordinates of tracked
points. Since we are interested in a 3D model constructed from on such 2D points,
we need to convert the errors in the 2D points (¢mage error) into error in the 3D
coordinates (3D model error). It is therefore necessary to consider the process by
which the 3D model is obtained from the pair of 2D images. Since the 2D coordinates
are used to construct a 3D model every time a new image is obtained (as shown in
Figure 1.3), any error in the tracked points affects the 3D model directly. We will
refer to this effect of the image error on the 3D model as direct error. In addition
to direct error, the inaccurate 2D coordinates give rise to error in the 3D model in
a second way: through the error in the estimated camera motion. We shall refer to
the error in the camera motion as the motion error; the effect of this motion error in
the 3D model will be referred to as indirect error. Note that the indirect error could
be large even for small motion errors (cf. Chapter 2 for details). The types of errors
and their mutual relationship are depicted in Figure 1.4; estimating and correcting

the errors is the main goal of this dissertation.

1.5 Goals of the Dissertation

The primary goal of this dissertation is to show that taking the effect of noise in the

input into account improves the accuracy of the models of the environment obtained

_3

3 '3 3 _.3

1 __ 13

3 1 __13

. A

1

3

13

—3 __3

3 3 T3 —3

2D IMAGE COORDINATES

(with image error)

CAMERA
MOTION

(with motion error)

INDIRECT mong
3D MODEL

(with 3D model error)

DIRECT ERROR

Figure 1.4: The Paths of Error in Constructing a 3D Model using SFM.

17

18

by incremental MFSFM. More specifically, this dissertation identifies an important
source of error — the motion error — that has been neglected in all prior work. The
mechanism for capturing the effect of this error (and other less important types of
error) is developed here and is incorporated into a new incremental MFSFM algorithm
which is capable of comstructing fairly accurate 3D models. However, accuracy is
obtained at the cost of computational complexity. A further goal of this work is to
attempt to make the algorithm computationally feasible. In addition it will be shown
that the acquired 3D models are sufficiently accurate for a specific task (position

estimation) in robot navigation.

1.6 Outline of the Dissertation

In Chapter 2 we discuss the dominant techniques in Two-Frame SFM, analyzing
the algorithms and approaches with respect to their assumptions and constraints.
We then turn to the reasons for the failure of two-frame algorithms. Multi-Frame
SFM is then presented as an obvious improvement over Two—Frame SFM. However,
using many images introduces a new set of problems due to the large amount of
information. In Chapter 2 current multi-frame approaches are analyzed based on
how they constrain the input, or the camera motion, in order to deal with these
problems. In contrast, the algorithm developed in this dissertation does not pose any
such constraints.

Chapter 3 provides details of the algorithm - including the error analysis compo-
nent — and motivates the approach theoretically. Experimental results are provided
in Chapter 4. The ultimate test of any MFSFM algorithm lies in its application.
The models obtained by our MFSFM algorithm are not only useful in recovering the

shape of a room, or the topology of a terrain, but are also useful in determining the

d

— 3

31 _13

1

-3

3 —3 T3 — 8% T3 3 3 —83 a3 —3 T3 3

—3 —a —3 T3 T3 — 3 T3

19

position of a robot. In Chapter 4 the models constructed by the present algorithm
are applied to the problem of determining the position of a moving robot.

After demonstrating the effectiveness of the new MFSFM approach both theoret-
ically and experimentally, the computational aspects of the algorithm are analyzed
in Chapter 5. We attempt to make the algorithm feasible for practical applications
by considering ways of reducing the computational requirements. Future applications

and extensions to this work are addressed in Chapter 6.

CHAPTER 2

REVIEW OF ALGORITHMS

2.1 Introduction

Chapter 1 described how a 3D model of a robot’s environment could be acquired
using information from 2D images. However, the discussion was focussed primarily on
standard approaches. In contrast, in this chapter we will first lay out various options
and issues in Structure from Motion. Based on these issues, salient approaches to
two-frame SFM algorithms will be analyzed. We will then posit reasons for the
failure of two-frame techniques and, in doing so, motivate the need for using' more
than just two images (multi~frame SFM). Using many images introduces even more
options; for example, as mentioned in Chapter 1, a multi-frame approach can either
process all the images in one batch, or incrementally process one image at a time.
Specific batch algorithms will be analyzed in this chapter followed by an analysis of

incremental algorithms.

2.2 Options in SFM

Any SFM technique is faced with a variety of options at both the input as well
as the output stage, although typically the input and output options are not in-
dependent. Different options may require different assumptions beyond the general

assumptions outlined in Section 1.2.2. Whether any particular option is superior

20

3

3

1

—~3

3

|

—

3

21

under all conditions is an open research question; most likely a particular choice de-
pends on the type of application at hand, on the computational complexity involved,
or on the desired accuracy of the resulting 3D model. Let us now turn to the options
and issues that are relevant to SFM algorithms; this outline will be relevant for the
analysis of the SFM algorithms later in the chapter (Sections 2.3 and 25)

2.2.1 Representational Primitives

A 3D model of the environment can be represented in several ways. The simplest
representation involves the most basic three-dimensional entity: 3D points. The most
abstract representations are made up of volumetric primitives, such as generalized
cylinders, voxels, or parametric volumes [41]. Lines and surfaces are primitives of
intermediate complexity.

The simplest type of model - made up of points ~ may not be directly useful in
certain applications, such as obstacle avoidance. In such an application, the set of 3D
points in the model would have to be processed further to identify the volumes of the
obstacles or at least their extents in space. It is likely that a volumetric representation
(or even its approximation by planar surfaces) would be preferable for such a task.
For other applications, such as determining the robot’s position in a hallway, the most
useful model is made up of lines, due to the predominance of edges (e.g. doors and
baseboards).

Although the applicability of 3D models made up of points is somewhat restricted,
such models are straightforward to construct using MFSFM, and are adequate for
various tasks. For example, we show in Chapter 4 that the model cémstructed by our
algorithm - consisting of points - performs well when applied to the task of robot

position estimation.

22
2.2.2 Dense vs. Sparse Models

Regardless of the choice of the geometric primitives for representing the world,
SFM algorithms can vary considerably in the denseness of the constructed models.
Algorithms using points as primitives may either have been designed to obtain a dense
model (a dense cloud of points) or a sparser model, the density of which depends on
the number of points tracked from one image to the other. Similarly, the total number
of surfaces and volumes in the model depends on the input, although surfaces and
volumes by definition provide dense information locally. In general, dense models are

superior to sparse models, except for the usual overhead of computational cost.

2.2.3 Shape vs. Structure

Certain techniques derive only the shape of the environment, i.e., all aspects of the
environment except for its position relative to the camera. Such a model is generally
represented in an object-centered coordinaie syvstem, without its location with respect
to the camera. In contrast, there are techniques that either construct the model in
a camera-centered coordinate system, or are able to transform the model from the
object-centered coordinate system to a camera—centered coordinate system. A model
derived by such techniques is referred to as structure. Consider the following example
to bring out the difference between shape and structure. If the 3D model of, say, a
desk consists of 3D coordinates of points on the desk with respect to a coordinate
system fixed to the center of the desk and if the location of the desk with respect
to the camera is not known, then the 3D model represents shape. On the other
" hand, if the 3D coordinates are represented with respect to the camera, such a model
represents structure. Note that shape can be inferred from structure but not vice
versa. Some techniques (e.g. those that involve orthographic projection as in section

2.6.4) can only compute shape and not the structure. The advantage of knowing the

3 13

3

—

-4

3

3 __ 4

.3

@ T3 ~3 —3 —3 T3 3 ~3 T3 T3 T3 3

3 T8 T3 T3 73§ T3 "3

23

structure of the environment over knowing just its shape is that the structure can be

directly employed in robot navigation.

2.2.4 General vs. Constrained Camera Motion

By retricting the motion of the camera (perhaps in a straight line, with constant
velocity, etc.) it is possible to simplify the process of extracting structure from an
image sequence. Constraining the camera’s movement, however, limits the applica-
bility of the algorithms in realistic situations; furthermore, it is difficult in practice
to precisely move the camera in the desired way due to e.g. mechanical limitations.
All other things being equal, a general algorithm that does not constrain the camera
motion (such as the one developed in this dissertation) is superior to one involving

constraints.

2.2.5. Visual vs. Non-Visual Information

This dissertation concentrates on' algorithms that use visual information for es-
timating the camera’s movement (required to construct a 3D model of the environ-
ment). There are techniques that assume, on the other hand, that the motion of the
camera is available based on information other than purely visual data. For example,
Jezouin and Ayache [49] assume that the motion of the camera is given, while Szeliski
(87] determines the relative motion between the camera and an object rotating on a
turntable using grey codes painted on the turntable. Krotkov and Kories [51] obtain
the motion of the camera using mechanical encoders. However, algorithms relying
on mechanical and other similar sensors in order to obtain the precise camera move-
ment tend to be inaccurate' or are limited to highly constrained situations (eg. a

turntable).

! Althought mechanical arms could measure their movements accurately, what is in question here
is the accuracy in measuring the precise motion of the camera’s image plane.

24
2.2.6 Computational Techniques

Algorithms vary in the computational techniques they employ in order to find the
optimal solution (i.e. the optimal 3D model) from the image measurements. The com-
putational techniques used in two—frame SFM find the maximum-likelihood estimate
(90] for the given measurements. We refer the reader to Gelb [90] for a discussion of the
equivalence of the various computational techniques including maximum-likelihood

estimation, Kalman filtering, Bayesian estimation, and least-mean-square estimation.

2.2.7 Input Data

The most significant difference between SFM algorithms involves their choice of
the type of input. Owing to their importance, the types of input typically assumed or
computed as a first step are discussed in detail in the next section, and are employed as
the main criterion in categorizing Two-Frame SFM algorithms. Within each category,

the other options discussed above are also considered whenever relevant.

2.3 Two—Frame SFM Algorithms

In Two-Frame SFM the information is, by definition, obtained from a pair of
images. A major difference between the various Two-Frame algorithms is the extent
of pre—processing of the images that is needed to extract the required form of input.
The most straightforward type of input needs no pre-processing; instead, the images
from the camera constitute the input to the algorithm (these are called Direct Meth-
ods). The two other classes of algorithms involve a pre-processing stage in which
optical flow information or feature correspondences are extracted; this information is

the actual input to the Two-Frame algorithms.

—3 3 _3 _3F _3

3

3

~3

25

Ullman [98] categorizes human visual perception of motion into two main types,
continuous and discrete motion. He argues for the existence of two different mech-
anisms in the human visual system for dealing with the two kinds of motion. He
proposes that the mechanism related to continuous motion (as in motion pictures) is
directly based on the local changes of intensity information in images. On the other
hand, the mechanism dealing with discrete (or abrupt) motion analyzes changes in the
location of features (e.g. corners, lines, or regions). In fact, optical flow approaches
and direct methods fall into the first category (continuous motion) whereas feature

tracking methods fall into the second category (discrete motion).
In the following sections we will provide an analysis of SFM algorithms based on

their choice of input.

2.3.1 Optical Flow

Every visible point in the environment projects to a point in both the first and the
second image, except when the point is occluded in one image or the other. Hence
for any point that is unoccluded in both images, a 2D vector in the coordinate frame
of either image can be assigned to denote the displacement of the point from one
image to the next. Note that the information provided by the 2D vector is effectively
equivalent to that provided by knowing the image coordinate of the point in the
second image; in both cases, the information specifies how a point has moved from
one image to the other. Given this, the information available from a 2D vector along
with the image coordinate of a point in the first image is sufficient for the standard

SFM algorithm discussed in Section 1.2.3.

A standard technique for obtaining the 2D vector (the so—called correspondence
problem, cf. Section 1.2.3) for a particular point in the first image involves searching
for a point in the second image that is most similar to it with respect to its neighbor-

hood, i.e., the surrounding intensity or brightness information. When such intensity

26

information is directly used to compute the 2D vector, the vector is referred to as
Optical Flow.

Early work in optical flow techniques concentrated on studying the properties
of optical flow from a theoretical perspective [50] [57] [15] [74]. The main focus
of the work was to ascertain theoretically that optical flow combined with known
camera motion is sufficient for determining distances from the camera to points in the
environment. For example, Longuet-Higgins and Prazdny [57] established that the
location of points in the environment can be fully determined based on the component
of optical flow which is due to the camera’s translation (as opposed to its rotation).
To understand this intuitively, consider the hypothetical situation where the camera
only rotates and does not translate. In such a situation, any point in the environment
located along any given direction has the same optical flow regardless of how far it
actually is from the camera. In a typical situation, however, a camera not only
rotates but also translates. In such a situation the component of the optical flow
that arises due to rotation provides no information for estimating distances, while
the component of the optical flow that is induced by the translation contains all the
information necessary for determining distances.

Since the early work was mainly theoretical, it was simply assumed that the precise
optical flow as well as the actual camera motion were known. However, algorithms
developed later - such as the seminal algorithms of Bruss & Horn [15] and Adiv {1] - do
not make these assumptions. Instead of assuming that optical flow is known precisely,
these algorithms deal with noise in optical flow. This is done by using information
from as maﬁy flow vectors as possible, in order to decrease the distortion in the
final result arising from the error in any individual flow vector. Furthermore, these
algorithms do not assume that the camera motion is known. In fact, Bruss & Horn’s

key idea involves finding the best camera motion by minimizing the discrepancy

3

3

3

! 3
— &

-

i3

~3

—3 T3 T3 T3 T3

3

27

between the measured optical flow and the predicted optical flow. This basic idea
was also employed by Adiv [1]. However, his algorithm differs from that of Bruss
and Horn’s in the way the camera’s motion is estimated. Instead of solving for
the camera’s motion in one step, Adiv’s technique has two stages for computing
the two components of the camera’s motion (i.e., translation and rotation). The
first stage involves sampling the entire range of possible camera translations; at the
second stage rotation is solved for at each sampled translation value. Finally, the best
translation-rotation pair is selected based on how closely their prediction matches the
measured optical flow. This technique has an advantage over comparable techniques
(73] that first sample rotation instead of translation, since rotation involves one extra
dimension.

Most two~frame techniques using optical flow (e.g. {33] [86] {47] {7] and [69)]) differ
primarily in how they estimate the camera’s motion, since this is the area where the
algorithm can potentially be improved. Once the camera motion has been estimated,
the construction of a 3D model from two images (based on the measured optical flow
and the estimated camera motion) is straightforward. For further details we refer the
reader to Franzen’s [30] comprehensive review of two—frame optical flow algorithms.

The model provided by optical flow algorithms consists of 3D points in a camera-
centered coordinate system. The density of the model depends solely on the density
of the optical flow. Although optical flow algorithms, in principle, need not constrain
the type of camera motion, the actual formulations require that the camera does not
move substantially between the two images due to the assumption of continuous (or
instantaneous) motion. Recall also that the optical flow is typically computed by
searching for the most similar intensity neighborhood; the larger the camera motion,
the larger the region in the second image over which the search must be conducted,

resulting in a substantial increase in computational cost.

28

A fundamental problem of optical flow is that it does not always reflect the relative
motion of the object and the camera. Horn [41] illustrates this problem as follows. If
a stationary camera views a featureless ball that is rotating about a fixed axis, then in
spite of the relative motion between the ball and the camera, there will be no optical
flow. Conversely, there will be optical flow in a situation where neither the ball nor
the camera moves but the light source moves. Verri and Poggio [99] go so far as to
claim that optical flow is equal to the actual displacement of a point from one image
to the next only when “very special conditions are satisfied”(p. 171).

A further problem with optical flow is that it is difficult to determine the flow
accurately. In fact, typically it is only possible to determine the 2D optical flow
vector along one of two directions [41]. Consider a contour map based on intensity
where a line has been drawn throngh points of equal brightness; such lines are referred
to as iso—brightness contours. In extracting optical flow, iso-brightness contours from
the first image are matched with the corresponding contours in the second image. The
final goal is to match individual points along the two contours. However, unless the
shape of the iso-brightness contour has some specific signature (such as a corner),
it is not possible to exactly localize particular points along the contour. That is,
optical flow can accurately capture how far a point has moved away from its original
contour, but not how far along the contour the point has moved. In practice, obtaining
the complete flow crucially depends on being able to first match corners or other
significant points in the two images, and then propagating from these anchor points.

Research has revealed that precise determination of optical flow is impossible due
to ambiguous matches, uniform texture (resulting in uniform intensity), and. complex
illumination. Recently new approaches have been developed to circumvent the need

for obtaining optical flow; these are discussed in the next section.

'
i
—

3

3 3 3 3 .3

3

-1 3 3

.

3

~3 —3 ~3 73 T3 —3 T3 ~3 —3 —3 T3 3§ 3 3

29
2.3.2 Direct Methods

In algorithms called direct methods a pair of images taken from different camera
locations is directly used as input. These algorithms share some characteristics with
optical flow algorithms. Both types of algorithms belong to Ullman’s [98] category of
algorithms for continuous motion, i.e., they require small camera movement between
the two images and they use the changes in brightness for computing the 3D model.
As with most optical flow algorithms, direct methods have the advantage of producing
dense models.

In spite of the similarities between direct methods and optical flow approaches,
the two approaches differ in a significant way: direct methods collapse the two steps
of optical flow algorithms into one. In the first step of optical flow algorithms, flow
1s computed based on the changes in brightness from one image to the next. In
the second step, the optical flow is used to determine the camera’s motion and to
consiruct the 3D model. Since computing optical flow is inaccurate (cf. Section
2.3.1), direct methods have done away with the separate step for the computation
of flow. This approach was first introduced by Negahdaripour and Horn [67]. They
proposed that changes in brightness from one image to the next (corresponding to the
first step of optical flow algorithms) can be directly related to the camera’s motion
and to the 3D model of the environment. However, owing to the lack of sufficient
information from just the brightness changes (stemming from the problem with the
iso-brightness contours discussed earlier for optical flow) they were able to solve only
for a case where the environment consists of a single plane.

- In alater direct method algorithm, Negahdaripour and Horn {68] did not constrain
the shape of the environment to a plane, but assumed instead that the rotation of
the camera is known. Given the known rotation, this algorithm is able to estimate

the translation of the camera and to construct the 3D model. However, in practice it

30

is unrealistic to assume that the camera rotation is known. As an alternative which
does not assume known rotation, Negahdaripour and Horn suggest discrete sampling
of the set of all possible rotations in order to locate the best value. However, in this
type of sampling scheme the correct rotation may be far from the closest sampled
value (i.e. it may in effect be missed) because of the discrete samples. In yet another
alternative technique, Horn and Weldon [44] provide a way to determine the rotation
in the hypothetical case of no camera translation (cf. also earlier work by Aloimonos
and Brown [4]).

Instead of constraining the camera motion, Taalebinezhaad [88] develops an al-
gorithm for general camera motion by assuming that a point in the world remains
at the same location from one image to the next (i.e., the point is fixated on). Note
that fixating on a point is equivalent to tracking the point over two frames; because
of the tracking, additional information is gained. Taalebinezhaad describes a simple
software technique to create fixated images from non—fixated ones by image rotation.
The problem with this approach is that Taalebinezhaad has to make an additional
assumption in order to solve for the camera movement. He arbitrarily assumes that
the best camera motion involves the smallest possible value of 1 /(3: — %), Where
Zo refers to the distance from the camera to the the fixated point and Z refers to
the distance from the camera to any other point in the environment. In effect, this
assumption considers the world to be a plane in front of the camera, which is seldom
the case in reality. It is unclear how robust the algorithm is when the assumption
does not hold.

The most general direct method to date is that of Hanna (34]. This algorithm
decomposes the image into clusters of small square patches, each of which corresponds
to a frontal plane in the 3D model. The algorithm starts with an initial guess of a set

of 3D planes and of the camera motion, which are then incrementally adjusted based

3

.3 3

3

3 3

3

_.3

31

on the changes in brightness from one image to the next. The algorithm alternately
adjusts a) the estimate of the camera’s motion and b) the position of the planes
in the model, for a fixed number of adjustments. Furthermore, the entire process
of adjustments progresses from low resolution images to higher resolution images.
The results from this algorithm reported for outdoor environments look promising;
however, since comparisons against ground truth are not reported, the results can
be only evaluated qualitatively. Furthermore, this algorithm requires an initial set of
guesses; it is unclear how well the algorithm will perform for arbitrary initial guesses.

The above discussion covers the most promising direct method algorithms re-
ported. Since this approach to SFM is a recent one the full extent of the problems
associated with this approach - or its potential - may not yet have been realized.
There is reason to anticipate complications because direct methods essentially uti-
lize the same basic brightness information as optical flow approaches do; recall that
the change along the iso-brightness contour cannot be unambiguously identified (cf.

Section 2.3.1).

2.3.3 Tracked Features
2.3.3.1 Advantages and Disadvantages

While optical flow approaches and direct methods rely on the information pro-
vided by changes in brightness from one image to the next, an alternative technique
uses information obtained by tracking distinctive features across images. The cho-
sen features may include corners of obstacles (points), edges of doorways (lines) and
walls and posters (surfaces). For a set of features, their location in the two images
constitutes the input to a SFM algorithm. For example, in a case where corners are
tracked, their 2D coordinates in the two images are precisely what is required in order

to solve Equations 1.1-1.5, and to construct a 3D model of the environment.

32

A drawback of SFM algorithms using feature tracking is the required pre-processing:
first to identify features in the images and then to match features between images.
This pre-processing step is not only computationally costly (on serial computers)
but is also prone to inaccuracies and false matches. A further practical limitation
of feature tracking algorithms is that the density of the constructed 3D models is
limited by the number of distinguishable features in the environment; however, note
that there are cases where many such features exist, such as in an office.

In spite of the limitations of feature tracking, this technique is more accurate than
using the changes in brightness from one image to the next. In fact, 3D features such
as corners typically correspond to distinct signatures in an iso-brightness contour
(cf. Sections 2.3.1 and 2.3.2). Using tracked features is thus similar to selectively
using only the most reliable information available to optical flow or direct method
algorithms. A further advantage of feature tracking approaches over optical flow
or direct methods is that feature tracking algorithms can deal with larger camera
movements, since tracking distinct features (such as corners) is easier than tracking
featureless points (such as a point on a uniform wall) across a large displacement in
the image. All other things being equal, in practice a large camera translation results
in a more accurate 3D model than a small translation. Since optical flow algorithms
and direct methods involve continuous motion and instantaneous image changes, they
are not designed to deal with large camera movement. Furthermore, small camera
movements are required in order to satisfy the underlying assumption that changes
of brightness are due to motion rather than to overriding changes in illumination.

Before turning to specific algorithms and solution techniques, we close this dis-
cussion on the advantages of feature tracking with a quote from Verri and Poggio

[99): “Hence feature-based matching algorithms [...] are more appropriate than poini-

3 -3 i3

3

-3 _4

1 3

|

3 3

-3 1 _3 _21 _3 3 _3

9

33

to—point ones to solve problems that rely on accurate recovery of the 2-D motion field,

such as structure from motion.”

2.3.3.2 Essential Matrix Algorithms

Numerous Two-Frame SFM algorithms that use tracked features as input have
been reported in the literature. An early, seminal algorithm of this type is that of Tsai
and Huang [95] which introduced a novel representation for recording the camera’s
motion, using a single matrix (referred to as an essential matrix, cf. Equation 1.8).
They compute the elements of the matrix based on information from tracked points.
The estimated matrix is decomposed into the rotation and translation components of
the camera’s motion, which are then used to construct the model of the environment.
A major problem associated with the essential matrix approach is that estimating
the elements of the matrix is not straightforward, since the elements are non-linearly
related to each other. Note that this problem is not unique to the essential matrix
approaches, but holds for other representations of motion as well. In order to be
able to calculate the elements of the matrix in closed form, Tsai and Huang make
the simplifying assumption that the elements are linearly related; this forces them to
track a minimum of eight points instead of the usual five. Weng, Huang and Ahuja
[106] attempt to improve the essential matrix approach by adding a second corrective
stage. They use the estimated camera motion from a closed—form solution [105] as an
initial guess for a later stage, where errors introduced by the first stage are corrected.
In a further extension, the same authors (with Liu) adapt the algorithm to be used

with lines instead of points [108].

2.3.3.3 Solution Techniques

Two—frame algorithms involving tracked features solve equations 1.1-1.5 (or their

variants) in order to construct the best possible model of the environment based on

34

noisy measurements. The algorithms primarily differ in the techniques that they
actually employ to find the best (or optimal) solution to the equations. The most
commonly used solution techniques are singular value decomposition (SVD) tech-
niques and gradient descent techniques [64]. SVD techniques (used, for example,
in the algorithm of Tsai and Huang [95]) reformulate the system of equations into
matrix form involving a single essential matrix which represents the camera motion;
these techniques then determine the elements of the essential matrix by singular value
decomposition.

The second category ~ gradient descent techniques - is exemplified by the Rel-
ative Orientation algorithm of Horn [43] which will be used in this dissertation. In
the Relative Orientation algorithm, the camera’s motion (i.e., the translation and
rotation) is adjusted until the best fit to the set of equations is found; this is done by
decreasing/minimizing (i.e. “descent”) the deviation from the perfect fit.2

Apart from the above techniques, there exist algorithms that compute the best
possible 3D model that is maximally likely, in a probabilistic sense, for a given input.
This can be done either using a batch method [103], or a recursive method such
as Kalman Filtering [90] as employed by Faugeras, Lustman and Toscani {26]. They
linearize Equations 1.1-1.5 and cast them as a Kalman Filter to determine the optimal
estimate of the camera motion. In this algorithm the Kalman Filter is used with two
images only, rather than the usual case involving multiple images. Weng, Ahuja and
Huang [104] point out that Kalman Filtering does not perform as well as a descent
technique for Two-Frame SFM, since it requires linearizing around an arbitrary initial

guess.®

The algorithms discussed here involve a solution that minimizes the error in 3D. Another class

of algorithms (83] recasts the equations in terms of the 2D image and seek to minimize the error in
2D.

3However, this performance does not apply to the multi-frame algorithm developed in this dis-
sertation. See Chapter 3 and Appendix A for details.

3 3 3

3

3 14

S|

¢

3 3 3

A

_3 13

.

3

35

We have discussed various two—frame approaches, of which feature tracking ap-
pears to be the most reliable one given the current level of knowledge. Let us now
turn to the general problems of two-frame SFM and to the reasons for the inaccuracy

of the 3D models obtained using only two images.

2.4 Problems in Two-Frame SFM

There are two types of problems in Two-Frame SFM. The first type involves
inherent deficiencies arising from theoretical limitations, whereas the second type are
problems due to practical considerations. We will consider both kinds of problems

here.

2.4.1 Inherent Theoretical Restrictions

Even under idealized conditions (i.e., when there is no noise in the measurements
obtained from the images) it is impossible in some cases to construct a unique 3D
model of the environment. This is primarily due to the ambiguities involved in deter-
mining the camera’s motion. For example, Faugeras and Maybank [27] have shown
that using just five points results in ten possible solutions; recall that Two-Frame
SFM algorithms in theory require only five tracked points (cf. Section 1.2.3). A
further problem in determining the camera motion was pointed out by Horn [43] and
Maybank [64]; this problem is independent of the number of tracked points, but rather ‘
depends on the location of the points. These authors show that if all the tracked points
lie on certain quadratic surfaces (referred to as Critical Surfaces), then the camera’s
motion cannot be unambiguously determined based on image information. However,
in a general case with a large number of points, there are at most three possible ways

the camera could have moved [64].

Given the ambiguities discussed above, distinguishing the correct camera motions
from incorrect motions may be difficult. However, in practice these theoretical lim-
itations turn out not to be very serious. An unambiguous model can typically be

constructed because more than five points are usually tracked (about 30 points in

this dissertation), and because all these points seldom lie exactly on a critical surface.

When the camera motion is approximately known, which is often the case in robot
navigation, then this additional information can sometimes be used to disambiguate

between the solutions.

2.4.2 Practical Problems

Practical considerations give rise to serious problems in Two-Frame SFM algo-
rithms. In practice, inaccuracies in the final 3D model primarily stem from noise in
the input to the SFM algorithm. When the input involves tracked features, errors due
to the feature tracking algorithm corrupt the input.* The noise from feature tracking
is often small; however, in some instances when gross mismatches of features occur,
the resulting error is considerable. For example, a corner of a door in one image may
be incorrectly matched with a corner of a different door in the next image. Such
gross errors (or outliers) can severely distort the estimated camera motion and the
3D model.

Errors in tracking can arise from poor image resolution, since the feature can
be localized only up to the image resolution if no sub—pixel precision localization
methods are used. Moreover, cameras produce noise (from electronic components or
lens distortions) that blurs the images, making it difficult to precisely locate features.

For example, it is difficult to localize a corner of an obstacle as a point even in a

“We will not consider optical flow approaches in this discussion since optical flow is typically
more erroneous than tracked features. Nevertheless, the problems discussed in this section have
counterparts in optical flow.

-3 3 3

3

g

3

3

-4 3 _3 _2

3

37

conventionally high resolution image (say one of 512 x 512 pixels). Although sub-
pixel interpolation is possible, it is constrained by the quality of the image and the
variation in intensity near the tracked feature. That is, if the image intensity varies
sharply near a corner, then it may be possible to fit an intensity surface and to locate
the corner point to sub-pixel accuracy. On the other hand, if the intensity surface is
either noisy or uniform, sub—pixel interpolation is bound to fail.

Apart from problems due to incorrect tracking there are several factors that af-
fect the accuracy of the 3D model obtained from a Two-Frame SFM algorithm. For
example, Adiv (3] claims that in practice a change in the image could have resulted
from a large number of camera motions (see Figure 1.2 for an example), only one of
which is the correct one. In addition, he describes the typical factors that Limit the
accuracy of the 3D model, including a smalil field of view of the camera, small camera
movement (i.e., small magnitude of translation), far away objects in the environment
and a small number of tracked features. Furthermore, erroneous camera calibration
results in inaccuracies in the 3D model; for example, if the camera’s center is erro-
neously estimated by the calibration process, the 3D model will be distorted. In a
general analysis, Weng, Huang and Ahuja [107] show that Two-Frame SFM tends
to be inaccurate if the changes in the image are small and also show that accuracy
improves if the changes from one image to the next are large. However, note that
large image changes may give rise to gross tracking errors.

The practical problems and the inherent ambiguities discussed above reduce the
accuracy with which the camera’s motion can be estimated, which is a serious limita-
tion of Two~Frame SFM. In fact, it appears that the limits of the two—frame approach
in estimating the camera’s motion have been reached. Using theoretical statistics
(Cramer-Rao [20] [76] lower bounds of optimal estimation), it is possible to establish

the maximum accuracy of an estimate of the camera’s motion for a given noise level in

38

the input. Weng, Huang and Ahuja [107] argue based on simulations that the perfor-
mance of their two—frame algorithm has reached the theoretically possible maximum
accuracy. However, even this near-optimal algorithm (as well as all other two—frame
algorithms) suffers from errors in estimating the camera motion which significantly
distort the 3D model. They state that for a 512 x 512 image with Gaussian noise
(variance of 1 pixel) "under a small motion with 2-pizel mazimum disparity (average
disparily is roughly equal to 1 pizel), the errors in translation are bounded below by
60%” (p.364). They conclude that recovering motion parameters from small motion
(disparity of a few pixels) is unreliable.

Furthermore, it has been shown that even a small error in the estimated rotation of
the camera’s movement can result in large errors in the 3D model (Dutta, Manmatha,
Riseman and Snyder [23]). Dutta and Snyder [25] simulate a realistic situation,® and
statistically show that the distance from the camera to most points in the environment
has an error of 10% (when the input contained a 1-pixel error). In another simulation
they conclude, “when depths are in the range of 5 to 20 times the total translation
we stil get a 45% relative error in depth when the rotational parameters are changed
by 0.1°.” (p. 109). This means that even algorithms that are shown to be optimal
in estimating the camera’s motion are still not able to produce accurate 3D models.®
Given this situation, a reasonable approach is to move from using just two images to

using more than two images with the aim of acquiring more accurate 3D models.

In the simulation no particular Two—frame SFM algorithm was employed to determine the
camera motion; rasher, the correct value of the camera motion was corrupted by a small error
in order to simulate errors that occur in Two-Frame SFM algorithms. The simulation involves a
camera with a FOV of 45°, focal length of 309 pixels, and image size of 256 x 256 pixels.

8The above error analyses apply both to feature-based and flow-based approaches. There is
hardly any examination of errors in direct methods apart from work by Weldon and Lui (102]. For
the restricted case of a planar patch and accurately known camera motion, they show that the error

in estimating the distance from the camera to the patch is as small as 3 % for a patch that contains
a few hundred pixels.

.3 3

3 _3 3 _3

.

—1 _3 ~3 3 1 3 _3

|

3

— 3

39

2.5 Multi-Frame SFM Algorithms

Multi~frame Structure from Motion (MFSFM) approaches derive a 3D model
of the environment using more than two images. The key idea of a multi-frame
approach is to exploit redundancy to reduce error arising from noisy measurements.
Many different views of a scene are used to construct better 3D models than what
can be obtained from just two noisy images. The most significant difference between
MFSFM algorithms is the manner in which the images are processed. The algorithms
of one type process all the images at once in a single batch (Batch Methods) and the

algorithms of the second type process images incrementally, one at a time (Incremental

Methods).

2.6 Batch Methods

Batch methods attempt to construct the 3D model by assuming that all images -
from every camera position in the image sequence - are available before processing is
begun. However, processing all the images at once involves a large number of variables
which makes the computation unwieldy and can lead to inaccuracies, due to finding
locally optimal results (as opposed to the global optimum). Each camera motion
involves 6 variables (3 for translation and 3 for rotation) and each 3D point involves
3 variables (x,y,z). If the 3D model is constructed based on m + 1 pictures (from
m camera movements) and represented using n features (say, n 3D points), then the
most general batch method involves 6m—1+3n variables (the scale ambiguity in SEM,
cf. Chapter 1, decreases the total number of unknown variables by 1). Therefore for,
say, 10 camera movements and for 30 points, the number of unknown variables is 149.

Batch algorithms have typically reduced the number of variables by restricting the

way the camera moves, assuming that any deviation from these constrained motions

40

Table 2.1: Batch MFSFM algorithms showing the number of motion variables (general
case: 6m — 1) and average accuracy computed from the reported results (m denotes
the number of camera movements).

ALGORITHM MOTION RESULTS ON IMAGE SEQUENCES ||
VBLS ACCURACY | COMMENTS
Sawhney et. al. [80] 3 0.9% (25 images) | Motion as expected
Broida & 7 2.5% (12 images) | Motion as expected
Chellappa [14 40.3% (16 images) | Unexpected motion
Kumar et. al [54] 7 - Only qualitative results
Franzen (29] 14 7.4% (8 images) | Unexpected motion
Taylor et. al. [89]° 3m -1 - Only synthetic results
:_Tomasi et.al. [94] || 3m —1 | 2.4% (150 images) | Object far away

—— e ——

can be dealt with as noise. In practice, however, the deviations may be large or biased
and therefore cannot be accounted for simply as random noise. Table 2.1 lists the
batch MFSFM algorithms reported in the literature based on the number of variables
used to approximate the underlying robot motion; since all algorithms share the 3n
variables (i.e. the 3D coordinates of the points), these are not included in the table.
In the following section these algorithms are discussed in more detail, in ascending

order of generality of allowable motions.”

2.6.1 Uniform Rotation

A special multi-frame approach has been developed by Sawhney, Oliensis and
Hanson [80] in which the camera motion is assumed to be rotational about a fixed

axis.® In this simple case of restricting the camera motion to rotation, three variables

"There is an important similarity among many batch algorithms, namely constructing 3D models
in object-centered coordinate systems. For certain algorithms (e.g. (13]) it is claimed that using an
object—centered coordinate system is preferable over using a camera—centered coordinate system.

8Note that this is equivalent to the camera being stationary while the objects in the environment
rotate instead, which is how the experiments for this algorithm were actually conducted.

3

—~3 1

i

N

3

3

_ 3

41

are sufficient to completely represent the camera movement. Assuming purely rota-
tional motion permits a closed—form solution for the three variables representing the
rotation, as well as for the 3D coordinates of a given point. The solution is based on
the shape of the trajectory traced out by a point while the camera rotates. Sawhney
et. al. show that extracfing the shape of the trajectory of an individual point from
image information is inaccurate, and then demonstrate a robust way of combining

information from several points located on the same object.

In an image sequence of 25 frames, where the camera’s motion was made to adhere
to the motion restrictions, the average error of the distances from the camera to points
in the 3D model was 0.9%. Although this is a very good result, the applicability of this
work is severely constrained by the requirement of purely rotational motion. It is clear
from the nature of the formulation of this technique that it cannot be generalized to
arbitrary camera motion. However, this approach could be used for acquiring models
of objects, similar to the work of Szeliski [87] where objects rotate on a turntable (cf.

Section 2.2.3).

2.6.2 Uniform Translation and Rotation

An algorithm that allows for a more general motion than the previous technique
was formulated by Broida and Chellapa {13] {14]. They explicitly assume that the
objects in the environment - as opposed to the camera - move and turn, and that
the motion occurs at a constant rate. They represent the actual motion of the object
by a uniform translation velocity and by a constant rotation, resulting in approxi-
mation of general motion; these terms correspond only up to the first order terms
in the Taylor’s series expansion of the general motion equations. Such a restricted
representation reduces the number of motion variables from 6m — 1 (general case) to
7. The authors solve for the motion and for the 3D coordinates of the points by ap-

plying a gradient descent technique (conjugate gradient) on the entire batch of image

42

measurements. Broida & Chellappa [13] construct a 3D model from 12 images with
an average accuracy of 2.5% when the object moves and turns at a constant rate as
expected. In a second image sequence of 16 frames, in which the object violates the
expected motion, the average error in the 3D model is 40.3%.

Kumar, Tirumalai and Jain [54] use the same formulation as Broida and Chel-
lappa but employ the Levenberg-Marquardt method (60]° (instead of conjugate gra-
dient descent) to find a solution, claiming faster convergence. They also present a
quasi-incremental version of their algorithm that only operates on a fixed number of
recent images, discarding older images. In this version, the object motion and the
3D model for the current batch of images are not computed from scratch, but by
starting with the solution of the previous batch of images (which typically permits
quick convergence to the optimal answer). The advantage of this technique is that it
can track variations in object motion, unlike Broida and Chellappa’s algorithm which
assumes a fixed type of motion over the entire sequence. Kumar et. al. do not report
quantitative results for real image sequences.

Rather than assuming uniform velocity, Franzen [29] goes a step further in allowing
for uniform 3D acceleration. He solves for the motion and the 3D model using a
closed-form solution by removing the non-linear term, zi, (where z is the distance
to a given point from the camera) from his variants of equations 1.1-1.5. These
variant equations represent what the algorithm tries to minimize in order to find a
solution, i.e., the difference between the measured image coordinates of points and
the predicted image coordinates. The effect of removing the non-linearity is that the
constructed 3D model ends up being “more compact than it should be” as observed
by Franzen {29] (p. 60). In an attempt to correct (i.e. inflate) the model, heuristics

are later applied.

9The Levenberg-Marquardt (60] technique combines steepest gradient descent (when far away
from the minimum) with inverse Hessian methods (near the minimum)

3

3 _1 _23

.3

3

4 3 _3

3

43

The kind of motion that Franzen allows (also referred to as chronogenous motion)
requires 14 variables for its representation. Reasonably good 3D models are reported
for real-world image sequences. For example, based on 8 images of the UMass Rocket—
Field Sequence, a 3D model was constructed with an accuracy of 7.4%, although the
motion of the vehicle that obtained the sequence was not entirely chroﬁogenous (see

[24] and Chapter 4 for details regarding the UMass sequence).
The batch MFSFM algorithms discussed so far share the property that a fixed

number of motion variables are used to represent the movement of the camera (or
the object) regardless of the actual movement of the camera across the entire image
sequence. On one hand, such an absolute limit on the number of variables results
in robustness of the algorithms when the actual motion is similar to the allowable
motion; but if the actual motion is considerably different from the allowable motion,

it is reasonable to expect the algorithms to fail.

2.6.3 Planar Motion

The two remaining batch algorithms reported in the literature represent the cam-
era’s motion using a set of variables, where the size of the set is proportional to the
number of times the camera actually moves.

In the simplest algorithm involving a varying number of motion variables, Taylor,
Kriegman and Anandan [89] constrain the motion of their camera to a plane. By
imposing this constraint, they reduce the number of variables representing the camera
motion from 6m—1 (the unconstrained case) to 3m—1: To solve for motion and the 3D
modei, Taylor et. al. minimize the mean square difference between the actual image
measurements and the 2D image projection of the currently estimated 3D model.
They split this minimization into a number of smaller problems that are computed in
parallel using the Levenberg-Marquardt technique. Inverting the Hessian matrix in

the Levenberg-Marquardt method is usually expensive, but Taylor et. al. avoid this

44

by optimizing over small subspaces and inverting only 2 x 2 matrices. The parameters
of interest are divided into three mutually exclusive sets: the coordinates of each
tracked point, the camera positions, and the camera orientations. Optimization over
these sets of parameters is decomposed into subspaces made up of only the point’s
coordinates, the camera’s position, or the camera’s orientation. Whether the fast
parallel scheme of Taylor et. al. is applicable also to non-planar cases is an open
research question. No real image experiments have been reported for this algorithm

in the literature.

2.6.4 General Motion

Of all the batch methods, the work by Tomasi and Kanade [94] is the only unre-
stricted one in terms of camera motion. However, their algorithm crucially depends
on a different assumption, namely that the camera image is formed by orthographic
projection.'? By exploiting this assumption, Tomasi and Kanade separate the shape
of the environment from the camera’s motion in an ingenious fashion. They use the
linearity of the orthographic projection in order to decompose the image measure-
ments (over a sequence of images) into the camera’s rotation and into the object’s
shape. The camera’s translation does not need to be calculated because of the as-
sumption of orthographic projection; i.e., only 3m — 1 variables need to be utilized.
This approach works very well in determining the shape of objects which are far away,
or very small, or shallow in depth (i.e., the effect of perspective is negligible).

A disadvantage of this approach is that the constructed 3D model is not available

in a camera (or robot) coordinate system, which is necessary for tasks such as obstacle

10Recent related work by Poelman and Kanade [72] involves paraperspective projection which is
a development over strict orthographic projection. This work takes into account the variation in
the size of an object depending on its distance and direction from the camera, which is ignored in
orthographic projection. Although this technique may be applicable to a larger range of real-world
scenarios than algorithms that assume orthographic projection, experiments involving real-world
imagery are yet to be reported [72].

-3 -3 3 3 3 "_3

1

.2

3

5

2

45

avoidance. However, this is not a serious problem since there exist ways of determining
the location of objects based on their shape and based on an image of the object from
the current position of the robot. For example, pose determination algorithms such
as that of Kumar [52] could be used. A more serious difficulty with this approach is
that it cannot in general be employed for the task of obstacle avoidance, since the
objects to be avoided occur close to the camera and have high perspective distortion.

The shape of the 3D model constructed by Tomasi and Kanade's algorithm has
an accuracy of 2.4% for a reported 150-image sequence [94]. Based on the results,
this approach appears to be promising. However, it is important that future research
establish the role of the assumption of orthographic projection, by applying this
approach to quantitative experiments on real-world image sequences involving nearby
obstacles.

In conclusion, batch methods cannot simultaneously solve for the large number of
variables required to represent general motion in unconstrained environments. due to
the computational complexity. We have seen how various batch MFSFM algorithms
have either restricted the camera motion or the camera model in order to get around
the difficulties of batch methods. On the other hand, these restrictions and the fact
that all images are processed together limit the applicability of batch methods to

general robotic applications where real-time decision-making and control are crucial.

2.7 Incremental MFSFM

Unlike batch MFSFM methods, incremental methods do not assume that all past
images are available; rather, they use only the most recent image(s)!! together with

an estimate of the 3D model derived from the previous images. Incremental methods

U Typically the current image or the current and previous images are used.

46

attempt to update the estimated 3D model by incorporating information from the
most recent image(s).

In this section we will consider incremental MFSFM algorithms in detail. How-
ever, before we analyze the various algorithms, we will discuss the general assump-
tions made by incremental algorithms as well as present the options particular to

incremental algorithms.

2.7.1 General Assumptions of Incremental MSFSM

The three basic assumptions of Two-frame SFM (Section 1.2.2) also hold for
standard MFSFM. In addition, the following assumptions are typically made in in-
cremental MFSFM:

1. The current model is updated every time a new image is obtained.

2. An estimate of the error in the current model is available (3D model error in

Figure 1.4).

3. The estimated covariance of the 3D model error reflects the actual error.

An initial model can be derived by applying Two-Frame SFM to the first pair of
images; this is the approach used in this dissertation. Alternatively, the initial model
can be arbitrarily set as a plane (comparable to a wall directly ahead) [37].

The first assumption represents the fundamental basis of incremental MFSFM
according to which the current model is refined incrementally. Concerning assump-
ti('DI; 2, coﬁsider the situation where no estimate of the error is available; i.e., we do
not know how reliable different portions of the model are. In this case incrementally
updating the model would be equivalent to blindly averaging the model with the in-

formation obtained from the new image. All incremental MFSFM approaches assume

3

.3 -3 3 __3 _3

] 3 .3

3

]

-1

3

3 T3 "3 T3

that an error estimate is available; they vary in how much of the error information is
taken into consideration.

The actual 3D model error arises from noise due to inaccurate tracking of points
from one image to the next (image error in Figure 1.4). This actual 3D model error
is assumed to be best approximated by a Gaussian distribution. The mean of such a
distribution corresponds to the 3D coordinates of the model, while the covariance of
the distribution represents the reliability of the coordinates (assumption 3). Although
in practice the error distribution is not strictly Gaussian[62], experimental work [91]

suggests that the covariance might adequately capture the error for the purposes of

incremental MFSFM.

2.7.2 Options in Incremental MFSFM

The input of a incremental MFSFM algorithm is identical to the input of a Two-
Frame SFM algorithm, i.e., 2D image coordinates of tracked points; the only differ-
ence is that due to the incremental step the points end up being tracked over many
frames as opposed to only two. An incremental algorithm typically works as follows:
initialize, move, transform, update and iterate (cf. Chapter 3 for details).

There are two important issues that an incremental MFSFM algorithm faces:

(i) how to represent the error in the 3D model, and (ii) how to transform the error in
the model to the new camera coordinate system. Let us consider these in turn before

using them in the analysis of incremental algorithms.

2.7.2.1 Representing the 3D Model Error

An important distinction between incremental algorithms lies in how the algorithm
represents and corrects for the 3D model error. In order to refine the 3D model, using

information from the new image, it is crucial that an estimate of the error in the

48

model is available. If this error reflects - in a probabilistic sense — the actual error in

the model, then incremental refinement is possible.

One representation of the 3D model error is a complete covariance matrix. If
the model consists of n 3D points, then the error in the model is represented by a
covariance matrix of size 9n? (i.e. 3n x 3n). In previously reported MFSFM work,
the 9n? elements of the covariance matrix are approximated by much fewer than
9n? elements. The simplest class of approximations involve using only n elements to
represent the 3D model error. Each of these n elements approximates the expected
error in distance from the camera to one 3D point. Incremental algorithms vary in
the number of elements used to represent the error (from n to less than 9n?); this will

be further discussed in Section 2.7.3.

One of the main points of this dissertation is that elements of the covariance ma-
trix that have typically been neglected (the off-diagonal terms) turn out to contain
important information. These off-diagonal terms capture a major source of the 3D
model error due to the error in the estimated camera motion (motion error in Figure
1.4). The motion error affects all the 3D coordinates of the model in a systematic
way; this is reflected as correlations between the errors of each point. We return to
this point in Chapter 3. Recording the correlations in the covariance matrix provides
a means of estimating and compensating for the effect of the erroneous camera mo-
tion. Let us now consider how such a covariance matrix can be transformed across

coordinate systems.

2.7.2.2 Transforming the Error Across Coordinate Systems

When the camera moves to a new position, the image taken from that position
involves a new coordinate system. Since the existing model (based on previous images)
and the new image information have different coordinate systems, one of them has

to be transformed to the coordinate system of the other. An important reason for

3

7

3

3

.3

_—

5 3 3 _3 .

3

3 T3 T3

49

preferring the new coordinate system at the current location of the sensor is that the
3D model is then readily available for immediate use.

Transforming to the new coordinate system requires that both the model and
its estimated 3D model error be transformed to the new coordinate system. Since
the transformation is done based on the estimated camera motion (between the pre-
vious image and the new image), the motion error ends up further corrupting the
transformed model during the process of transformation. Let us refer to this error
as the transformation error (cf. Appendix A for the equivalent Kalman Filtering
terminology).

Various algorithms have approximated the transformation error in different ways,
including a simple heuristic which inflates the estimated error by a fixed value. The
heuristic - constant age—weighting - used in these algorithms accounts for the trans-
formation error by decreasing the importance of the past estimate by a constant; i.e.,
the older an estimate is, the less important it gets. Using constant age—weighting is
preferable to completely ignoring the transformation error. However, it cannot suffi-
ciently take into account large errors, especially those due to rotation. Furthermore,
constant age-weighting is not effective, since it does not differentiate between more
erroneous and less erroneous transformations. More advanced recent error analyses

involve first—order error analysis.

2.7.3 Incremental Algorithms

The algorithms to be discussed here are classified according to their restrictions
on the motion of the camera. Furthermore, each algorithm will be analyzed based on
how they capture the transformation error and how many elements of the covariance

matrix they use for capturing the 3D model error (as summarized in Table 2.2).

Table 2.2: Recursive MFSFM algorithms showing the number of elements used to
represent the 3D model error (general case: 9n?).

" ALGORITHM ERROR | RESULTS ON IMAGE SEQUENCES
ELEM. | ACCURACY | COMMENTS

Matthies et. al [62 n 0.5% (11 images) | Only pure translation |
Shigang et. al. [82 n 15% (40 images) | Only planar motion
Heel {37] [38] [40] n - Only qualitative results
Ando (6 n - Only simulations
Stephens & Pike [85] 9n 1% (50 images) | Results for only 1 point
Sawhney 18n 3.0% (6 images) | Only frontal planes of
& Hanson (79| 3.4% (10 images) | shallow objects
Cui et. al. [21] In fluctuates No ground truth

2.7.3.1 Camera Restricted to Pure Translational Motion

As an instance of the most constrained type of camera motion, Matthies, Szeliski
and Kanade [62] {63] obtain dense 3D models from a sequence of images by assuming
that the camera moves (translates) parallel to a fixed line which is the horizontal
scanning direction of the image. Using the resulting one-dimensional flow and known
camera motion, the model is reconstructed by triangulation. Matthies et. al. use
constant age-weighting to take care of the transformation error, and use only n el-
ements to represent the 3D model error. By applying the algorithm in a situation
where the camera’s movement was precisely controlled (optical bench) a model was

obtained using 11 images with an error of 0.5%.

2.7.3.2 Camera Restricted to Planar Motion

In a slightly more general case, Shigang, Tsuji and Imai [82] constrain the motion
of their camera to a plane. Their algorithm involves a novel technique for determining

camera rotation based on the vanishing point of horizontal lines in an image. The

13

N

-3 3 _3

3

3

-3 3 .3 __3

S

3

S|

3

3 ~ 3 3 T3 T 13

—~3 ~ a4 — 3 ~ 38 T8 3 3 383 73 83 8 T3 T3 T3

51

camera’s translation, on the other hand, is obtained using shaft encoders on the
robot’s wheels. Using the complete camera motion, they construct a model made up
of vertical 3D lines and refine the model over time. Shigang et. al. use only n terms
to approximate the 3D model error, even though they consider more general camera
motion than Matthies et. al. When they allow the camera to move freely on a plane,

the error in the final model is 15% after 40 images.

2.7.3.3 General Motion with Restricted Experiments

The remainder of the algorithms to be discussed do not explicitly constrain the
camera’s movement. However, for most of these algorithms only simulations or re-
stricted camera motions have been considered in the reported experiments. After
discussing these algorithms we will turn to the algorithms which provide experimen-
tal results for general camera motion.

Heel [37] {38] uses optical flow as input and obtains a dense 3D model using
Kalman Filtering. All experiments reported are for the case of pure translation.
Heel does not correct for transformation error, and he approximates the 3D model
error with just n elements. Reasonably good qualitative results are reported for two
experiments where the camera moves precisely in a straight line. In these experiments
the approximation of the covariance matrix by n elements seems to be adequate to
obtain qualitatively reasonable 3D models, but this performance may well be due to
the highly constrained motions (pure translation on an optical bench).

In Heel’s later work [40] (with Ray) the noisy optical flow is eliminated and motion
1s computed using a.direct method. Even this improved method does not consider
the fact that the transformation is erroneous; again only n elements are used to
represent the 3D model error. All experimental results are qualitative and involve

pure translational camera motion.

52

Ando [6] attempts to develop dense 3D models which incorporate completely ar-
bitrary motion, without any constraints. He gives a detailed computational scheme
for straightforward Kalman filtering using optical flow. Unlike other MFSFM algo-
rithms, his does not require strict rigidity (cf. Section 1.2.2). This is achieved by
using a term that describes the deviation from rigidity. An interesting side effect is
that the output of Ando’s algorithm behaves as predicted by psychophysical exper-
iments involving two rotating transparent cylinders of dots.!?> Ando uses constant
age-weighting and uses n elements to capture the motion error. Since his experi-
ments involve only simulations, it remains to be seen whether this approach works in
real-world situations.

Stephens and Pike [85] use a straightforward Kalman filter to refine the 3D coordi-
nates of each tracked point. Unlike Heel and Ando, Stephens et. al. use 9n elements
to approximate the 9n? covariance matrix. The experiments reported involve the
camera moving almost directly ahead. Quantitative results are reported only for one
point located about 100 m from the camera; the error in distance is about 10% after
10 m of forward motion (over 25 images). After 50 images, the error is reduced to
1%.

Although the results from some of the recursive algorithms discussed so far look
promising, given the lack of generality of camera motions it is unclear whether these

algorithms are useful for general applications.

2.7.3.4 General Motion with Unrestricted Experiments

Unlike all the algorithms discussed so far — which represent the scene with points

and/or lines — Sawhney and Hanson (79] attempt to identify flat objects with negli-

12When two cylinders of the same size rotate at different speeds but at the same depth, humans
perceive them as occurring at different depth. Since Ando’s SFM algorithm maximizes overall
rigidity - i.e. it does not require strict rigidity - it computes the most rigid interpretation of all the
points taken together, which turns out to be similar to the human percept.

3 _ 3 __3 .

_.3

.

3

B I

B

3

53

gible depth (“shallow structures”), which then constitute the 3D model. !3 In this
algorithm, the transformation error is taken into account, and 18n elements are used
to represent the model error, where n denotes the number of shallow objects. Each
shallow object consists of three lines, the error of which is represents by six elements
in the covariance matrix (cf. Equation 6, 9, and 11 in [79]). Although this algorithm
can deal with general motion, it assumes that the objects modelled have surfaces
sufficiently distant in the environment so that the models will be frontal planar sur-
faces. Using this assumption, reasonably good 3D models have been constructed
(with errors of 3.0% and 3.4% in the two sequences reported in [79)).

The first to report results on real images for an unconstrained environment and
arbitrary motion are Cui, Weng and Cohen [21]. Their algorithm is also the first
to take into account the transformation error as well as to use 9n elements of the
covariance matrix. However, despite the careful error analysis, the experimental
results for general motion do not look very promising. In the only reported real-
world experiment, the error in the 3D model fluctuates randomly between 6mm and
32mm. Since the true distances corresponding to this error are not reported, it is
impossible to evaluate these figures apart from noting that the error does not decrease
over time, but rather fluctuates randomly.

The above results suggest that there is much room for improvement in MESFM for
real-world applications, where neither the motion, the camera, nor the environment
are constrained. The following chapter describes in detail our MFSFM framework

which does not impose any such constraints. This algorithm uses the full (9n?) covari-

.. ance matrix, i.e. all the cross-correlations. Highly accurate 3D models- have already

been reported for this cross—correlation-based algorithm by Thomas and Oliensis [93].

Detailed experimental results are presented in Chapter 4.

13Such a sparse model has been accurately extended using Kumar’s model-based approach of pose
recovery, while tracking and triangulating on new points {52].

CHAPTER 3

A FRAMEWORK FOR MULTIFRAME STRUCTURE
FROM MOTION |

In the MFSFM algorithm developed in this dissertation, the goal is to incremen-
tally update the 3D model of the world using information from new images obtained
as the camera moves. The algorithm is developed for unconstrained environments,
and allows arbitrary camera motion. This chapter discusses the details of this incre-
mental algorithm. Most of the discussion focusses on how to capture the error in the
3D model and in the new image information, such that the error analysis supports

intelligent updating of the 3D model based on the new image.
Recall from Chapter 1 that a 3D model of the environment obtained from SFM

is entirely based on the 2D image coordinates of tracked points or features (assuming
that the camera calibration is known). The main goal of this chapter is to provide a
mechanism to represent and estimate the error in the 3D model stemming from the
error in the image coordinates of tracked points (see Section 2.4.2 for a discussion of
errors in tracking). In order to refine the 3D model over time, it is desirable that
the estimate of the error in the model accurately reflects the actual error. The most
important difference between this work and previous incremental MFSFM research is
that the present work provides a framework within which all the elements of the 3D
model error (i.e. all 9n? elements, cf. Section 2.7.2.1) are represented. Recall from
Chapter 2 that the most advanced incremental algorithm in the literature used only
9n elements; the algorithm ignored all the terms in the covariance matrix that repre-

sented the cross-correlations between any two points in the 3D model. In this work

54

- 3 3

3

3

3

—3 T3

55

these cross—correlations are explicitly computed and used in incrementally updating

the initial 3D model.

3.1 The Cross—Correlation—based Incremental Algorithm

It is assumed that the camera moves from one location to the next, and obtains
a new image at every location (recall Figure 1.3). The goal of the algorithm is
to construct a 3D model consisting of points (such as corners of walls, doors, and

obstacles) tracked across the images.

3.1.1 The Steps of the Algorithm

The cross-correlation—-based algorithm works incrementally as follows. Let us de-
note the ith multi-frame model by H;, the ith two-frame model by W;, and the ith

image by I; (Figure 3.1 represents the first iteration of this incremental algorithm):

1. Initialize. Construct an initial model W, from the first 2 images I, and I;.
Estimate the error, C'ov(W,), in this model. At this initial step, H; is equivalent
to Wl.

2. Move. Move the camera to a different position; construct a two—frame model
W, from the current image I, and previous image I,. In Figure 3.1, constructing

the two~frame model corresponds to the dotted box.

3. Find Error. Estimate the 3D model error in the new two-frame model,
Cov(W,). In Figure 3.1, this step correponds to the three darkened boxes.
This stage involves the crucial difference between this work and previously re-

ported work.

56
FIRST ITERATION
grevious &
urrent
Images * K
1 & | MOTION
1 2 ERROR
‘....IIJ[I...III‘ M (dM/dI) DmECT
: i |
i MOTION INDIRECT ERROR
: : ERROR dw/dl
+ (aW/ M)
SFM M4 D
Sesnunneqy YTYTYTIY) 4
vy
NEW 3D
MODEL FULL
WaY 3D
MODEL
ERROR
COvVWw
2- K UPDATED
L 3D I\AODEL
W
2 | M 2
PREVIOUS A
3D MODEL TRANSFORMED N
' F 2
TRANSFORM I —mm
——— >~ L
cov H.| TRANSFORMED T
COV H, ¢ E

Figure 3.1: The first iteration of the cross-correlation-based algorithm. The dark
boxes indicate the bulk of what is done in this chapter. The dotted box denotes a
Two-Frame SFM algorithm due to Horn that we have adopted. The remaining boxes
correspond to steps of a Kalman Filter.

-3 __3

1

.

1

3

1

A

57
ITERATION i
Previous &
Current
Images * ¥
& 1 MEOTIOE
l ::--nnl[--.-a.'l M (iﬁg) DRECT
: il M st
§ MOTION T INDIRECT ERROR
ERROR dwrdl
+ (dw/)
f 2FRAME } Yy
I SPM M Wp
fscenssnqecccces rd
Yy v
NEW 3D
MODEL J’ FULL
wi+1 3D
MODEL
ERROR
COVW. .| -
i+ fi UPDATED
{* | 3D MODEL
Wi+1 o M Hi+‘l
PREVIOUS AT
3D MODEL] Tm%%EOSMED N
Hi GWi) T o g | COV H
TRANSFORM) G —
—— » L
COVH, TRANSFORMED T
cov H, T E
(=COVW,) 3 R

Figure 3.2: An ith iteration of the cross—correlation-based algorithm. The dark boxes
indicate the bulk of what is done in this chapter. The dotted box denotes a Two-
Frame SFM algorithm due to Horn that we have adopted. The remaining boxes
correspond to steps of a Kalman Filter.

58

4. Transform. Transfer the previous model (H;) and its error Cov(H,) to the

new camera coordinate system of image I,. The result is H, 7 and Cov(H,).

5. Update. Update the transformed model using the newly acquired two~frame
model W,. This step involves Kalman Filtering. Compute the error Cov(H,)
of the updated model (H,).

6. Iterate. Go to Step 2 (increment subscripts by 1). See Figure 3.2 for the steps
of the algorithm at iteration 1.

The initial model W, is a set of 3D coordinates of the tracked points in the
environment obtained by the two-frame technique (that uses the steps outlined in
Section 1.2.3), using the first and second image.! The error in this model is then
estimated; a reliable estimate of the error is crucial for an accurate MFSFM algorithm.
Determining the error of the two~frame model is the major contribution of this chapter
(Sections 3.1.2-3.4). The techniques developed here are not only applicable at the
initia.l step, but are also useful every time Steps 2-3 are executed, i.e., whenever a
new image is obtained. Every time the camera moves, the most recent pair of images
is used to obtain a new two—frame model of the environment, the error of which is
again estimated.

The goal of the algorithm is to fuse the initial model H, with the newly acquired
two—frame model W,. Before this goal can be realized, the previous model and the
new model have to share the same coordinate system. Note that the previous 3D
model H, is in the camera coordinate system of the previous image I,, whereas the
new model W is in the camera coordinate system of the current image I,. Either

model could, in principle, be transformed to the other coordinate system. However,

!Note that reasonably accurate tracked points are assumed as the input to the algorithm in the

experiments considered in Chapter 4. It is assumed that tracking is at least accurate to 1 pixel (in
a 256 x 256 pixel image).

— 1

1

3

1

S

.1 | 1 1

-

39

it is best to have the updated model in the current camera coordinate system, since
it is useful for the robot to know the environment from its current position. The

coordinate transform can be done as follows:

Hl,r =RiH, - T (3-1)

where R; represents the rotation of the camera and T) represents its translation
between images I; and I,. (Recall that the estimates for R; and T, are computed by
the Two-Frame SFM algorithm; cf. Section 1.2.3.)

Transforming the old model to the new coordinate system necessitates that the

error estimate of the old model is also transformed. This is done as follows:

Cov(Hy1) = B, Cov(H;) RY + N, (3.2)

where N, denotes the additional noise that corrupis the model due to the process
of transferring coordinate systems. How well the noise N, is estimated affects the
accuracy of any incremental MFSFM algorithm. Exactly how the transformation is
done is addressed in Section 3.5.

Finally, the old model (H;) that has been transformed to H; r can be updated

with the new two-frame model W, resulting in the new multi—frame model as follows:

H. = Cov(H,) [Cov(Hy 1) Hir + Cov(W,)™! W, (3.2)

where

Cov(H,) = [Cov(H 7)™ + Cov(W,)™!]™ (3.4)

These equations define the crucial fusion component of a Kalman Filter [90].
Both 3D models in Equation 3.3 (H,r and W,) are multiplied by the inverse of

their covariance. If the covariance is large - indicating a large error, and thus an

60

unreliable model - then the inverse is small, giving the relevant model less weight in
the final result. That is, fusion using a Kalman Filter is a kind of weighted averaging,
where the previous model and the new two-frame model have equal status apart
from the value of the associated covariances ("weights”). The precise definition of
the Kalman Filter and its equations are given in Appendix A, and adapted for this
algorithm in Section 3.5. The numerical issues relevant to the equations are considered
in Chapter 5.

The new multi-frame model (H,) is iteratively updated by the next two—frame
model obtained by moving the camera to a new position. For example, experiments

1 and 2 in Chapter 4 involve 8-9 camera movements.

3.1.2 The Error Modules

The process of obtaining 3D models involves (either explicitly or implicitly?) a
step that computes the camera motion between the two images, and a second step
which involves computing the 3D coordinates based on the camera motion and the
2D image coordinates. In the cross—correlation~based algorithm the two steps are
explicitly separated.

In order to formalize the two types of error affecting any two-frame model (direct
and indirect error, as in Figure 1.4), let us represent the 3D model by a vector W,
made up of n 3D points (wi, i = 1...n). Recall that a new 3D model is obtained
based on image coordinates (from a consecutive pair of images) (I) and the camera

motion (represented by a vector M). Thus the we can write:

W = W(M,I) (3.5)

?The implicit case involves the situation where the camera’s motion as well as the 3D model are
computed simultaneously. Any errors in the explicit case have counterparts in the implicit approach.

.3 .3 .3 _3 .3 _3 __3

4

I

13

1

4 | i _1

1

61

However, in SFM the camera motion is in turn calculated based on image infor-
mation, and hence is a function of the image coordinates; i.e., M can be written as

M(I) which can be substituted in the above equation to obtain:

W = W(M(I), I) (3.6)

This equation explicitly represents our method of calculating W by first calcu-
lating the camera’s motion M(I). This calculation corresponds to the dotted box in
Figures 3.1 and 3.2. The model W is then calculated in a second stage using the
original image coordinates I and the compﬁted camera motion. Note that M and W
can also be calculated in one step; equation 3.6 will hold implicitly in such a case.

In the second stage of calculation (which computes the 3D model W), the 3D
model error in W can be computed in terms of the motion error in M and the image
error in I. Using a standard first—order approximation, the total 3D model error in

W can thus be written as:®

oW ow

where dW, dM and dI represent the respective errors in W, M, and I. The first

term denotes the indirect error (cf. Figure 1.4) and the second term denotes the

direct error. In using this first—order approximation to calculate the error in dW, we

need to estimate the value of dI. We assume that the error in dI has a variance of 1

pixel, which is reasonable given the current status of point-tracking algorithms. The
oW oW

remaining three terms in Equation 3.7 are M’ oL and dM. Let us now turn to a

detailed discussion of how to calculate these terms.

3M is a function of I and is not an independent variable; hence dM needs to be expanded further
as done later in Equation 3.8.

62

3.2 The Indirect Error

3.2.1 Defining the Problem

The amount of error in the 3D model partially depends on how accurately the
camera’s motion is estimated; this is discussed below in Section 3.2.3. Before the
exact effect of motion error on the 3D model - i.e. the indirect error — can be
determined, we will first discuss how the error in the motion is calculated.

The computed camera motion M depends on the image coordinates I. The error
iIn M can therefore be expressed in terms of the error in I as:

oM

Let us denote the first term on the right-hand side of Equation 3.7 by dWyy,
the indirect error arising due to the motion error. The indirect error Wy can be

rewritten using Equation 3.8 as follows:

oW oW oM

Thus to calculate dWy it is necessary to determine the two partial derivatives
y p

g;lvwv and 63—1}4 The first partial derivative denotes the indirect error that is introduced

in the 3D coordinates due to an error in the motion. The second partial derivative

captures the motion error that results from noise in the 2D image coordinates.

3.2.2 %I’[-: Motion error (M) with respect to Image Error (1)

In order to determine the partial derivative 671\]/:1- the process that is used to obtain
the camera motion M from the image coordinates I needs to be analyzed.
The two—frame SFM algorithm (due to Horn [43]) that we use in the cross-

correlation-based algorithm employs the Coplanarity Constraint (cf. Figure 1.1) to

3

1

3

S |

3

3

-4 __13 |

1

63

find the best camera motion. This algorithm was chosen because of the simplicity
of the function which it tries to minimize in order to arrive at the optimal solution.
Horn’s algorithm minimizes the deviation E from the coplanarity constraint which
is a function of camera motion M and the image coordinates I, represented by the

following equation involving a scalar triple product:*

E =T, R@), v’ (3.10)

i=1

where T is the camera’s translation between the two images, R the camera’s rotation,
1; the unit ray from the first camera position to the image coordinate in the first image,
and r; the corresponding ray for the second image (cf. Figure 1.1).5 The first and
second image can also be referred to as the left and right image [43); hence the usage
l; and r;. T and R are related to motion M, and l; and r; are related to I, i.e. to
the image coordinates of the world point; the exact relationships will be explored
later. The summation over ¢ denotes the sum of the contributions of each of the n
reconstructed 3D points. The scalar triple product in equation 3.10 corresponds to the
coplanarity error because it is directly proportional to the volume formed by the three
rays (T, L, r;); if the three rays are coplanar, then the volume is zero. Thus, in the
two-frame algorithm used here, the recovered motion M corresponds to a minimum
of the coplanarity error E. This means that

0E(M,]I)

N = 0 (3.11)

at the computed value of M.

In order to determine the exact effect of image error on the camera motion, we will

analyze the effects of a small perturbation. If the image coordinates are perturbed (by

4We will use the notation [,,] to indicate a scalar triple product. i.e. [a,b,¢] = a - (b x¢)

5); is in the coordinate system of the first camera whereas r; and T are in the coordinate system
of the second camera.

64

dI), the recovered motion will also usually change (by dM). However, the coplanarity

error is still minimized and Equation 3.11 holds for the perturbed values of M and '_]L
I. Thus, the partial derivative gl\ﬁ/f is unchanged under the perturbation of M and I. n
Considering g—l\E/I as a function of M and I, this implies: \
0 d (0F)
0F ’
M (BM) M + 51 (BM) a =0 (3.12)
,1
or:. |
9E OB i
— t—— dl = 3.13 :
e ™M+ giar =0 (313)
Let ’—1
OE ™
= 14
A N (3.14)
and m
3*E !
B T (3.15)
0MGI -
By rearranging equation 3.13, we can obtain (assuming that A has an inverse®): ‘s
oM -1 7
ﬁ - "'44. B (3.16) i
Equation 3.16 provides the exact relationship between noise or perturbation in 'j
the images (i.e. image error) and the camera motion error. In order to calculate
-
this quantity we need to make an explicit choice for our representation of the camera :
motion M. -

®In all the experiments conducted-using the algorithm developed here, 4 has had an inverse. If
A does not have an inverse, this indicates that the error analysis is very unstable at the estimated

value of the camera motion. In such a case, a straightforward solution is to discard the current j
image, and acquire a new image.

65

3.2.2.1 The Components of the Motion M

Any 3D motion of the camera can be described in terms of a translation and
rotation. Due to the previously discussed scale ambiguity in SFM, the scale of the
translation cannot be determined, but only its direction. Recall from Section 1.2.3.
that the total number of parameters describing the motion (that can be estimated
based on solely image information) is five: two for the translation and three for the
rotation. For our purposes, it is best to have a Cartesian representation where the two
parameters representing translation are relatively unconstrained.” A straightforward
representation of the two unconstrained parameters for practically all translation
directions® involves a special coordinate system that depends on the estimated value
of T. The three orthonormal axes are T., a and b, where T, is the estimated
direction of camera translation, and a and b are arbitrary orthonormal axes. In this
system, any translation direction that is acceptable for our perturbation analysis is
represented by its coordinates along a and b.

Formally, any translation (T) can be expressed in this coordinate sysiem as a

vector with three coordinates:
T=(T-a,T-b,T-T,) (3.17)

Every valid T (cf. footnote 8) gives rise to a unique combination of the first two
coordinates. In fact, the third coordinate can be computed based on the first two
coordinates if (as we assume) that T has unit length. Under these conditions, the

third coordinate is:

T-T.=,/1- | Tp |2 (3.18)

TConstrained coordinates (e.g. polar coordinates involving azimuth and elevation [41]) are
bounded and such bounds would have to be additionally taken care of in the analysis. For ex-
ample, elevation is in the range (-3, 3)-

8The valid translation directions are those directions which subtend an angle of § or less with
T.. These vector directions are sufficient for the purposes of this error analysis since we consider
only small perturbations about T. to analyze the error in T,.

66

where Tp = (T -a, T - b,0). In the following analysis the translation direction (the
unit vector T) will be represented by its corresponding Tp vector, that is by the two
coordinates (Tp-a, Tp -b).

There are several ways to represent rotation, viz., by Euler angles, quaternions,
axis and angle, and matrices. Although all of these representations have the same
representative power, quaternions have been preferred in SFM algorithms such as
Horn’s [43]. A variant of the quaternion representation will be used in the present
work.

If the motion involves a rotation of an angle § about an axis R then the unit
quaternion (Q) representing the rotation is :

g 9

Q = (cos 3 R sin -2-) (3.19)

The crucial information about rotation is contained in the second element (R sin £)
of the quaternion which will be referred to as R (for Rotation). The first element of
the unit quaternion can be written in terms of the second element, since the following
constraint holds:

Q| =1 (3.20)

that allows us to substitute the first element in terms of the second element as:

8
- =441~ 2 .
cos 2 1- | R| (3.21)

If we consider only small perturbations (i.e. those which satisfy the bounds -2 <
g < 3), the sign ambiguity disappears. Therefore, any allowed perturbation involving
the first element of the unit quaternion can be rewritten in terms of R (i.e. the second
element).

Once the first element of the quarternion has been effectively eliminated, the

rotation can be represented by three parameters in a Cartesian coordinate system

_—

_—

3 3 31 _1 _3

3

3 3 _ 3 __13

.3

67

(x,¥,2), which we will refer to as (R-x,R-y, and R - z). These do not have a
straightforward relationship to representations in terms of angular variables, such as
Euler angles, but contain the same information.

The combination of the three rotation parameters (R-x,R -y, R -2z) and the two

translation parameters (Tp -a, Tp - b) constitute M.

3.2.2.2 Determining the A Matrix

We now return to determining the motion error (dM) with respect to (w.r.t.) the
error in the image coordinates (dI). In equation 3.16 this derivative was represented
as —A™'B. The matrix A (in equation 3.14) was shown to be the second partial
derivative of the coplanarity error (E) w.r.t. to the motion (M). First we need
to compute the first partial derivative as an intermediate step. This step involves
computing the partial derivative of E w.r.t. each of the five motion parameters.

3.2.2.2.1 The Two Translation Parameters. The partial derivative of £

(Equation 3.10) w.r.t. one of the two translation parameters is :

0E n 8T
m=2Z[T, B), © g,y B, (3.22)

=1

where T is determined as a function of Tp - a by the equation

T=Tp+4/1-|Tp 2 T. (3.23)

The derivative on the righthand side of equation 3.22 can be obtained by differ-
entiating the above equation w.r.t. (Tp - a).

Applying the following
dc

8(c - b)

(where b is a unit vector) to equation 3.22 we obtain:

=b (3.24)

68

éT Tp -a
—_—=a— | —| T. (3.25)
(Tp-a) (\/1 - ITPP)
Finally, by substituting the above expansion in equation 3.22 we end up with the
fully expanded partial derivative of E w.r.t. the translation parameter (Tp - a):

%”j—ﬂ = 2§[T, R(L), r [a- (%) T., R(L), r] (3.26)
The derivative of E w.r.t. the second translation parameter (Tp - b) is identical
to equation 3.26, except for the replacement of a by b.
3.2.2.2.2 The Three Rotation Parameters. The remaining three of the
five first partial derivatives are with respect to the rotation parameters. Let us de-

termine the derivative of E w.r.t. the first parameter (R -x). This partial derivative

182
9E n 9 R(L;)

AR ; [T, R(L), ri [T, m,ri]

In order to expand the partial derivative on the righthand side of the above equation,

(3.27)

the term R(l;) must first be expressed in terms of R. By using Rodrigues’ formula

[41] and vector algebra the expanded expression turns out to be:

RL) = 1-2R»L+2/1-RE(RxL)+2(R-L)R (3.28)

The partial derivative on the righthand side of equation 3.27 obtained by applying
rules of vector differentiation (c.f. Horn [41]) is:

ORL) _ R (BoX) .
SR %) 4(R-x)k zm(Rxl,) (3.29)

) {,/1- IR (xx L)+ (x-L) R+ (R-1) x}

3

-3 3

1

69

The fully expanded partial derivative of E w.r.t. (R -x) is obtained by a direct
substitution of the above equation (3.29) into equation 3.27. The derivatives of E
w.r.t. the two remaining rotation parameters ((R-y) and (R -z)) will be identical to
the derivative w.r.t. (R-x) except for the replacement of x with y and z, respectively.

3.2.2.2.3 The Components of the A Matrix. Thus far we have discussed
the first partial derivatives with respect to the five motion parameters. The second
partial derivatives (matrix A) can now be computed. This computation involves
differentiating each one of the five first partial derivatives w.r.t. every one of the
five motion parameters. The result of such a computation involves 25 terms which
constitute the matrix A. The elements of 4 are of three types: four derivatives
w.r.t. only the translation (Tp), nine derivatives w.r.t. only the rotation (R), and
12 derivatives w.r.t. both the translation and the rotation.

3.2.2.2.4 The Four Translation Derivatives of A. One of the derivatives

L R E . . -
of E w.r.t. translation is 3(Tp-a)9(TpB)" In order to calculate the expansion of this

second derivative, 6(;—5&) (in equation 3.26) should be differentiated w.r.t. (Tp-b).

The result of the differentiation is :

62E id . Tp -a
= 2 a —
8(T»s-a)d(Ts - b) 2fa (

= [T, R(L), ri (3.30)

a-b (a-Tp)(b-T»r) L
[(\/1_[1‘},12 - (1- | Tp 2):)Te’ R(L), t}

We have now arrived at the value of one element of the matrix A. However, the
elements of the matrix A must be evaluated at the best estimate (T.) of the robot’s

movement, l.e., as T — T.. In effect this substitution of T implies that Tp — 0

70
(from equations 3.17 and 3.18) resulting in:
6*E
5(Tr-a)8(Tr B) 2§a’ R(L), x][b, R(L), r]
—[T, R(L), ri)*(a-Db) (3.31)

The remaining three elements w.r.t. the translation are identical to the above
(equation 3.31) except for the replacement of either a by b or b by a or both.
3.2.2.2.5 The Nine Rotational Derivatives of A. We will first consider
2
one element involving rotation derivatives: WT:F?% In order to expand this

element, we differentiate equation 3.27 w.r.t. (R -y) and obtain:

#E__ & 0RQ) BR(L)
R AR - 2= ™ R T Ry
#R()

+{T, r;, R(L)][T, r, 6(R.x)6(Ry)} (3.32)

Of the three partial derivatives on the right—hand side of equation 3.32, the terms

3(%% and %% have already been been obtained (Equation 3.29). The remaining

derivative is obtained by differentiating equation 3.29:

0*R(L)
R R y) ~ 2l L)y +L-y)x -2y x)k} (3.33)

2

_IJTTP {(x-R)(y x L) + (y - R)(x x I;)}

2 (x-R)(y-R) L
—\/1—iR|2'{ 1- R ‘y'x}(R’(l')

The above is only one of nine rotational derivatives. The remaining eight deriva-

tives can be obtained using the remaining nine possible two-tuples from the set

(R-x,R-y,R-2z).

3

3

1

-3

-3 13

3

3 _3

.

71

3.2.2.2.6 The Twelve Mixed Derivatives of A. What remains to be ex-
panded now are the twelve remaining elements of the matrix A, also called the mixed
derivatives since they are derivatives w.r.t. translation as well as rotation. Of the
twelve elements only six are distinct. Consider the first of these six derivatives,
(mp%)g(m). This derivative is obtained by first differentiating equation 3.26 w.r.t.
(R - x) and then replacing Tp by 0 (just as in the case of translation in equation

3.31). The final result is:

O*E 3 n OR(L)
3(Tr-a)d(R-x) —2§[a, R(k), r)[T, r;, m]
+ [T, RW), rfa, =, 6%’;%1 (3.34)

Recall that the value of :—(%% has already been determined in equation 3.29.

The five remaining distinct derivatives can be obtained by a straightforward re-
placement of (R -x) by (R-y) or (R-2), or the replacement of (Tp-a) by (Tp-b),
or both, in equation 3.34. |

We have now ennumerated the complete matrix A which is necessary to compute
the motion error (dM) due to the image error (i.e., the noise in the image coordinates,
dl). The remaining term (B) in this computation (equation 3.16) will be addressed

in the following section.

3.2.2.3 Determining the B matrix

We now turn to the calculation of the matrix

8°E
= (3.35)

Before proceeding to determine the exact values of the matrix B, we need to establish

an exact representation for I.

-3
(3]

3.2.2.3.1 The Components of the Image Coordinates I. In order to
determine the motion of a moving camera, points (such as corners) are tracked from
one image to the next. The 2D image coordinates of these points — in the first (left)
image and in the second (right) image ~ provide information necessary to compute
the camera motion (M) and to reconstruct the world (W). The collection of the left
and right image coordinates of all the tracked points constitute I.

Let us denote the 2D coordinates of the ith point in the first image as F; and
the corresponding coordinates in the second image as S;. For an image coordinate
system (u,v), with its origin at the center of the image, we end up with the four
image coordinates corresponding to each point being (F;-u,F;-v,S;-u,S;-v). The
set of these four image coordinates of all the tracked points constitutes I.

3.2.2.3.2 The Components of the B Matrix. Given the representation of
the image coordinates (I) we are now in a position to assemble the B matrix, which
involves the calculation of the derivatives of () w.r.t. the image coordinates. Recalil
that the five terms corresponding to % are enumerated in section 3.2.2.2.1 (two
translation terms) and 3.2.2.2.2 (three rotation terms). The elements of B involve
the derivatives of these five terms w.r.t. the 4n parameters of I. This results in a
5 X 4n matrix that constitutes the matrix B.

The elements of B can be subdivided into two kinds of derivatives. The first
kind are the derivatives w.r.t. the image coordinates in the first image (F; - u and
Fi-v,i=1,.--,n). The second kind of derivatives of B are those that involve the
second image, i.e., S;j-uand S;-v,i=1,---,n.

3.2.2.3.3 The Two Coordinates of the First Image. Let us first consider
one of the two image coordinates of one point, say, (F; - u). By a straightforward
process of differentiation of equation 3.26 we arrive at the derivative of the first

translation term (Tp -a) w.r.t. the first image coordinate (F; - u):

.3 3 3

3

3 3

A

-3 3

A

3

3(T»-z;§(m.u) = 2a, r, BT, r, R(a l:‘?lll-u)]
+2[T, r1, R(L)][a, ri, R(6F‘3111-u)] (3.36)
where
T - = (F1-u)ly

0F18) © e rFvpir Fiupt (v e oo

The above derivative (equation 3.37) is obtained by differentiating the value of
the unit ray l;:

(Fl -u,F1 -V,f)

L = —— W Vo)
LT FL w2 s (Fyov)E 2

(3.38)

where f denotes the camera’s focal length. The value of |; directly follows from its
definition that it is the unit ray from the center of the camera to the (first) tracked
point in the camera’s image.

The derivative w.r.t. the second translation term (Tp-b) can be obtained by the
direct substitution of a by b in equation 3.36.

The derivative of one rotational term w.r.t. the first image coordinate is:

¥E___ ol OR(L)
(R -x)0(Fy-u) 2T, r, R (5F1 - u) [T, ry, AR x)] (3.39)
8*R(1;)

+2[T, 1, R(L)][T, ri, 3(R.x)6(F1'u)J

3 R(l
The value of 3 -x)a(‘)l-u) is computable by combining equations 3.29 and 3.37.
The two related rotational terms in matrix B are identical to the expansion pro-
vided by the above equation except for the replacement of R -x by R-y and R - z.
The remaining terms in matrix B that involve the first image coordinates (F;) are

straightforwardly derivable from the above two equations.

74

3.2.2.3.4 The Two Coordinates of the Second Image The partial deriva-
tives in the B matrix that involve the image coordinates of the second image are

obtained by a similar sequence of steps as in the previous section.

Let us consider the partial derivatives involving the first tracked point. The first
term involves the translation term (Tp - a) and its value (obtained by differentiating

equation 3.26) is:

6*E dr,
ATr a)85, w) - 2 El) 55T, L), r] (3.40)
+2[a, R(L), r)[T, R(L), 8§:fu]

8—241'13 is identical to -5—!‘31113 except for the replacement of F by S and 1 by r in equation
3.37.

The second term that involves the other translation term Tp - b is identical to the
above equation except for the replacement of a by b.

The remaining three related rotational terms are derived by differentiatihg equa-

tion 3.29 to obtain:

8E _ br, 8R(l,)
AR-0oE w - AT Bl gl Gpe o (4
| aR(ll) 3r1
=9 1
.-[T, R(ll), I'”[T, aR,x’ 351'11]

The other two rotational terms are identical to the above equation except for the
appropriate replacement of R-x by R-y and R - z.

The remaining elements of matrix B that involve the second image coordinates (S;)
are all obtainable from the above two equations by the replacement of the subscript
1 by any 7,7 =2,---,n.

With the determination of the two matrices A and B we have completed the

derivations of all the terms involved in the computation of %‘}’I— ~ the motion error

3 3 __ 3

-3 -3 _.21 1 _x ¥ 3 3 .3 _ 3

j

-1

3

—3 T3 T 3 3

T3

75

due to the image error. Given any noise (dI) in the image coordinates, we are now
in a position to calculate the effect of this noise on the estimated camera motion;
i.e., we can isolate the effect of tracking inaccuracies in the process of estimating how
the camera has moved. We will now turn to a consideration of how the error in the

camera motion affects the accuracy of the 3D model.

3.2.3 %gv: 3D Model Error (dW) with respect to Motion Error (dM)

Equation 3.9 expressed the error in the 3D model due to an error in the camera

motion. For convenience we repeat that equation here:

oW oM A
dW =|=— — 2.
(M) (am) (ax) 4 (5-42)

The rest of this section discusses the term %‘ﬁr, the effect of the incorrect camera
motion on the 3D model. In order to determine %‘ﬁ, we need to first write W as

a function of the motion parameters. The 3D coordinate of any point (w;) can be

shown to be a vector function (adapted from Horn i43|):

w. = (EXRL))-(RL)xr)
' |R(L) x rf? '

(3.43)

The first term (i.e. the fraction) evaluates the distance of 2 3D point from the second
camera; the second term (r;) is the direction of the point from the second camera.
A potential improvement over just using the above equation is to average the 3D
coordinate obtained with the corresponding estimate for the first camera, followed by
an analysis similar to what is proposed here. However, since such an approach would
further complicate the error analysis we do not pursue it here.

By differentiating the above equation w.r.t. the translation parameter (of the

camera motion) Tp - a we obtain:

ow: _ (ax R(l)-(R()xr)
3(Tr-a) |R(L) x :f? ’

(3.44)

The second translation derivative can be obtained by a replacement of a by b.
One of the three rotational derivatives is obtained by differentiating equation 3.43

w.r.t. R-x to yield:

A ORW)) py |
dR-x) ~ [RE) xuf {(T X gm.x)) (Bl) xm) (3.45)
. R() -
+(T x R(L)) - (5(R-X) X r;)
(T x R(L)) - (R(L) x)
IR(L) X r,-lz

(R x5 (e x i f

-2

where the derivative (%) has already been determined in equation 3.29.

The two remaining rotational derivatives are obtainable from the above equation
by the replacement of (R -x) by (R-y) or (R-2).

The term %‘& corresponds to a 3n x 5 matrix, due to the n 3D coordinates and the 5
motion parameters. This matrix can now be filled in for every value of ¢ (i = 1,---,n)

using Equations 3.44 and 3.45.

3.3 The Direct Error

So far we have discussed how to evaluate the indirect error in the 3D model due to
motion error. In this section we will study the second type of error in the 3D model,
ie. the direct error. Even if we knew the camera motion accurately, error would enter

into the 3D model due to the image error (cf. Fig. 1.4).°

°In experiments with simulated images, Thomas and Oliensis [91] studied such a case.

~3 _3 3 _]3

]

In order to determine the direct error, we consider again equation 3.43, where w;

represents the coordinates of a point in the model W:

v = (TXRL) (RO xr)
‘ RUyxel

The derivatives of w; w.r.t. image coordinates constitute the elements of the direct

(3.46)

error (dWp in Figure 3.1).
The partial derivative w.r.t. one of the left image coordinates (F; - u) is:

Gw; 1
AFw) ~ TEL) xof (T X Ru) - (Rl x xi) (3.47)
+(T x R(L)) - (R(u) x r;)
(T x R(L)) - (R(L) x :)
IR(L;) x ;]2

(B(L) x) - (R(u) x ri)}

-2

Similarly, the partial derivative w.r.t. one of the right image coordinates is:

aW,' 1 / ‘
B0 - TR xwe b R (R xu) (3.48)
(T X BL)) - (R(L) x)
|R(L) x r:f?

(R(L) x x:) - (R(L) x w)}
(T x R() - (R x7)
T IR x P

The direct effect of the noise in the image on the 3D model can now be combined

with the previously discussed indirect error.

3.4 The Combined Effect of Direct and Indirect Errors

All the elements required to determine the value of the 3D model error dW (from
Equation 3.7) are now available. Since the dependence of the motion error on the

image error has been calculated, Equation 3.7 can be rewritten as:

oW oM oW

M ot Bt I
W oM + oW
oM 01 o1

78

dI (3.49)

dl

In the previous discussion we have seen how to compute all of the terms in equation

3.49. Since it is not possible to know the exact value of the image error dI, the value

of dW cannot be calculated exactly. However, we make the standard assumption

that the image noise is Gaussian (with zero mean) and hence its variance determines

the probabilistic extent of error. This Gaussian image noise gets transformed into an

error in the 3D model W, the covariance of which is thus crucial. This covariance is

the expected value of the variance of dW, i.e.
Cov(dW) = E(dW dWT)

which can be expanded (using 3.49) as:

Cov(dW) = G Cou(dI) GT

where
G = W oM + AL
oM 1 o1
and
Cov(dl) = o* J

(3.50)

(3.51)

In the above equation o2 denotes the variance of the error in the image coordinates

of any point, and J denotes an identity matrix of size

4n x 4n. The value of o is

specified using the estimated accuracy of the point tracking algorithm; e.g. in the

experiments reported in Chapter 4, o is set to 1 pixel. Note that this choice of

—1

~3

3

1 3

-4 3 _3 13

3

—3

79

the covariance of the image noise assumes that the noise in each image coordinate
is independent. Such an assumption is typically valid, since individual points are
independently. tracked, and tracking algorithms will generally not introduce correlated
errors in the 2D image coordinates of any two image points, except in special cases
where the entire image is corrupted in some correlated fashion, such as by a rotational
blur.

Thus far we have established how to calculate the full 3D error in any two-frame
model (i.e., the darkened boxes in Figures 3.1 and 3.2). We are now in a position to

update the previous model using the new two-frame model.

3.5 The Iterative Step: Fusing the New Two—frame 3D model with the
Old 3D model

At any location of the camera, our ultimate aim is to update the previous 3D
model (Hp)*® with the new two-frame model W, to obtain an improved 3D model (cf.
Figure 1.3). This updating step requires that the previous 3D model be transformedto
the current coordinate system using the calculated motion parameters. Also, the 3D
model error of the previous model should be transformed to this coordinate system.

The transformed 3D model (i.e. the vector of n 3D coordinates) can be written

Hr = Rmat(Hp) — Trmat (3.54)

where Ry, and T, represent matrix notations for rotation and translation, re-
spectively, and are constructed from the camera motion parameters (R, T). Since
the transformation matrices (Rmqt and Tpmae) are themselves noisy, they will further

corrupt the previous model. Note that while this transformation error corrupts the

'OIn Figure 3.1 the previous 3D model is denoted by Hj;.

80

previous model, the motion error (and other errors discussed in the previous sections)
corrupts the new two—frame model. As a first approximation, the effect of the noisy

transformation can be taken into account by linearizing as follows:

O0Hr 0Hr M =
= I dL 3.
dHr 6deHP + M 51 dl (3.33)
If K is defined as:
0Hr OM -
then the covariance (of the transformed 3D model) is:
Cov(dHy) = Rmg Cov(dHp) RT,, - KCov(dI)KT (3.37)

Here it has been assumed that (dI) and (dHp) are statistically independent; after
a few frames, the correlation between the error in the left image (half the terms
in I) and the error in the previous combined estimate should be small, making the
independence assumption valid.

Finally, to determine the new multi~frame model Hy (or H; in Figure 3.1) the
result of the current two—frame model (W) and the transformed previous multi-frame
model (Hr) must be combined. This is straightforward except for the overall scale
ambiguity in SFM. Currently, the scale of every 3D model is maintained at a fixed
value; this is valid since the actual environment that is being modeled is rigid with
unchanging scale (this is discussed further in Chapter 4). Then, the standard Kalman
filter result [90] for the combined 3D model is:

Hy = Cov(Hy)[Cov(Hr) *Hy + Cov(W)-'W], (3.58)

where Cov(Hy) is the covariance of the updated 3D model at the updated camera
position:

Cov(Hy) = [Cov(Hr)™ + Cov(W)~]! (3.59)

.3 3

P

3 3 _3 _3

3

.

3

81

Cov(W), the estimated error in the two—frame 3D model (which is identical to
Cov(dW)) has already been calculated in Equation 3.51. Thus, all the ingredients
have been assembled for computing the updated 3D model every time the camera

moves.

3.6 Theoretical Motivation for Using Cross—Correlations

Previous incremental MFSFM algorithms have ignored the off-diagonal terms of
the covariance matrix in Equation 3.59 for reasons of simplicity and computational
complexity. These terms represent the cross—correlations between the errors of differ-
ent 3D points in the model.

We have assumed that W is made up of n 3D points (w;, i = 1...7n) and that
it represents the entire 3D model; the error in each w; has been modeled in terms of
direct error and indirect error. When the error in W is represented as a covariance

matrix the elements of this matrix are given by the following equation :
Cov(dW) = E(dw;dwj), 1 < i,j < n (3.60)

where E(z) denotes the expected value of z.

In this theoretical analysis, in order to bring out the meaning and role of the
cross—correlation terms clearly, it will be assumed that a 3D model consists of just
two points. The following analysis is purely theoretical; in practice, two points are

insufficient for SFM, which requires a minimum of at least five points.

3.6.1 The Meaning of Cross—correlations: The Two—-Point Case

In the two—point case, the covariance matrix is reduced to

Cov(dW) = (E(dwy dwy) E(dw; dw3))

E(dwz dwy) E(dwz dwa) (3.61)

82

This covariance matrix has four correlation terms, two of which (E(dw; dwz) and
E(dwz dw,)) are equivalent, since they both represent the cross—correlation between
the error in wy and the error in wz. The other two, (E(dwy dwy) and E(dwa dw2)),
are the covariance of the error in w; and wg; in previous work (e.g. Cui, Weng
and Cohen [21]) these have been the basis of the refinement, although they have
been assumed to represent the complete error. Therefore, we will concentrate in this
discussion on the role of the cross-correlation term, E(dw; dws).

Using the direct and indirect components of the error in each 3D point (cf. Equa-

tion 3.49), we can expand the cross-correlation term in Equation 3.61 as:

Wz v+ 2417 (3.62)

(5W1 OW]_
M 012

E(dwy dwz) = E| AOI

dli) (==

Since it is realistic to assume that any two arbitrary image coordinates (of chosen

points) are corrupted by independent noise (cf. Equation 3.53 and its justification),

E(dI, dl) = 0 (3.63)

and therefore one of the terms in the expansion of Equation 3.62 will vanish. The

resultant expansion is:

E(dw; dws) = ifmlE(deMT)

Sw
T
LEdiTdM)=2 M

(3.64)

From equation 3.64 it can be seen that the cross—correlation term will be zero

5W2 n 5W1
oM

dwo 0w dwy

E(deIT) T T L

only when the three terms fortuitously cancel, or when they are all zero. This is
probably a rare occurrence. In all other cases the cross—correlation term does make
a contribution to the performance of an incremental MFSFM algorithm.

Let us assume that the coordinates of the two points have changed considerably

between the two images, resulting in large optical flow. Therefore, a small error in

3 __3

_.3

3

SR

—3 -3 _3 3 _ 3 _ 3

-3 _3

]

4 ~ 3 —3 3 T3 T3

3

r

f

—3 T @& ~—3 —3 "~ 3

83

the optical flow (which corresponds to a small error in I) can be assumed to have

little effect on the error in the motion, dM; i.e.,
E(dMdI7) =0 i=1,2 , (3.65)

For this particular case, the expansion of Equation 3.64 is :

5W1 5W2

E (dWl sz) =

Equation 3.66 shows that the cross-correlation is directly proportional to the mo-
tion error, represented as the covariance of the error in the motion (dM). If Equation
3.65 does not hold the situation is more complicated: the cross—correlation is influ-

enced not only by the motion error but also (indirectly) by the image error. In either

case, the cross—correlation term is closely related to the motion error.

3.6.2 The Effect of Cross—correlations in Kalman Filtering

In this section the previous analysis is extended to study the effect of cross—
correlations on the process of refining 3D models using the Kalman filter.

The goal of the Kalman filter (cf. Appendix A) is to iteratively fuse the 3D models
over time and obtain the optimal 3D model in the current sensor coordinate system
utilizing all the information. The optimal fused 3D model is in effect the sum of the
individual 3D models (W (t) at time ¢) weighted by the inverse of their covariances;
this makes intuitive sense since if a particular covariance is large - suggesting a large
error in the 3D model - then this 3D model should be given less weight. Consequently,
the optimal fused 3D model (H) at time ¢ is as follows (i.e. the value obtained from

standard Kalman filtering [90]):!!

1Note that the Kalman Filter uses a recursive formulation to estimate the value of H(t); in
Equation 3.67 we have expanded out the recursion. Furthermore, the value N (in Equation 3.67) is
a normalizing term which is irrelevant for this analysis; cf. Equation 3.58 for a specific instantiation
of N when t = 2.

84

H(t)= N f; Cov(W(t))™! W(¢) (3.67)

W will denote a weighted W, defined as Cou(W)~! W. In order to determine
the exact contribution of a single 3D model W at any time (t) the covariance can

be expanded using Equation 3.61 (assuming Equation 3.65 is valid) in the following

way:
[Si+ My M,
Cov(W) = (My, Sy + My) (3.68)
where
JW,' 5W,'
and
dw; dw;

S; represents the error in the 3D coordinates due to the error in the image coordinates
(dI) assuming that the motion is perfectly known; M;; represents the error in the 3D
coordinates due to the error in the camera motion (dM) assuming that the image
coordinates are perfectly known.

Weighted W can now be written as

= S1+ My, M, - w1
W = 3.71
(My, Sz + My,) (w2 (3.11)

Equation 3.71 can be expanded (after Bar-Shalom and Fortmann [9]) to obtain:

-1 -
W = (C:-1 :l) (3.72)

where
C1 = Su + My — Miy(Saz + Mag) ' ME, (3.73)
W1 = w1 — M12(S22 + M22)"'we (3.74)
Cay = Sy + Maz — My (Syy + My) "' ME (3.75)

-3 -3 3 __3 _.13

3

'

_ 3

—3 _ 3

1

—3a T3 "3 3 "3 —3 T3 3 —3 73 T3

85

and
W2 = wz — Mz21(S11 + Mi1)"lwy (3.76)

Let us now concentrate on the effect of the cross—correlation on a single optimally
fused 3D coordinate (W; in Equation 3.74). If there is no motion error — i.e. M, is
zero — Wy 1s identical to wy. Howéver, since this is generally not true in practice, the
value of w3 has a corrective effect on wy. The magnitude of the correction depends on
the size of the cross-correlation M;,. Since we have shown that the cross—correlation
captures the motion error (Section 3.6.1), the magnitude of the correction depends
on the (shared) motion error that corrupts both wy and ws.

The covariance of w, is
Cov(W,) = E([wy — M12(S22 + Mzz) " 'wa][wy — M12(S2z + Mz2) " w2|T) (3.77)
Again, this can be simplified to obtain:
Cov(Wy) = S1y + My — Myp(Saz + Ma) ' ME (3.78)

As stipulated by Kalman filtering, any contribution (towards the fused optimal model)
is weighted by the inverse of its covariance. Thus we expect that the weight (C[!)
in Equation 3.72 should be the inverse of the covariance of W;. Since the right-hand
side of Equation 3.78 turns out to be equal to C}, this is ezactly the case.

This analysis revez-.xls that the cross~correlation terms are important. If the motion
error is large (which includes the ambiguity involved in decoupling the camera’s ro-
tation from its translation), then the cross—correlation terms become significant and
play a crucial role. Since the I.notion error in SFM is typically large [25], we predict
that without cross—correlations the benefits of Kalman filtering are being lost, and
the accuracy of the updated 3D model is affected. In the next chapter we study the

importance of correlations experimentally.

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Introduction

The aim of this chapter is to provide experimental evidence for the effectiveness
of the cross—correlation-based algorithm developed in this dissertation; henceforth,
this algorithm will be referred to as the CC-based algorithm. In particular the goal
is to show that the CC-based algorithm is superior to multi-frame algorithms which
neglect the covariance information utilized by the CC-based algorithm. In the first
part of this chapter (Sections 4.2-4.5) the CC-based algorithm is tested on three
real-world image sequences involving a robot workcell, an indoor mobile robot, and
an autonomous outdoor vehicle. For each image sequence the results of the CC-based
algorithm are compared against three algorithms: Two-Frame, Blind Averaging, and
Standard Kalman Filtering (described below). In the second part of the chapter (Sec-
tions 4.6-4.8), the results of the CC-based algorithm applied to the task of position

estimation of a mobile robot are presented.

4.2 The Four Algorithms

Since the results from the first three sequences will be reported in terms of the same
four algorithms, the algorithms are described here. The input and output parameters

specific to each experimental scenario will be discussed later in conjunction with the

experiments.

86

—3 3

1

-3 __13

.3

3

R

3

87
4.2.1 The Two-Frame Algorithm

Recall that the input to the CC-based algorithm at every new position of the
robot is the two—frame model obtained by Horn’s Relative Orientation [43] algorithm.
Based on information from the previous image and the current image, this algorithm
constructs a 3D model of tracked points (W in Figure 3.1) in the coordinate system
of the current robot position. The details of this two-frame algorithm have been
provided in Section 1.2.3. The 3D models obtained by this two-frame algorithm at
each incremental step (i.e. the input to the CC-based algorithm) will be compared
with the output of the CC-based algorithm as well as the blind averaging algorithm
and standard KF algorithm. Such a comparison brings out the improvement that is

due entirely to the use of multiple images.

4.2.2 Blind Averaging

A possible straightforward improvement over the two~frame approach is to obtain
3D models from consecutive pairs of images using the two—frame algorithm and then
to maintain a running blind average of the 3D models. This corresponds to a rudi-
mentary multi-frame algorithm which does not compute an error estimate in the 3D
model, and therefore gives identical weight (or importance) to each of the 3D models.
Blind averaging and the CC-based algorithm represent the two logical extremes of
incremental multi-frame algorithms with respect to the use of covariance to capture
3D model error; the former uses no 3D model error while the latter incorporates the
complete covariance of the 3D model error.

The multi-frame blind average is calculated as follows. Let us denote a vector
representing the 3D coordinates (z,y,z) of a point (such as a corner) in a blind

average model by b, (where ¢t denotes the iteration number). Then:

be = s %{wt = (t=1)bsy) (4.1)

88

where |s denotes a scale parameter (which will be discussed for each experiment),

and Wi

is a vector from the current two—frame model corresponding to the same 3D

point as b,. Sim.ilarly; b’;; is a 3D vector for the same point from the previous blind

averagg that has been transformed to the current coordinate system:

The te
Section

coordix

b'g_l = R (bg-l) - T (4.2)

fms R and T denote the coordinate transform (rotation and translation; cf.
3.5) required to bring the previous blind average (b;—;) to the current camera

ate system. Finally, the actual blind average model is made up of a set of n

vectorg (b:) corresponding to each tracked point.

Sin¢
€rTor, |
note th

than u

4.2.3

e the blind average model is constructed without an estimate of the 3D modei
he presence of unreliable measurements can skew the final result. However,
at blind averaging (with no relative weights) could result in a better model

ing incorrect weights.

Standard Kalman Filtering vs. the CC-based Algorithm

There is a class of incremental multi-frame algorithms that use a subset of the

elements of the covariance matrix to represent the 3D model error (cf. Table 2.2 for

an ovey
the lite
tracked

of elem

view). The most sophisticated algorithm in this class previously reported in
rature involves using a 3 x 3 covariance matrix to capture the error in each
| point (e.g. Cui, Weng and Cohen [21]). In such an algorithm the total number

ents representing the 3D model error is 9n (for n points), as opposed to no

such elements in the blind averaging algorithm and 9n® elements in our CC-based

algorit}
In ¢

1IT1.

rder to isolate the exact effect of using the full covariance matrix, we need to

compaTe algorithms that differ only in the number of elements of the covariance matrix

used in|

the error analysis. For the comparison, we consider a multi-frame algorithm

4

.

3

]

-3 1 3 1

3

1

g

89

that employs 3 x 3 weights/covariances (unlike equal weights in blind averaging) for
each point at each iteration Such an incremental algorithm is an instantiation of a
Kalman Filter (cf. Gelb [90] and Appendix A). Since the algorithm uses n 3 x 3
covariance matrices (for n points), as is currently the standard in the field, it is
referred to as Standard Kalman Filtering (standard KF). The CC-based algorithm
differs from standard KF in the number of terms in the covariance matrix.

The 3 x 3 matrix (¢;) associated with a point 7 (i = 1,...,n) is a subset of the
complete covariance matrix (C) (for the entire set of points) obtained by applying

the error analysis of Chapter 3. The subset is defined as follows:
C;=Cj}¢ for 3(2—1)<],k§31 /43)

where C;; denotes the element at the jth row and kth column of matrix C. As
shown by the equation, the submatrices defined by ¢; lie along the diagonal band of
the complete covariance matrix.

The standard KF algorithm used here is identical to the CC-based algorithm
(Chapter 3) apart from the values of the covariance matrices. In the standard KF
algorithm the terms of the covariance matrix which do not correspond to any ¢; in
Equation 4.3 are zero. Assuming that the value of these terms is zero is equivalent to
computing a partial covariance matrix; the ignored (zero) terms record the correlation
of error between pairs of points in the 3D model. Previously reported algorithms have
not only ignored the cross—correlations (i.e. the terms lying off the diagonal band
defined by Equation 4.3), but they inherently lack a mechanism for computing these
terms.

A full comparison of the results of the four algorithms - Two-frame, Blind Aver-
aging with equal weights, standard KF with a 9n—-element matrix, and the CC-based
algorithm with a 9n?-element matrix - will be provided for the first three experiments.

Other possible algorithms involving a covariance matrix with more than 9n but fewer

90

than 9n? elements will not be considered here, although ignoring certain subsets of

the cross—correlations for computational reasons will be considered in Chapter 5.

4.3 Experiment I: Robot Workcell Sequence

The following experiment involves an image sequence obtained while an object

was rotated by a robotic arm in its workcell.

4.3.1 The Image Sequence and Ground Truth

A sequence of pictures was taken by a stationary camera of a box rotated by a
robot arm. An image was obtained after every 4-degree rotation about the vertical
axis of the box. Figure 4.1 shows the first and the last image of the nine image
sequence.

A set of 35 points have been selected in the firsi. image and tracked across the
nine images in previous work by Sawhney [78]. All 35 points are corners of the small
white squares on the face of the box. Tracking of corners was done using the tracking
algorithm of Williams and Hanson [109]; corners were chosen since they can be tracked
robustly by their algorithm. The image coordinates of the 35 points in the first image
are listed in Table 4.1.

The ground truth measurements of the 3D coordinates for the 35 selected points
were obtained and made available by‘ Sawhney [78]; these are listed in Table 4.2. The
origin of a Cartesian (object—centered) coordinate system was fixed to a corner of the
box, and the three edges at that corner correépond to the three axes (X, Y, Z) of the
coordinate system. The dimensions of the box along the three axes are 133mm x
157mm x 7T0mm. The coordinates of each tracked point were measured in the box-

centered coordinate system with a ruler; the accuracy of measuring the position of

—3d 3

1 __3 i | | | 3 3

(b) Last (ninth) image
Figure 4.1: Rotating Box Image Sequence.

91

92

Table 4.1: Box Sequence: The image coordinates of the 35 points in the first image.
This information was provided by Sawhney [78].

[Point | x | y [[Point] x | y |

1 29.71 | 37.55 19 [[-51.73] -1.92
2 15.08 | 33.51 20 || -49.44 | -14.97
3 || -54.56 | 37.48 21 || 62.00 | -37.57
4 | -60.04 | 44.94 22 | 12.29 ! -55.24
5 || -63.41 | 49.66 23 || -1.57 | -59.43
6 1.49 | 29.29 24 || -39.48 | -46.79
7 || -13.49 | 25.06 25 || -45.42 | -36.21
8 |l -45.11 | 24.85 26 | -42.38 | -32.26
9 |[-31.25 | 33.41 27 || 74.08 | -34.36
10 || -35.88 | 45.59 28 11 -26.40 | 56.38
11 || -27.58 | 21.17 29 || 23.81 | 77.83
12 || 38.38 | 95.05 30 |[-33.31]-38.19
13 || 43.36 | 28.61 31 || -45.12 | 78.60
14 || 60.36 | -15.47 32 || 42.27 | 76.12
15 9.50 |-32.79 33 || -17.69 | 66.54
16 || -4.61 | -37.18 34 | -13.40 | 80.92
17 || -43.61 | -22.80 35 || 38.39 | 8.36
18 || -46.00 | -10.34

1

1

r—'-gr—-—g

93

each point was estimated to be £ 1.5mm.! In general, obtaining ground truth for SFM
experiments has proven to be extremely difficult and considerable effort is currently
spent in the field to obtain reliable ground truth (cf. Dutta, Manmatha, Williams
and Riseman [24]). However, in this restricted environment of a robot’s workcell, the
measufements of the box have an accuracy that is on a par with the best experimental
situations reported in the literature. Note that the measurements capture only the
shape of the box, rather than its structure (cf. Section 2.2.3). This means that the
location and orientation of the box with respect to the camera coordinate system are
not accurately known; hence, the results of the algorithms can only be evaluated in
terms of the shape of the box.

The camera used to obtain the images was a Sony black and white CCD stationary
camera which was located about 600mm from the box. The parameters of this camera

are listed in Table 4.3.

4.3.2 Input to the Algorithms

The following describes all the information given to the algorithms in addition to

the camera parameters in Table 4.3.

4.3.2.1 Tracked Image Coordinates

All four algorithms tested here use a set of 2D image coordinates of tracked points
as input. The image coordinates of the 35 points selected and tracked across 9 images
by Sawhney (78] were employed in this experiment. For the purposes of this exper-
iment, each image is assumed to have been obtained by a moving camera, which is

logically equivalent to what was physically done.

!Sawhney (personal communication).

94

Table 4.2: Box Sequence: Ground truth of tracked points. The coordinates were made
available by Sawhney (78] with respect to the final camera position. The coordinates
retain the shape of the box exactly as measured by hand since they have only been

— 31 3 ___3

13

rigidly transformed from the box-centered coordinate system to a camera-centered

coordinate system.

Point X Y Z Point X Y y/

mm mm mm mm mm mm
1 47.0 | 48.6 | 610.0 19 | -39.6 | -18.7 | 632.7
2 37.5 | 41.2 | 600.7 20 | -38.2 |-31.5 | 640.6
3 -33.2 | 26.9 | 592.2 21 || 76.1 | -24.8 | 684.4
4 -45.4 | 31.0 | 600.9 22 || 40.0 | -52.9 | 647.0
5 -56.2 | 34.7 | 609.5 23 || 30.0 | -60.3 | 637.6
6 28.3 | 34.5 | 591.3 24 || -23.2 | -60.5 | 647.9
7 18.7 | 27.4 | 582.0 25 |[-35.3 | -36.5 | 656.5
8 -10.3 | 19.5 | 575.0 26 || -24.6 | -47.7 | 639.9 |
9 -22.4 | 23.1 | 583.6 27 || 86.5 | -43.5 | 709.6
10 -2.0 | 41.6 | 566.3 28 4.5 | 53.0 | 584.3 |
11 9.4 | 21.1 |572.6 || 29 M 22.2]85.1 | 630.2 !
12 18.4 | 106.6 | 666.3 30 2.4 1 -42.8 | 614.7 |
13 57.0 | 42.1 ! 627.3 31 1! -49.7 1 68.2 | 618.8 |
14 || 72.8 | -0.3 | 668.5 32 || 41.3 | 87.6 | 631.1
15 36.8 | -28.2 | 631.1 33 || -6.5 | 63.7 | 602.3
16 26.5 | -35.5 | 621.7 34 | -18.8 | 78.8 | 628.9
17 || -25.9 | -35.3 | 632.0 35 | 69.6 | 24.9 | 652.6
18 -27.31-225 [624.0 [

21 3 31 3 3 __1

I

-

Table 4.3: Box Sequence: The camera parameters of the Sony black and white camera
used. in the rotating box sequence.

| focal length | fov X | fov Y Size
[t [me nr [wo0m]

—1

!‘—"% !—-«%

95
4.3.2.2 The Covariance of the Error

Tracking of points across images is error-prone, and the actual error is not known.
Therefore, given the typical sub-pixel accuracy of the tracking algorithm used by
Sawhney [109], a conservative estimate for the variance of error in each image coor-
dinate was chosen to be one pixel. Since all of the tracked points are corners in this
experiment, there is no reason to expect that any point is tracked more accurately
than the others — hence a fixed variance is a reasonable choice for the estimated error

in tracking.

4.3.2.3 Guess of Interframe Camera Motion

Horn’s two-frame algorithm requires an initial guess of the camera’s movement
between the two images to avoid local minima (or non-optimal solutions). In general
this initial guess might be the command issued to the robot moving the camera.
However, in this sequence the robot did not move the camera, but instead the robot
was commanded to rotate the box and the stationary camera was pointed at the box
at a slant from above. Although this scenario is equivalent to the case that we assume
for the purpose of generating a model using Two~Frame SFM - that the camera moved
and the box was stationary — transforming the command of 3.6° rotation of the box
into an equivalent command for moving the camera involves knowing the coordinate
transform between the box and the camera, i.e. the position and orientation (pose)
of the box with respect to the camera.

For this experiment, the initial estimate was obtained using pose estimation tech-
niques developed by Kumar [52], whereby the pose of the camera at the first image
was computed with respect to the box, and similarly for the second image. The differ-
ence in the two camera poses constitutes the initial estimate for the camera motion.

The initial estimate for the camera motion are provided in Table 4.4. The computed

96

results of Horn's algorithm, which differ from the initial estimate, are shown for com-
parison; we will return to a discussion of these results. The initial estimate localizes
the operating region of Horn’s algorithm, but the final result which the algorithm
converges to is entirely dependent on the image coordinates. Ideally, to fully auto-
mate this algorithm, either the robot’s command or a discrete sampling scheme as in

Adiv [1] should provide the initial guess of motion.

4.3.2.4 Scale of the Model

The scale of any 3D model can be defined by a single number S as follows:

S =

8|~

2wy — W (4.4)
1
where w; is the sth point in the model and W is the centroid of the model:

W=

2": w; (45)

1
-

S|

Intuitively, the value of S represents the spread of the model around its center, which
is a measure of scale. The scale of the two—frame model at every iteration is arbitrary
owing to the scale ambiguity in SFM (cf. Section 1.2.3). The problem is further
compounded by the fact that the 3D models obtained by the two—frame algorithm
(within an iteration of MFSFM) vary in actual scale from iteration to iteration,
making fusion impossible.? As a solution, we fix the scale of the model to a constant
value (i.e. S is maintained as a constant, Sy) corresponding to the constant scale of
the environment. A model A with an arbitrary scale S can be converted to a model

C with a constant scale Sy as follows:

?The models vary in scale because of the unrecoverable translation (T) magnitude; SFM algo-
rithms arbitrarily set |T| = 1 and return a model for this value of |T|. It is then left to the user to
scale the model up or down.

1

. |

3

1 3 __13

—a 8 3 i 1

3

97

Table 4.4: Box Sequence: The initial estimate and recovered two-frame values of
the interframe camera motion. (T%,7Ty,7T.) denotes the unit translation direction,
(Rz, Ry, R.) denotes the rotation axis and 6 denotes the rotation angle in degrees.
The magnitude of translation is not computed by SFM; instead, the 3D model is scaled
as described in Section 4.3.2.4. Of the two rows of motion parameters associated with
each interframe camera motion, the first row lists the initial estimate and the second
row lists the recovered values. The command issued to the robot could not be used
in this experiment as the initial guess of motion (see discussion in text).

[(Fame[. [T, [. [R. [R | R [6 |

[1-2 [0.999 | 0.044 | -0.020 [-0.05 | 0.84 | -0.55 || 3.57 |
‘ 0.911] 0.411] 0.027 | -0.05 [0.53 | -0.85 || 2.21 |
2-3 [0.985 [0.163 | -0.053 || -0.17 | 0.82 [-0.54 || 3.70 |

| 0.993 | 0.086 | -0.083 [/ -0.10 | 0.86 | -0.51 || 4.07 .
. 3-4] 0.990 | 0.126 | -0.062 : -0.13 | 0.85 | -0.51 i 3.48 |
! ~1/0.988 i 0.156 | -0.007 || -0.15 | 0.81 [-0.57 7 3.16 '
[45 [0.992]0.119 [-0.038][-0.12 [0.82 | -0.56 || 3.21
0.987 | 0.148 | -0.060 [-0.15 | 0.79 | -0.60 || 3.12

5-6 || 0.985 [0.164 | -0.050 1| -0.16 | 0.82 | -0.55 || 3.67 |
I 0.987 [0.154 | -0.044 | -0.16 | 0.85 | -0.50 || 3.88 |
| 6-7]0.986 | 0.164 | -0.039 || -0.17 | 0.83 | -0.53 || 3.83
0.989 [0.144 [-0.040 || -0.13 1 0.71 | -0.69 || 2.84 |

7-8]10.988] 0.140 [-0.061 || -0.14 | 0.82 [-0.55 || 3.54 |
_ [10.987 [0.148] -0.060 [-0.15 | 0.85 | -0.50 || 3.87 |
8-9]/ 0.989 [0.143 [-0.047 || -0.15 | 0.83 | -0.53 || 3.63
—[[0.991 10.126 | -0.047 || -0.13] 0.85 | -0.51 || 3.82 |

98

_ 5

C—SA

A (4.6)

The term % is referred to as the scale parameter s in Equation 4.1 above.

In order to reliably compare any model against the ground truth, the scale of the
model and the scale of the ground truth must be the same. Therefore, the constant
Sy is set at the value of the scale of the ground truth, which is part of the input given
to the algorithm. Note that under the assumption of fixed scale, fusing models across

iterations is no longer a problem.?

4.3.3 Results of the Four Algorithms
4.3.3.1 Representation of the Resuits

Since the ground truth for the box sequence is only given for the shape of the
box, the 3D model produced by any of the four algorithms has to be rotated and
transiated (rigidly) to align with the ground truth (given in Table 4.2) in order to
determine the performance of the algorithm. The mismatch between the aligned 3D
model and the ground truth is the error in the shape. The alignment that minimizes
the mismatch error can be determined exactly in closed form using Horn’s Absolute
Orientation Algorithm [42].

The error in the shape after alignment will be reported for the models acquired by
all four algorithms. The contribution of a s'ingle point p in the extracted 3D model
to the shape error is defined as | p — t | where p is the position of a point (after
alignment) and t is the position of the same point according to the ground truth.
That is, | p — t | represents the distance between the aligned 3D point and actual
point; if this distance is zero over the entire model, the alignment is perfect and

the shape has been accurately recovered. The overall error of the 3D model will be

3When any model is scaled by a term s, the corresponding covariance associated with the 3D
model error is scaled by the term s°.

-3 — =& ~ 3 —3 ~—3 T3 —3% —3 —3 T3 3 73 T3 T3 —3 T3 —3 T3

— 3

99

Table 4.5: Box Sequence: Mean and standard deviation ¢ of the 3D model error in
mm at each frame for the four algorithms.

FRAME || Two-Frame || Blind-Avg || Std KF || CC-based |
mean o mean o mean a mean (-4
235 | 9.2 [235 [9.2] 235 | 9.2 || 235 | 9.2
51 | 2.9 || 98 |40 11.3 |11.3 || 11.4 | 6.2
6.8 | 35| 83 |35 131 | 9.8 || 7.1 | 3.6
51 [3.9 | 57 [26] 127 [78 | 2.9 |15
41 |25 5.0 |24 11.7 [80 || 1.5 | 0.8
153 [6.2 || 63 |25 122 | 75 | 1.5 |09
53 | 32] 49 |20 103 | 66 | 14 |08
5.4 [33] 47 120 96 [62] 15 |09

"u:oo-qo:cn.hwto

reported as the mean and standard deviation of the shape errors for the set of points
in the model. Note that since the mean accuracy of the ground truth is +1.3mm,

any shape error less than 1.5mm may be due to error in ground truth.

4.3.3.2 Discussion of the Results

Figure 4.2 shows a graph of the mean shape error at each iteration of the algo-
rithm for the four algorithms, and Figure 4.3 provides the corresponding standard
deviations. The actual data from which the graphs were derived is shown in Table
4.5.

Consider the iteration associated with Frame 5 in Figure 4.2. The average error

at this iteration for the Two-Frame algorithm denotes the error in the 3D model

- obtained using images 4 and 5. For the three multi-frame algorithms, the error at

MEAN ERROR (mmm)

25 T Y T T T
2Fr ——
Blind-avg -+—-
Std KF =~
CC-Based ——
Ground Truth ~—
20 .
st A -
\ /
Wi ST a..]
BT e -y
R eugesrese”
e /
4 \ /
o L / -3
|
N\
- _
0 [l] 1 I 1 1
2 3 4 5 6 7 8 9
FRAME NUMBER

100

Figure 4.2: Box Sequence: Reconstruction Error (in mm) for the four algorithms

compared in this experiment.

3

E

~3 —=3 — 3 T3 13

—3

STANDARD DEVIATION (mm)

101

12 1 ¥) i ¥
2Fr —
a Blind-avg -~
Std KF e
CC-Based ——
w0l / :
'._l. a." =
e
B
.l s
\
4t 4
2+ \. R
\‘*x—-—""’—"*‘*————‘-‘_"d
o A — A 1 1 1
2 3 4 5 6 7 8 9
FRAME NUMBER
Figure 4.3: Box Sequence: Standard deviation of the error in the 3D models for four
algorithms.

102

this iteration denotes the error in the 3D model which is the result of fusing the
two—frame models up to this point (i.e. the two—frame models available at frames 2,
3, 4, and 3). For example, for the blind averaging algorithm, this involves averaging
the two—frame models of frames 2, 3, 4, and 5.

From the graph in Figure 4.2 it can be observed that the error in the 3D model of
the Two-Frame algorithm fluctuates; there is no clear trend. Since at each iteration
the two-frame model is constructed “from scratch” with no information from the
previous models, the fluctuation is expected. For example, there is no connection
between the model at frame 4 and at frame 6. In general, the unpredictability (in
mean and standard deviation) of the results of the Two-Frame algorithm make this
algorithm unreliable. Table 4.4 reveals that when the camera motion was estimated
least accurately, the resulting two—frame model was the least accurate as well. The
error in camera motion can be clearly noticed in the difference in the rotation angle 4
between the original and the recovered values in Table 4.4, such as at frames 1-2 and
6-7. Figure 4.2. shows that the two-frame model has the highest errors at frames
2 and 7. This result corroborates a similar observation by Dutta and Snyder [25]
regarding the large effect of relatively small rotation errors on the 3D model.

Blind averaging, the simplest multi-frame improvement over the two-frame algo-
rithm, shows considerable improvement in this experiment. The graph in Figure 4.2
shows that the error in 3D models obtained from blind averaging decreases except
in the 7Tth frame, where the two-frame model is very inaccurate. Since the blind
averaging scheme gives the same weight to this two-frame model as all the others,
the error in the averaged 3D model increases. Although the blind average appears.
to follow a decreasing trend, this is not expected in a situation where the two~frame
results fluctuate more dramatically. The final blind average model has an average

error of 4.7mm with a standard deviation of 2.0mm.

T4 3 T3 T3 —3 —38 —3 —3 T3 "3

103

Figure 4.2 shows that the error of the standard KF algorithm converges slowly,
apart from frames 4 and 7 where the individual two~frame models are more erroneous
than the previous ones. What is striking is that the KF approach is worse than blind
averaging in each frame. This situation could be anomalous in that blind averaging
may be doing unexpectedly well. Alternatively, this result may also indicate that
the weights employed in standard KF are grossly incorrect, which might give rise
both to a high mean error and a high standard deviation. Such a situation would
indicate that it is better to use equal weights (as in blind averaging) than to use
incorrect weights. In fact, the previously reported standard KF algorithm of Cui,
Weng and Cohen [21] produces fluctuating results with no trend in their real image
experiment. Based on their results, these authors conclude that, “our method gives
accuraie results from the first two frames” (p. 228). This statement reveals that Cui,
Weng and Cohen’s version of the standard KF algorithm performed no better than
the two—frame algorithm (since the model based on the first two frames is considered
as good as any later model!). Thus, a likely explanation for the poor performance in
the rotating box sequence is the use of incorrect weights. In this sequence, the final
mean error for the standard KF algorithm is 9.6mm with a standard deviation of
6.2mm.

On the other hand, the superior performance of the CC-based algorithm suggests
that the weights used in this algorithm accurately reflect the 3D model errors. The
high accuracy of this algorithm (as shown in Figure 4.2) is entirely due to the inclusion
of the motion error, which is recorded in the cross—correlations. Figure 4.2 shows
that the average 3D model error falls monotonically until frame 6 and then remains.
as low as the error in the ground truth (1.5mm) for the last four frames. Note that
when the error falls below the error in the ground truth, any fluctuations in the error

are meaningless and can be considered noise. Figure 4.3 shows that the standard

104

deviation also monotonically decreases until the mean 3D model error reaches the
level of the error in the ground truth, as predicted by a properly functioning Kalman
Filter with reliable covariances. The final model of the CC-based algorithm has a
mean error of 1.5mm (which is at the level of the ground truth) and a standard

deviation of 0.9mm.

4.4 Experiment II: Indoor Robot Sequence

This experiment compares the effectiveness of the four algorithms (described in
Section 4.2) in recovering a model of a lobby in the Computer Science Department

at UMass, using a sequence of images obtained by an indoor mobile robot.

4.4.1 The Image Sequence and Ground Truth

A sequence of images was taken of the lobby by a camera mounted on a moving
Denning mobile robot, as described by Sawhney {78]. The robot was commanded
to move directly ahead in steps of 1.4 feet, but there were small rotations and drift.
Figure 4.4 depicts the first and the last image of the ten—image sequence. For this
experiment 29 corners of posters and obstacles were hand-selected from the first
image and tracked across the ten images (cf. Table 4.6). Tracking was done using
the tracking algorithm of Williams and Hanson [109)].

The ground truth for 23 of the 29 points was measured by hand by Sawhney
[78]. The ground truth involves 3D coordinates for each point, in a camera—centered
coordinate system at the first location of the robot. Measurements were obtained
u;ing a steel tape measure; the accuracy of the measurements was estimated to be on
the order of 0.1 feet. The remaining 6 points were corners of posters that were not

directly measured by hand. For the purposes of this experiment the ground truth for

these § points was interpolated based on the measured ground truth of surrounding

—3r 7 __1

(a) First image

(b) Final (tenth) image
Figure 4.4: Lobby Image Sequence.

105

106

Table 4.6: Lobby Sequence: The image coordinates of the 29 points in the first image.

|
T 1 [[90.0] 76.1 | 16 | -6.2] 9.9]
2 || 75.9] 73.7 17 || -6.1 | -2.3
3 || 75.6 | 29.5 18 || -9.7 [-36.3
4 |[90.0] 29.9 19 || -9.7 [-20.8
5 |[85.1] 62.8 20 | -19.11-36.4
6
7
8

B
£
-
!,

79.4| 619 ||| 21 | 95.8 | -17.2
79.7| 4.0 ||| 22 || 27.2 | -29.0 |
85.1] 45.0 ||[23 || 35.7 | -34.6 |
9 || 66.5] 65.7 ||| 24 || 40.0 | 80.4
10 |[54.7] 631 ||| 25 | 33.4 | 53.2
11 |[54.7] 230 ||| 26 | 15.7 | 474
12 || 66.3] 22.8 ||| 27 | -2.5 | 59.8
13 [[12.8] 793 ||| 28 | -2.6 | 464
14 || 49.2]-364 ||| 29 | -14.3 | 46.4
15 || -2.2 | 21.2

L3

3

i T3 T3 —3 T3 —3 T3

3

i

—3

107

Table 4.7: Lobby Sequence: Ground truth of tracked points with respect to the first
camera position, in a camera-centered coordinate system.

Pomt|| X | Y | Z Point| X | Y | 2
| | | f “ ft | f& | ft
1 [[56]39]30.7 16 [[-05] 0.6 | 35.8
2 49 | 39 | 3L.9 17 [|-0.4 | -0.1] 35.8
3 49 | 1.6 | 31.9 18 [-0.7|-2.2] 35.8
4 || 56| 1.5 |30.7 19 [|-0.7]-1.2] 35.8
5 54 | 3.3 | 3L.1 20 ||-1.4]-2.2]358
6 51 | 3.3 | 31.5 21 || 5.9 |-0.9] 29.9
7 || 5.1 2.3 |3L5 22 || 1.4 [-1.2 | 25.7
8 54 | 2.3 | 31.1 23 || 1.9 |-1.5] 25.7
9 45 1 3.7 | 33.3 %4 | 35 | 5.7 | 42.7
10 || 3.9 | 3.7 | 35.1 25 || 2.9 , 3.9 | 43.4
11 || 3.9] 1.3 | 35.1 26 || 1.4 | 3.5 | 42.8
12 || 45 | 1.3 | 33.3 27 [[-0.3 1 4.4 | 42.2
13 || 1.1 | 5.7 | 42.7 28 [|-0.3| 3.5 | 42.2
114 || 2.6 | -1.6 | 25.7 29 11-121 34 418
T715 -0.2] 1.3 | 35.8 T | 5 I

points.* The ground truth for all 29 tracked points in the first position of the camera
are reported in Table 4.7. The points were at a distance of 25-44 feet from the camera.

The camera parameters for this experiment are given in Table 4.8.

4.4.2 Input to the Algorithms

The 2D image coordinates of the 29 tracked points across the ten images (provided
in Table 4.6) constitute the main input to the algorithms along with the camera
parameters. As in the previous experiment the error covariance was fixed at 1 pixel.

The initial estimate of camera motion was taken to be the command to the robot

“Interpolation was carried out with the help of an accurate algorithm due to Collins [19].

108

Table 4.8: Lobby Sequence: The camera parameters of the Sony AVC-D1 camera
that is mounted on the mobile robot.

[Tocal lengih [Tov X [fov Y] Sue |
[16mm | 29.3° | 22.9° | 256 x 242 |

(i.e. zero rotation and translation of 1.4 feet along Z) and the scale of the model was

input as a single number (cf. Section 4.3.2 for further details).

4.4.3 Results of the Four Algorithms
4.4.3.1 Representation of the Results

The available ground truth for the lobby sequence consists of 3D coordinates of
points in a camera—-centered coordinate system (as opposed to the object-centered
coordinate system, of the rotating box sequence). That is, the structure of the lobby
was measured, which provides more information than just having the shape measure-
ments as in the case of the box. This enables a comparison of the models recovered
by each of the four algorithms in terms of both the shape and position of the objects
in the environment relative to the camera. Furthermore, since the recovered model
and the ground truth are both in a camera—centered coordinate system, the accuracy
of the models can be directly compared without alignment (Section 4.3.3.1).

For any 3D point in a recovered model the difference in 3D location between the
recovered point and the actual point (ground truth) is calculated as a percentage of
the true distance from the origin of the camera to the actual point. This percentage
is the error in recovering the particular 3D point. The error in the 3D model at any
iteration will be reported as the mean of the percentage errors over all the points in

the 3D model. Note that for the same absolute deviation from ground truth, a point

e

1

—3

5y 3 _1 __3

A

109

closer to the camera results in a larger percentage error than a point further away.
Since the accuracy of nearby points is critical in tasks such as obstacle avoidance, an

error measure which gives more importance to nearby points is reasonable.

The ground truth was measured at the first camera location. In order to compare
the models obtained at the subsequent camera locations, the measured ground truth
was transferred to each position of the robot using the coordinate transform obtained
from the apparently highly accurate position estimation algorithm of Kumar [52].
However, it is possible that the position estimation algorithm introduces error into
the transformed ground truth. The information on the exact bound of this error
1s not directly available, although it may be possible to determine the bound based
on an analysis of Kumar’s algorithm. Given the prior experimental accuracy of the
algorithm it is assumed that such an error is negligible. The pose estimation results
have also been used to transform the ground truth for this sequence by Sawhney [78].
In any case our primary Let us now turn to the results of the four algorithms for the:

indoor lobby sequence.

4.4.3.2 Discussion of the Results

As with the box sequence, the graph in Figure 4.5 shows that the error in the
3D model obtained by the Two-Frame algorithm fluctuates randomly, although the
two—frame models at frames 7-10 are quite good. The standard deviation shown in
Figure 4.6 also fluctuates for the two—frame models. The last two—frame model has
an error of 3.4%, with a standard deviation of 3.6%.

Figures 4.5 and 4.6 show that the errors in the 3D models obtained from blind
averaging are fairly stable. The error in the model decreases monotonically, because
the two-frame models improve across the later frames. The final model has an error
of 9.1% (with standard deviation of 3.3%). As in the box sequence, the result of

the standard KF algorithm is worse than blind averaging, except for the final frame,

MEAN ERROR (%)

110

20

15

10

0 1 1 Il 1 I I 1
2 3 4 5 6 7 8 9 10
FRAME NUMBER
Figure 4.5: Lobby Sequence: Mean error in the 3D models for the four algorithms.
The mean errors are also listed in Table 4.9.

3 3 __3

2

STANDARD DEVIATION (%)

111

2fr ——

Blind-avg ——

Std KF e
CC-based —— |

.

4+
3r x,
5l ,
1 1 3 1 1L 1 1 1
2 3 4 5 6 7 8 9 10
FRAME NUMBER

Figure 4.6: Lobby Sequence: Standard Deviation of the error in the 3D models for
the four algorithms. The values of the standard deviation are also listed in Table 4.9.

112

Table 4.9: Lobby Sequence: Mean percentage 3D model errors at each frame for the
four algorithms with standard deviations o.

Two-Frame || Blind-Avg | Std KF CC-~based

mean | ¢ ||mean| o |[mean| o | mean| o
98 |80 | 98 |80} 9.8 (80 9.8 |8.0
344 | 85 || 21.1 | 7.2 29.5 | 9.7 13.3 | 8.2
75 | 69 | 165 |6.1| 29.4 {95 6.2 |5.1
6.9 [10.0| 126 |55 302 [9.0] 4.7 |3.0
9.3 | 5.0 || 11.4 |44 226 |74] 3.3 |22
6.4 [28 | 106 {39 198 |81 23 |1.8
34 | 23 || 98 |34 159 | 7.7 1.9 |1.7
53 | 26 | 95 |33 10.7 |5.7| 1.7 | 1.6
34 1361 91 133) 60 [31) 18 [16]

E

which has an error of 6.0% (standard deviation 3.1%); however the errors are rapidly
decreasing after frame 5). Again, using partial weights (as in standard KF) is worse
than using equal weights (Blind Averaging) especially at frames 2-5. Once again, the
CC-based algorithm yields the best accuracy of the four algorithms compared here.
Figure 4.5 shows that the average 3D model error has a decreasing trend after the
third frame, with a final error of 1.8% after ten frames with a standard deviation of
1.6%.

There is a striking difference in the behavior of the three multi—frame algorithms
at frame 3, where the two-frame model is very erroneous. The CC-based algorithm,
although showing a modelst increase in error, preforms quite well regardless of the fact
that it had only one prior model to compare to (and combine with) this erroneous
model. On the other hand, the standard KF algorithm, which lacks the complete
error covariance, is unable to deal with this situation; blind averaging performs just

as expected.

—3 3

3

3 3 3 1

113

4.5 Experiment III: Outdoor Mobile Vehicle Sequence

This experiment uses an outdoor image sequence (referred to as the Umass Rocket-
field sequence [24]) obtained by the Autonomous Land Vehicle (ALV) at Martin Ma-
rietta in Denver, Colorado. The performance of the four algorithms described in
Section 4.2 will be compared. |

4.5.1 The Image Sequence and Ground Truth

To obtain the images in this sequence, the ALV (with its forward-pointing camera)
was commanded to move directly ahead in steps of about 2.5ft. The reported camera
parameters are given in Table 4.10 (cf. Dutta, Manmatha, Williams and Riseman
(24]). Due to the unevenness of the ground and the ubiquitous vehicular drift, the
ALV rotated and deviated from its expected course. An inertial navigation system
(INS) on the ALV was used to monitor the vehicie’s actual motion and that will be
treated as the ground truth for the motion. The measurements of the INS have an
estimatved translation error of 0.4% of the distance travelled and an estimated rotation

error of o 0.06° (for elevation and roll) and 0.03° (for azimuth).

Table 4.10: Rocket-Field: The parameters of the camera mounted on the ALV.

[focal length [fov X [fov Y | _Size |
[~ 6mm | 72° | 57° | 255 x 246 |

The scene viewed by the ALV consisted of several obstacles, the closest ones being
traffic cones and trash cans. Further away there were low buildings and a truck, and

in the background there were electric poles and mountains. Figure 4.7 provides the

114

(a) First image

(b) Final (eleventh) image
Figure 4.7: Rocket—Field Image Sequence.

i 3 3 T3 a4 3 "3 3§ ~a T3 "3

115

first and the eleventh images of this sequence. In this experiment only the first eleven
frames were used because several of the obstacles with known ground truth are no
longer visible in the later frames.

Obtaining an outdoor sequence with ground truth involves careful and time-
consuming measurements with sophisticated equipment. Due to the lack of well-
defined geometric structures and due to the large distances involved, measuring the
ground truth in outdoor environments is a formidable task. The ground truth was
measured using surveying equipment for corners of 13 landmarks appearing in the
first eleven images. In this experiment the ground truth measurements [24] consist of
not only the 3D coordinates of the selected points in a camera—centered coordinate
system, but also the movement of the camera provided by the Inertial Navigation

System.

4.5.2 Input to the Algorithms

As in the previous experiments, the input to the four algorithms consisted of the
camera parameters, the tracked image coordinates, the covariance of the image error,
the estimate of interframe camera motion, and the scale of the model; details are

provided below.

4.5.2.1 Tracked Image Coordinates

Of the 13 points for which ground truth was measured, two points furthest away
from the vehicle were discarded in this experiment. One of them is an unclear point
on a bush on a mountain on the left-hand side of the image, while the other point is
the top of an electric pole near the Focus of Expansion (FOE). Owing to the distance
of the second point (635 feet) and its proximity to the FOE throughout the sequence,

there is not enough information to recover the top of the electric pole using a SFM

116

Table 4.11: Rocket-Field Sequence: Ground truth for the tracked image points of the
sequence in the camera-coordinate system at the first camera position. The ground
truth was available only for the first 11 tracked points used in this sequence. The last
two columns denote the distance of the point from the camera i.e., v X2 + Y2 + Z2
in meters and feet, respectively.

[Point X Y Z Distance | Distance

_ m m m m ft
1 || 8.85 | -8.37 | 24.62 [2747 | 91.56
2 [10.50 | -10.49 [33.79 || 36.91 123.03
3 4.00 | -8.26 | 24.25 || 25.93 86.42
4 || -2.611 -6.75 | 17.79 || 19.20 64.00
5 || -6.66 | -8.97 | 27.89 || 30.04 100.14
6 0.48 | -8.47 | 24.77 || 26.18 87.28
7 || -2.80 | -8.01 | 60.54 || 61.13 203.78
8 || -2.20 | -10.08 | 32.37 || 33.97 113.23
9 |110.30 | -10.43 | 43.87 || 46.26 154.18
10 || 0.74 |-10.60 | 40.11 || 41.50 138.32
11 [119.35 [-14.17 [47.78 || 53.46 | 178.20

algorithm; for example, Franzen [30] reconstructs the point as being at 10'° feet
(p.131). All the remaining 11 points with known ground truth were tracked across
the eleven images. The distance from the vehicle to the objects ranged from 64 ft to
204 ft. The ground truth is reported in Table 4.11.

In addition to the 11 points with ground truth, 11 additional points located on
the obstacles in the scene were chosen for this experiment. The image coordinates of
all 22 points are provided in Table 4.12. In general, Two-Frame SFM does poorly
with few points. Therefore, it is better to track more points — even without ground
truth - since this is beneficial for estimating the camera motion more accurately. A

more accurate 3D model (including the 3D points with ground truth) can thus be

obtained from Two-Frame SFM.

3

3

3

—3 T 3 ~—3 ~— a1 "3 a 7~ a3 — 3 "~ 3 3 i "3 T3 13 3 — 3 T3 T3 713

117

Table 4.12: Rocket-Field Sequence: The image coordinates of the 22 points in the
eleventh image of the sequence. The points were hand-selected in the eleventh image,
since the scene had the best clarity of all the images in the sequence. See Figure 4.7
for a comparison of the first and eleventh image.

-Pomt l 'Hl Pomt ” y "
1 [120.5] -88.0 | -88 0 43 5 | -52.0
2 || 925 | -74.0 13 120.5 | -98.0
3 || 64.5 | -91.0 14 | 92.5 | -80.0
4 |1-285]-121.0 i 15 | 63.5 [-101.0
5 || -46.5 [-83.0 16 || -46.5 | -90.0
6 | 185 | -93.0 17 || 18.5 [-101.0
7 2.5 | -24.0 18 |l 23.5 |-101.0
8 I 25 1-79.0 19 1 23.5 [-93.0
9 || 66.5 | -32.0 20 || 19.5 | -74.0
10 || 19.5 | -51.0 21 | 32.5 | -51.0
11] 105.5| -67.0 ||| 22 | 98.5 | -69.0

Tracking of this image sequence was made difficult due to the blurring of small
objects (such as the cones and trash cans; cf. Figure 4.7). The 22 selected points
were tracked using Anandan’s algorithm [5]. Due to the blurring in the images in
this sequence, resulting in gross errors (i.e. tracking the wrong points), tracking was
checked by hand and gross errors were reset to within one pixel. On average, two
thirds of the points were tracked automatically between any two images. Note that the
performance of the CC-based algorithm in outdoor environments with unsupervised
tracking remains to be tested. It is, however, important to remember that the main
purpose of this experiment is to compare the performance of the four algorithms, all

of which use the same tracking information as input.

118
4.5.2.2 The Covariance of the Image Error

The covariance of the image error in the tracked points was set to 1 pixel, just as
in the previous experiments. This choice is valid since the manual checking/resetting

ensured that tracking was correct up to a pixel.

4.5.2.3 Guess of Interframe Camera Motion

Unlike in the previous experiments, an accurate value of the vehicle’s motion was
determined by the Inertial Navigation System (INS) on the vehicle. For the initial
guess of motion required by the Two-Frame algorithm, the INS value (rounded off
to the first decimal place) was given. Since the command issued to the vehicle was
not reported along with the sequence in [24], the rounded INS value was taken to
represent the original command. Table 4.13 lists the original INS value, the rounded

value, and the final camera motion from the Two-Frame algorithm.

4.5.2.4 Scale of the Model

Recall that in SFM the scale of the model cannot be recovered from the images
because the exact distance the camera actually moves (magnitude of camera transla-
tion) is unknown. In Experiments I and II, since the precise camera translation was
unknown, the scale of the model was set to a constant value (cf. Section 4.3.2.4).
However, in this experiment the distance of the vehicle’s movement is known (up to
the accuracy of the INS). This distance information was provided as input to the Two~-
Frame SFM algorithm at each position of the vehicle resulting in a 3D model with
the correct scale. Note that this information corresponds to the one unrecoverable
motion parameter; the Two-Frame algorithm still needed to calculate the remaining
five camera motion parameters. Since the two—frame models were of the correct scale,

they could be fused by the multi~frame algorithms without further adjustment.

]

—3 1

|

3

3

119

Table 4.13: Rocket-Field Sequence: The ground truth, initial guesses and recovered
values of the interframe camera motion. (T, Ty, T:) denotes the translation in meters,
(Rz, Ry, R.) denotes the rotation axis and § denotes the rotation angle in degrees. Of
the three rows of motion parameters associated with each interframe camera motion,
the first row lists the ground truth (INS value), the second row lists the initial guess
(rounded INS) and the third row lists the value recovered by the Two-Frame algo-
rithm. Since the command issued to the vehicle is not reported [24], the INS value
was rounded off to the first decimal place and used instead as the initial guess.

Frame[T. [T, | T, | R. | R, | R. | 6 |
1-2 [[-0.01 |-0.18 [0.78 [[-0.08 | 0.98 | 0.16 || 0.39
0.00 | -0.20 [0.80 || -0.10 | 1.00 | 0.20 || 0.40
_ 0.05 | -0.19 [0.78 || 0.19 | 0.97 | 0.14 || 0.50
[2-3 -0.027-02170.93]-0.06 0.97 | 0.22]| 0.61 |
0.00 | -0.20 [0.90 || -0.10 | 1.00 | 0.20 [0.60

0.02 | -0.13 | 0.94 || -0.09 | 0.98 | 0.20 || 0.61

3-4 [[-0.02]-0.19]0.84] 0.42 | 0.90 | -0.08 || 0.64 |
0.00 [-0.20 | 0.80 || 0.40 | 0.90 | -0.10 || 0.60 |
0.01 |-0.27 | 0.81 | -0.25 | 0.84 | 0.49 || 0.60 |
[45 -0.027-0.2170.91 [-0407 0.91 ! -0.08 || 0.46 |
| 0.00 [-0.20 | 0.90 || -0.40 | 0.90 ; -0.10 j 0.50 |
L 005 [-0.23]0.91 0.22 [0.86 | 0.47 | 0.61 |

5-6 [-0.02]-0.23]1.04 -0.25] 0.95 | -0.15 || 0.57 |

0.00 | -0.20 | 1.00 || -0.30 [1.00 | -0.20 || 0.60
-0.01[-0.34 | .01 || 0.60 | 0.34 | 0.72 || 0.75
6-7][-0.02]-0.18]0.81] 0.16 | 0.99 | 0.04 1| 0.50
0.00 | -0.20 [0.80 || 0.20 | 1.00 | 0.00 || 0.50
0.06 | -0.22 [0.80 || 0.16 | 0.97 | 0.18 || 0.67 |

7-8]| -0.01 | -0.21]0.95 092 0.36 | -0.17 || 0.46 |
0.00 | -0.20 | 1.00 || -0.90 | 0.40 | -0.20 || 0.50
0.02 | -021 | 0.95 001 | 0.12 1 0.40 [0.53

T 89 [-0.02]-0.1910.91] 0.51] 0.86 | -0.03 [0.52 |

0.52
0.00 | -0.20 [0.90 |[0.50 | 0.90 | 0.00 | 0.50
0.13 [-0.22 [0.89 [-0.25 | 0.92 | 0.30 || 0.74
10 [[0.00 [-0.19 [0.85 || 0.24 | -0.84 | -0.49]| 0.56 |
0.00 | -0.20 [0.90 [0.20 | -0.80 | -0.50 || 0.60
[0.05 | -0.30 | 0.82 || 0.27 | -0.96 | 0.04 || 0.59

| 10-11 " -0.01 [-0.20 1 0.87 || 0.06 | 0.82 | 0.56 || 0.611

0.00 | -0.20 | 0.90 || 0.10 | 0.80 ; 0.60 || 0.60 |
0.03 }-0.24}0.86 | 0.10 | 0.98 | 0.15 !l 0.68 |

n

120
4.5.3 Results of the Four Algorithms
4.5.3.1 Representation of the Results

As in the lobby sequence (Experiment II), the ground truth was available in a
camera—centered coordinate system, facilitating comparison of the recovered struc-
tures. The results of the four algorithms are reported as a mean percentage error
exactly as in Experiment II (cf. Section 4.4.3.1). The percentage error is an average

over the 11 tracked points with known ground truth.

4.5.3.2 Discussion of the Results

Figure 4.8 provides the mean percentage error as a graph after every movement of
the vehicle, and Table 4.14 lists the individual error values. The standard deviations
are plotted in Figure 4.9. Two—frame error is typically around 30%, which is much
higher than in the indoor robot sequence. The error in the two—frame model fluctuates
without any clear trend. The two-frame model is especially erroneous at frame 9,
which also has the highest error in rotation angle 6 of 0.22° (cf. Table 4.13, frame 8-
9, difference between first and third row). Recall that a similar relationship between
high rotation error and high two—frame error was observed in Experiment I. The high
error in the two-frame results in this outdoor sequence is expected because of the low
image resolution, compounded by the fact that most of the tracked points lie near the

FOE in this sequence. Furthermore, the distance the vehicle moved between images

(about 1m) is very small compared to the distance of the tracked points from the.

camera (cf. Table 4.11 for distances to the points); in such a case the two~frame error
is expected to be high (cf. Dutta [22]).

The errors in the first five 3D models (frames 2-6) obtained by the Blind Averaging
algorithm (Figure 4.8) reflect the average of the errors in the individual two—frame

models. From frame 7 onwards the blind average result is better than expected, if

-3 v 35 3 3 _3 _13

3

3 __3

1

3 8

3

3 3

MEAN ERROR (%)

60 T T T T L1 T T T
2fr —=—
Blind-avg ——
Std KF e
CC-bjsed —e—
80 \ g
40 + -

\\\
\.x\-x“\
\\"‘\.,:
10 |]
0 [1 1 1 1 13 L 1
2 3 4 5 6 7 8 10 11
FRAME NUMBER :

121

Figure 4.8: Rocket-Field Sequence: Mean percentage error in the 3D models for the
four algorithms. The mean errors are also listed in Table 4.14. At Frame 9 the error

in the two—frame model is 77.3%.

STANDARD DEVIATION (%)

122

60 T T T T T T T
ofr ——
Blind-avg -~
Std KF -a--
CC-based ——
50 |]

10 .

-

°r s ¢ 5 s 7 o 9 10 1
FRAME NUMBER
Figure 4.9: Rocket-Field Sequence: Standard deviation of the percentage error the of
3D models for the four algorithms. The standard deviations are also listed in Table
4.14. At Frame 9 the standard deviation in the two—frame model is 134.5%.

¥ 3 . 5 97 _3 3 _3 _31 _1

—3 __13

— 3

et 1

l"""@ g r % T § ¥ g [%

123

Table 4.14: Rocket-Field Sequence: Mean percentage 3D model errors at each frame
for the four algorithms with standard deviations o.

 FRAME || Two-Frame || Blind-Avg || Std KF | CC-based
| mean| o |mean| o ||mean| ¢ |[mean| o

2 35.3 | 38.3 || 35.3 | 38.3| 35.3 | 38.3| 35.3 | 38.3
3 20.1 | 344 || 29.6 | 30.5| 38.2 | 35.6 || 32.3 | 39.0
4 32.3 | 25.9 || 30.7 | 19.5 || 27.8 | 22.2 || 28.2 | 31.6
5 26.1 | 21.5 || 27.7 | 19.9 | 22.6 | 17.8 || 21.3 | 26.4
6 II‘ 35.5 | 348 || 29.2 | 21.3| 25.9 |17.8 | 16.5 | 18.7
7 30.2 | 214 | 26.2 | 19.6 | 25.9 | 17.9 || 16.2 | 18.8
8 31.5 | 24.2 || 23.4 |19.2 | 24.3 | 16.9 | 13.4 | 14.6
9 77.3 | 134.5| 25.6 | 20.0 || 23.2 | 17.0 || 12.7 | 15.5
10 30.2 | 15.8 || 25.7 | 18.8 || 24.2 | 15.0 || 11.7 | 15.5
11 |} 23.6 | 28.6 || 24.1 [17.4) 22.1 |15.7 || 11.0 | 14.9

the two-frame absolute values were averaged. The final 3D model obtained by blind
averaging has an error of 24.1%, with a standard deviation of 17.4%. The performance
of the standard KF algorithm is slightly better but comparable to the blind averaging
algorithm, with a final result of 22.1% (standard deviation 15.7%). Note that neither
blind averaging nor standard KF result in monotonically decreasing errors.

The apparently unexpected behavior of blind averaging at frame 9 is a straightfor-
ward result of the computation, the results of which are recorded in Table 4.15-4.17.
Table 4.15 lists the ground truth points at frame 8, and the blind average model
corresponding to these 11 3D points. The absolute error and the percentage error are
calculated as described in Section 4.4.3.1. Note that the mean error of the blind av-
erage model is 23.4%. Similarly, Table 4.16 lists the ground truth and corresponding
Two-Frame model at frame 9. The mean error of 77.3% in the Two-Frame model is

the highest in the sequence.

124

Table 4.15: Rocket~Field Sequence Frame 8: Ground Truth, Blind Average 3D Model,
and Blind Average Error. All values are in meters. Dist represents the distance to

the point from the camera.

Point Truth (Frame 8)_ Blind Average (Frame 8) |
no. | X | Y [Z [Dist Dist | X | Y [Z | Error | % Error
1 10.2] -6.8 [17.9] 21.7[[10.4| -6.6 | 17.9 0.3 1.2
2 12.3 | -8.9 |27.0 | 31.0 || 12.2 | -8.5 | 26.0 1.1 3.4
3 53 | -6.7 [17.8|19.7 || 4.1 | -5.0 | 12.8 5.4 27.2
4 -1.6 | -5.2 | 11.7| 129 | -1.7 | -5.8 | 12.3 0.9 6.6
5 -5.1 | -74 [22.0]23.8 | -6.3 | -9.4 | 26.3 4.9 20.7
6 18 | -6.9 | 185|198 | 1.0 | -5.1 | 12.8 6.0 30.3
7 0.5 | -6.1 | 54.4|54.7 0.0 | -3.2 | 28.3| 26.2 47.9
8 -04] -84 1262|276 | -0.5| -5.7 | 16.5 10.1 36.6
9 12.7 | -8.7 | 37.0 | 40.1 || 10.8 | -7.3 | 30.8 6.7 16.8
10 29 | -89 1338351 1.3 | -3.1 1136} 21.1 60.0
11 22.0 | -12.4 | 40.5 | 47.7 | 20.8 | -11.2 | 37.7 3.2 6.8
L | MEAN: | 234 |

Table 4.16: Rocket-Field Sequence Frame 9: Ground Truth, Two-Frame 3D Model,

and Two-Frame Error.

Point | Truth Frame 9) | Two-Frame (Frame 9)
no. | X | | | Dist | Dist | X | Y [Z [Error | % Error |
1 10.3] 6.7 | 169209 75 | -4.6 | 12.1 5.9 282 |
2 12.6 | -8.8 | 25.9 | 30.1 |{ 10.3 | -6.7 | 21.0 5.8 19.3
3 55 | -6.6 |16.8 | 189 | 6.8 | -8.0 | 20.9 4.6 24.2
4 -1.5 | -5.1 | 10.8 | 12.0 || -2.3 | -8.0 | 16.3 6.3 52.3
5 49| -73 |21.1|229{ -56 | -8.3 | 23.3 2.5 11.0
6 20 | -6.8 |17.5| 189 || 1.7 | -7.5 | 19.0 1.6 8.7
7 1.0 | -6.2 | 533.5|53.8 | 0.3 | -2.7 | 24.3 29.3 54.5
8 -0.2 | -84 |25.3|26.61| -0.4|-11.4| 33.2 8.5 31.9
9 13.0 | -8.7 | 36.0 | 39.2 || 74.0 | -48.8 | 208.4 | 187.2 477.1
10 3.2 | -89 | 328342 07| -15| 64 27.6 80.7
L 11] 22.3 | -12.4 | 39.3 | 46.9 | 36.6 | -18.6 | 64.2 29.3 62.6
C LT T T T T T T Twwrms

3

3 1

B

1

—3 —3 —3 —3 —3

125

Table 4.17: Rocket-Field: Obtaining Blind Average (Frame 9) results from Trans-
formed Blind Average (from Frame 8). All values are in meters.

Point | Transformed Blind Av. Result Blind Av. (Frame 9)
no. | X | Y Z X [Y [Z [Error | % Error
T 1 10.5 | -6.3 16.9 10.1(-6.1 | 1631 0.8 4.0
2 12.5] -8.1 25.0 122 | -7.9 | 24,5 1.7 5.7
3 4.2 | -4.7 11.9 4.5 | -5.1 | 13.0 4.2 22.0
4 -1.7 | -5.5 11.5 -1.8 | -5.8 | 12.1 1.5 12.7
5 -6.1 | -9.1 25.5 -6.0 | -9.0 | 25.3 4.6 20.3
6 1.1 | -4.8 11.9 1.2 | -5.2 | 12.8 3.1 26.8
T 0.2 | -2.9 27.4 0.2 | -29 |27.1 26.6 49.5
8 -0.4 | -5.5 15.7 -04 | 62 |17.9 7.8 29.1
9 11.0 -6.9 29.8 18.9 | -12.1 | 52.1 17.5 44.6
10 14 | -2.9 12.7 1.3 | -2.7 | 11.9 21.9 64.0
I 11 1 21.2|-10.8 36.6 23.1(-11.7140.11 1.3 2.7
| _ | MEAN: | 258 |

In order to obtain the blind average at frame 9, the blind average 3D model
from frame 8 is first transformed to the camera coordinate system in frame 9 (cf.
Equation 4.2). The result of this transformation is provided in Table 4.17. The
transformed blind average model is then averaged with the two—frame model at frame
9 (cf. Equation 4.1). The final result is shown in Table 4.17. Although the two—frame
model has large errors in several points, the total impact of these points on the blind
average made up of 11 points is diffused. Consider Point 9 which has the highest
error in the two-frame model (Table 4.16), especially its Z coordinate (208.4 m as
opposed to the ground truth 36.0 m). However, in the transformed blind average,
the Z coordinate at frame 9 (Table 4.17) is 29.8 m, which means that the point is
estimated to be closer to the camera than it actually is (36.0 m). This indicates

that the previous two-frame models have had a low value of the Z coordinate, on an

126

average. That is, seven previous models “vote” (on an average) for the value 29.8 m
whereas one two—frame value “votes” for 208.4 m. The resulting Z value js 1x22.8+208.4
m, or 52.1 m (cf. Table 4.17, Point number 9, the second Z column) is a result; the
computed error for point 9 is 44.6%, which is much smaller than might be expected
since the resulting average Z value is closer to the ground truth due to the alignment
of points as shown in Figure 4.10. The effect of this value on the mean percentage
error of the model is further diluted by the more accurate points (e.g. 1, 2, and 11).
Note that the example we considered is for the Z coordinate, but it holds also for all
coordinates across all points.

The results of the CC-based algorithm are clearly the best in this experiment,
although its standard deviation is comparable to that of the other two multi-frame
algorithms as shown in Figure 4.8. The mean error monotonically decreases and has
a final value of 11% (standard deviation 14.9%), which is about half the final error
of the other algorithms. Note that there is a decreasing trend in the mean error even
at the eleventh frame, although the rate of decrease is slowing down.

Although the CC-based algorithm does considerably better than the other algo-
rithms, the 11% error is high compared to the two indoor sequences reported. The
crucial difference between this sequence and the previous ones is that the input to the
CC-based algorithm (i.e., the two—frame models) is much more corrupt. In addition,
it should be kept in mind in evaluating these results that the accuracy of the ground
truth measurements is not known for this sequence, due to the difficulties in collecting
data from outdoor environments. Another problem specific to this sequence is that
the location of the center of the camera was not provided in [24]. Nevertheless, al-
though the average error in the final 3D model obtained by the CC-based algorithm
is high, Table 4.18 reveals that most of the error is due to two points (7 and 10).

These points are the two points closest to the FOE, the top of the telephone pole in

—3 ~—a —3a T3 73 3

3 3

~3 3 3

127

| ZAXIS (in m)

208.4m @ Current 2Fr (A)

*
52.1m@ Resut (-2LLB.)
36.0m Ground Truth

29.2m Moved Previous Average (B)

Camera Position
(Frame 9)

Figure 4.10: Rocket-Field Sequence: Resulting Z coordinate of point 9 after blind
averaging. Note that the average Z coordinate of the first seven 3D models is 29.2 m
which is closer to the camera than where the point actually is (36.0 m). Although
the Z coordinate in the next 3D model is 208.4 m, the final averaged result is only
52.1 m.

128

Table 4.18: Rocket-Field Sequence Final Frame: Ground Truth, CC-based 3D Model,
and CC-based 3D Model Error. All values are in meters. Error represents the distance
from a point in the CC-based model to where it should have been (i.e. ground truth).
The dashes indicate unavailable data. Note that although the CC-based algorithm
has a mean error of 11.0, the two highly erroneous points (7 and 10) skew this result.

" Point || Truth (Frame 11) || CC-based (Frame 11) | Error | True | Error |
no. XY [Z XY Z (meter) | Dist (%)
1 [104 -6.4 | 15.1 10.5] -6.0 15.4 0.5 10.4 2.6
2 [12.6] -85 | 2421 12.3]| -7.7 23.4 1.2 28.5 4.1
3 55 | -6.2 | 15.0] 5.5 | -6.0 14.9 0.3 17.2 1.8
4 [[-15] 4717901 -15] -4.9 9.3 0.4 10.3 3.6

5 [[-49]-70 |19.4] -5.5| -7.6 20.9 1.7 21.2 8.1 |
6 2.0 | -6.5 [15.8] 1.6 | -6.4 15.6 0.4 17.2 2.5

7 1.0 | -6.0 | 51.7]| 0.4 | -2.7 | 27.8 24.2 52.1 | 46.5 |

8 [-027-817235]-041]-84] 243 | 038 24.9 3.2 1

9 13.0 -8.4 1342 12.1] -7.4 321 | 2.5 37.6 8.7

10 |33 -86 3111 24| -47 1 209 | 110 32.4 | 33.9 |
11 [22.3]-12.1 (376 20.8]-10.1 | 34.6 3.9 45.3 8.5
12 - - - || 7.8 1 -12 31.6 - - -
13 - - -~ |[10.6 | -6.6 15.5 - - -
14 - - - 126 -84 | 239 - -~ -
15 - - - | 5.2 | -6.4 14.5 - - -
16 - - - | -3.2] -7.8 19.7 - - -
17 - - - 1571 -6.4 14.3 - - -
18 - - - [191 -6.3 14.2 - - -
19 - - - [20 -6.0 14.6 - - -
20 - - - | 2.8 -82 25.1 - - -
21 - - - || 5.3 | -6.5 28.9 - - =
22 - - - | 20.6-11.0| 36.6 - - -
| MEAN | 11.0

—3 _13

—3 3

3 3

N

3

R

—a 3

1

129

the middle of the picture (point 7) and the corner of the low building in front of the
pole (cf. Figure 4.7). Furthermore, the top of the pole is the furthest tracked point.
Without these two points the average error is 4.6% as opposed to 11.0% for all the
11 points with ground truth.

The three experiments discussed indiéate that the CC-based algorithm which
takes into account the cross—correlation of the error between pairs of 3D points is

consistently superior to the algorithms that ignore these cross—correlation terms.

4.8 Application to Robot Navigation

The aim of the two experiments in the remainder of this chapter is to demonstrate
the usefulness of the CC-based algorithm for the problem of position estimation in
the context of autonomous navigation. One of the goals of the UMass Unmanned
Ground Vehicle (cf. Chapter 1) is to keep track of its position with respect to a set
of known and modeled landmarks in the world. Estimating a robot’s position using
vision—-based techniques has traditionally employed a 3D model of the scene and a 2D
view (image) of the environment from the current position of the robot. Although
several techniques have been developed that determine the robot’s position (or so-
called ezierior orientation or pose estimation [41], [56] [58] [52]), these techniques
require either a fairly accurate 3D model or a reliable estimate of the model noise
in case the 3D model is noisy. Since it is difficult to automatically obtain accurate
3D models of unconstrained environments, or to reliably estimate the error in noisy

models, in previous work the 3D models have been constructed manually.

In recent work, Kumar and Hanson [53] have combined Sawhney’s automatic
determination of shallow structure [78] (frontal-planar surface representation) to serve
as an initial model acquisition algorithm, followed by the pose estimation algorithm

developed by Kumar [52] for model extension of newly tracked points. Although

130

the resulting algorithm is applicable to many environments, it requires frontal-planar
objects for the initial model acquisition step, and therefore non—shallow surfaces must
be distant. The CC-based algorithm is proposed here as an alternative for the model
acquisition step, since it does not impose any such constraints on the environment
and can work for arbitrary camera motions. Moreover, the 3D model obtained by the
CC-based algorithm provides a covariance matrix that reliably represents the noise
in the model, which is directly useful for Kumar’s position estimation algorithm - the
only reported position estimation algorithm that can utilize noise estimates in the 3D
model.

The following two experiments are reported to provide empirical evidence for the
plausibility of coupling the CC-based algorithm with Kumar’s position estimation
algorithm. The first experiment is a simulation and the second experiment involves
real imagery obtained from a moving robot.

The experiments consist. of two stages. In the initial bootsirapping phase (the
model acquisition stage) the robot is moved to various positions and it obtains an im-
age from each position. Using the sequence of images, a 3D model of the environment
is constructed by the CC-based algorithm. In the second phase the robot continues
to move, while keeping track of its position with respect to the acquired 3D model.

Kumar’s algorithm determines the robot’s rotation and translation with respect
to the origin of the coordinate system of the 3D model. In order to determine the
robot motion, the 3D model and the 2D image measurements are related through an
unknown coordinate transform (of rotation and translation) and a known perspective
projection transform (of the camera). The problem of determining the robot pose
is then cast as an optimization problem in terms of the 3D model coordinates and
the corresponding 2D image coordinates; solutions typically involve robust non-linear

optimization techniques. For further details see Kumar [52].

3 3 3

3 __3

—3a ~—3 T3 " 3

131

The CC-based algorithm generates the entire covariance matrix consisting of 9n2
elements to represent the error in the 3D model. However, Kumar’s algorithm uses
only 9n terms. This discrepancy does not affect the coupling of the two algorithms,
however, for the following reasons. The effect of the cross-correlations has already
been taken into account in deriving the 3D model. Assuming that the 3D model is
accurate, Kumar’s algorithm does not require the cross—correlations. In fact, Kumar
(cf. Chapter 4 of [52]) points out that he has ignored the cross—correlations because
the noise in the 3D model is assumed to be small, which holds in this case due to
accuracy of the CC-based algorithm (at least for the indoor sequences). Kumar also
states that if the noise in the 3D model were large, it may not be possible to ignore

the effects of the cross—correlations even in the position estimation algorithm.

4.7 Experiment IV: Simulated Model Acquisition and Model-Based Nav-

igation

The first experiment is a synthetic experiment that involves determining the po-

sition of the robot outside the Computer Science building at UMass.

4.7.1 Simulating the Image Sequences

In order to obtain the image sequence for the CC-based algorithm, a simulated
robot was moved along the perimeter of a circle (6 feet in radius) with the robot’s
simulated camera aimed approximately at the building about 130 feet away. Figure
4.11 shows a wire—frame model of the building. This model consists of 30 points which
are corners of walls, stairwells, and a cooling tank (at the top right-hand corner of the
building). The points have been connected into faces in order to facilitate visualizing
the model. An image was synthesized for the 30 points at each position of the robot

using the simulated parameters of the camera. The camera parameters were: 70°

3

132

3

3

I |

-3

1

1

Figure 4.11: Simulated Model Acquisition and Model-Based Navigation: True 3D
Model of Building consisting of walls, stairwells, and a cooling tank (at the top
right-hand corner of the building). This wire—frame model of the building is based

on ground truth. The 30 corner points have been connected into faces in order to
facilitate visualizing the model.

3

1

133

FOV, 512 x 512 pixel image size, and focal length 15.24mm. In order to simulate
a realistic image sequence, random noise was added to each image. The noise was
Gaussian, with zero mean and a standard deviation ¢ of 0.32 pixels, and bounded to
a maximum value of 2¢.° Such noise with its bound is comparable to the tracking
errors in real image sequences.

For the second phase of this experiment - position estimation — a second simulated
image sequence was synthesized. In this phase the simulated robot was moved 27 ft
towards the building in steps of 3 ft. The robot was rotated about its vertical axis
with alternating rotations of —1°,0°, and 1.0°. Again, at each position a synthetic
image was obtained and the same amount of Gaussian noise was added as in the first

sequence.

4.7.2 Acquiring the 3D Model

At the bootstrapping model acquisition stage of the experiment, the CC-based
algorithm was applied to the first simulated image sequence. The error in the 3D
model was calculated as a percentage of the actual distance, as in Experiments II
and III. Figure 4.12 shows the mean error and standard deviation of the 3D model
acquired by the bootstrapping stage at each position. The final model is accurate to
3.35% (standard deviation 2.52%). That is, in the final model the average error is
6.1ft for 30 points between 149 and 290 ft from the robot. The graphs in Figure 4.12
show how drastically Two~Frame SFM can fluctuate; even the CC-based algorithm
is affected by the very erroneous (39% error) two—frame model at frame 14. However,
the CC-based algorithm is able to recover from the effect of this frame. The graphs
also bring out the output characteristic of the CC~based algorithm over a longer

sequence of images than those considered in the real-world sequences of Experiments

5The Gaussian noise was bounded to prevent the occurrence of outliers (theoretically involving
infinitely large values of noise) which otherwise arise from the shape of the Gaussian distribution.

MEAN ERROR (%)

STANDARD DEVIATION (%)

20

-
[¢)]

-
o

¥ ¥

2fr —-—
CC-based -~+--

10 15
FRAME NUMBER

20 25

134

(a) Mean percentage error. Values not shown: 39% (fr 14) & 30%

20

15

T

!

2fr ——
CC-based -—----

?

10 15
FRAME NUMBER

20 25

(b) Standard deviation. Value not shown: 49% (fr 14)
Figure 4.12: Simulated Model Acquisition Experiment: Results of the acquired model.

3 3 __ 13 .3y _3 _ 3 .4 _3 _3 i1_3

3

-3 __3

S

135

I-III. Over long sequences, the behaviour of the CC-based algorithm is akin to a
properly functioning filter, i.e. the algorithm takes as input information with high
fluctuations of error and produces as output filtered information with more uniform

(lower) error.

4.7.3 Determining the Position of the Robot

Recall that the purpose of this part of the experiment is to demonstrate that the
3D models a.cquired by the CC-based algorithm are sufficiently accurate to use for
pose recovery. In this stage of the experiment, the 3D model and its error covariance
matrix were employed by the pose determination algorithm to compare the current
image with the 3D model. This enabled the algorithm to determine the robot’s
position along the path in the second simulated sequence.

Table 4.19 provides the results of the pose determination algorithm using the
model acquired by the CC-based algorithm. These results are also depicted as the
top view of the path that the robot “thinks” it took in Figure 4.13. This recovered
path is compared against the actual path used to generate the second simulated image
sequence. The comparison reveals that the robot’s movement was recovered within an
accuracy of 1.7 feet throughout the robot’s path. After 27 feet of motion the robot’s
recovered final position had an error of 10.7 inches; this corresponds to an error of

3.3% of the total distance travelled, given a CC-based 3D model with 3.4% error.

4.8 Experiment V: Real Model Acquisition and Model-Based Navigation

4.8.1 The Image Sequence

This experiment involves the same real image sequence as used in Experiment II,

consisting of 10 images obtained by a robot moving in the lobby of the Computer

Table 4.19: Simulated Model Acquisition and Model-Based Navigation: Ground
truth (first row) and recovered pose (second row) using the CC-based model at each
frame of the second stage of the experiment.

(in feet), (Rs, Ry,

(T%, T, T;) denotes the translation
R.) denotes the rotation axis and § denotes the rotation angle in

degrees.
| Frame | R, Ry ﬂm_-_l
[1 0.0

i 1-0.385 0.89 -0.253 -0_._11 1.48 -0.074 -0.7062
I 2 7 00 [1.0 [00 [-1.0] 00 | 00 3.0
~17-0.013] 1.0 [-0.033 -1.18 | 1.19 | -0.067 | 2.174

3 [00 | 1.0 | 00 | 1.0 || 0.0 0.0 6.0
-0.07 [0.997] 0.034 [0.79 || 1.06 | 0.18 | 5.328
[¢] 00 [10] 00 j 00| 00 | 0.0 9.0 |
100137 1.0 [-0.019 {-0.31] 0.88 | 0.01 | 8.453 |
T 5 00 1 1.0 7 00 [1.0] 00 [00 | 120 |
I | 0.089 [0.996 [0.002 | 0.65 | 0.76 | -0.133 | 11.56 |
[6 0.0 | 1.0 | 00 | -1.0 | 0.0 0.0 15.0
] -0.001 [1.0 [-0.004 [-1.49 | 0.29 [0.08 | 14.56
[7 00 [1.0] 00 [0.0] 00] 0.0 | 18.0 |
-0.153 | 0.99 [-0.031[-0.36 | 0.54 |-0.235 | 17.20

[8 T o0 [T 10 00 [-1.0] 00 | 00 | 210
|| -0.025 10 [-0.027 [-1.44]| 0.38 [-0.098 | 20.39 |

9 | 0.0 00] 1.0] 00 | 0.0 | 24.0
[-0.75 0658 0075 | 0.658 | 0.075 [0.64 [[-0.160 | 1.34 | 22.96

10] 0.0 | 1.0 | 00 | 0.0 0.0 0.0 27.0
-0.229 0.97 -0.099 -0.4 | 0.60 [-0.255 | 26.63 |

Z-AXIS (feet)

137

T T T

TRUE PATH ——

30 RECOVERED PATH —— 1

25

20

15

10 ¢

4 40 -5 0 5 10 15
X-AXIS (feet)

Figure 4.13: Simulated Model-Based Navigation: Results showing top view of the
true path and the recovered path

138

Science Department at UMass (cf. Figure 4.4). The goal of this experiment was to
determine the position of the robot as it moved across the lobby, using a 3D model
acquired by the CC-based algorithm. As in the previous experiment, there are two
parts to the experiment: (i) acquiring the 3D model (bootstrapping stage) and (ii)
position estimation (Kumar’s algorithm [52]).

Since the experiment consists of two parts, two different image sequences would
ideally be required. In the previous experiment simulating two different sequences
was straightforward. However, in this real image experiment, we only had access to
one image sequence consisting of ten images. Due to this constraint half the sequence
was used for each stage of the experiment. This situation is comparable to a typical
scenario with a vehicle moving directly ahead on a road. In a such a situation the
vehicle could acquire a model as it moves, and then monitor its position with respect

to the acquired model while continuing to move along the same direction.

4.8.2 Acquiring the 3D Model

The 3D model obtained by the CC-based algorithm in Experiment II at the sixth
frame constitutes the final model of the model acquisition stage. This model has an
accuracy of 3.3% (standard deviation 2.2%), as was shown in Table 4.9. This model

consists of 29 points which are corners of walls, doors, posters and obstacles in the

lobby.

4.8.3 Determining the Position of the Robot

In the second stage of the experiment, the acquired 3D model is applied to the
task of position estimation. With respect to this 3D model, the position of the robot
as it moves forward from the sixth frame is determined using the image from each

remaining location of the sequence. The resulting positions and orientations of the

: 3

]

3 3 _1 _3 _ S

h—%!—“ar‘—"?

Z

139

Table 4.20: Lobby Sequence: Ground truth (first row) and recovered pose (sec-
ond row) using the CC-based model. (T, Ty, T.) denotes the translation (in feet),
(Rz, Ry, R.) denotes the rotation axis and & denotes the rotation angle in degrees.

6 [083]0.42]0.36]0.35]0.07]-012]0.08
0.38 [0.8 |-0.46 | 0.04 || 0.02] -0.01 | 0.06 |

7 0.64 | -0.76 [-0.12 [0.48 [0.07 [-0.10 | 1.50 |
|][-0.08-0.93-0.36 | 0.44 [| 0.05 | 0.04 | 1.46
[8 ||-0.13]-0.98[-0.17 [0.88 [0.08 | -0.04 | 2.93
[-0.33]-0.90 [-0.287] 1.05 [0.04 [0.05 | 2.92

9 0.01 [-1.00 [0.09 [1.32] 0.09 [-0.02 | 4.35

| -0.24 [-0.97 [0.01 | 1.42 0.05 | 0.13 | 4.31
T 10 0.29 | -0.93 | 0.22 | 1.94 || 0.09 | -0.03 ; 5.75
0.11 | -0.98 | 0.17 | 1.93 || 0.05 | 0.12 | 5.73

robot as determined based on the acquired 3D model and Kumar’s pose estimation
algorithm are given in Table 4.20. Figure 4.14 depicts the top view of the actual path
of the robot (i.e. the ground truth) as well as the recovered path. Along the 5.8-foot
path of the robot (from frame 6 until frame 10), the error in each recovered robot
position lies between 1.1 inches and 1.7 inches. This error corresponds to a deviation
of 1.6% - 2.4% of the total distance travelled; at the final position the error is 1.4
inches (2.0%).

4.9 Conclusion

The first three experiments involving different real world situations clearly es-

tablish that the Two-Frame Structure from Motion algorithm suffers from erratic

Z-AXIS

140

8 -
: TRUE PATH ——
7r RECOVERED PATH -—— -
6} T]
S5t]
4 L > .
3 " 'qb -
2 i -
;»
1]
0
-1

Figure 4.14: Model-Based Navigation in the Lobby: Results showing top view of the
true path and the recovered path.

A

3 3 _% .2

I

141

behavior. In contrast, the other three multi—frame algorithms considered behave in a
more consistent manner, as is expected when a fusing several two—frame models.

Of the three multi-frame algorithms, the Blind Averaging algorithm maintains
a non-weighted average of the two—frame models, while the other two algorithms
involve weighted averaging. The standard KF algorithm corresponds to the most
advanced previously reported incremental MFSFM algorithm (cf. Chapter 2). Ex-
periments I-III demonstrate that the incomplete weights employed in the standard
Kalman Filtering algorithm do not lead to significantly better results than using equal
weights: in Experiments I and II, Blind Averaging does better than Standard KF,
while in Experiment III their results are comparable. The set of weights employed in
the cross—correlation—based algorithm, on the other hand, consistently produced im-
proved performance both in terms of overall accuracy and in terms of the incremental
increase in accuracy as new semsory data is incorporated. The final error obtained
by the most accurate of the other two multi-frame algorithms is 2-3 times the final

error in the 3D model acquired by the CC-based algorithm: the CC-based algorithm

consistently outperforms the standard Kalman Filtering algorithm which only uses

the diagonal band of the covariance matrix. Since the cross—correlations record the
error in the 3D model arising from incorrectly estimated camera motion, the main
conclusion to be drawn from these experiments is that taking this error into account
1s critical.

The last two experiments indicate that the 3D model acquired by the CC-based
algorithm can be successfully applied in a practical task of determining the robot’s
location in its environment. As the results of experiments IV and V show, the robot’s
position all along its path was estimated quite accurately. The practical applicability
of the algorithm will be further considered in Chapter 5 with respect to computational

complexity.

CHAPTER 5

COMPUTATIONAL ISSUES

5.1 Introduction

In Chapters 3 and 4, the role of cross—correlations has been illustrated both the-
oretically and experimentally. In particular, the superiority of the cross—correiation—
based algorithm over a standard Kalman Filtering algorithm has been established in
the experiments reported in Chapter 4. However, in using the full covariance matrix,
the CC-based algorithm deals with significantly more information than the standard
KF algorithm, which uses only a subset of the covariance matrix. Therefore an ex-
pected practical consequence of using cross—correlations to improve accuracy is an
increase in computational expense.

In this chapter the components of the CC-based algorithm will be analyzed in
terms of their required run time, and methods for reducing computational complexity
will be considered, along with preliminary experiments. The full running time has
been recorded for a LISP implementation, while a partial record has been obtained for
the ongoing C implementation (from which the total running time will be estimated).
As might be expected, dropping cross—correlations to reduce running time has an
adverse effect on accuracy. An alternative approach to reducing running time without
compromising accuracy would be to divide the model into subparts and apply the

CC-based algorithm on each part.

142

— 3

N

3

S B

143

5.2 Time Complexity of the Components

A complexity analysis of the main components of the CC-based algorithm will
be provided in this section. Such an analysis pfedicts theoretically the relationship
between the expected running time of each component as a function of the number of
points in the 3D model. Following the complexity analysis, the actual running times
are reported for a particular experiment (consisting of 22 points) using the current
implementation of the algorithm in LISP on a TI Explorer;® the times conform to the
predictions made by the complexity analysis.

Figure 3.1 depicts the various components of the CC-based algorithm and the
steps of the aigorithm are given in Section 3.1.1. At each iteration a two-frame
model of the environment is reconstructed (Step 2 in Section 3.1.1), the full 3D error
(direct plus indirect error) of the model is computed (Step 3), and the two-frame
model is fused with the previous multi-frame 3D model (transformed to the current
camera position; Steps 4 and 3). Let us now turn to the computational compiexity

analysis of each of these main components.

5.2.1 Theoretical Complexity

For a 3D model consisting of n points, the two—frame algorithm is of O(en) time
complexity, where c is the number of iterations that the two—frame algorithm requires
to converge. The linear term n arises from the fact that the 2D (image) coordinates
of each point independently contribute to calculating both the camera motion (cf.
Equation 3.10) and the 3D location of the point.

Computing the full 3D error of the two—frame model - i.e., the full covariance

matrix - is of complexity O(n?), reflecting the number of elements in the covariance

L A faster C implementation is underway; initial tests indicate that an order of magnitude speedup
can be obtained in C over LISP for at least a major time consuming part of the algorithm. See
Section 5.3.1 for details.

144

matrix, O(n?), times the computation involved in each element of the matrix, O(n).
Every element of the matrix is again calculated based on the 2D image coordinates
of all points; if any image coordinate changes, this affects the camera motion, which
in turn affects every element of the matrix. The O(n®) time complexity is directly
derivable from the matrix formulation. The full covariance matrix involves computing
(%Vv- +4 o (LY + 48)T (cf. Equations 3.51-3.52). The term (4 oMy is
of size (3n x 4n); multiplication of this term and its transpose is of time complexity
O(n®).

In order for fusion to take place, the previously obtained multi-frame model and
its error estimate are transformed to the current camera position. Transforming the
previous model is of O(n) complexity, since each point is independently rotated and
translated to the new coordinate system. Transforming the covariance matrix is of
O(n?) complexity, because a finite operation (cf. Equation 3.57) is performed on every
one of the n? elements of the matrix. Finally, the fusion component is of complexity
O(n®). Recall that fusion in Kalman Filtering involves weighting each 3D model that
is fused by the inverse of its covariance matrix (cf. Equations 3.58-3.59). Computing
the inverse of a matrix using standard methods [75] is of complexity O(n?).

Thus, apart from the unpredictable convergence time of the two—frame algorithm
(the term ¢ above), the complexity analysis predicts that determining the covariance
matrix and fusing the models take the longest time to run, while the transformation

component should be faster.

5.2.2 Actual Running Times

The LISP implementation allowed rapid development and modifications while the
algorithm was being explored, and it now is being ported to C for an efficient run-time
implementation. Let us consider the actual running time of each of these components

using a LISP version of the CC-based algorithm running on a TI Explorer. As a test

_1

—3

S

]

-3 _ 32

3 3 3 __2

1

3 __3

!

2 1

145

Table 5.1: Running time for the four main components of the CC-based algorithm in
the case of the Rocket-Field Sequence. The theoretically time complexity is indicated
for convenience. The last column is the sum of the times for the four components
Plus a small overhead. The high value of 3D Error time for frames 10-11 is clearly
an outlier, and possibly due to an unusual overhead from memory paging.

Frame || Two-Frame | 3D Error | Transformation | Fusion || _ Total
No. O(en) O(n?) O(n?) O(n?) || O(n® + cn)
. sec sec sec sec sec
1-2 5.6 341 3.6 39.4 84.6
2-3 7.5 35.8 54 40.0 90.2
34 7.6 37.9 6.5 39.1 92.6
4-5 11.7 36.6 4.0 40.2 94.0
5-6 7.3 | 36.3 4.9 41.2 91.5 !
6-7 6.8 37.0 7.4 40.9 95.3 i
7-8 29.3 39.9 4.3 41.8 119.1
8-9 12.0 30.5 4.3 36.7 87.0
9-10 5.3 28.8 3.8 37.3 76.4
;ﬂ_ll 3.1 68.6 ~] 38.5 120.3
[AVG] 96 T 386 | 138 395 | 951 |

case the Rocket-Field Sequence (Experiment III in Chapter 4) was employed. Recall
that the experiment consists of 22 tracked points across 11 images. The running times
were recorded for each of the 10 iterations and are shown in Table 5.1.

In accordance with the complexity analysis, the average time required to compute
the 3D error is comparable to the average time taken by the fusion component (38.6
and 39.5 seconds respectively); both of these components are theoretically O(n®)
time complexity. For this case involving 22 points, the transformation time (O(n?))
corresponds to an average time of only 4.8 seconds. The large fluctuations in the

two—frame component (3.1 seconds - 29.3 seconds) are a result of the variability in

146

the search space involved in solving for the interframe camera motion, corresponding
to the unpredictable term c¢ discussed earlier (cf. Section 5.2.1).

In this section we have considered the computational complexity of the main
components of the CC-based algorithm both theoretically and in terms of a specific
implementation. The total time for one iteration of the CC-based algorithm is 95.1
seconds in this LISP implementation. Although a much faster implementation in C on
a Silicon Graphics machine is underway (between one and two orders of magnitude
speedup) it is worth considering whether the running time per iteration could be

reduced without sacrificing accuracy; this is the topic of the following sections.

5.3 Reducing Running Time

The two most time-consuming components of the CC-based algorithm are the
estimation of the 3D error covariance and the fusion (Kalman Filtering) module, as
was shown in Table 5.1. Recall that these two components are of time complexity
O(n®). Such high complexity is a direct function of the number of cross-correlations
used in the CC-based algorithm. Without cross—correlations (as in the standard KF
algorithm), both components would be of time complexity O(n). Since the majority
of the terms in the covariance matrix representing the 3D error are cross—correlations,
ignoring cross—correlations would directly reduce the time to compute the elements
of the covariance matrix. Similarly, dropping cross—correlations may speed up fusion;
this is because most of the time taken by the fusion component involves inverting
covariance matrices, and matrix inversion is typically faster with sparser matrices.

In this section we will consider the effect of dropping cross—correlations on the
running time of the algorithm and on the accuracy of the 3D models. The results

discussed here indicate that reducing the number of cross—correlations to a point

— 3

-5 3]

8

3

1

B T

147

where a significant speedup is achieved has an adverse effect on the performance of

the algorithm.

5.3.1 Effect of Reducing Cross—correlations on Running Time

In order to study the effect of dropping cross—correlations on running time, we
consider one of the two most time-consuming components of the CC-based algo-
rithm, the fusion component. As shown in Table 5.1 fusion takes an average of 39.5
seconds/iteration. However, it turns out that most of this time is taken up by matrix
inversion. In fact, under the current LISP implementation it takes an average of
12.7 seconds to invert the covariance matrix for the Rocket-Field Sequence: 3 such
inversions are required for each instance of fusion (cf. Equations 3.58-3.59), there-
fore approximately 96% of the 39.5 seconds required by the fusion component. Since
matrix inversion takes up almost all the time of the fusion component, we will con-
centrate on the time taken for matrix inversion when cross—correlations are dropped.
In this section we report an experiment on matrix inversion times which is imple-
mented in C on a Silicon Graphics machine (SGI).? Although running the experiment
with a LISP implementation would enable a direct comparison with Table 5.1, the C
implementation was chosen because it provides a first approximation to the compu-
tational performance of the CC-based algorithm on a fast machine such as the SGI.
The results will be extrapolated to the total running time of the algorithm.

Although matrix inversion time may be reduced by dropping cross—correlations,
for any particular matrix inversion algorithm a reduction of time can only be achieved
if cross—correlations are omitted systematically such that the matrix can be par-
titioned in a meaningful way. Partitioning the matrix into submatrices makes it

possible to determine the inverse of the matrix by combining the inverses of smaller

2The specifications of this particular SGI are: Silicon Graphics Power Series 340 GTX with four
R 3000, 25 MIPS processors.

148

submatrices. If any submatrix is empty or only filled along the diagonal, it directly re-
duces the computational time of combining the submatrices [75]. However, unless the
dropped cross—correlations give rise to such a submatrix, omitting cross—correlations
does not — at least in any obvious way - result in reduced computational time.

One systematic way to drop cross—correlations in the CC-based algorithm is
shown in Figure 5.1, for 22 3D points (a 66 x 66 matrix). In Figure 5.1(a) the
small squares along the diagonal represent the 3 x 3 matrices of the 22 points; these
are the only terms used in standard Kalman Filtering. The white area represents
the dropped cross—correlations corresponding to 11 of the 22 points; the remaining
cross—correlations are depicted by the dark area. Henceforth, we will refer to the
proportion of rows/columns® with dropped cross—correlations to the total number of
rows/columns in the covariance matrix as the degree of dropped cross—correlations.
For example, in Figure 5.1(a) the degree of dropped cross—correlations is 50%. Note

that this is not equivalent to a situation where 50% of the total number of cross—

correlation entries have been dropped. The degree of dropped cross—correlations is
directly related to the number of points whose cross—correlations have been dropped;
in Figure 5.1 (a) the mutual cross—correlations of 50% of the points (i.e. 11 out of 22
points) have been dropped.*

Figure 5.1(b) provides a partitioning of this matrix into four submatrices (P, Q,
R, S). Equations 5.1-5.3 (adapted from [75]) show how the original covariance matrix

(C) can be inverted in terms of these smaller submatrices.

c=(§ g) (5.1)

3Since the covariance matrix is by definition symmetric, the rows and columns are equivalent.

‘A different way to drop cross—correlations would be to drop all cross—correlations between a
subset of points and all the points in the covariance matrix. This turns out to be equivalent to
dividing the 3D model into two separate parts, one part having no cross—correlations (as in the
standard KF algorithm) and the other part maintaining a full covariance matrix (as in the CC-
based algorithm). This possibility will not be pursued here.

—3 _3

1Y 19 -5 3 __3

-

1

-3 _3 3 _3

— 3 _13

A A SRR 149
11 Points
22 Points '
X TR S
B
v $L o o

(a) The dropped and used cross-correlations

'S T
11 Points i, Q
22 Points | = e
R 'S,
v i.:'...

(b) The four submatrices P, Q, R and S.

Figure 5.1: Partitioning the Covariance Matrix into submatrices for fast matrix inver-
sion. In (a) the white area represents the dropped cross—correlations corresponding
to 11 of the 22 points; the remaining cross—correlations are depicted by the dark area.
(b) shows how the covariance matrix is partitioned into the submatrices P, Q, R, and
S (cf. Equations 5.1-5.3).

150
=(5 ¢ (5.2
where
§' = (5- RP™Q)™
R = -S'RP!
@'=-P-igs’
P'= Pl - Q'RP™
(5.3)

Of the four submatrices, P is the only one that is inverted directly. Owing to its
structure, inverting P is very straightforward and involves simply inverting each of
the small submatrices along the diagonal of P. In this case, ignoring cross—correlations
gives rise to a situation with a banded-diagonal matrix, the inverse of which is of time
complexity O(n); this reflects the fixed inversion time of each of the n 3 x 3 matrices
along the diagonal band. The remaining calculations in Equation 5.3, which involve
the three other submatrices in Figure 5.1(b), are all computationally less complex

than inverting the original matrix.

It is relatively straightforward to determine the computational complexity of in-
verting the entire covariance matrix using Equation 5.3, for a sample case where the
degree of dropped cross—correlations is 50% (as in Fig 5.1(a)). There are only two
unique matrix inversions, P~! and (S — RP~Q)~!, both of which occur in the com-
putation of S’. P~! takes negligible time, with time complexity O(n/2),® since n has
been reduced by 50%. The second inversion takes O((n/2)?), which is one eighth of

the time required to invert the full covariance matrix O(n?).

In addition to the two inversions, Equation 5.3 involves matrix multiplication and

summation. The computational complexity of matrix summation is O(n/2), requiring

$Owing to a lack of better terminology we use O(n/2) (and similar terms) to explain the achieved
specdup, although theoreticaily O(n/2) means the same as O(n).

3

U I B

3

3

-

151

negligible time. In general, matrix multiplication is of time complexity (O(n?)). Each
of the operations in Equation 5.3 consists of multiplying three matrices, one of which
is P~'. Multiplying with P~! is O(n/2) complexity, since P~! is a matrix with n/2
submatrices of size 3 x 3 along the diagonal. Finally, multiplying the remaining two
matrices with each other (as in RP~!Q) is of time complexity O((n/2)?). There
are four such multiplications in Equation 3.3, resulting in a total time complexity for
multiplication of O(n®/2). Combining the time complexity of the various operations in
Equation 5.3 results in a total time complexity of O(5n3/8), for the case of 50% degree
of dropped cross—correlations. This is a combination of the complexity of inversion,
O((n/2)%), and of multiplication, O(n%/2).® This complexity analysis reveals that
when the degree of dropped cross—correlations is 50%, the computational time is
expected to be reduced by 37.5% (i.e. 3/8). This means that an entire iteration of
the CC-based algorithm may be speed up by at most 10-25%.

Figure 5.2 plots the time (in seconds) taken to invert matrices of the type shown
in Figure 5.1(a), using Equation 5.3; the average over 10 runs is reported. Matrices
of four different sizes were tested: 30 x 30, 48 x 48, 66 x 66 and 84 x 84. The inversion
routine was written in C and run on the SGI. The X-axis encodes the degree of
dropped cross—correlations. The 0% case corresponds to the CC-based algorithm
and the 100% case to the standard KF algorithm.

As can be seen in Figure 5.2, a significant reduction in time for matrix inversion,
is obtained only if the majority of the cross—correlations are dropped. For example,
for the case of the 66 x 66 matrix, if the degree of dropped cross—correlations is 50% or
less, this has little effect on computational time (for inversion). In fact, for the 50%-
case the reduction is smaller than what is predicted by the theoretical complexity

analysis. Based on the 37.5% predicted speedup we would expect a decrease from

6Since O(n® + n) = O(n?) [75], the time taken by the O(n) operations in Equation 5.3 does not
affect the final computational complexity.

SECONDS

152

84X84 ——

66x66 —~—
0.6 | 48X48 - |
30X30 ——
0.5 |]
0.4} 1
03}]

\
N,
N,
. y
O 2 1 1 3 ——s

0 20 40 €0 80 100
DEGREE OF DROPPED CROSS-CORRELATIO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>